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Abstract. Linear Hull is a phenomenon that there are a lot of linear
paths with the same data mask but different key masks for a block cipher.
In 1994, Nyberg presented the effect on the key-recovery attack such as
Algorithm 2 with linear hull, in which the required number of the known
plaintexts can be decreased compared with that in the attack using in-
dividual linear path. In 2009, Murphy proved that Nyberg’s results can
only be used to give a lower bound on the data complexity and will be
no use on the real linear cryptanalysis. In fact, the linear hull have this
kind of positive effect in linear cryptanalysis for some keys instead of the
whole key space. So the linear hull can be used to improve the traditional
linear cryptanalysis for some weak keys. In the same year, Ohkuma gave
the linear hull analysis on PRESENT block cipher, and pointed that
there are 32% weak keys of PRESENT which make the bias of a given
linear hull with multiple paths more than that of any individual linear
path. However, Murphy and Ohkuma have not considered the depen-
dency of the muti-path, and their results are based on the assumption
that the linear paths are independent. Actually, most of the linear paths
are dependent in the linear hull, and the dependency of the linear paths
means the dependency of the equivalent key bits. In this paper, we will
analyze the dependency of the linear paths in linear hull and present the
real effect of linear hull with the dependent linear paths. Firstly, we give
the relation between the bias of a linear hull and its linear paths in linear
cryptanalysis. Secondly, we present the algorithm to compute the rate
of weak keys corresponding to the expect bias of the linear hull. At last,
we verify our algorithm by cryptanalyzing reduced-round of PRESENT.
Compared with the rate of weak keys under the assumption of the in-
dependent linear paths, the dependency of the linear paths will greatly
reduce the rate of weak keys for a given linear hull.
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Block Cipher.
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1 Introduction

Linear cryptanalysis [1] is a powerful method of cryptanalysis introduced
by Matsui in 1993. It is a known plaintext attack in which the attacker
studies the linear approximations of parity bits of the plaintext, cipher-
text and the subkey. The probability p of linear approximation needs to
be away from 1/2, and the magnitude of the bias ε = p− 1/2 represents
the effectiveness of the linear approximation. Based on this idea, many
variants of linear cryptanalysis appeared, such as linear cryptanalysis us-
ing multiple linear approximations with the same key mask[2], multiple
linear approximations cryptanalysis[3] and linear cryptanalysis based on
linear hull[4], etc.

Linear cryptanalysis using multiple approximations [2] was introduced
by Kaliski and Robshaw in 1994. For a given success rate, this method
reduced the data complexity by using multiple linear approximations.
But their technique is limited to cases where all approximations have
the same key mask. Unfortunately, this approach imposes a very strong
restriction on the approximations. The concept of linear hull [4] was first
announced by Nyberg in 1994, and a linear hull stands for the collection of
all linear relations that have the same input mask and output mask, but
involve different sets of round subkey bits in the different linear paths.
The linear hull effect accounts for a clustering of linear paths, which
decreased the required number of known plaintexts for a given success
rate. In 2009, however, Murphy proved that there is no linear hull effect
in linear cryptanalysis [5]. In the same year, Ohkuma pointed that 32%
of the whole key space for PRESENT are weak keys which will produce
much larger bias by the multi-path effect compared with that by the single
linear path[6]. That is to say, the number of required known plaintexts
can be reduced apparently for these weak keys. However, the results of
Murphy and Ohkuma are all based on the assumption that all linear
paths are independent. In fact, the assumption is not correct, so we need
to reconsider the effect of linear hull.

Here we will analyze how the dependency of linear paths of linear
hull affect the linear cryptanalysis. And then we give the relationship
between the bias of linear hull and equivalent subkey values of the linear
paths. Since the linear paths are dependent, we will give the method to
compute the final bias of linear hull for a given key and offer a method
to compute the rate of weak keys with the expected bias. In order to
verify our method, we computed the bias and the corresponding weak
keys for block cipher PRESENT. As a result, we found that it is deeply
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dependent among linear paths of the given data mask and the rate of
weak keys is lower than that in [6], which has been further confirmed by
our experimental data.

This paper is organized as follows. Section 2 briefly introduces the lin-
ear hull and the block cipher PRESENT. Section 3 presents the relation-
ship between the linear bias and equivalent subkey values, then describes
our computational formula of the linear bias under the dependent linear
paths. In Section 4, we compute the rate of weak keys with the expected
bias for reduced-round PRESENT. Section 5 concludes this paper.

2 Preliminaries

2.1 Introduction of Linear Hull

The concept of linear hull was first proposed by Nyberg in [4]. A linear
hull stands for the collection of all linear approximations (across a certain
number of rounds) that have the same input and output masks, but in-
volves different sets of round subkeys according to different linear paths.
As we know, the differential is the set of the differential characteristics,
and similarly the linear hull is the set of the linear approximations. It
is easy to compute the probability of the differential with multiple dif-
ferential characteristics, but the bias of the linear hull is difficult to be
obtained.

In [4], Nyberg also proposed the concept of linear hull effect which
accounts for a clustering of linear paths. Because of the existence of the
linear hull effect, the final bias may become significantly higher than
that of any individual linear path. Denote the input mask as a and the
output mask as b for a block cipher Y = Y (X, K), Nyberg computed the
potential of the corresponding linear hull as follows,

ALH(a, b) =
∑

ci∈Γ

(P(a ·X ⊕ b · Y = ci ·K)− 1
2
)2 = η2, (1)

where ci is the mask for the subkey bits, and the set Γ = {ci ·K}. Then,
key-recovery attacks such as Algorithm 2 in [1] apply with

N =
t

ALH(a, b)
=

t

η2

known plaintexts, where t is a constant. An advantage to use linear hulls in
key-recovery attacks, such as in Algorithm 2, is that the required number
of known plaintexts can be decreased for a given success rate.
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2.2 Brief Description of PRESENT

PRESENT is an Ultra-Lightweight block cipher proposed by A.Bogdanov,
L.R.Knudsen and G.Leander et al.[9]. PRESENT is a 31-round SP-network
with block length 64 bits and 80 bits or 128 bits key length. The round
function consists of three layers: AddRoundKey, SboxLayer and pLayer.
The AddRoundKey is a 64-bit exclusive OR operation with a round key.
The SboxLayer is a 64-bit nonlinear transform using a single S-box 16
times in parallel. The S-box is a nonlinear bijective mapping given in
Tab. 4. The pLayer is a bit-by-bit permutation given in Tab. 5. The de-
sign idea of SboxLayer and pLayer is adapted from Serpent [7] and DES
block cipher [8], respectively.

3 The Bias of the Linear Hull

3.1 The General Formula of the Bias

A linear path is defined as a single path of linear approximations con-
catenated over multiple rounds [11]. Now suppose that there is a n-round
linear hull with data mask (a, b) and L linear paths. The bias of the lin-
ear hull is denoted as η, and the bias of each linear path is denoted as
εi(1 6 i 6 L). In addition, ci ·K(1 6 i 6 L) are subkey masks. In fact,
each ci ·K is a key expression about the subkey bits and we name it as
the equivalent subkey bit. The expressions of linear paths are defined as
follows,

a ·X ⊕ b · Y = ci ·K with probability
1
2

+ εi, ci ∈ Γ (2)

where Γ is the space of subkey masks.
From [5] and [6], we know that η is determined by εi and ci·K. The bias

εi may be positive or negative. Without loss of generality, we can assume
that all biases are positive, as the sign can be absorbed in the equivalent
subkey bits. For example, if εi < 0, we have (−1)ci·Kεi = (−1)ci·K⊕1(−εi).
Then we get the equivalent subkey bit ki = ci · K ⊕ 1. So the bias of a
linear hull is given by

η =
L∑

i=1

(−1)kiεi, (3)

where εi > 0 and ki is the equivalent subkey bit. We confirmed equation
(3) by using a 4-round linear hull of PRESENT, and our results are given
in Tab. 6.



5

3.2 How to Compute the Bias of Linear Hull with Dependent
Paths

In this part, we will discuss how the dependency of linear paths affects
the bias of a linear hull. For an n-round liner hull of data mask (a, b), we
suppose that it contains L linear paths. Let us denote every linear path as

a ·X ⊕ b · Y = K(0)[χ0
j ]⊕K(1)[χ1

j ]⊕ . . .⊕K(n)[χn
j ]

= kj , with probability pj =
1
2

+ εj , 1 6 j 6 L,
(4)

where kj is a equivalent subkey bit, Γ = {kj}L
j=1.

Here we denote the vector of key mask cj as (c0
j,0, · · · , c0

j,63, c1
j,0, · · · ,

c1
j,63, · · · , cn

j,0, · · · , cn
j,63), where cr

j,l ∈ {0, 1}, 0 ≤ r ≤ n, 0 ≤ l < 63,
and cr

j,l ∈ {0, 1} is the coefficient of the l-th bit of the r-th round subkey.
According to equation (4), the dependency of linear paths means the
dependency of the vector of key masks cj(1 ≤ j ≤ L). For example, if
the first four linear paths are dependent, we have c1 ⊕ c2 ⊕ c3 ⊕ c4 = 0.
That is to say the dependency of linear paths is the dependency of vectors
cj(1 ≤ j ≤ L). We also named kj = cj · K as equivalent subkey bit, so
the dependency of linear paths also means their equivalent subkey bits
are dependent.

Assume that the maximum number of linear paths whose equivalent
subkey bits are independent with each other is R. Without loss of gen-
erality, we assume that k1, k2, . . . , kR are independent with each other,
and name them as independent subkey bits, which form a set Γ1. The
dependent subkey bits, which form a set Γ2, are denoted by the de-
pendent subkey expressions kj = c1,jk1 ⊕ c2,jk2 ⊕ . . .⊕ cR,jkR, R < j 6
L, ci,j ∈ {0, 1}, 1 6 i 6 R. So Γ = Γ1 ∪ Γ2.

In order to compute the bias of linear hull, we must find out the regu-
larity of distribution of independent subkey bits on the expressions of the
dependent subkey bits. So we study the relationship between independent
subkey bits and dependent subkey bits at first.

– If we do the XOR operation for two different equations in (4), we get

0 = K(0)[χ0
i , χ

0
j ]⊕ . . .⊕K(n)[χn

i , χn
j ], i 6= j.

Obviously, this expression is not a linear path of the linear hull. The
conclusion always holds if the number of these equations is even.

– When the number of equations is three, we have

a · P ⊕ b · C = K(0)[χ0
u, χ0

v, χ
0
w]⊕ . . .⊕K(n)[χn

u, χn
v , χn

w], u 6= v 6= w.
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Obviously, the expression is a linear path of the linear hull. The con-
clusion always holds if the number of these equations is odd.

So we affirm that every dependent subkey bit is determined by the odd
number of independent subkey bits. That is to say, the sum of coefficients
rj =

∑R
i=1 cij for kj (kj ∈ Γ2) is odd. Let us denote the maximal sum as

r′ = max
R<j6L

{rj} = max
R<j6L

{
R∑

i=1

ci,j}. (5)

Now suppose that we have derived all the linear paths in a linear hull,
the relationship between dependent subkey bits and independent subkey
bits can be obtained. We classify all the independent equivalent subkey
bits according to their values, and present the method to compute the
bias of a given linear hull and the rate of weak keys satisfying a lower
bound of the bias. The main idea is described as follows,

1. We study the distribution of the independent subkey bits on the ex-
pressions of the dependent subkey bits. For a given master key, every
independent subkey bit has two possible values: 0 or 1, and |Γ1| = 2R.
a. For a possible value of Γ1, suppose that the number of the indepen-

dent subkey bits whose values are 0 is s (s 6 R), and the number
of the independent subkey bits whose values are 1 is (R − s). We
classify the independent subkey bits into two groups according to
their values.

b. Consider the values of the dependent subkey bits. If there are odd
number of subkey bits among the s subkey bits in the expressions
of the dependent key bit kj (R < j 6 L), we have kj = 0.

c. In order to get the general formula, we classify the dependent
subkey bits according to the number of independent subkey bits,
whose values are 0, in the expressions of them.

Fig. 1 is useful to understand our idea.
2. Compute the bias of the linear hull for every possible value of Γ1. Then

we can calculate the rate of weak keys according to the definition of
weak keys.

Let us denote the times of ki (1 6 i 6 R) appeared in the dependent
subkey bits as Ni, and the times of ki1 ⊕ ki2 ⊕ . . . ⊕ kit appeared in
dependent subkey bits as Ni1,i2,...,it , (1 6 i1 < i2 < . . . < it 6 R, t 6 R).
We denote Ni1,i2,...it as N(t) at the case of no ambiguity, and then 0 6
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Rkkk ,,, 21  , there are  possible valuesR2

),1(1  ,0 jiRikk ij  !!""
There are s subkey bits whose 

values are 0. 

RClassify all possible values by  the value of the  subkey bits 

)1(  0 Rik i )1(  1 Rik i!" ! " ! !

Classify the dependent subkeys bits by the number of the indepentdent  subkey bits whose values is zero in their expressions 

The dependent subkey bits whose expressions 

contain 12

The dependent subkey bits whose expressions 

contain five 0-value independent subkeys bits 

The dependent subkey bits whose expressions 

contain three 0-value independent subkeys bits #l  0-value independent subkeys bits 

Fig. 1. Classification of Linear Paths

N(t) 6 L−R. According to the definition, we have

Ni =
L∑

j=R+1

ci,j , Ni1,i2,...,it =
L∑

j=R+1

(
t∏

l=1

cil,j).

Here we only consider the best linear paths which have the same bias
εj = ε > 0 (1 6 j 6 L). Then the bias of linear hull is η =

∑L
i=1 (−1)kiε,

Let us denote T j
s as the number of dependent subkey bits in which the

values of j independent subkey bits are zero. And we define the number
of the dependent key bits with zero value as

Ts =
∑

16j6s, j is odd
T j

s ,

If we choose the values of s independent subkey bits, we have derived
equation (6) to compute Ts in App. C.

Ts =
s∑

j=1

Nj − 2
∑

16i<j6s

Ni,j + 4
∑

N(3) − 8
∑

N(4) + ...

− (2l +
(

2l

3

)
+

(
2l

5

)
+ ... +

(
2l

2l − 1

)
·
∑

N(2l)

+ (2l + 1 +
(

2l + 1
3

)
+

(
2l + 1

5

)
+ ... +

(
2l + 1
2l + 1

)
·
∑

N(2l+1)

+ ... + (−1)s−1(s +
(

s

3

)
+

(
s

5

)
+ ...) ·N(s).

(6)

If s independent zero subkey bits have been chosen, we can compute
a value of Ts with equation (6). There are

(
R
s

)
different distributions for

the s independent subkey zero bits, so the number of computed Ts is
(
R
s

)
.
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Property 1: For a given key with L subkey bits, if there are s indepen-
dent zero subkey bits, R− s independent non-zero subkey bits, and h
dependent zero subkey bits, the bias of the linear hull corresponding
to the key will be ((s+h)−((R−s)+(L−R−h)))·ε = (2(h+s)−L)·ε.

Now in order to compute the number of possible subkey values corre-
sponding to the different bias, we will classify Ts by their values in any
distributions of s independent zero subkey bits. Considering all the distri-
butions for the s independent zero subkey bits, we denote the total num-
ber of any s independent zero subkey bits with the bias (2(h + s)−L) · ε
as m

(s)
h . For

(
R
s

)
possible values, the times of computed Ts is #{Ts} =(

R
s

)
=

∑L−R
h=0 m

(s)
h , for the different values of h, we will compute their

bias corresponding to
(
R
s

)
different subkey values. Then we can obtain

the number of the subkey values with the expected bias.
For each value of s 0 ≤ s ≤ R, we need to compute

(
R
s

)
times of Ts. In

order to reduce the computing time, we identify the following property:

Property 2: For a given key with L subkey bits, if there are s indepen-
dent non-zero subkey bits and R − s independent zero subkey bits,
and h dependent non-zero subkey bits, the bias of the linear hull cor-
responding to the key will be (((R− s) + (L−R− h))− (s + h)) · ε =
−(2(h + s)− L) · ε.

From Property 1 and Property 2, the absolute bias of the two cases are
equal. Therefore, we only computed the bias of s 6 bR/2c. In equation
(7), we only need to compute N(t), t 6 bR/2c. If r′ < bR/2c in equation
(5) and r′ < l 6 bR/2c, we can obtain N(l) = 0. Then equation (6) can
be simplified to the following equation:

Ts =
s∑

j=1

Nj − 2
∑

16i<j6s

Ni,j + 4
∑

N(3) − 8
∑

N(4)

+ . . . + (−1)r′−1(r′ +
(

r′

3

)
+

(
r′

5

)
+ . . . +

(
r′

r′

)
) ·N(r′).

(7)

If r′ ≥ bR/2c in equation (5), we will still compute Ts with equation (6).
With the above methods, we can only compute m

(s)
h for (s 6 bR/2c).

According to Property 1 and Property 2, the number of equivalent subkey
values satisfying |η| = |L − 2(h + s)| · ε usually is 2m

(s)
h . However, there

is a special case, if R is an even and s = R/2, the number of equivalent
subkey values satisfying |η| = |L− 2(h + s)| · ε is m

(s)
h .
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When independent subkey bits take all 2R possible values, the number
of equivalent subkey values with the different biases are computed as
follows,

#{|η| = L · ε} = 2,

#{|η| = |L− 2| · ε} = 2m
(1)
0 ,

#{|η| = |L− 4| · ε} = 2m
(1)
1 + 2m

(2)
0 ,

#{|η| = |L− 6| · ε} = 2m
(1)
2 + 2m

(2)
1 + 2m

(3)
0 ,

#{|η| = |L− 8| · ε} = 2m
(1)
3 + 2m

(2)
2 + 2m

(3)
1 + 2m

(4)
0 ,

...
...

. . . ,

#{|η| = |L− 2(L−R + 1)| · ε} = 2m
(1)
L−R + 2m

(2)
L−R−1 + . . . + c ·m(bR/2c)

L−R−bR/2c+1 ,

#{|η| = |L− 2(L−R + 2)| · ε} = 2m
(2)
L−R + . . . ,

...
. . .

... ,

#{|η| = |L− 2(L−R + bR/2c)| · ε} = c ·m(bR/2c)
L−R .

(8)

where if R is even, c = 1, if R is odd, c = 2.
We classify all possible equivalent subkey values by their resulted bi-

ases of linear hull in equation (8), and we can easily compute the rate of
weak keys according to this equation.

4 The Rate of Weak Keys for Reduced-Round PRESENT

4.1 Linear Paths of PRESENT

From [10] and [11], we know that there are plenty of linear hulls in
PRESENT which have multiple linear paths. And each linear path ex-
ploits the linear approximations of S-boxes with only one non-zero bit for
the input and output masks. The output mask of S-box with more than
one non-zero bit will affect at least two S-boxes in the next round due
to the permutation layer, which will result much less linear correlation in
the multiple rounds of PRESENT.

Here we only focus on the linear single-bit paths with the highest bias.
Just as in [11], let π(α, β) denote a linear approximation of S-box S

where α, β∈F4
2 are the input and output masks of S respectively. The bias

of π(α, β) is denoted by ε(α, β). The S-box has the following properties
[11]:

Property 3: For α, β ∈ {2, 4, 8}, ε(α, β) = ±2−3, except that ε(8, 4) = 0.
Property 4: For α ∈ {1, 2, 4, 8}, ε(α, 1) = ε(1, α) = 0.



10

Let us define I = {S5, S6, S7, S9, S10, S11, S13, S14, S15} and A = {4i+
1, 4i + 2, 4i + 3 |0 ≤ i ≤ 15, Si ∈ I}. Then, the permutation P of the
pLayer has the following property [11]:

Property 5: If x ∈ A, then P(x) ∈ A.

According to the above three properties, there are nine S-boxes of S
which are usable for each round of a single-bit path, and there are three
possible values for the mask of each S-box. Let Mi = (0, . . . , 0, 1, 0, . . . , 0)
(only the i-th (i ∈ A) bit is non-zero) denote the input mask or output
mask, there are no more than 27 possible mask values for each round.

For n-round linear paths, let L
(j)
i (i ∈ A, 0 6 j 6 n) denotes the

number of linear paths in which the i-th bit of j-th round output mask
(namely, (j+1)-th round input mask) is 1. When j = 0, the 0-th round
output mask means the plaintext mask. We get the formula by Property
1 and Tab. 5 as follows:

Lj+1
21 = Lj

21 + Lj
22 + Lj

23, Lj+1
37 = Lj

21 + Lj
22, Lj+1

53 = Lj+1
21 ,

Lj+1
22 = Lj

25 + Lj
26 + Lj

27, Lj+1
38 = Lj

25 + Lj
26, Lj+1

54 = Lj+1
22 ,

Lj+1
23 = Lj

29 + Lj
30 + Lj

31, Lj+1
39 = Lj

29 + Lj
30, Lj+1

55 = Lj+1
23 ,

Lj+1
25 = Lj

37 + Lj
38 + Lj

39, Lj+1
41 = Lj

37 + Lj
38, Lj+1

57 = Lj+1
25 ,

Lj+1
26 = Lj

41 + Lj
42 + Lj

43, Lj+1
42 = Lj

41 + Lj
42, Lj+1

58 = Lj+1
26 ,

Lj+1
27 = Lj

45 + Lj
46 + Lj

47, Lj+1
43 = Lj

45 + Lj
46, Lj+1

59 = Lj+1
27 ,

Lj+1
29 = Lj

53 + Lj
54 + Lj

55, Lj+1
45 = Lj

53 + Lj
54, Lj+1

61 = Lj+1
29 ,

Lj+1
30 = Lj

57 + Lj
58 + Lj

59, Lj+1
46 = Lj

57 + Lj
58, Lj+1

62 = Lj+1
30 ,

Lj+1
31 = Lj

61 + Lj
62 + Lj

63, Lj+1
47 = Lj

61 + Lj
62, Lj+1

63 = Lj+1
31 .

(9)

For example, bypass Sboxplayer, non-zero bit in 21, 22 or 23 of the j-th
round output mask all can produce the 21st non-zero bit of the output
mask in (j+1)-th round, and P (21) = 21 according to Tab. 5. So we get
Lj+1

21 = Lj
21 + Lj

22 + Lj
23.

When we fix the input mask α with one non-zero value in bit l and
the output mask β, we have L

(0)
l = 1, L

(0)
i = 0, (i 6= l, i, l ∈ A), then the

number of linear paths of n-round linear hull with data mask (α, β) is

L(n) =
∑

j∈A

L
(n−3)
j , n > 7. (10)

Here we omit the proof of equation (10) because of the limit space.
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Tab. 1 shows our computed results for L(n) corresponding to a fixed
linear hull, which are same as the results of Tab. 2 in [10]. In Tab. 1, the
rank denote the number of the independent linear paths or the number
of the independent equivalent subkey bits in a linear hull. The rank of
i (3 6 i 6 13) rounds linear hull are obtained by our computed program.
We find as the round number is increased , the rank will be increased
proportionally. So we compute the rank of the linear hull from 14-round
to 28-round.

Table 1. Number of Linear Paths and Rank of Equivalent Subkey Bits in PRESENT
for data mask (IM21, OM21)

#round 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

#paths 1 3 9 27 72 192 512 1344 3528 9261 24255 63525 166375 435600 1140480

rank 1 3 9 27 45 63 81 99 117 135 153 171 189 207 225

#round 18 19 20 21 22 23

#paths 2,985,984 7,817,472 20,466,576 53,582,633 140,281,323 367,261,713

rank 243 261 279 297 315 333

#round 24 25 26 27 28

#paths 961,504,803 2,517,252,696 6,590,254,272 17,253,512,704 45,170,283,840

rank 351 369 387 405 423

(IM21 means only the 21st bit of input mask is non-zero, and OM21 means only the
21st bit of output mask is non-zero.)

4.2 Computing the Rate of Weak Keys

For n-round PRESENT, we only consider the linear paths with the best
bias and |εi| = ε = 2−2n−1. Denote the number of linear paths with
equivalent subkey bit zero by N0, and the number of linear paths with
equivalent subkey bit 1 by N1. Then the bias for the linear hull is ap-
proximation by 2−2n−1|N0 −N1| according to equation (3).

From Tab. 1, the linear paths of PRESENT are correlative with each
other as n ≥ 7. So it is inaccurate to estimate the rate of weak keys with
the assumption of the independency of the linear paths.

For 7-round PRESENT, the data mask is (IM21,OM21), and the num-
ber of linear paths of the linear hull is L = 72. The rank of equivalent
subkey bits Γ = {ki}71

i=0 is R = 45. As in the previous section, we assume
that the first 45 equivalent subkey bits are independent subkey bits.

According to the relationship of linear paths we derived, all dependent
subkey bits are determined by three independent subkey bits for 7-round
linear hull. So we just consider three cases according to s:
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– s=1, it means a single independent subkey bit (45 possible values);
– s=2, it means the combination of two independent subkey bits (

(
45
2

)
=

990 possible values);
– s=3, it means the combination of three independent subkey bits (

(
45
3

)
=

14190 possible values).

Supposed that there are s independent subkey bits with value zero,
and let Λs = {ju}s

u=1, where kju = 0. Firstly, counting Nj(0 6 j < 45),
Nj1,j2(0 6 j1 < j2 < 45) and Nj1,j2,j3(0 6 j1 < j2 < j3 < 45). And
N(l) = 0 for l > 3. Secondly, we can compute

T1 = Nj1 ,

T2 = Nj1 + Nj2 − 2Nj1,j2 ,

T3 = Nj1 + Nj2 + Nj3 − 2(Nj1,j2 + Nj1,j3 + Nj2,j3) + 4Nj1,j2,j3 ,

T4 =
X

ju∈Λ4

Nju − 2
X

ju, jv∈Λ4

Nju,jv + 4
X

ju, jv, jw∈Λ4

Nju,jv,jw ,

. . . . . . . . . ,

T22 =
X

ju∈Λ22

Nju − 2
X

ju, jv∈Λ22

Nju,jv + 4
X

ju, jv, jw∈Λ22

Nju,jv,jw .

(11)

The values of Ts will be different when the positions of these s inde-
pendent subkey bits are changed. Then we classify Ts by s and their val-
ues and get m

(1)
h1

,m
(2)
h2

,m
(3)
h3

, . . . , m
(22)
h22

(0 6 h1, h2, . . . , h22 6 27), where
27 = L−R is the number of dependent subkey bits. Finally, we know the
bias of linear hull for any equivalent subkey values.

The computed complexity increases rapidly with the growing of the
number of linear paths. Here we offer another method to compute the
rate of weak keys.

We define the subkey values satisfying |η| = |N0−N1| ·ε >
√

72ε > 8ε
as weak keys. Instead of taking all possible subkey values to compute
weak keys, we chose a large number of random subkey values to compute
the rate of weak keys. The testing procedure is presented as follows,

– 1. Choose N ′(< 232) values for 45-bit independent equivalent subkey
bits randomly.

– 2. For each chosen value, compute the values of other 27 dependent
equivalent subkey bits by the linear paths we derived. According to
the number of zero subkey bits, add the counter of the corresponding
bias value.

– 3. Compute the number of weak keys satisfying |η| > 8ε.

The results are shown in Tab. 2, N ′ means the number of equivalent
subkey values we tested, rd is the rate of weak keys computed by our
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method (under the dependent linear paths), and ru is the rate of weak keys
computed by Ohkuma’s model (under the assumption of independency of
linear paths).

Table 2. The Rate of Weak Keys for 7-Round PRESENT

N ′ rd ru

215 28.05% 29.13%

216 28.07% 29.06%

217 28.04% 28.94%

218 28.09% 28.92%

219 28.13% 28.91%

220 28.12% 28.91%

221 28.13% 28.89%

If the 72 subkey bits are independent, each bit takes zero with the
probability 1

2 . So the rate can be computed by the following equation:

1− 2
(
72
32

)
+ 2

(
72
33

)
+ 2

(
72
34

)
+ 2

(
72
35

)
+

(
72
36

)

272
= 0.28878, (12)

which approaches to 28.89% in Tab. 2. So we believe that it is reason-
able to use the above random test, and there are 28.13% weak key in
7-round linear hull of PRESENT, which is lower than the case under the
assumption of independent linear paths.

We confirm that the rate of weak keys under dependent linear paths
is less than that under independent case. That is to say, the dependency
reduces the number of weak keys for the given linear hull.

In order to further verify our method, we compute the rate of weak
keys of linear hull for more rounds PRESENT. First of all, we use different
number of samples to count weak keys of i-round linear hull (7 6 i 6 13).
And then we focus on the size of sample N ′ where the rate of weak keys
is steady (that is more sample don’t change the rate obviously). Finally,
we randomly choose 100 groups sample whose size are N ′ to compute
the rate of weak key. The results are listed in Tab. 3. Here n is the
round of linear hull, L is the number of linear paths, R is the number
of independent linear paths of all L paths, N ′ stands for the number of
equivalent subkey values we used, rd is the rate of weak keys computed
by our method (under the dependent linear paths), and is called the
computed rate, ru is the rate of weak keys computed by Ohkuma’s model
(under the assume of independent linear paths), whose calculation method
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is similar to equation (12), and is called the predicted rate. 4r is defined
as

4r =
|ru − rd|

ru
,

we call it reduced rate.

Table 3. The Rate of Weak Key for Reduced-Round PRESENT

n L R N ′ rd ru 4r

7 72 45 221 28.13% 28.88% 2.60%

8 192 63 221 32.65% 34.82% 6.23%

9 512 81 221 27.86% 30.94% 9.95%

10 1344 99 222 27.30% 31.28% 12.72%

11 3528 117 222 27.10% 32.05% 15.44%

12 9261 135 222 26.05% 31.85% 18.21%

13 24255 153 222 25.15% 31.65% 20.54%

At last, we compares the computed rate rd and the predicted rate
ru in Fig. 2. From Fig. 2, the difference between the computed rate and
the predicted rate will increase as the round number increases, which is
caused by the dependency of the linear paths. Therefore, as the round
number increases, the rate of weak keys will be reduced to very low value
even approach to zero.

Fig. 2. Difference of Rate of Weak Keys
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5 Conclusion

Linear cryptanalysis has been an important cryptanalytic method for
block cipher. However, if there are linear hulls in the block cipher, the
linear cryptanalysis may be strengthened or weaken which is decided by
the used key. In fact, the linear cryptanalysis with linear hull is the crypt-
analytic method under the assumption of the special weak keys. The pre-
vious attack with linear hull assumed the linear paths are independent.
But the assumption is not true, so the previous attack is inaccurate.

In this paper, we assume the round subkeys are independent between
each other and consider all kinds of the dependency in the linear paths,
and derive the method to compute the number of the weak keys satisfying
the expected bias for the linear hull. We verified our method by analyzing
the reduced-round PRESENT block cipher. Compared with the rate of
weak keys under the assumption of the independent linear paths, the de-
pendency of the linear paths will greatly reduce the rate of weak keys for
a given linear hull. As the round number increases, the rate of weak keys
will be reduced to very low value. Therefore the linear cryptanalysis with
linear hull has to be proceeded considering the dependency of the linear
paths. However, as the round number increases, how to identify the de-
pendency of all the linear paths in a linear hull needs huge computations,
so it is difficult to proceed. In all, the linear cryptanalysis with linear hull
will be difficult to proceed.

If we only consider the best paths and the number of linear paths L
is an odd, the bias of linear hull is bias of a single path at least. We say
that linear cryptanalysis is still effective for any master key in this case.

If we only consider the best paths and L is an even, the bias of linear
hull may be zero for some master key. In this case we can not use linear
cryptanalysis to attack the cipher.

However, if we consider all paths, the cases will be very complicated
and it is difficult to decide the effectiveness of the linear cryptanalysis
with the linear hull.
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A The S-box and Permutation Tables of PRESENT

The S-box and the permutation tables of PRESENT are given in Tab. 4
and Tab. 5, respectively.

Table 4. S-box Table in Hexadecimal Notation

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Table 5. Permutation Table

i 0 1 2 3 4 5 6 7 8 9 A B C D E F

P[i] 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P[i] 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

P[i] 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

P[i] 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

B Bias of 4-Round Linear Hull of PRESENT

For block cipher PRESENT, the data mask we used is (00000000x||00300000x,
00400000x||00400040x), denoted by active bits form as (P[20, 21],C[6, 22, 54]).
There are three linear paths in all:

P[20, 21]⊕ C[6, 22, 54] = K0[20, 21]⊕K1[21]⊕K2[37]⊕K3[25]⊕K4[6, 22, 54],

P[20, 21]⊕ C[6, 22, 54] = K0[20, 21]⊕K1[37]⊕K2[41]⊕K3[26]⊕K4[6, 22, 54],

P[20, 21]⊕ C[6, 22, 54] = K0[20, 21]⊕K1[21, 53]⊕K2[37, 45]⊕K3[25, 27]⊕K4[6, 22, 54].

The biases separately are ε1 = −2−8, ε2 = 2−8 and ε3 = 2−11. Then we
have

k1 = K0[20, 21]⊕K1[21]⊕K2[37]⊕K3[25]⊕K4[6, 22, 54],

k2 = K0[20, 21]⊕K1[37]⊕K2[41]⊕K3[26]⊕K4[6, 22, 54],

k3 = K0[20, 21]⊕K1[21, 53]⊕K2[37, 45]⊕K3[25, 27]⊕K4[6, 22, 54].

We do computer simulations with random plaintexts for three different
initial 80-bit key. Here we denote the 80-bit master key as κ, and κ[j]
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means the j-th (0 6 j < 80) bit of κ, κ[19] = 1 means only the 19-th bit
of κ is 1 and others are 0. Similarly, κ[17] = κ[19] = 1 means the 17-th
and the 19-th bit are 1 and the rest are all 0.

Table 6. Bias of 4-Round Linear Hull

Equivalent Keys Number of Bias Computed Experimental
Initial Key k1 k2 k3 Plaintexts by Equation (3) Bias

κ[j] = 0, 0 6 j < 80 1 0 1 218 2−7.0931 2−7.0960

κ[19] = 1 1 1 0 225 2−11 2−10.8513

κ[17] = κ[19] = 1 1 0 0 218 2−6.9125 2−6.8961

C Computing Ts in Sect. 4

Symbols:
Γ1: The set of independent subkey bits;
Γs: The subset of Γ1, whose elements have zero value;
T j

s : The number of dependent subkey bits in which j elements of Γs

appear, and the number of dependent subkey bits with value zero is

Ts =
∑

16j6s, j is odd
T j

s .

All biases are computed according to equation (3) in what follows.

1. Let us first consider the case of s = 1. It means that there is only one
independent subkey bit with value zero, and we denote it as kj , j is
one value of (1,2,. . . ,R).
If Nj = 0, it means that kj does not appear in any dependent subkey
expressions. The number of dependent subkey bits with value zero is
T1 = 0, then η = −(L− 2)ε.
If Nj = 1, it means that kj only appears once in all dependent subkey
bits. The number of dependent subkey bits with value zero is T1 = 1,
then η = −(L− 2(T1 + 1))ε = −(L− 4)ε.
In the similar way, if Nj = t, it means that kj appears t times in all
dependent subkey bits. The number of dependent subkey bits with
value zero is T1 = Nj = t, then η = −(L−2(T1 +1))ε = −(L−2(Nj +
1))ε = −(L− 2(t + 1))ε.
If s = R − 1, it means that there is only one independent subkey bit
with value one. We also denote it as kj , j is one value of (1,2,. . . ,R),
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that is because kj = 0, kl = 1 (1 6 l 6 R, l 6= j) and kj = 1, kl =
0 (1 6 l 6 R, l 6= j) for j are one to one correspondence. Similar
with above process, we know that TR−1 = Nl = t and the bias η =
(L− 2(TR−1 + 1))ε = (L− 2(Nl + 1))ε = (L− 2(t + 1))ε.
Here we classify T1 by their value. Let m

(1)
h denote the number of

possible equivalent subkeys with only one zero independent subkey bit
appearing h times in all dependent subkey bits, that is m

(1)
h = #{1 6

j 6 R | T1 = Nj = h}, 0 6 h 6 L − R. Then m(1) =
∑L−R

h=0 m
(1)
h

means the total number of T1, and T1 = Nj has R possible values.
So m(1) =

(
R
1

)
= R. Therefore, the number of equivalent subkeys

satisfying η = −(L − 2(h + 1))ε is m
(1)
h . According to symmetry, the

number of equivalent subkeys satisfying η = (L − 2(h + 1))ε is m
(1)
h

too.
2. Considering the case of s = 2, it is a subset of any two zero or non-zero

independent subkey bits ku ⊕ kv (1 6 u < v 6 R).
As we know, ku appears Nu times in dependent subkey expressions,
and kv appears Nv times, ku ⊕ kv appears Nu,v times, then the num-
ber of dependent subkey expressions which are dependent on ku but
independent on kv is N ′

u = Nu − Nu,v, similarly the number of de-
pendent subkey expressions which are dependent on kv but indepen-
dent on ku is N ′

v = Nv − Nu,v. Since ku = kv = 0, the value of
dependent subkey bits which is only dependent on one of ku and kv

is 0, and the number of dependent subkey bits with value zero is
T2 = N ′

u + N ′
v = Nu + Nv − 2N(u,v). So η = −(L− 2(T2 + 2))ε.

With the method in case 1, let us classify T2 by its value, and define
m

(2)
h = #{1 6 u < v 6 R | T2 = h}, 0 6 h 6 L − R. Then m(2) =∑L−R
h=0 m

(2)
h =

(
R
2

)
means the total number of T2.

So the number of equivalent subkeys satisfying η = −(L− 2(h + 2))ε
is m

(2)
h . By symmetry, the number of equivalent subkeys satisfying

η = (L− 2(h + 2))ε is m
(2)
h too.

3. For the general case, we consider the subset of any s independent
subkey bits Γs = {k1, k2, . . . , ks}. We need to compute the number of
dependent subkey expressions in which odd elements of Γs appear.
The number of dependent subkey expressions in which k1⊕k2⊕ . . .⊕
ks−1 appear but ks does not appear (call the s − 1 elements of Γs

appear independently) is N ′
1,2,...,(s−1) = N1,2,...,(s−1) − N1,2,...,s. The

number of dependent subkey expressions in which k1⊕k2⊕ . . .⊕ks−2

appear independently is N ′
1,2,...,(s−2) = N1,2,...(s−2)−N ′

1,2,...,(s−2),(s−1)−
N ′

1,2,...,(s−2),s−N1,2,...,s = N1,2,...,(s−2)−(N1,2,...,(s−2),(s−1)+N1,2,...,(s−2),s)+
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N1,2,...,s. We can also compute the number of dependent subkey ex-
pressions in which any s−2 elements of Γs appear independently. Then
we compute the number of dependent subkey expressions in which any
s− 3 elements of Γs appear independently. According to mathemati-
cal induction, we get the number of dependent subkey expressions in
which one element of Γs appears independently

N ′
i = Ni −

∑

16j6s, j 6=i

Ni,j +
∑

16j<k6s, j 6=i, k 6=i

Ni,j,k + . . . + (−1)s−1N(s).

We know that N(l) is just a symbol and it stands for
(
s
l

)
different

values. N(l) in N ′
i(1 6 i 6 s) are always related with ki, then the

number of N(l) in N ′
i is

(
s−1
l−1

)
. Therefore, the number of all N(l) in∑s

i=1 N ′
i is s ·(s−1

l−1

)
. By symmetry, the times of every N(l) appeared in

∑s
i=1 N ′

i is equal. So the coefficient of
∑

N(l) in
∑s

i=1 N ′
i is

s·(s−1
l−1)
(s

l)
= l.

Hence,

T 1
s =

s∑

i=1

N ′
i =

s∑

j=1

Nj − 2
∑

16i<j6s

Ni,j + 3
∑

N(3)

− 4
∑

N(4) + ... + (−1)l−1 · l ·
∑

N(l)

+ ... + (−1)s−1 · s ·N(s).

Similarly, we consider the number of N(l) appeared in N ′
(u)(u < l, u is an odd).

N(l) in N ′
(u) always related with u elements of Γs, then the number of

N(l) in N ′
(u) is

(
s−u
l−u

)
. Therefore, the number of all N(l) in

∑
N ′

(u) is(
s
u

)·(s−u
l−u

)
. By symmetry, the times of every N(l) appeared in

∑
N ′

(u) is

equal. So the coefficient of
∑

N(l) in
∑

N ′
(u) is (s

u)·(s−1
l−u)

(s
l)

=
(

l
u

)
. Hence,

T u
s =

∑
N ′

(u) =
∑

N(u) −
(

u + 1
u

)
·
∑

N(u+1) + . . .

+ (−1)l−1 ·
(

l

u

) ∑
N(l) + ... + (−1)s−1 ·

(
s

u

)
·N(s).
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Finally, we get the equation (6)

Ts =
∑

16j6s,j is an odd
T j

s

=
s∑

j=1

N ′
j +

∑
N ′

(3) +
∑

N ′
(5) + . . .

=
s∑

j=1

Nj − 2
∑

16i<j6s

Ni,j + 4
∑

N(3) − 8
∑

N(4) + ...

− (2l +
(

2l

3

)
+

(
2l

5

)
+ ... +

(
2l

2l − 1

)
·
∑

N(2l)

+ (2l + 1 +
(

2l + 1
3

)
+

(
2l + 1

5

)
+ ... +

(
2l + 1
2l + 1

)
·
∑

N(2l+1)

+ ... + (−1)s−1(s +
(

s

3

)
+

(
s

5

)
+ ...) ·N(s).


