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Abstract. In this work we present the first results for the ECHO hash function. We provide a sub-
space distinguisher for 5/8 rounds, near-collisions on 4.5/8 rounds and collisions for 4/8 rounds
of the ECHO-256 hash function. The complexities are 296 compression function calls for the distin-
guisher and near-collision attack, and 264 for the collision attack. The memory requirements are
264 for all attacks. Furthermore, we provide improved compression function attacks on ECHO-256
to get a distinguisher on 7/8 rounds and near-collisions for 6.5/8 rounds with chosen salt. The
compression function attacks also apply to ECHO-512. To get these results, we consider new and
sparse truncated differential paths through ECHO. We are able to construct these paths by analyz-
ing the combined MixColumns and BigMixColumns transformation. Since in these sparse truncated
differential paths at most 1/4 of all bytes of each ECHO state are active, missing degrees of freedom
are not a problem. Therefore, we are able to mount a rebound attack with multiple inbound phases
to efficiently find according message pairs for ECHO.
Keywords: hash functions, SHA-3 competition, ECHO, cryptanalysis, truncated differential paths,
rebound attack, subspace distinguisher, near-collisions, collision attack

1 Introduction

Many new and interesting hash function designs have been proposed in the NIST SHA-3 com-
petition [15]. In this paper, we analyze the hash function ECHO [1], which is one of 14 Round 2
candidates of the competition. ECHO is a wide-pipe, AES based design which transforms 128-
bit words similar as AES transforms bytes. Inside these 128-bit words, two AES rounds are
used to transform bytes. So far, most cryptanalytic results of ECHO were limited to the internal
permutation [7, 11]. Recently, reduced round attacks on the wide-pipe compression function of
ECHO have been published [16], which cover up to 4/8 rounds for ECHO-256 and 6/10 rounds of
ECHO-512. However, a drawback of attacks on building blocks (such as compression functions
or permutations) is that they cannot be used to compare SHA-3 candidates due to their great
design variety and different requirements for building blocks.

Therefore, in this work we analyze the ECHO hash function and present results for up to
5/8 rounds of ECHO-256. We use the subspace distinguisher [8,9] to compare our distinguishing
attacks with the generic complexity on ideal hash functions. Our results greatly improve upon
the previous results on the compression function, which are attacks on a similar number of
rounds. Furthermore, we present attacks on the compression function with chosen salt for up to
7/8 rounds of ECHO-256 which also extend to ECHO-512. The main improvement is to consider a
new type of sparse truncated differential paths by placing only a single active byte in the ECHO

state with 16 active AES states. In all previous paths, the full active ECHO states also had full
active AES states. The construction of such paths is possible by combining the last MixColumns
transformation of the second AES round with the BigMixColumns transformation of an ECHO

round to a SuperMixColumns transformation.
The attack itself is a rebound attack [12] with multiple inbound phases. Similar attacks have

been applied to the SHA-3 candidate LANE [10] and the hash function Whirlpool [8]. Since
the truncated differential paths are very sparse, we have plenty degrees of freedom to merge



the solutions of these multiple inbound phases. Note that using multiple inbound phases, we
can control more distant parts of much longer truncated differential paths than in a start-from-
the-middle attack [11] or Super-Sbox analysis [7, 8, 13] where the controlled rounds are limited
to only the middle rounds. To merge independent solutions of multiple inbound phases, we use
a technique based on the generalized birthday attack [17]. A summary of our main results on
the ECHO-256 hash function and both ECHO compression functions are given in Table 1. More
details and the respective generic complexities, especially for near-collisions and distinguishers,
are given in the sections describing the attacks.

Table 1: Summary of our results and related analysis for ECHO.

Hash Function Target Rounds Time Memory Type Reference

ECHO-256

hash
5/8 296 264 distinguisher Sect. 4.1

function
4.5/8 296 264 near-collision Sect. 4.2

4/8 264 264 collision Sect. 4.3

7/8 2107 264 distinguisher* Sect. 5.3

compression 6.5/8 296 264 free-start near-collision* Sect. 5.4

function 4/8 264 264 distinguisher [16]

3/8 264 264 semi-free-start collision [16]

7/10 2106 264 distinguisher* Sect. A.1

ECHO-512
compression 6.5/10 296 264 free-start near-collision* Sect. A.2

function 6/10 296 264 distinguisher [16]

3/10 296 264 semi-free-start collision [16]
* with chosen salt (without chosen salt the complexity increases by a factor of 2128)

2 Description of ECHO

In this section we briefly describe the AES based SHA-3 candidate ECHO. For a detailed descrip-
tion of ECHO we refer to the specification [1]. Since ECHO heavily uses AES round transformations,
we describe the AES block cipher first.

2.1 The AES Block Cipher

The block cipher Rijndael was designed by Daemen and Rijmen and standardized by NIST in
2000 as the Advanced Encryption Standard (AES) [14]. The AES follows the wide-trail design
strategy [4, 5] and consists of a key schedule and state update transformation. Since ECHO does
not use the AES key schedule, we just describe the state update here.

In the AES, a 4×4 state of 16 bytes is updated using the following 4 round transformations,
with 10 rounds for AES-128, 12 rounds for AES-192 and 14 rounds for AES-256:

– The non-linear layer SubBytes (SB) applies the AES S-Box to each byte of the state inde-
pendently.

– The cyclical permutation ShiftRows (SR) rotates the bytes of row j to the left by j positions.

– The linear diffusion layer MixColumns (MC) multiplies each column of the state by a constant
MDS matrix MMC.

– AddRoundKey (AK) adds the 128-bit round key Ki to the AES state.

Note that a round key is added prior to the first round and the MixColumns transformation is
omitted in the last round of AES. For a detailed description of the AES we refer to [14].
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2.2 The ECHO Hash Function

The ECHO hash function is a SHA-3 candidate submitted by Benadjila et al. [1]. It is a double-
pipe iterated hash function and uses the HAIFA [2] domain extension algorithm. More pre-
cisely, a padded t-block message M and a salt s are hashed using the compression function
f(Hi−1,Mi, ci, s), where ci is a bit counter, IV the initial value and trunc(Ht) a truncation to
the final output hash size of n bits:

H0 = IV

Hi = f(Hi−1,Mi, ci, s) for 1 ≤ i ≤ t

h = truncn(Ht).

The message block size is 1536 bits for ECHO-256 and 1024 bits for ECHO-512, and the message
is padded by adding a single 1 followed by zeros to fill up the block size. Note that the last
18 bytes of the last message block always contain the 2-byte hash output size and the 16-byte
message length.

The compression function of ECHO uses one internal 2048-bit permutation P which manipu-
lates 128-bit words similar as the AES manipulates bytes. The permutation consists of 8 rounds
in the case of ECHO-256 and has 10 rounds for ECHO-512. The internal state of the permutation
P can be modeled as a 4× 4 matrix of 128-bit words. We denote one ECHO state by Si and each
128-bit word or AES state is indexed by [r, c], with rows r ∈ {0, ..., 3} and columns c ∈ {0, ..., 3}
of the ECHO state.

The 2048-bit input of the permutation (which is tweaked by the input counter ci and the
salt s) are the previous chaining variable Hi−1 and the current message block Mi, which are
concatenated to each other. After the last round of the permutation, a feed-forward (FF) is
applied to get the preliminary output V :

V = Pci,s(Hi−1||Mi)⊕ (Hi−1||Mi). (1)

To get the 512-bit chaining variable Hi for ECHO-256, all columns of the ECHO output state V are
XORed. In the case of ECHO-512, the 1024-bit chaining variable Hi is the XOR of the two left
and the two right columns of V . The feed-forward together with the compression of columns is
called the BigFinal (BF) operation. To get the final output of the hash function, the lower half
is truncated in the case of ECHO-256 and the right half is truncated for ECHO-512.

The round transformations of the ECHO permutation are very similar to AES rounds, except
that 128-bit words are used instead of bytes. One round is the composition of the following
three transformations in the given order:

– The non-linear layer BigSubWords (BSW) applies two AES rounds to each of the 16 128-bit
words of the internal state. The first round key consists of a counter value initialized by ci
and increased for every AES state and round of ECHO. The second round key consists of the
128-bit salt s.

– The cyclical permutation BigShiftRows (BSR) rotates the 128-bit words of row j to the left
by j words.

– The linear diffusion layer BigMixColumns (BMC) mixes the AES states of each ECHO column
by the same MDS matrix MMC but applied to those bytes with equal position inside the
AES states.

3 Improved Truncated Differential Analysis of ECHO

In this section we describe the main concepts used to attack the ECHO hash function. We first
describe the improved truncated differential paths which have a very low number of active S-
boxes. These sparse truncated differential paths are the core of our attacks and for a better
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description of the attacks, we reorder the ECHO round transformations. This reordering gives
two combined building blocks of ECHO, the SuperMixColumns and SuperBox transformations.
We then show how to efficiently find both differences and values through these functions for a
given truncated differential path.

3.1 Sparse Truncated Differential Paths for ECHO

In this section we construct truncated differential paths with a low number of active bytes. Since
ECHO has the same properties for words as AES has for bytes, at least 25 AES states are active
in each 4-round differential path. However, we can reduce the number of active S-boxes in each
AES state to get a sparse 4-round truncated differential path with only 245 active S-boxes. Note
that the truncated differential paths of the previously best analysis of ECHO have already 320
active S-boxes in a single round [16] and a trivial lower bound [1] of active S-boxes for 4 rounds
is 125.

The AES structure of ECHO ensures that the minimum number of active words for 4 rounds
has the following sequence of active words:

1→ 4→ 16→ 4→ 1

Also, the same sequence of active bytes holds for 4 rounds of AES. In previous analysis of ECHO,
truncated differential paths have been used with 16 active bytes in the AES states where the
ECHO state has 16 active words. Hence, in these attacks always one full active state with 256
active S-boxes was used. In the following, we show how to construct sparse truncated differential
paths with only 64 active S-boxes by looking inside the AES rounds.

The main idea is to place the AES states with only one active byte in the ECHO rounds with
16 active words. This way, the number of total active bytes (or S-boxes) can be greatly reduced.
Since one round of ECHO consists of two AES rounds, we have to place the full active AES states
in those rounds with 4 active words. Finally, the ECHO state with only one active word contains
only one active byte in the active AES state as well. The resulting 4-round truncated differential
path of ECHO is given in Fig. 1 and consists of only 245 active S-boxes. Note that in the attacks
on ECHO, we use this truncated differential path with small modifications to improve the overall
complexity of the attacks.

3.2 An Equivalent ECHO Round Description

For an easier description of our attack, we use an equivalent description of one ECHO round. First,
we swap the BigShiftRows transformation with the MixColumns transformation of the second
AES round. Second, we swap SubBytes with ShiftRows of the first AES round. Swapping these
operations does not change the computational result of ECHO and similar alternative descriptions
have already been used in the analysis of AES. This way, we get two new super-round trans-
formations separated just by byte shuffling operations: SuperMixColumns and SuperBox. These
functions with adjacent byte shuffling operations are shown in Fig. 2. In the following subsec-
tions we show how to efficiently find differences and pairs for both transformations according
to a given truncated differential path.

3.3 SuperMixColumns

The SuperMixColumns transformation combines the four MixColumns transformations of the sec-
ond AES round with the 4 MixColumns transformations of BigMixColumns in the same 1 × 16
column slice of the ECHO state (see Fig. 2). We denote by column slice the 16 bytes of the same
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Fig. 1: The sparse truncated differential path for 4 rounds of ECHO. By 1, D, C, F we denote the pattern and
number of active bytes in each AES state (also see [7]). A 1 denotes an AES state with only one active byte, a
D an active diagonal (4 active bytes), a C an active column (4 active bytes) and an F denotes a full active state
(16 active bytes). Note that the path has only one active byte in each AES state of ECHO state SAES

2 .

1-byte wide column of the 16 × 16 ECHO state. Note that the BigMixColumns transformation
consists of 16× 4 parallel MixColumns transformations. Each of these MixColumns transforma-
tions mixes those four bytes of an ECHO state column, which have the same position in the four
AES states. Using the alternative description of ECHO (see Fig. 2), it is easy to see that four
MixColumns operations of AES work on the same column slice as four MixColumns operations of
BigMixColumns. We combine these eight MixColumns transformations to get a SuperMixColumns
transformation on a 1-byte wide column slice of ECHO.

We have determined the 16 × 16 matrix MSMC of the SuperMixColumns transformation
which is applied to the ECHO state instead of MixColumns and BigMixColumns. This matrix can
be computed by the Kronecker product of two MixColumns MDS matrices MMC and is given as
follows:

MSMC = MMC ⊗MMC =

 2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⊗
 2 3 1 1

1 2 3 1
1 1 2 3
3 1 1 2

 =



4 6 2 2 6 5 3 3 2 3 1 1 2 3 1 1
2 4 6 2 3 6 5 3 1 2 3 1 1 2 3 1
2 2 4 6 3 3 6 5 1 1 2 3 1 1 2 3
6 2 2 4 5 3 3 6 3 1 1 2 3 1 1 2
2 3 1 1 4 6 2 2 6 5 3 3 2 3 1 1
1 2 3 1 2 4 6 2 3 6 5 3 1 2 3 1
1 1 2 3 2 2 4 6 3 3 6 5 1 1 2 3
3 1 1 2 6 2 2 4 5 3 3 6 3 1 1 2
2 3 1 1 2 3 1 1 4 6 2 2 6 5 3 3
1 2 3 1 1 2 3 1 2 4 6 2 3 6 5 3
1 1 2 3 1 1 2 3 2 2 4 6 3 3 6 5
3 1 1 2 3 1 1 2 6 2 2 4 5 3 3 6
6 5 3 3 2 3 1 1 2 3 1 1 4 6 2 2
3 6 5 3 1 2 3 1 1 2 3 1 2 4 6 2
3 3 6 5 1 1 2 3 1 1 2 3 2 2 4 6
5 3 3 6 3 1 1 2 3 1 1 2 6 2 2 4
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Note that the optimal branch number of a 16 × 16 matrix is 17, which could be achieved
by an MDS matrix. Using Magma we have computed the branch number of SuperMixColumns
which is 8. Hence, it is possible to find differential paths in SuperMixColumns such that the sum
of active bytes at input and output is only 8. An according truncated differential path through
MixColumns and BigMixColumns has the following sequence of active bytes:

4
MC−−→ 16

BMC−−−→ 4

An example for a valid SuperMixColumns differential according to this truncated differential
path is given as follows:

SMC([E000 9000 D000 B000]T) = [2113 0000 0000 0000]T

However, the probability for a truncated differential path from 4 → 4 active bytes (with fixed
position) through SuperMixColumns is 2−24. Hence, only 28 (out of 232) such differentials for
the given position of active bytes exist. To improve the complexity of our attacks, we simply
choose the differences accordingly. In the sparse truncated differential path of Fig. 1, this 4→ 4
transition through SuperMixColumns occurs in the second and forth round.

SR SB MC SB SR

BIG BIG
SR MC SR

SR MC

Fig. 2: The two super-round transformations of ECHO: SuperBox (top, red) and SuperMixColumns (bottom, green)
with adjacent byte shuffling operations (ShiftRows and BigShiftRows).

3.4 SuperBox

The SuperBox has first been used by the designers of AES in the differential analysis of two AES
rounds [6]. Since one round of ECHO also consists of two consecutive AES rounds we use this
concept in our analysis as well. Using SuperBoxes, we can represent two rounds of AES using
a single non-linear layer and two adjacent linear layers. Since we can swap the SubBytes and
ShiftRows operation of the first AES round, we get a sequence of SB-MC-SB transformations
with independent columns in the middle. One such column is called a SuperBox and consists of
4 parallel S-boxes, one MixColumns operation and another 4 parallel S-boxes (see Fig. 2). Hence,
a SuperBox is in fact a 32-bit non-linear S-box.

This separation of two AES rounds into parallel 32-bit SuperBoxes allows to efficiently find
pairs for a given (truncated) differential. In a theoretical attack on ECHO or if we do not care
about memory, we can simply pre-compute and store the whole differential distribution table
(DDT) of the AES SuperBox with a time and memory complexity of 264. The DDT stores
which input/output differentials of the SuperBox are possible and also stores all input values for
which the differentials are fulfilled. Note that in ECHO, each SuperBox is keyed in the middle by
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the counter value. Hence, we also need different DDTs for all SuperBoxes with different keys.
To reduce the memory requirements and the maximum time to find values for given SuperBox
differentials, a time-memory trade-off with average complexity one and memory requirements
of 232 can be used. This method has first been proposed in the analysis of the hash function
Whirlpool [8, Appendix A] and applied to Grøstl in [13]. The same technique has independently
been discovered in [7].

3.5 Expected Number of Pairs

At this point, we can already compute the expected number of pairs conforming to the 4-round
truncated differential path given in Fig. 1. The resulting number of solutions determine the
degrees of freedom we have in the attack. At the input of the path, we have a 2048-bit value
and differences in 4 bytes. Therefore, the total number of possible inputs pairs (excluding the
128-bit salt) is about

22048 · 28·4 = 28·260 = 22080.

In general, the probability for a random pair to follow a truncated differential path from
a to b active bytes (with a + b ≥ 5) through MixColumns is 2−8·(4−b). An exception is the
propagation from 4→ 16→ 4 bytes through SuperMixColumns, which has a probability of 2−24

(see Sect. 3.3). Multiplying all probabilities through MixColumns and SuperMixColumns gives
the approximate probability for a random input pair to follow the whole truncate differential
path. For the path given in Fig. 1, we get a probability less than one for all MixColumns or
SuperMixColumns transformation where a reduction in the number of active bytes occur. This
happens in the 1st MC of round 1, the 2nd MC of round 2, the 1st MC and SMC of round 3,
and the 2nd MC and BMC of round 4. We then get for the total probability of the truncated
differential path (in base 2 logarithm):

−8 · (3 + 4 · 12 + 16 · 3 + 4 · 3 + 4 · 12 + 3 · 4) = −8 · 171

So in total, the expect number of solutions for the given path is

28·260 · 2−8·171 = 28·89 = 2712

and we still have 712 degrees of freedom in this 4-round truncated differential path.

4 Attacks on the ECHO-256 Hash Function

In this section we use the sparse truncated differential path and properties of SuperMixColumns
to get attacks for up to 5 rounds of the ECHO-256 hash function. We first describe our main
result, the subspace distinguisher for 5 rounds of ECHO-256 in detail. Then, we briefly show how
to get near-collisions for 4.5 rounds and collisions for 4 rounds of ECHO-256.

4.1 Subspace Distinguisher for 5 Rounds

In this section we show that ECHO-256 reduced to 5 rounds can be distinguished from an ideal
hash function. We are able to construct a large set of output differences which fall into a vector
space of fixed dimension. But when does this result in a distinguisher on the hash function?
An attacker could have chosen the vector space specifically to fit a previously computed set of
differences. Also, finding up to x differences in subspace of dimension x is trivial, even for ideal
functions. But once a subspace has been chosen, finding additional differences in this subspace
should again have the generic complexity. We have a similar situation in preimage attacks:
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finding a preimage for an image chosen by the attacker is trivial if the attacker already knew
the preimage. Note that in most distinguishing attacks, the generic complexity also depends
on the number of found solutions. To compare distinguishers with generic attacks, differential
q-multicollisions have been used in the distinguishing attacks on AES [3]. More general, to
analyze the complexity of finding differences in a vector space of fixed dimension, the subspace
distinguisher has been introduced in the analysis of Whirlpool [8, 9]. Before we describe the
subspace distinguisher for 5 rounds of ECHO-256 in detail, we give an overview of the truncated
differential path and provide a brief outline of the attack.

The Truncated Differential Path. For the attack we use two message blocks where the
first block does not contain differences. For the second message block, we use the truncated
differential path given in Fig. 3. We use colors (red, yellow, green) to describe different phases
of the attack and to denote their resulting solutions. Active bytes are denoted by black color
and all AES states are active which contain at least one active byte. Hence, the sequence of
active AES states for each round of ECHO is as follows:

5
r1−→ 16

r2−→ 4
r3−→ 1

r4−→ 4
r5−→ 16

Note that in this path we keep the number of active bytes low as described in Sect. 3.1. Except
for the beginning and end, at most 1/4 of the ECHO state is active and therefore, we have enough
freedom to find many solutions. Since the lower half of the state is truncated, we have most
differences in the lower half of the message and there are no differences in the chaining input
(blue). The padding of the second (and last) message block is denoted by cyan bytes. The
last 16 bytes (one AES state) of the padding contain the message length, and the two bytes
above contain the 2-byte value with the hash size. Note that the AES states containing the
chaining values (blue) and padding (cyan) do not get mixed with other AES states until the
first BigMixColumns transformation.

Attack Outline. To find input pairs according to this path we use the rebound attack [12] with
multiple inbound phases [8,10]. The main advantage of multiple inbound phases is that we can
first find pairs for each inbound phase independently and then, connect (or merge) the results.
For the attack on 5 rounds of ECHO-256 we use an inbound phase in round 2 (red) and another
inbound phase in round 3 (yellow). The 1st inbound phase finds values and differences for the
red bytes which we merge (connect) with the chaining input (blue) and padding (cyan). Then,
we compute the solutions of the 2nd inbound phase forwards in the outbound phase (green)
to insure the propagation according to the truncated differential path until the end. Finally,
we merge the solutions of the two inbound phases by determining the remaining (white) values
using a generalized birthday attack on 4 independent columns of the state. Note that in some
cases the probability to find one solution is only close to one. However, for simplicity reasons of
describing the attack we assume it is one, since we have enough freedom in the attack to repeat
all phases with different starting points to get one solution on average.

1st Inbound. We start the 1st inbound phase with a random difference according to the trun-
cated differential path through SuperMixColumns between state S14 and state S16 (see Sect. 3.3).
For these differences, we compute backward to get the output differences of the SuperBoxes in
state S12. For each column in state S7 we choose 232 random differences for the given ac-
tive bytes. We compute these differences forward through BigMixColumns to the input of the
SuperBoxes. Note that for the last column we could choose up to 264 (8 active bytes) differences,
whereas in all other columns we have only 232 (4 active bytes each) possible differences.
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As described in Sect. 3.4, we find values according to the SuperBox differentials with an
average complexity of 1 by using their DDT. Note that for some differentials no solutions exist,
but for each possible differential we get more pairs which out-weight the non-existing ones
(for more details we refer to [12]). For a full active AES state, one out of approximately 216

differences gives a differential match and then, provides at least 216 solutions. Hence, in the
following it is reasonable to assume that for each differential, we get one solution with average
complexity one.

Hence, after the 1st inbound phase we get 232 independent solutions for each of the three
columns in state S7 (red and black bytes) with complexity 232 in time and memory. These
solutions (or pairs) consist of differences and values for the black bytes, and values for the red
bytes in S7. Note that for each solution (and arbitrary choice of white bytes in S7) the truncated
differential path from state S3 to state S23 is already fulfilled.

Merge Chaining Input. Next, we need to merge the solutions of the 1st inbound phase
with the chaining input and bytes fixed by the padding. Therefore, we choose 232 random first
message blocks and compute the resulting chaining value after one compression function call
of ECHO. Note that each AES state can be independently computed forward to state S7 until
the first BigMixColumns transformation. We do this for the chaining values (blue) and the AES
state containing the message length (cyan). Note that we match the two remaining bytes and
one bit of the padding at a later step.

We merge the 232 chaining values with the solutions of the 1st inbound phase column by
column. We start with column 0 where we need to match the padding state as well. Since we
match 64 bits of overlapping red and blue/cyan bytes, the expected number of solutions is
232 × 232 × 2−64 = 1. For all other columns, we need to match only 4 red bytes in each blue
AES state and we get 232 × 2−32 = 1 solution as well. Since we only merge lists of size 232 the
complexity of this step is 232 in time and memory.

After this step, we have found solutions where the values of all blue, cyan and red bytes, as
well as the values of the black bytes between state S7 and state S14 are determined. Furthermore,
all differences (black bytes) from state S4 up to state S17 can be computed.

2nd Inbound. In the 2nd inbound phase, we search for values and differences such that the
truncated differential path in round 3 is fulfilled (yellow). Remember that the differences in
state S17 have already been fixed due to the 1st inbound phase. We start with 264 differences
of state S24 and compute backwards to state S20, the output of the SuperBoxes. Note that we
have 16 independent SuperBoxes for the yellow AES states between state S17 and S20. Again,
we use the DDT of the SuperBoxes to find the according values for the given differentials. For 4
full active AES states, the probability of a possible differential is about 2−4·16 and we get one
possible differential. Note that for each possible differential, the expected number of solutions
for the 2nd inbound phase is 264. For each of these pairs, differences and values of all yellow
and black bytes in round 3 are determined.

Outbound Phase. Next, we compute the 264 differences and values of state S24 forward to
S31. With a probability of 2−96 we get 4 active bytes after MixColumns in state S31. Hence, we
have to repeat the 2nd inbound phase 232 times to find one solution for the outbound phase as
well and we get a total complexity of 296. After this step, the complete truncated differential
path is fulfilled (except for two cyan bytes in the first states). Furthermore, all differences (black
bytes) from state S4 until state S33 are already determined. Also, the values of the yellow, red,
blue, green and cyan bytes, and the values of the black bytes from state S7 to S31 except for
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state S15 are determined. What remains is to find values for the white bytes such that the
results of the two inbound phases (blue/cyan/red and yellow bytes) can be connected.

subsubsectionMerge Inbound.
To merge the two inbound phases, we need to find according values for the white bytes.

We first choose random values for all remaining bytes of the first two columns in state S7

and compute them forward to state S14. Note that we need to try 22·8+1 values for AES state
S7[2, 1] to also match the 2-byte (cyan) and 1-bit padding at the input in AES state S0[2, 3].
To illustrate all further steps, we use only states and colors shown in Fig. 4. Note that all gray
bytes have already been determined either by an inbound phase, chaining value, padding or by
just choosing random values for the remaining free bytes of the first two columns of S7. Also
the cyan bytes are fixed already. However, all white, red, green, yellow and blue bytes are still
free to choose.

S7 S8 S14 S16

SR

SB

MC MC
BIG

SB BIGMC
SR MC

BIG
SR

Fig. 4: States used to merge the two inbound phases with the chaining values. Gray bytes show values already
determined. Green, blue, yellow and red bytes show independent values used in the generalized birthday attack
and cyan bytes represent values with the target conditions.

By taking a look at the linear SuperMixColumns transformation, we observe that in each
column slice, 14 out of 32 input/output values are already fixed. Note that choosing any value
of two more bytes uniquely determines all remaining 16 bytes, which we can compute by solving
a linear system of equations. We choose in total 264 such values for the green, blue, yellow and
red columns in state S14 and compute them independently backward to S8.

Next, we need to match the values of the cyan bytes of state S7, which results in a condition
on 24 bytes or 192 bits. Since we have 4 independent lists with 264 values in state S8, we can
use the generalized birthday attack [17] to find one solution with a complexity of 2192/3 = 264 in
time and memory. In detail, we need to match values after the BigMixColumns transformation
in backward direction. Hence, we first multiply each byte of the 4 independent lists by the 4
multipliers of the InvMixColumns transformation. Then, we get 24 equations containing only
XOR conditions on bytes between the target value and elements of the 4 independent lists,
which can be solved using a generalized birthday attack.

After this step, all values and differences are determined and we can compute the input
message pair, as well as the output differences for ECHO-256 reduced to 5 rounds. By simply
repeating the merge inbound phase 232 times, we can find at least 232 solutions for the whole
truncated differential path. The total complexity is then 296 compression function evaluations
and memory requirements of 264.

Subspace Distinguisher. Note that one message pair resulting in one output differences does
not give a distinguisher. We need to find many output differences in a subspace with a complexity
less than in the generic case. To determine the generic complexity of finding output differences
in a vector space and the resulting advantage of our attack we use the subspace distinguisher.
In general, the size of the output vector space is define by the number of active bytes prior to
the linear transformations in the last round (16 active bytes after the last SubBytes), combined
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with the number of active bytes at the input due to the feed-forward (0 active bytes in our case).
This would results in a vector space dimension of (16 + 0) · 8 = 128. However, a weakness in the
SuperMixColumns transformation together with the BigFinal and output truncation reduces the
vector space to a dimension of 64 at the output of the hash function for the given truncated
differential path.

Note that we can move the BigFinal function prior to SuperMixColumns, since BigFinal is
a linear transformation and the same linear transformation MSMC is applied to all columns in
SuperMixColumns. Hence, we get 4 active bytes in each column slice at the same position in
each AES state. To each (active) column slice C16, we first apply the SuperMixColumns matrix
multiplication with MSMC and then, a matrix multiplication with Mtrunc which truncates the
lower 8 rows. Since only 4 bytes are active in C16, these transformations can be combined into
a transformation using a reduced 4 × 8 matrix Mcomb applied to the reduce input C4, which
contains only the 4 active bytes of C16:

Mtrunc ·MSMC · C16 = Mcomb · C4

The multiplication with zero differences of C16 removes 12 columns of MSMC while the truncation
removes 8 rows of MSMC. An example for the first active column slice is given as follows:


1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

 ·



4 6 2 2 6 5 3 3 2 3 1 1 2 3 1 1
2 4 6 2 3 6 5 3 1 2 3 1 1 2 3 1
2 2 4 6 3 3 6 5 1 1 2 3 1 1 2 3
6 2 2 4 5 3 3 6 3 1 1 2 3 1 1 2
2 3 1 1 4 6 2 2 6 5 3 3 2 3 1 1
1 2 3 1 2 4 6 2 3 6 5 3 1 2 3 1
1 1 2 3 2 2 4 6 3 3 6 5 1 1 2 3
3 1 1 2 6 2 2 4 5 3 3 6 3 1 1 2
2 3 1 1 2 3 1 1 4 6 2 2 6 5 3 3
1 2 3 1 1 2 3 1 2 4 6 2 3 6 5 3
1 1 2 3 1 1 2 3 2 2 4 6 3 3 6 5
3 1 1 2 3 1 1 2 6 2 2 4 5 3 3 6
6 5 3 3 2 3 1 1 2 3 1 1 4 6 2 2
3 6 5 3 1 2 3 1 1 2 3 1 2 4 6 2
3 3 6 5 1 1 2 3 1 1 2 3 2 2 4 6
5 3 3 6 3 1 1 2 3 1 1 2 6 2 2 4



·



a
0
0
0
b
0
0
0
c
0
0
0
d
0
0
0



=


4 6 2 2
2 3 1 1
2 3 1 1
6 5 3 3
2 4 6 2
1 2 3 1
1 2 3 1
3 6 5 3

 ·
 a

b
c
d



Analyzing the resulting matrix Mcomb for all 4 active column slices shows that in each case,
the rank of Mcomb is 2 instead of 4. This reduces the dimension of the vector space in each active
column slice from 32 to 16. Since we have 4 active columns, the total dimension of the vector
space at the output of the hash function is 64. We use [8, Corollary 1] and [8, Equation (19)] to
compute the complexity of a generic distinguishing attack on the ECHO-256 hash function. We
get the parameters N = 256 (hash function output size), n = 64 (dimension of vector space)
and t = 232 (number of outputs in vector space) for the subspace distinguisher. Then, the
generic complexity to construct 232 elements in a vector space of dimension 64 is about 2111.8

compression function evaluations. Remember that in our attack on ECHO we also get 232 pairs in
a vector space of the same dimension. Hence, the total complexity for a subspace distinguisher
on 5 rounds of the ECHO-256 hash function is about 296 compression function evaluations with
memory requirements of 264.

4.2 Near-Collisions for 4.5 Rounds

We can also use the truncated differential path for the subspace distinguisher on 5 rounds to
get a near-collision attack for 4.5 rounds. If we remove the last MixColumns, BigShiftRows and
BigMixColumns transformations we get 232 64-bit near-collisions (8 active bytes at the output)
with a total complexity of 296 and 264 memory. Note that the generic complexity to find one
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such near-collision is 296 while the complexity to find 232 near-collisions is 2128 compression
function evaluations.

We can also change the truncate differential path slightly to find one 48-bit near-collision
with only 6 active bytes at the output (generic complexity 2104). Instead of computing 232 solu-
tions after the merge inbound phase, we search for one pair according the truncated differential
path of Fig. 5 in the last round. The probability for the propagation through MixColumns in
state S35 is 2−32 and we get one 48-bit near-collision with a complexity of 296 compression
function evaluations and 264 memory.

S32 S33 S34 S35 S36 S37 S38

OUT

BIG BF
SR SB MC SB SR

SR FF

Fig. 5: The truncated differential path for the last round to get a near-collision for 4.5 rounds of ECHO-256. Black
bytes are active and purple bytes are determined in the 2nd outbound phase.

Additionally, we can improve the complexity of a near-collision attack by choosing the salt
value. In this case, we extend the attack by a 3rd inbound phase in round 4 instead of the
outbound phase. Since the salt has to be determined first, we need to compute the 2nd and
3rd inbound phase before the 1st inbound phase. Note that the 128-bit salt value is added
after the second AES MixColumns transformation in each round of ECHO. Since the same salt
value is added in every AES state and BigMixColumns is a linear operation, we can move the
XOR-addition of the salt after BigMixColumns. Then, the whole 2nd and 3rd inbound phase is
independent of the salt value and we use the freedom in the salt to connect the two inbound
phases.

In detail, we first compute the resulting difference of the 2nd inbound phase forward to
state S25 and one difference of state S31 backward to state S28. Then, we use the DDT of the
SuperBoxes to find values according to the given differential or repeat with another difference
of state S31. This step determines values and differences of the green and black bytes of round
4. Since the differences between the 2nd and 3rd inbound phase already match we just need
to choose the salt such that the values in the active AES state match as well. Since we do not
reduce the number of active bytes in the outbound phase, the total complexity to find a 64-bit
near-collision with chosen salt (8 active bytes at the output) is 264 in time and memory.

4.3 Collisions for 4 Rounds

Finally, we are able to construct collisions for 4 rounds of the ECHO-256 hash function. The
attack and truncated differential path is similar as for the subspace distinguisher on 5 rounds.
We use a two-block message and the truncated differential path for the second block is given in
Fig. 6. Again, we start with the 1st inbound phase, merge the chaining input and continue with
the 2nd inbound and outbound phase. To get a collision at the output we use differences in the
feed-forward and do a 3rd inbound phase in two AES states in round 1. Finally, we merge the
solutions of the two inbound phases to determining the remaining values. In the following, we
only describe parts of the attack which are new or have been changed.

1st Inbound. The 1st inbound phase is the same as for the subspace distinguisher, except
that in state S7 we choose 264 random differences for the active bytes of column 0 and 1, and
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232 random differences for column 2 and 3. Hence, after the 1st inbound phase we get 264

independent solutions for each of the first two columns, and 232 solutions for each of the last
two columns in state S7 (red and black bytes).

Merge Chaining Input. Again, we choose 232 random first message blocks and merge them
with the solutions of the 1st inbound phase column by column. We start with column 0 where
we need to match the padding state as well. Since we match 64 bits of overlapping red and
blue/cyan bytes, the expected number of solutions is 232 × 264 × 2−64 = 232. For all other
columns, we need to match only the 4 red bytes in each blue AES state. For column 1 we get
232 solutions since we have computed 264 results in the 1st inbound phase. For column 2 and
3, we have 232 solutions from the 1st inbound phase and get one match on the overlapping 4
bytes.

2nd Inbound. To get the first solution for the 2nd inbound phase we need to try 264 differences
of state S24, since the probability of a differential match in 4 full active AES states is only about
2−4·16. However, the expected number of solutions for the 2nd inbound phase is 264 but we only
need 248 of them to continue.

Outbound Phase. In the outbound phase we compute these 248 differences and values of
state S24 forward to S27. With a probability of 2−48 we get one active byte after MixColumns
in each active state of S27. After this step, the complete truncated differential path (except for
the three first states) is fulfilled. What remains is to determine differences in the first state to
get a collision at the output and to find values for the white bytes.

3rd Inbound. To get a collision at the output, we use two additional active AES states in
round 1. In S0[0, 1] and S0[1, 1], only the first column should be active such that the active
bytes overlap with the active bytes at the output. For these active bytes at the input, we choose
the same differences as in the output in S32[0, 0] and S32[1, 0]. Then, these differences cancel
each other by the feed-forward and we get a collision. In a 3rd inbound phase, we determine
the remaining values of the gray and black bytes such that the given truncated differential for
these two AES states in round 1 is satisfied. Again, we can find such values and differences with
a complexity of about 1 using the DDT of the SuperBoxes, and compute 232 solutions for each
AES state. Since we still have 232 solutions for each of column 0 and column 1 due to the 1st
inbound phase, we expect to find a match for both differences and values of the overlapping 4
diagonal bytes of AES state S7[0, 1] and S7[1, 0].

Merge Inbound. Finally, we merge the 1st and 2nd inbound phases as in the previous attacks.
Then, all values and differences are determined and we can compute the input message pair
which results in a collision for ECHO-256 reduced to 4 rounds. The total complexity is 264 in
time and memory.

5 Attacks on the ECHO-256 Compression Function

The attack on the hash functions of ECHO can be extended to the compression function almost
in a straight-forward way. In this case, instead of the chaining value, a 512-bit value of another
inbound phase is merged with the 1st inbound phase. In fact we can repeat with a similar
3-round path in backward direction as we have in the hash function case in forward direction.
Then, the full active ECHO state is located in the middle round and we get in total an attack
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on 7 rounds of the compression function of ECHO-256. We get similar results also for ECHO-512
(see App. A). To reduce the complexity of the attacks, we also choose the salt input of the
compression function.

5.1 The Truncated Differential Path

We use the 7-round truncated differential path given in Fig. 7. Black bytes are active and colored
bytes are determined by the different inbound and outbound phases. Since this path is sparse, we
do not have problems with missing degrees of freedom and are able to find many pairs according
to this path. In more detail, we can compute this number already by considering the reduction of
pairs in the MixColumns transformations. Remember that a truncated differential path through
the SuperMixColumns transformation from 4 → 16 → 4 active bytes has a probability of 2−24.
At the input, we start with 16 · 16 byte values, 16 byte differences and a 128-bit salt. We get a
reduction of pairs at the 1st MC and SMC of round 1, the 2nd MC of round 3, the 1st MC and
SMC of round 4, the BMC of round 5 and the 2nd MC of round 6. Hence, we get the following
expected number of pairs (in base 2 logarithm) for the whole path:

8 · (16 · 16 + 16 + 16− 12− 3− 48− 48− 12− 48− 12) = 8 · 105 (2)

In other words, the expected number of pairs conforming to this truncated differential path is
28·105 = 2800, which is much more than for the paths given in [11] and [16].

5.2 Outline of the Attack

The attack on the compression function consists of two more inbound phases in round 2 and
3. Instead of merging with the chaining input, we merge the results of the 1st inbound phase
with the results of these new inbound phases. Hence, we start with the 1st inbound phase in
round 4, compute the 3rd and 4th inbound phase and then, merge the results of these inbound
phases. We continue with the 2nd inbound phase, the outbound phase and finally, merging all
inbound phases by finding solutions for the remaining white bytes, similar as in the hash function
attack. Note that we slightly change the 1st inbound phase. We choose only one difference for
the active bytes in state S23 but 232 differences for the active bytes in state S30. According to
the SuperMixColumns transformation in round 4, 232 such differences exist.

3rd Inbound. In the 3rd inbound phase, we search for values and differences such that the
truncated differential path in round 3 is fulfilled. Furthermore, we need to ensure that the results
can be connected with the solutions of the 1st inbound phase. We have 232 solutions for the
1st inbound phase and choose 232 values of the salt corresponding to the active diagonal bytes
(red an black bytes) in state S23. Hence, we get in total 264 values with equal differences for the
red and black bytes of state S23. Next, we compute the difference of S23 backward to state S20,
choose a random difference in state S15 and compute forwards to state S17. Again, we have 16
independent active SuperBoxes in round 3 and can use the DDT to find according values for the
given differentials with an average complexity of 1. We need to match the overlapping values
of the 16 black bytes in state S23. We repeat the previous step with 296 random differences of
state S15 to get 296 × 264 × 2−128 = 232 solutions.

4th Inbound. The 4th inbound phase is applied in round 2. We first choose a difference
according to the truncated differential path through SuperMixColumns in round 1 and compute
this difference forward to state S9. Furthermore, we compute the differences of the 232 solutions
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of the 3rd inbound phase backwards to state S12. We use the DDT of the SuperBoxes to get 232

solutions for the 4th inbound phase. Next, we need to connect the values of the 3rd and 4th
inbound in state S15. Among the 232 solutions of the 4th inbound phase, we expect to find one
match for the 4 bytes of the diagonal of state S15[0, 0]. For all other bytes, we simply choose
the remaining 12 bytes of the salt accordingly.

Outbound Phase. In the 2nd inbound phase, we compute 296 solutions and propagate each of
them outwards to state S47. With a probability of 2−96 we get 4 active bytes after MixColumns
in state S47 and find one such pair. The remaining part of the truncated differential path holds
with probability 1. Hence, for this resulting pair, the complete 7-round truncated differential
path is fulfilled.

Merge Inbound. What remains is to find values for all white bytes. We can choose random
values for the gray bytes in round 3 and continue with merging the inbound phases as in
Sect. 4.1 of the hash function attack. Hence, the overall complexity to find one pair according
to the truncated differential path for the permutation is 296 with 264 memory.

5.3 Subspace Distinguisher for 7 Rounds

To distinguish 7 rounds of the ECHO-256 compression function from an ideal compression func-
tion, we use the complete 7-round truncated differential path to get a subspace distinguisher.
Since the output is not truncated, the size of the vector space is define by the number of active
bytes prior to the MixColumns and BigMixColumns transformations in the last round (16 active
bytes), and the number of active bytes at the input due to the feed-forward (16 active bytes).
Since in total 32 active bytes determine the vector space we get a dimension of 32 · 8 = 256.
Again, we use [8, Equation (19)] to compute the complexity of a generic distinguishing attack
on the ECHO-256 compression function.

We get the parameters N = 512 (compression function output size), n = 256 (dimension of
vector space) and t = 211 (number of outputs in vector space) for the subspace distinguisher.
Then, the generic complexity to construct 211 elements in a vector space of dimension 256 is
about 2117.3 compression function evaluations. Note that we also need to repeat our attack on
the ECHO-256 compression function about 211 times to get enough differences in the vector space.
Hence, the total complexity for the subspace distinguisher on the compression function is about
2107 with memory requirements of 264 with chosen salt.

5.4 Near-Collision for 6.5 Rounds

Due to the truncating output transformation of ECHO, near-collisions are also interesting for
the compression function. To construct near-collisions for up to 6.5 rounds of the compression
function, we use the same truncated differential path as before but remove the last MixColumns,
BigShiftRowsand BigMixColumns transformation. We get a 128-bit near-collision for the 512-bit
compression function of ECHO-256 (4 diagonals with 4 bytes are active) and 6 rounds, or a 192-
bit near-collision (6 bytes in 4 AES states are active) and 6.5 rounds with a complexity of 296

and 264 memory with chosen salt. Because of the padding, this near-collision attack does not
apply to the last compression function call of ECHO-256.

6 Conclusion

In this work we have presented the first analysis of the ECHO hash function. We give a subspace
distinguisher for 5/8 rounds, near-collisions for 4.5/8 rounds and collisions for 4/8 rounds of the
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ECHO-256 hash function. These results greatly improve upon the previous results which are only
on the (double-pipe) compression function of ECHO and for less rounds. Note that near-collisions
are a requirement [15] for a future SHA-3 and due to the distinguisher, ECHO-256 reduced to 60%
of its rounds cannot be considered as an ideal function. We have also analyzed the compression
functions of ECHO to get a distinguisher for 7/8 rounds and near-collisions for up to 6.5/8 rounds
of ECHO-256 with chosen salt. We get similar compression function results also for ECHO-512.

The main idea of our improvement is to combine the last MixColumns with the following
BigMixColumns to a SuperMixColumns transformation, which allows to construct very sparse
truncated differential paths. In these paths, at most 1/4 of the bytes are active throughout
the whole computation of ECHO. This behavior is not known from the AES or AES based hash
functions which strictly follow the wide-trail design strategy. Future work will include to search
for even sparser truncated differential paths and the improvement of the given attacks, especially
for ECHO-512.
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A Results on the ECHO-512 Compression Function

The truncated differential path to analyze the ECHO-256 compression function can also be used
for the compression function of ECHO-512. The truncated differential path of the permutation
is exactly the same, but the active bytes for the near-collision and the complexities for the
subspace distinguisher change. The complexity to find one solution for the permutation is 296

with 264 memory (with chosen salt). In the case of ECHO-512, we can also find one solution for
the permutation without chosen salt by repeating the attack 2128 times and we get a complexity
of 2224 with 264 memory. Note that we have enough different starting points in state S23 and
S15. Alternatively, we can also fix the 144-bit padding of the last compression function call.
Then, the total complexity to find one solution is 2240 and 264 memory with chosen salt.

A.1 Subspace Distinguisher for 7 Rounds

For the compression function of ECHO-512, the parameters of the subspace distinguisher are
N = 1024 (compression function output size), n = 256 (dimension of vector space) and t =
210 (number of outputs in vector space). The generic complexity for a subspace distinguisher
is 2292.9 compression function evaluations. With chosen salt, we get for the total complexity
of the subspace distinguisher on the ECHO-512 compression function about 2106 with memory
requirements of 264, and without chosen salt we get 2234 and 264 memory.

A.2 Near-Collision for 6.5 Rounds

In the case of ECHO-512, we get a 192-bit near-collision for the 1024-bit compression function for
6 rounds (6 diagonals with 4 bytes are active). If we remove the last MixColumns, BigShiftRows
and BigMixColumns transformation, we get a 224-bit near-collision for 6.5 rounds (2 AES states
with 6 bytes and 4 AES states with 4 bytes are active). With chosen salt, the complexity is 296

and 264 memory, and without chosen salt we get a complexity of 2224 and 264 memory.
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