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Abstract. The Goppa Code Distinguishing (GD) problem consists in distinguishing the matrix of Goppa
code from a random matrix. Up to now, it was widely believed that this problem is computationally hard.
The hardness of this problem was a mandatory assumption to prove the security of code-based crypto-
graphic primitives like McEliece’s cryptosystem. We present a polynomial time distinguisher for alternant
and Goppa codes of high rate over any field. The key ingredient is an algebraic technique already used
to asses the security McEliece’s cryptosystem. Our method permits to indeed distinguish public keys of
the CFS signature scheme for all parameters considered as secure and some realistic secure parameters of
McEliece. The idea is to consider the dimension of the solution space of a linearized system deduced from a
polynomial one. It turns out that this dimension depends on the type of code considered. We provide explicit
formulas for the value of the dimension for “generic” random, alternant, and Goppa code over any alphabet.
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1 Introduction

The purpose of this paper is to investigate the difficulty of the Goppa Code Distinguishing (GD)
problem that is encountered in code-based public key cryptography. Note that GD is a variant of the
Code Equivalence [24]. This problem appeared in [10] several years after McEliece’s pioneering work
[20] where the author proposed to use one-way trapdoor functions based on irreducible binary Goppa
codes. The class of Goppa codes represents one of the most important example of linear codes having
a polynomial-time decoding algorithm [3, 23]. The first code-based signature scheme came out in [10]
almost twenty years after McEliece’s proposal. The only difference between encryption and signature
lies in the choice of the parameters of the binary Goppa codes. For signature, Goppa codes have to
correct very few errors. This leads to a very high rate R = k/n with n the length and % the dimension
of the code. It holds that k¥ = n — rm, where r is the number of errors and n is usually chosen equal
to 2.

These two cryptographic primitives base their security under two computational assumptions: the
intractability of decoding random linear codes [2], and the difficulty of recovering the private key or an
equivalent one. The problem of decoding an unstructured code is a long-standing problem whose most
effective algorithms [16, 17,26, 7, 4] have an exponential time complexity. Thus, one may reasonably
not expect much progress in this direction. On the other hand, no significant breakthrough has been
observed during the last thirty years regarding the problem of recovering the private key. Indeed,
although some weak keys have been identified in [18], the only known key-recovery attack is the
exhaustive search of the secret polynomial I" of the Goppa code, and applying the Support Splitting
Algorithm (SSA) [25] to check whether the Goppa code candidate is permutation-equivalent to the
code defined by the public generator matrix. The time complexity of this method is O (2™") assuming
that the cost of the SSA algorithm is negligible which is a reasonable assumption for Goppa codes,
but not for all linear codes.

The authors of [10] alleviated the McEliece assumption by introducing the Goppa Code Distin-
guishing (GD) problem. They assume that no polynomial time algorithm exists that distinguishes a
generator matrix of a Goppa code from a random generator matrix. This is a classical belief in code-
based cryptography. For instance, according to [10], proving or disproving the hardness of the GD
problem will have a significant impact: “Classification issues are in the core of coding theory since its
emergence in the 50’s. So far nothing significant is known about Goppa codes, more precisely there is
no known property invariant by permutation and computable in polynomial time which characterizes
Goppa codes. Finding such a property or proving that none exists would be an important breakthrough
in coding theory and would also probably seal the fate, for good or ill, of Goppa code-based cryp-
tosystems”. Currently, the only known algorithm that solves GD problem is based on the enumeration
of Goppa codes and the SSA algorithm [25], as explained below.

As a consequence, it is widely believed that distinguishing the public matrix in McEliece from a
random matrix is computationally hard. Furthermore, the hardness of the Goppa Code Distinguish-
ing (GD) problem is currently a mandatory assumption to prove the semantic and CCA2 security
of McEliece in the random oracle model and in the standard model [22, 13, 5], the security in the
random oracle model against existential forgery [10, 11] of the CFS signature scheme [10], the prov-
able security of several primitives such as a threshold ring signatures scheme [12], an identity-based
identification scheme [8], which are build upon CFS. Therefore, showing that the Goppa Code Dis-
tinguishing problem is easier than expected will “unprove” most of the provable primitives based on
McEliece, and more importantly will be the first serious theoretical weakness observed on this scheme
since thirty years.
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In this paper, we present a deterministic polynomial-time distinguisher for solving it for codes of
high rate. Along the way, we also solve the GD problem for alternant codes. The key ingredient is a
new algebraic technique introduced in [14] to attack two variants [1,21] of McEliece. It has been ob-
served [14] that a key recovery attack against these cryptosystems, as well as the genuine McEliece’s
system, can be reduced to solving a set of polynomial equations. In the cases of [1,21], additional
structures permit to drastically reduce the number of variables and solve it efficiently using dedicated
Grobner bases techniques [14]. For McEliece’s cryptosystem, solving this polynomial system seems
to be out of the scope of such dedicated techniques.

This algebraic approach can be used to construct an efficient distinguisher. To do so, we consider
the dimension of the solution space of a linear system deduced from the polynomial system by a
linearization technique which introduces many new unknowns. It turns out that the linearized system
is not of full rank and depends on the kind of code considered. This particular feature permits to
construct an efficient distinguisher for alternant codes and Goppa codes over any field by basically
computing the rank of the linearized system. Our technique permits to indeed distinguish a public key
of the CFS signature scheme for all parameters proposed in [15], and some realistic parameters of
McEliece like a 90-bit security scheme based on a binary Goppa code of length n = 2'3 that corrects
r = 19 errors. We provide explicit formulas for “generic” random, alternant, and Goppa code over
any alphabet. We performed extensive experiments to compare our theoretical results to confirm that
the generic formulas are accurate.

2 Algebraic Cryptanalysis of McEliece-like Cryptosystems

The reader who is not aware of basic notions on coding and code-based cryptography can find a
brief introduction to the subject in Appendix A. The McEliece cryptosystem relies on Goppa codes
which belong to the class of alternant codes and inherit an efficient decoding algorithm from this. It
is convenient to describe this class through a parity-check matrix over an extension field Fym of I,
over which the code is defined. In other words, the parity check matrix is an r x n matrix H with
coefficients in Fym and the associated alternant code </ is the set of vectors of Fy' which belong to the
right kernel of H i.e.

o ={ceF) | Hc" =0}. (1)

r satisfies in this case the condition r > %4@ where & is the dimension of .«7. For alternant codes,
there exists a parity-check matrix with a very special form related to Vandermonde matrices of the
form:

yl .. yn
def | Y121 - YnTn
Vixy) = |, : )
yrah eyt

where x = (21,...,2,) € (Fgm)"andy = (y1,...,yn) in (Fgm)™.

Definition 1 (Alternant code). The alternant code of order r over F associated tox = (x1,...,xy) €
(Fgm)™ where all z;’s are distinct and’y = (y1,...,yn) € (F,’;m)n, denoted by <7,(x,y), is

2 (x,y) = {c e F}|V,(x,y)c” =0}. 3)

We recall a key feature about alternant codes.
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Fact 1. There exists a polynomial time algorithm decoding all errors of Hamming weight at most
for an alternant code of order r once a parity-check matrix of the form H = V .(x,y) is given for it.

The class of Goppa codes is a subfamily of alternant codes which are given by:

Definition 2 (Goppa codes). The Goppa code 4 (x,I") over IF, associated to a polynomial I'(x) of
degree r over Fym and a certain n-tuple x = (x1,...,xy) of distinct elements of Fym satisfying
I'(z;) # 0 forall i,1 < i < n, is the alternant code <,(x,y) of order r with y; being defined by
yi = I(zi)~h

Goppa codes, viewed as alternant codes, naturally inherit a decoding algorithm that corrects up to
5 errors. But in the case of binary Goppa codes, we can correct twice as many errors (Fact 2). The
starting point is the following result, which is essentially derived from a discussion in a paragraph
about Goppa codes in [19, p. 341].

Theorem 1. A binary Goppa code 4 (x,I") associated to a Goppa polynomial I'(X) of degree r
without multiple roots is equal to the alternant code <5 (x,y), with y; = I'(z;) 2.

Fact 2 ([23]). There exists a polynomial time algorithm decoding all errors of Hamming weight at
most r in a Goppa code 4 (x,I") when I has degree r and has no multiple roots, if x and I" are
known.

We explain now how we can construct an algebraic system for the McEliece cryptosystem [14]. This
algebraic system is the main ingredient of the distinguisher. According to Fact 1, the knowledge of
V., (x*,y™) permits to efficiently decode the public code, i.e. to recover u from uG + e. By the very
definition of the public code G, we have: V ,.(z*, y*)GT = 0.

Let X1q,...,X, and Y7,...,Y, be 2n variables corresponding to the x’s and the y;’s. Observe
that such s and y;’s are a particular solution [14] of the following system:

{gi,lYlX{—{—...+gi,nYnX£:O ie{1,...,k},j€{0,...,r—1}} @

where the g; ;’s are the entries of the known matrix G.

Solving this system is equivalent to find a key equivalent to the secret key. For McEliece’s scheme,
the system is too large. For compact variants of McEliece [1,21] as described in [1,21], additional
structures permit to drastically reduce the number of variables; allowing to solve (4) for a large set of
parameters in polynomial-time using dedicated Grobner bases techniques [14]. But the general case
is still exponential. Note that for binary Goppa codes, it is essential to recover its description as a
Goppa code and not only the z;’s and the y;’s giving its description as an alternant code. Otherwise,
as pointed in Fact 2, the decoder will be able to decode only 5 errors.

3 A Distinguisher of Alternant and Goppa Codes

We present in this part the algebraic distinguisher. which is based on the non-linear system (4). Let
G = (9ij) 1<i<k be a generator matrix of the public code. We can assume without loss of generality

1<jisn
that G is systematic in its k first positions. Such a form can be easily obtained by a Gaussian elim-
ination and by a suitable permutation of the columns. We describe now a simple way of using this

particular form for solving (4). The strategy is as follows. Let P = (p;;) 1<i<x be the submatrix of
k+1<g<n
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G formed by its last n — k = mr columns. Forany ¢ € {1,...,k} ande € {0,...,r — 1}, we can
rewrite (4) as

n
ViXP= ) pigViXj. 5)
Jj=k+1
Thanks to the trivial identity Y;Y; X? = (V;X;)?, forall i in {1,..., k}, we get:

n n n 2
S opigY Y piViX; = Y piViX; | forallie{1,... k}.
j=k+1 j=k+1 j=k+1
It is possible to reorder this to obtain Z;‘;,L_l Z?/>j Di,jDij’ (Yij/Xj% —+ Y]/Y]Xj2> = 0. We can

now linearize this system by letting Z; def Y;Yy X3 + Yy Y; X7. We obtain a system Lp of k linear
equations involving the Z;;:’s:

n—1 n
def
Lp = Z Zpi,jpi,j’zjj’ =0

j=k+15'>5

ie{l,... k}y. (6)

To solve this system it is necessary that the number of equations is greater than the number of un-
knowns i.e. k > (”;T) with the hope that the rank of Lp denoted by rank(Lp) is almost equal to the
number of variables. Observe that the linear systems (6) have coefficients in [F, whereas solutions are
sought in the extension field F,~. But the dimension D of the vector space solution of Lp does not
depend on the underlying field because Lp can always be seen as a system over Fym. Remark that
we obviously have D = (";T) —rank(Lp). It appears that D is amazingly large. It even depends on
whether or not the code with generator matrix G is chosen as a (generic) alternant code or as a Goppa
code. Interestingly enough, when G is chosen at random, rank(Lp) is equal to min {k:, (”;T)} with
very high probability. In particular, the dimension of the solution space is typically O when k is larger
than the number of variables ("").

Although this defect in the rank is an obstacle to break the McEliece cryptosystem, it can be
used to distinguish the public generator from a random code. Moreover, since the linear system Lp is
defined over [y, there exist two vector spaces solution depending on whether the underlying field is
Fym or IF,. This duality leads to the following definition.

Definition 3. For any integer r > 1 and m > 1, let us denote by N & (”;T) the number of variables
in the linear system Lp as defined in (6) and D the dimension of the vector space solution of Lp. The
normalized dimension of Lp denoted by A is defined as:

dgf D
o=

A

Throughout the paper we consider three cases corresponding to the possible choices for the entries
pi,;’s. We denote by Arpdom the normalized dimension when the p;;’s are chosen uniformly and
independently at random in [F,. When G is chosen as a generator matrix of a random alternant (resp.
Goppa) code of degree r, we denote the normalized dimension by Agiernant (resp. Agoppa)- Note that in
our probabilistic model, a random alternant code is obtained by picking uniformly and independently
at random two vectors (1,...,2y) and (y1,. .., yn) from (Fgm)™ such that the z;’s are all different
and the y;’s are all nonzero. A random Goppa code is obtained by also taking in the same way a
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random vector (z1, ..., Zy,) in (Fgm )™ with all the z;’s different and a random irreducible polynomial
I'(2) =Y, viz" of degree 7.

A thorough experimental study (see Appendix E) through intensive computations with Magma
[6] by randomly generating alternant and Goppa codes over the field I, with ¢ € {2, 4, 8,16, 32} for
values of 7 in the range {3,...,50} and several m revealed that the (normalized) dimension of the
vector space over I, of the solutions of (6) follows the following formulas. Recall that by definition
N = (m{) and k = n — rm where n < ¢™.

Experimental Fact 1 (Alternant Case). As long as N — mAurernan: < k, with very high probability
the normalized dimension Agjiernans has the following value T yjernans:

q€+1 -1

1 def
Tutternant = 5(r —1) <(2e +1)r — 2q_1> fore = |log,(r —1)]. (7)
As for the case of random Goppa codes we also obtain formulas different from those of alternant
codes. Note however that the Goppa codes are generated by means of a random irreducible I'(z) of
degree r and hence I'(z) has no multiple roots. In particular, we can apply Theorem 1 in the binary
case.

Experimental Fact 2 (Goppa Case). As long as N — mAgeppa < k, with very high probability the
normalized dimension Agoppa has the following value TGoppa:

%(T - 1)(7‘ - 2) = Tulternant for r<q—1

TGoppa = (8)
7’((2e+ 1)r —2¢° +2¢°~ ! — 1) forr>q—1

D=

where e is the unique integer such that: ¢¢ — 2¢° ' + ¢¢72 < r < ¢°t! — 2¢° + ¢* .

Based upon these experimental observations, we are now able to define a distinguisher between ran-
dom codes, alternant codes and Goppa codes. This distinguisher will be in particular useful to distin-
guish between McEliece public keys and random matrices.

Definition 4 (Random Code Distinguisher). Let m and r be integers such thatm > 1 andr > 1. Let

G be a k x n matrix whose entries are in Fy withn < ¢ and k & n —rm. Without loss of generality,
we assume that G is systematic i.e. G = (Ix | P). Let Lp be the linear system associated to G as
defined in (6), and A the normalized dimension of Lp. We define the Random Code Distinguisher D
as the mapping which takes in input G and outputs b in {—1,0, 1} such that:

-1 lfA = Talternant
D(G) = 0 if A = TGoppa 9

1 otherwise.

4 The Random Case

The purpose of this section is to study the behavior of Dyypdom, namely the dimension of the solution
space of Lp when the entries of the matrix P are drawn independently from the uniform distribution
over [, In this case, when can show that:
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Theorem 2. Assume that N < k and that the entries of P are drawn independently from the uniform
distribution over Fy. Then for any function w(x) tending to infinity as x goes to infinity, we have

prob (D,undom > mrw(mr)) = o(1),

as mr goes to infinity.

This theorem will be proved in Appendix B. Notice that if choose w(x) = log(z) for instance, then
asymptotically the dimension D;,nqom Of the solution space is with very large probability smaller than
mrlog(mr). When m and r are of the same order — which is generally chosen in practice — this
quantity is smaller than Dyjemant OF DGoppa Which are of the form £2(mr?).

The main ingredient for proving Theorem 2 consists in analyzing a certain (partial) Gaussian
elimination process on the matrix M & (pijpijr) 1<i<k . Basically it amounts to view the

33" k+1<j<5'<n
matrix M in block form, each block consisting in the matrix B; = (p;;p;j’) 1<i<k - Each block B;
e
is of size k x (rm — j). Notice that in B}, the rows for which p; j4; =0 con]sis]t only of zeros.

To start the Gaussian elimination process with By, we will therefore pick up rm — 1 rows for
which p; .41 # 0. This gives a square matrix M;. We perform Gaussian elimination on M by
adding rows involved in M ; to put the first block B; in standard form. We carry on this process
with B9 by picking now rm — 2 rows which have not been chosen before and which correspond to
Dik+2 7 0. This yields a square submatrix M of size 7m — 2 and we continue this process until
reaching the last block. The key observation is that:

rank(M) > rank(M ) + rank(Msg) + - - - + rank(M ., —1).

A rough analysis of this process yields the theorem above. The important point is what happens for
different blocks are independent processes, it corresponds to looking at different rows of the matrix P.
A more detailed analysis would probably yield a stronger result that prob( Dyangom > w(mr)) = o(1),

for any function w going to infinity with mr or allowing to treat the case N > k where we would like
to show that prob(Dyandom > N — k + w(mr)) = o(1). But, this is beyond the scope of this paper.

5 Interpretation of the Normalized Dimension — The Alternant Case

We first consider the case of alternant codes over I, of degree r. The goal of this section is to identify
a set of vectors which, after decomposition according to a basis of F;m over IF, provides a basis of the
solution space of Lp. First observe that to set up the linear system Lp as defined in (6), we have used
the trivial identity YlYle2 = (YiXZ-)Q. Actually, we can use any identity YiXZ@Y;XZb = YinYiXid
with a,b,c,d € {0,1,...,r—1} such that a + b = ¢+ d. It is straightforward to check that we obtain
the same algebraic system Lp with:

n
> D piapig (YiXPYi X + Yy X0V, XD+ VXV X) + Y, X5V, X ) = 0. (10)
j=k+1j5">j
So, the fact that there are many different ways of combining the equations of the algebraic system

together yielding the same linearized system Lp explains why the dimension of the vector space
solution Vg is large.

For larger values of r, the automorphisms of F;m of the kind z +— 29" for some £ € {0,...,m—1}

o o e Y o o e ‘
can be used to obtain the identity Y;¥ X7 Y Xf T =Y" XTY"X id 7" for any integers a, b, c,
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d, £, ¢’ such that aq” + bq* = c¢q¢" + dq’. We get again the linear system Lp but the decomposition

over [F, of the entries of vectors obtained from such equations give vectors that are dependent of those
o—0 o—0

o—0 o—0
coming from the identity V; X?V,? X f T =YXy X Z-d 7" if we assume ¢’ < /. Therefore,
we are only interested to vectors that satisfy equations obtained with 0 < a,b,¢c,d < r,0 < £ < m

and a + ¢‘b = ¢ + ¢%d.

Definition 5. Let a, b, cand d be integers in {0, . .., r—1} and an integer L in {0, . . ., |log,(r —1)] }

d
such that a + ¢*b = ¢ + q*d. We define Z o p.c.a4 o (Z(l’b’qd’g [j,j’]) where
k+1<j<j'<n

- d_@f qé qeb qz qeb qﬁ qfd qZ ql’.d
Za,b,c,d,f[]a] ] = Y]X‘?Yj]/ XJ’ +Y7/X;/Y7 X] +Y7X;Y]/ X], +Y7/XJC/Y7 X] )
for any j and j' satisfyingk +1 < j < 7 < n.

Without loss of generality, we can assume that d > b and set 6 = d — b. Moreover, as we have
a—+ qeb =c+ qed, it implies that a = ¢ + qeé. Note that any vector Z, . 4.¢ is uniquely described
by the tuple (b, c,d,¢) by setting d = b+ 6 and @ = ¢ + ¢*S provided that 1 < 6 < — 1 — b and
0<c+q¢do<r—1.

The next proposition shows that some vectors Z . .¢5 . 545, can be expressed as a linear combi-
nation of vectors defined with § = 1. All the proofs of this section are gathered in Appendix C.

Proposition 1. Let 4, 6, b and c be integers such that £ > 0,6 > 1,1 < b+6 < r—1and
1 < c+¢'6 < r—1. Let us assume that 6 > 2 and let b; d:efb—i-i —1andc; d:efc-l-qé(é—i). We have

§
Zeiqtsbenior =D Devrq bicobiiLe (In
=1

From Proposition 1, we deduce that the set of vectors Z ., j¢5p ¢ 11,4 i-¢. 0 = 1 form a spanning set
for the vector space generated by all the vectors Z . ¢55, . p+5,- We can characterize more precisely
this set.

ctq

Definition 6. Let B, be the set of nonzero vectors Z . ,ts . p+50 Obtained with tuples (6, b, ¢, £) such
that 0 = 1 and satisfying the following conditions:

0<b<r—2and0<c<r—1-¢" if 1<< |log,(r—1)]
0<b<egLr—2 if £=0.

Proposition 2. Let r be an integer such that v > 3. The cardinality of B, is equal to T jernans

Proposition 2 gives an explanation of the value of D,jemant. To see this, let us define

Definition 7. Consider a certain decomposition of the elements of Fym in a Iy basis. Let w; : Fgm +—
F, be the function giving the i-th coordinate in this decomposition. By extension we denote for a
vector z = (zj)1<j<n € Fym by mi(2) the vector (m;(zj))1<j<n € Fy.

We have the following heuristic.

Heuristic 1. For random choices of x;’s and y;’s with 1 < i < nthe set {m;(Z)|1 <i<m,Z € B,}
forms a basis of Lp.
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6 Interpretation of the Normalized Dimension — The Binary Goppa Case

In this section we will explain Experimental Fact 2 in the case of a binary Goppa code. We denote by
r the degree of the Goppa polynomial. In this case, it is readily seen that the theoretical expression
TGoppa has a simpler expression given by

Proposition 3. Let us define e & [log,r] + 1 and N & ("). When q = 2, the formula in Equa-
tion (8) can be simplified to TGoppa = %T((Qe +1)r—2°— 1).

Theorem 1 shows that a binary Goppa code of degree r can be regarded as a binary alternant code of
degree 2r. This seems to indicate that we should have

DGoppa (T) = M jlternant (27') .

This is not the case however. It turns out that Dgoppa(r) is significantly smaller than this. In our
experiments, we have found out that the vectors of By, still form a generating set for Lp, but that they
are not independent anymore. Our goal is here to identify the dependencies between the elements of
Bay.

We are really interested in the dependencies over the binary field [Fo, but we are first going to
find linear relations over the extension field Fom. There are many of them, as shown by the fol-
lowing proposition which exploits that the Y;’s are derived from the Goppa polynomial I'(z) by
Y; = I'(X;)~!. Again, the proofs of this section are postponed to Appendix D.

Proposition 4. Let t, ¢ and c be integers such that 0 < t < r—2,1 < £ < |logy(2r — 1) and
0<e<2r—20— 1. We set ¢* 4 ¢ + 2471, It holds that:

-
2¢ —
Z Mo Zc+2’f,t+b,c,t+b+1,£ - Zc*+2f—1,2t,c*,2t+1,£—1 + Zc+24—1,2t+1,c,2t+2,£—1- (12)
b=0
As a consequence of Proposition 4, By, can not be a basis of the linearized system in the Goppa case.
We count the number of such equations in the following proposition.

Proposition 5. The number Ny, of equations of the form (12) is equal to 2(r —1) (ru + 1 — 2%) where
def
u = |logy(2r —1)].

Notice that each equation of the form (12) involves one vector of Ba, that does not satisfy the other
equations. These equations are therefore independent and by denoting by < Ba, >r,,, the vector
space over Fam generated by the vectors of B, we should have

dim < Ba, >]F2m§ |Bzr| — Ny,

The experiments we have made indicate that actually equality holds here. However, this does not mean
that the dimension of the vector space over Fo generated by the set {7m;(Z),Z € Ba,,1 <i<m,Z €
Ba,} is equal to mdim < By, >R, - It turns out that there are still other dependencies among the
mi(Z)’s. The following proposition gives an explanation of how such dependencies occur.

oy def .. . .. .2
Proposition 6. Let Q. 4/ = (Qa,b,c,d,é[]7]/])k+1<j<j,<ny with me’c’dl[‘y,]’] = (Zapcaeld, 7).

For any integers b > 0,t > 0,0 > 1 and { such that 0 < ¢ < |logy(2r —1)| —1, b+ < 2r — 1 and
t+ 285 <r—1, we have
T

_ 2
Z o4 ot t15 b 2t b45,041 = E Ve Qct-205,b t4c,b+5,6- (13)
c=0
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Proposition 7. The number N of vectors of Ba, satisfying Equation (13) is equal to (2r — 1)(ru —
2% + 1) where u 4 |logy(2r — 1) ].

Each of such equation gives rise to m linear equations over [Fy involving the 7;(Z) for Z in By,.
Therefore, it could be expected that Agoppa = |Ba,| — N1, — Ng. But, some vectors in Ba, appear
both in linear relations of the form (12) and “quadratic” equations of the form (13). More precisely,
let Bgﬁad be the subset of vectors of Ba, which are involved in an Equation of type (13). There are

equations of type (12) which involve only vectors of Bgﬁad. Let N; be their numbers. Moreover, it is

quad
2

" to

possible by adding two equations of type (12) involving at least one vector which is not in B
obtain an equation which involves only vectors of Bglrlad. Let Ny be the number of such sums. Finally,

let Npng def N7 + Njy. It is possible to count such equations to obtain
Proposition 8. Nyng = (r —1) ((u — -2+ 2) where u ™ |logy(2r — 1)].

Proposition 9. For any integer r > 2, we have TGoppa (1) = |Bar| — N, — Ng + Nrng.

7 Conclusion and Cryptographic Implications

The existence of a distinguisher for the specific case of binary Goppa codes has consequences for
code-based cryptographic primitives because it represents, and by far, the favorite choice in such
primitives. We focus in this part on secure parameters that are within the range of validity of our
distinguisher. The simple expression given in Proposition 3 is not valid for any value of r and m but
tends to be true for codes that have a code rate “— " that is close to one. This kind of codes are mainly
encountered with the public keys of the CFS signature scheme [10]. If we assume that the length n
is equal to 2™ and we denote by 7, the smallest integer r such that N — mTGoppa = 2™ — mr
then any binary Goppa code defined of degree r > rn,in cannot be distinguished from a random linear
code by our technique. This value is gathered in Table 1. One can notice for instance that the binary

Table 1. Smallest order r of a binary Goppa code of length n = 2™ for which our distinguisher does not work.

[ m [[8[o[10]11]12[13]14]15[16]17[18] 19 [20 [ 21[22]23 |
11]16]20[26]34[47[62]85]114]157[213]290]400]]

Goppa code obtained with m = 13 and » = 19 corresponding to a McEliece public key of 90 bits of
security, fits in the range of validity of our distinguisher. The values of r,;, in Table 1 are checked
by experimentations for m < 16 whereas those for m > 17 are obtained by solving the equation

e (2e41)r —2¢—1 ) = Lmr(mr — 1) — 2™ + mr. Eventually, all the keys proposed in [15] (See
therein Table 4) for the CFS scheme can be distinguished.

References

1. T. P. Berger, P.L. Cayrel, P. Gaborit, and A. Otmani. Reducing key length of the McEliece cryptosystem. In Bart
Preneel, editor, Progress in Cryptology - Second International Conference on Cryptology in Africa (AFRICACRYPT
2009), volume 5580 of Lecture Notes in Computer Science, pages 77-97, Gammarth, Tunisia, June 21-25 2009.



10.

11.

12.

13.

14.

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

A Distinguisher for High Rate McEliece Cryptosystems 11

. E. Berlekamp, R. McEliece, and H. van Tilborg. On the inherent intractability of certain coding problems. [EEE
Transactions on Information Theory, 24(3):384-386, May 1978.

. E. R. Berlekamp. Factoring polynomials over finite fields. In E. R. Berlekamp, editor, Algebraic Coding Theory,

chapter 6. McGraw-Hill, 1968.

D. J. Bernstein, T. Lange, and C. Peters. Attacking and defending the McEliece cryptosystem. In PQCrypto, volume

5299 of LNCS, pages 31-46, 2008.

Bhaskar Biswas and Nicolas Sendrier. McEliece cryptosystem implementation: Theory and practice. In PQCrypto,

pages 47-62, 2008.

W. Bosma, J. J. Cannon, and Catherine Playoust. The Magma algebra system I: The user language. J. Symb. Comput.,

24(3/4):235-265, 1997.

A. Canteaut and F. Chabaud. A new algorithm for finding minimum-weight words in a linear code: Application to

McEliece’s cryptosystem and to narrow-sense BCH codes of length 511. IEEE Transactions on Information Theory,

44(1):367-378, 1998.

Pierre-Louis Cayrel, Philippe Gaborit, David Galindo, and Marc Girault. Improved identity-based identification using

correcting codes. CoRR, abs/0903.0069, 2009.

Colin Cooper. On the distribution of rank of a random matrix over a finite field. Random Struct. Algorithms, 17(3-

4):197-212, 2000.

N. T. Courtois, M. Finiasz, and N. Sendrier. How to achieve a McEliece-based digital signature scheme. Lecture Notes

in Computer Science, 2248:157-174, 2001.

Léonard Dallot. Towards a concrete security proof of Courtois, Finiasz and Sendrier signature scheme. In WEWoRC,

pages 65-77, 2007.

Léonard Dallot and Damien Vergnaud. Provably secure code-based threshold ring signatures. In IMA Int. Conf., pages

222-235, 2009.

Rafael Dowsley, Jorn Miiller-Quade, and Anderson C. A. Nascimento. A CCA?2 secure public key encryption scheme

based on the McEliece assumptions in the standard model. In CT-RSA, pages 240-251, 20009.

Jean-Charles Faugere, Ayoub Otmani, Ludovic Perret, and Jean-Pierre Tillich. Algebraic cryptanalysis of mceliece

variants with compact keys. In Henri Gilbert, editor, EUROCRYPT, volume 6110 of Lecture Notes in Computer Science,

pages 279-298. Springer, 2010.

. M. Finiasz and N. Sendrier. Security bounds for the design of code-based cryptosystems. In M. Matsui, editor, Asiacrypt

2009, volume 5912 of LNCS, pages 88—105. Springer, 2009.

P. J. Lee and E. F. Brickell. An observation on the security of McEliece’s public-key cryptosystem. In Advances in

Cryptology - EUROCRYPT’88, volume 330/1988 of Lecture Notes in Computer Science, pages 275-280. Springer,

1988.

J. S. Leon. A probabilistic algorithm for computing minimum weights of large error-correcting codes. IEEE Transac-

tions on Information Theory, 34(5):1354-1359, 1988.

P. Loidreau and N. Sendrier. Weak keys in the mceliece public-key cryptosystem. IEEE Transactions on Information

Theory, 47(3):1207-1211, 2001.

. FE J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes. North—Holland, Amsterdam, fifth

edition, 1986.

R. J. McEliece. A Public-Key System Based on Algebraic Coding Theory, pages 114-116. Jet Propulsion Lab, 1978.

DSN Progress Report 44.

R. Misoczki and P. S. L. M. Barreto. Compact McEliece keys from Goppa codes. In Selected Areas in Cryptography

(SAC 2009), Calgary, Canada, August 13-14 2009.

Ryo Nojima, Hideki Imai, Kazukuni Kobara, and Kirill Morozov. Semantic security for the McEliece cryptosystem

without random oracles. Des. Codes Cryptography, 49(1-3):289-305, 2008.

N. Patterson. The algebraic decoding of Goppa codes. IEEE Transactions on Information Theory, 21(2):203-207,

1975.

Erez Petrank and Ron M. Roth. Is code equivalence easy to decide? [EEE Transactions on Information Theory,

43(5):1602-1604, 1997.

N. Sendrier. Finding the permutation between equivalent linear codes: The support splitting algorithm. IEEE Transac-

tions on Information Theory, 46(4):1193-1203, 2000.

J. Stern. A method for finding codewords of small weight. In G. D. Cohen and J. Wolfmann, editors, Coding Theory

and Applications, volume 388 of Lecture Notes in Computer Science, pages 106—-113. Springer, 1988.



12 Jean-Charles Faugere, Valérie Gauthier, Ayoub Otmani, Ludovic Perret, and Jean-Pierre Tillich
A Code-Based Public-Key Cryptography

The main cryptographic primitives in code-based public-key cryptography are the McEliece encryp-
tion and the CFS signature [10]. We recall that a linear code over a finite field I, of ¢ elements

defined by a £ x n matrix G' (with k& < n) over [F is the vector space ¢ spanned by its rows i.e.

€ def {uG’ |lueF ’;} G is chosen as a full-rank matrix, so that the code is of dimension k. The

rate of the code is given by the ratio % Code-based public-key cryptography focuses on linear codes
that have a polynomial time decoding algorithm. The role of decoding algorithms is to correct errors
of prescribed weight. We say that a decoding algorithm corrects r errors if it recovers u from the
knowledge of uG + e for all possible e € Fy' of weight at most 7.

Secret key: the triplet (S, G, P) of matrices defined over a finite field I, over ¢ elements, with ¢
being a power of two, that is ¢ = 2°. G is a full rank matrix of size k x n, with & < n, S is of
size k X k and is invertible. P is a permutation matrix of size n X n. G5 is chosen in such a way that
its associated linear code (that is the set of all possible uG s with u ranging over ’;) has a decoding
algorithm which corrects in polynomial time 7 errors.

Public key: the matrix G = SGSP.

Encryption: A plaintext u € F’; is encrypted by choosing a random vector e in [y of weight at most
r. The corresponding ciphertext is ¢ = uG + e.

Decryption: ¢’ = cP~! is computed from the ciphertext c. Notice that ¢’ = (uSGsP + e)P~! =
uSGs + eP~! and that eP~! is of Hamming weight at most 7. Therefore the aforementioned de-
coding algorithm can recover in polynomial time w.S and therefore the plaintext « by multiplication
by S~1.

What is generally referred to as the McEliece cryptosystem is this scheme together with a partic-
ular choice of the code, which consists in taking a binary Goppa code. This class of codes belongs to
a more general class of codes, namely the alternant code family ([19, Chap. 12, p. 365]). The main
feature of this last class of codes is that they can be decoded in polynomial time.

Another important code-based cryptographic primitive is the CFS scheme [10], which is the first
signature scheme based on the security of the McEliece cryptosystem. In this kind of scheme, a user
whose public key is G and who wishes to sign a message x € F ’2‘? has to compute a string w such that
the Hamming weight of x — wG is at most r. Anyone (a verifier) can publicly check the validity of
a signature. Unfortunately, this approach can only provide signatures for messages x that are within
distance t from a codeword uG'. The CFS scheme suggests to modify the message by appending a
counter incremented until the decoding algorithm can find such a signature. The efficiency of this
scheme heavily depends on the number of trials. It is suggested in [10] to choose as in the McEliece
cryptosystem, binary Goppa codes for this purpose with the following parameters n = 2" and k =
n — mr. The number of trials is of order 7! in this case, which leads to choose a very small ¢ and
therefore to take a very large n in order to be secure. Notice that the code rate is then equal to 2m27,fm =

— & which is for large n (that is for large values of 2"") and moderate values of r quite close to 1.
Thus, the major difference between the McEliece cryptosystem and the CFS scheme lies in the choice
of the parameters. An 80-bit security CFS scheme requires n = 22! and r = 10 whereas the McEliece
cryptosystem for the same security needs n = 2!! and r = 32 ([15]). The code of the CFS scheme
is of rate 1 — 1%§121 ~ 0.9999. We see here that the CFS scheme depends on very high rate binary

Goppa codes.
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B Proof of Theorem 2

It will be convenient to assume that the columns of M are ordered lexicographically. The index of
the first column is (4, j") = (k + 1,k + 2), the second one is (4, j') = (k + 1,k + 3), while the last
oneis (j,j') = (n—1,n). The matrices M ;’s which are involved in the Gaussian elimination process
mentioned in Section 4 are defined inductively as follows.
Let E; be the subset of {1, ..., k} of indices s such that ps ;1 # 0. Let F} be the subset of £
formed by its first rm — 1 elements (if these elements exist). Now , we set
def

M1 = (psp+1Ps,j) ser - (14)
k+1<j<n

Let 1 be the rank of M ;. To simplify the discussion, we assume that:

1. i ={1,2,...,rm — 1},
2. the submatrix IN; of M formed by its first ; rows and columns is of full rank.

Note that we can always assume this by performing suitable row and column permutations. In other
words M has the following block structure:

(N1 B,
M_<A1 cl>'

-1
(1) def Nl 0
M (—AlNl_l 1) M

We denote:

where 0 is a matrix of size r; x (k — r1) with only zero entries and I is the identity matrix of size
k — 1. Notice that M () takes the block form:

I B
(1) _ 1
M= (oca>'

This basically amounts to perform Gaussian elimination on M to put the first 71 columns in standard
form. We then define inductively the E;, F;, M ;, M @) and N ; as follows:

def
E; = {s]1 < s <k,pspri #0}\ Fii,

£ )
F; def the first rm — 7 elements of F;.

M ; is the submatrix of M (i=1) obtained from the rows in F; and the columns associated to the
indices of the form (k + 4, j') where j’ ranges from k + i + 1 to n. M is obtained from M~
by first choosing a square submatrix IN; of M ; of full rank and with the same rank as M ; and then
by performing Gaussian elimination on the rows in order to put the columns of M (=1 involved in
N in standard form (i.e. the submatrix of M —1 corresponding to IN; becomes the identity matrix
while the other entries in the columns involved in IN; become zero). It is clear that the whole process
leading to M (rm=1) amounts to perform (partial) Gaussian elimination to M. Hence:

Lemma 1. When |E;| > rm —1i, foralli € {1,...,rm — 1}, we have:

rm—1
rank(M) > Z rank(M;).
i=1
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Another observation is that M ; is equal to the sum of the submatrix (ps,k;+z‘ps,j) scr;, of M anda
k4i<j<n
certain matrix which is some function on the entries p; x4 ;p: ; where ¢ belongs to /4 U ... F;_1 and j

ranges over {k + ¢+ 1, n}. Since by definition of Fj, p; 1., is different from 0 for s in F;. In addition,
the rank of M ; does not change by multiplying each row of index s by p;,i i+ Then, it turns out that

the rank of M is equal to the rank of a matrix which is the sum of the matrix (ps ;) scr, . another
k+i<j<n
matrix depending on the p; x4;ps ;’s (Where ¢ ranges over F1 U. .. F;_1) and the p, . 1’s with s € Fj.

This proves that:

Lemma 2. Assume that |E;| > rm — i for alli € {1,...,rm — 1}. Then, the random variables
rank(M ;) are independent and rank (M ;) is distributed as the rank of a square matrix of size rm —1i
with entries drawn independently from the uniform distribution on .

Another essential ingredient for proving Theorem 2 is the following well known lemma. (see for
instance [9][Theorem 1])

Lemma 3. There exist two positive constants K1 and Ko depending on q such that the probability
p(s, L) that a random £ x £ matrix over F is of rank { — s (where the coefficients are drawn indepen-
dently from each other from the uniform distribution on ;) satisfies

A B
7 §p(s,f) < —5-
q q

This enables to control the exponential moments of the defect of a random matrix. For a square matrix
M of size £ x £, we define the defect d(M) by d(M) % ¢ — rank(M).

Lemma 4. If M is random square matrix whose entries are drawn independently from the uniform
distribution over I, then there exists some constant K such that for every A > 0,

E (00) < Kq'r,
E(.) denoting the expectation.

Proof. By using Lemma 3, we obtain:

Observe that the maximum of the function d — q)‘d*d2 is reached for dy = % and is equal to ¢ 7 .

Then, we can write the sum above as:

iq)\d—d2 — Z q)\d—d2 + Z q)\d—d2

d=0 d<dy d>dop
Finally, we notice that:

qA(d+1)—(d+1)2 q)\(d0+1)—(d0+1)2 1

> = — fi
q)\d,d2 = q)\dO*d(z) p ord > do,
qA(d—l)—(d—l)2 q/\(do—l)—(do—l)2 1
PE = P08 g for d < do.
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This leads to:

M N delde] 22 NS do]-d A
LR SIS SPANA
d=0 d<do d>do

:o(qf>.

We can use now the previous lemma together with Lemma 1 and Lemma 2 to derive

Lemma 5. Assuming that |E;| > rm — i foralli € {1,...,t}, we get:

t 2
prob (Z d(M;) > u) < K'q~ 't
i=1

where K is the constant appearing in the previous lemma.

def

Proof. Let D = Zle d(M ;). Using Markov’s inequality:

E(¢*P)
q)\u

prob(D > u) < (15)
for some well chosen A > 0. The exponential moment appearing at the numerator is upper-bounded
with the help of the previous lemma and by using the independence of the random variables ¢**(M:)
ie.:

E(P) =E (qu:l d(Mi)>

A2
1

(16)

2
25 A

2
= K'q't ~*". We choose A = 2* to

Using now (16) in (15), we obtain prob(D > at) < K'Z
q
minimize this upper-bound, leading to:
u2
prob(D >u) < K'q .
O

The last ingredient for proving heorem 2 is a bound on the probability that F; is too small to construct
F;.
Lemma 6. Let u; % (") - % then

9 (%uif'r'mfzﬁkl)Z

prob(|E;| <rm —i| |Fil=rm—1,.. ,|Fi.1|=rm—i+1)<e i

Proof. When all the sets F; are of size rm— j for jin {1,...,i—1}, it remains N—Zé;ll (rm—j) =

N — w = u; rows which can be picked up for F;. Let .S; be the sum of ¢ Bernoulli variables

of parameter q%ql. We obviously have
prob (|E;| <rm —i||Fi|=rm —1,...,|Fi_1| =rm — i+ 1) = prob(S,, <rm —1).

It remains to use the Hoeffding inequality on the binomial tails to finish the proof. O
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We are ready now to prove Theorem 2

Proof (of Theorem 2). Let u = [\/mrw(mr))]. We observe now that if all E;’s are of size at least
rm — j for j € {1,...,u}, we can write

D =N —rank(M)

<N — Z rank(M;) (by Lemma 1)
i=1

rm—1 rm—u
= Z (rm —1) — Z rank(M;)
=1 =1
rm—u rm—1
=Y dM)+ D (rm—i)
=1 i=rm—u-+1
rm—u _ 1
= Z d(M;) + u(u2)
i=1
i mrw(mr)
< D M)+ =
i=1

From this we deduce that

prob(Dandom > mrw(mr)) < prob(A U B) < prob(A) + prob(B)

where A is the event “Y. 7™ d(M;) > ™™ and B is the event “for at least one E; with
je{l,...,rm—u} wehave |[E;| < rm — j”. We use now Lemma 5 to prove that prob(A) = o(1)
as rm goes to infinity. We finish the proof by noticing that the probability of the complementary set

of B satisfies

prob(B) = prob < ﬂ |E;] > rm — z)

=1
rm—u
= [ prob(IEi| = rm —i||Fi|=rm—1,...,|F 1| =rm—i+1)
=1

=1—o0o(1) (by Lemma 6).
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C The Alternant Case

In this appendix, we are going to prove Proposition 1 and Proposition 2.

C.1 Proof of Proposition 1

We require the following lemma.

Lemma 7. Foranyintegersa, b, ¢, d, e, fin{0,...,r—1}, and an integer { in {O, ooy [log,(r — 1)J}
such that a + ¢'b = ¢ + ¢‘d we have:

Za7b,c7d,€ + Zc,d,e,f,f = Za,b,e,f,@ (17)

Proof (Proposition 1). Let b* &y +1,6* e 1and * & ¢ + ¢'0*. Then c* is the integer such

that ¢* + ¢ = ¢ + ¢%6, one can see that ¢ + ¢°6* = ¢ + ¢*(6 — 1) = ¢* and by Lemma 7 we have:
Zosgt ber b1t Lovqtss probr46 0 = Zertqlbep +6% 4 = Lotqlobebtsl
which means that

Zc+q£6,b,c,b+5,€ = Zc*+q£,b,c*,b+1,é + Zc+q£5*,b*,c,b*+6*,€ (18)

The proof follows by induction. g

C.2 Proof of Proposition 2

Proof (Proposition 2). Let us set e def Uogq(r — 1)]. Then the number of elements in B, is given by
the number of tuples (b, ¢, £). Therefore we get:

e r—2 e
\Br|I%(T—l)(r—2)+ZZ(r—qz):%(r—l) <T2+26T22qz>
/=1 b=0 =1

1 e
= 5(7“ - 1) ((26 + 1)?” -2 Z q£> = Talternant
=0



18 Jean-Charles Faugere, Valérie Gauthier, Ayoub Otmani, Ludovic Perret, and Jean-Pierre Tillich

D The Binary Goppa Case
D.1 Proof of Proposition 4
Propositon 4 which needs Lemma 8 is actually a particular case of Proposition 10.

Lemma 8. Lett, 6, b and c be integers suchthat £ > 0,0 > 1,1 < b+ <r—1,1< c+q£6 <r—1
We have for any j and j' such thatk +1 < j < j' < n:

A = (x?+ x2) (vixe (voxt)" +vexe (vixt)" 19
c+q£5,b,c,b+5,£[]7]]_ ]+ 7’ 7<% g gt + g J<*g ( )

Proof. Letd = b+ 6 and a = ¢ + ¢%6. We can write that:
. - q[’ a qeb c qu qZ a qeb C qed
Zc+qé5,b,c,b+5,€[]7] ] = Za,b,c,d,ﬂ[]h] ] = )/J}/j’ (X] X], + X]Xj/ ) + Yj/}/J (X]/X] +X]1X] )
_ v.vd ydh q‘s vt yath q‘s
= vy X8 (Xg+ xex8 ) + v vy X (xg+ X xg)
Using the identity a = ¢ + ¢J, we also have:
L. £ Ly L Ly £ Ly Ls Ls
Zoygtsnenesildn '] = Yij‘{ Xj‘?, X5 (Xj +XJ‘?, ) + Y Y XX (Xj + X7 )
_ (4 q‘s v a' v d'b e v ydbye
= (X7 x27) (v xatxs + vy xetx)
O
Proposition 10. Lett, ¢, § and c be integers suchthatt > 0, £ > 1,6 > 1, t+d<r—1,¢c>0and

¢+ 25 < 2r — 1. We have:

T
213
Z’Yb Z i ots b tibtol = Zc’+22'6/7b’,c’,b’+5’,€’ (20)
b=0
where V! =0 —1,0 =26, =2t,c =c.
Proof. By Lemma 8, we have that:

20—1

.. 2¢ —1 Y3 —1 ¢ 20—1
Zc+2£6,t+b,c,t+b+5,£[]7Jl] = (X]('s + Xﬁ) <}/3X]c)/}2/ Xg%t (YJ"Xy%b) + Yj’X;’YJ? XJ? ' (YJ'XJ%) >

Using the fact that Y; 377 X7 = 1and Yy >3 _o 77 X7 = 1 we also have:

-

2t Sy
Z’Yb Zc+2"'6,t+b,c,t+b+5,£[]7] | =
b=0

2¢ =1 _ ot :
(X;S + X;i) VX5V X! <Yj, > WX
b=0

20—1

2171 2[*1

T
VXX (Yj > w?X?b>
b=0

26 25 2t 27! A .
= (Xj + X5 ) <YJX; (YJ"Xj') + YvJ'/X](':’ (YJ'Xj ) ) = Zc'+22’5/,b/,c/,b/+5',e/ 14 4']
with ¢/ = ¢ — 1,8 =28, = 2t, ¢ = c. Since ¢/ + 2¢8 = ¢+ 2¢5 and ¢ + 296 < 2r — 1 we have
¢ +2Y8" < 2r — 1. Moreover, we require b’ + 8’ < 2r — 1 which means 2(t+8) < 2r — 1. This last
inequality implies t + 0 < r — 1. O
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Proof (of Proposition 4). By Proposition 10 when § = 1 we have the following equality:

.
2t _

E b Zc+2f,t+b,c,t+b+1,£ = Zc+2"',2t,c,2(t+1),€fl

b=0

Moreover by Proposition 1, we also have:
Zc+2f,2t,c,2(t+1),£—1 = Zc*+2f—1,2t,c*,2t+1,z—1 + Zc+25—1,2t+1,c,2t+2,£—1

where by definition ¢* is equal to ¢ + 2¢~1. O

D.2 Proof of Proposition 5

Proof (of Proposition 5). Each equation is defined by a triple (f,¢,¢). AsO0 <t <r—2,1</{<u
and 0 < ¢ < 2r — 2¢ — 1, we therefore have:

r—2 u
Ny = (2r — 2°).
t=0 ¢=1
One can easily check that this expression is exactly the same as given in the proposition. O

D.3 Proof of Proposition 6 and Proposition 7

Proof (of Proposition 6). For any j and j’ such that k + 1 < j < 5 < n, we have:

: 2

2702 (Zc+2£6,b,t+c,b+5,f) [jv j/] -

c=0
5 o2 b\ 2 oty 2 N L2 2 D\ 2 a2 N L2 g2

C C
(Xj +Xj'> (Yj'Xj'> XPVP Y X+ (Yij> XGVE D X
c=0 c=0

5 5 2(+1 b 2[+1

with? =0+ 1,8 =6, =b,¢ = 2tand  + 2¢8 = 2t + 2¢715. In particular, one can easily
check that the necessary conditions are b+ 6 < 2r — 1 and ¢ + 25 < r — 1 in order for this equation
to hold. O

22+1
2t b 2t . !
Y}‘Xj -+ (Y}XJ) Y}/Xj/) - Zc’+2€'57b’,c’,b’+6’,€’ [.7’.7 }

Proof (of Proposition 7). By Proposition 6 we know that N is the number of vectors Z o, oe+15p 21 p+5.0+1
obtained with § = 1,b > 0, ¢ > 0 and satisfying 0 < £ <u—1,0+6 < 2r — landt+265 <r—1.
Therefore we have:

Ne=" 3 (1) @1)

which is equal to the desired expression. O
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D.4 Proof of Proposition 8

Proof (of Proposition 8). We will consider vectors Z o, .11 0 Of Bay that satisfy Equation (13)
and such that there exists a linear relation that link them. In other words, we consider all the linear
relations of the form » 3, i Z .\ ot; j, o p, 410, = O With o; in Fom and where each Z, , o¢; 4, . 5. 114,
is equal to a linear relation of the form (13). We will see that the number of independent equations
is equal to Npnq. Firstly, one can observe that for any such vectors we necessary have c¢; even and
1 < ¢; < u. We also know by Proposition 4 that for any integers ¢, £ and c such that 0 <t < r — 2,
1</ <wuand0 < ¢ < 2r —2¢ — 1, we have the following linear relation:

Z ’YI?Z Zc+24,t+b,c,t+b+1,z = Zc*+25*1,2t,c*,2t+1,l71 + Zc+2e*1,2t+1,c,2t+2,671

b=0
where by definition ¢* = ¢ + 2/~!. Note in particular that whenever c is even then ¢* is also even and
if £ > 2 then we obtain a linear relation between some vectors that also satisfy quadratic equations
of the form (13). Each equation enables to remove one quadratic equation. So if we denote by N; the
number of equations of the form (12) with c even and ¢ > 2, we have then:

_ii< 2r—2£>—(r—l)uil(r—Qe)—(r—l)((u—l)r—2“+2). (22)

t=0 (=2 (=1

Moreover in the case £ = 1 Equation (20) becomes

2
§ Vo L 42, t+b,ct+b+1,1 = L ct2.2t,¢,2642,0-
b=0
In particular when c is even, say for instance ¢ = 2t’ for some integer, then this last equation can be
rewritten as:

Z Vi Zowrs2.0+b0t b1 = Zow 42,2620 204+2,0- (23)
b=0
We know that when t’ = ¢ then Z 2t'+2,2t 2t/ 2t+2,0 18 zero. In that case we obtain new relations between
vectors satisfying quadratic equations that are independent even from those obtained with ¢ > 2. As
for the case when ¢ # t’ we also have Z 24'42,2¢,2¢' 2t42,0 = L2142 2¢' 2t 2t/ +2,0- From this identity and
from Equation (23) we then obtain new relations of the following form:

T T
Z Vz?ZQt'+2,t+b,2t’,t+b+1,1 = Z 7§Z2t+2,t'+b,2t,t’+b+1,1 (24)
b=0 b=0
This last equation involve only vectors that satisfy also quadratic equations. So the number Ny of
equations of the form (24) is given by the number of sets {¢,¢'}. But by assumption ¢ and ¢’ should
satisfy 0 < ¢t < r —2and ¢ = 2¢' with 0 < ¢ < 2r — 3, which implies that 0 < ¢’ < r — 2. Therefore,
Ny is equal to the number (¢,¢’) such that ¢ < ¢’ and thus we get:

l\')

r—2r—2

7’—1 . (25)
t

I
=)

t'=t

Finally, by gathering all the cases we therefore obtain that:

1
Ning = Ni+ Ny = (r—1)((u_1),,_2u+2> oo
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D.5 Proof of Proposition 9

Proof (of Proposition 9). Set u def |logy(2r — 1)]. From Equation (7), we have |Ba,| = (2r —
1) ((2u + 1)r — 2*F! + 1) which implies from Proposition 7

1Bay| — Ng = (2r — 1) ((2u+ 1)r — 241 41 — (ru — 2" 4 1)) (26)
= (2r — 1)((u+ 1)r — 24). 27)

Moreover, from Proposition 5 and Proposition 8, we can write:

Ni — Npng = (r— 1) <2ur T Y g vy 2)) (28)

1
—(r— 1)<(u+ §)7«—2“> (29)
Therefore by gathering all these equalities we obtain:

3 1
’BQT’—(NL+NQ_NLQQ>:T<(U+2)7”—2u—2) (30)

On the other hand from Proposition 3, we have TGoppa(7) = 27 ((2¢ + 1)r — 2° — 1) where e =
[log, 7] 4+ 1. Using the basic inequality 2r — 1 < 2r < 2(2r — 1), we have therefore log,(2r —
1) < logy(r) + 1 < logy(2r — 1) + 1 which finally implies [logy | = w. Thus, Tgeppa(r) =
%r ((2u + 3)r — 2*! — 1) and the proposition is proved. O
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E Experimental Results

We gathered samples of results we obtained through intensive computations with the Magma system
[6] in order to confirm the formulas. We randomly generated alternant and Goppa codes over the field
F, with ¢ € {2,4, 8,16, 32} for values of r in the range {3, ..., 50} and several m. The Goppa codes
are generated by means of an irreducible I'(z) of degree r and hence I"(z) has no multiple roots. In
particular, we can apply Theorem 1 in the binary case. We compare the dimensions of the solution
space against the dimension D;angom Of the system derived from a random linear code. Table 2 and
Table 3 give figures for the binary case with m = 14. We define T}jternant and TGoppa respectively as
the expected normalized dimensions for an alternant and a Goppa code deduced from the formulas
(7) and (8). We can check that Diangom is equal to O for € {3,...,12} and Dyyngom = N — k as
expected. We remark that Dyjernan is different from Dyapgom Whenever 7 < 15, and Dgoppa is different
from Dyandom as long as r < 25. Finally we observe that our formulas for Tyjternant fit as long as
k > N — mTyjternant Which correspond to » < 15. This is also the case for binary Goppa codes since
we have mTGoppa = Dgoppa as long as &k > N — mTgoppa i.e. v < 25. We also give in Table 10 and
Table 11 the examples we obtained for ¢ = 4 and m = 6 to check that the arguments also apply. We
also compare binary Goppa codes and random linear codes for m = 15 in Table 4-6 and m = 16 in
Table 7-9. We see that Dyandom and Dgoppa are different for » < 33 when m = 15 and for m = 16
they are different even beyond our range of experiment r < 50.

Table 2. g =2 and m = 14

[ r [3] 456789 Jw[um[r[1B][14]I15]16]

N [ 861 [ 154024153486 [ 4753|6216 | 7875 [ 9730 [11781[14028[16471[19110[21945[24976

k [16342]16328[16314[16300[16286|16272[16258|16244[16230/16216]16202[16188[16174[16160
Duantom | 0 [ 0 [ 0 ] 0 [ 0 [ 0 0] 0] 0] 0 [269]2922]5771]8816
Daemant | 42 [ 126 | 308 | 560 | 882 | 1274 | 1848 [ 2520 [ 3290 [ 4158 [ 5124 | 6188 | 7350 | 8816
mTyiemant| 42 [ 126 | 308 | 560 | 882 [ 1274 | 18482520 | 3290 [ 4158 | 5124 [ 6188 | 7350 [ 8610
Daoppa | 252 | 532 [ 980 | 1554|2254 | 3080 | 4158 | 5390 | 6776 | 8316 [10010[11858]13860]16016
mTcoppa | 252 | 532 | 980 | 1554 | 2254 | 3080 | 4158 [ 5390 [ 6776 | 8316 [10010]11858]13860[16016

Table3. g =2 and m = 14

[ r [ 17 [ 18] 1920 [21 [22]23][24]25 ]2 [27]287]29 [30]
N [28203[31626]35245[39060]43071[47278]51681[56280]61075[66066]71253[76636]82215[87990

k_ |16146]16132[16118[16104[16090[16076[16062|16048]16034|16020|16006|15992[15978[15964
Drandom | 12057]15494]19127|22956|26981[31202(35619]40232[45041[50046]55247[6064466237|72026
Daiemant_|12057]15494]19127]22956(26981]31202[35619]40232|4504150046|55247|60644]66237|72026
mTyiernant | 10192[11900[13734]15694]17780[19992(2233024794|27384[30100[32942[35910(39004 42224
Daoppa | 18564]21294]24206/27300|30576|34034|37674|41496|45500[50046|55247[60644]66237|72026
mTcoppa |18564/21294]24206]27300(30576|34034[37674[41496[45500{49686|54054|58604|63336|68250
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Table 4. ¢ = 2 and m = 15

[ r [ 3] 456789 [wo[mmJn]n]14]15]16]
N[990 [1770]2775 | 4005 | 5460 | 7140 [ 9045 [11175[13530[16110[18915]21945]25200[28680
k_ [32723]32708]32693[32678[32663|32648]32633[3261832603|32588|32573|32558|32543[32528

Danion| 0 [ 0T 0T 0] 0] 0[0o[o0o[o0o[O0o[o0o]o0o]o0]o0

Daoppa | 270 | 570 [ 1050 | 1665 | 2415 | 3300 | 4455 | 5775 | 7260 | 8910 [10725[12705]14850]17160
mTGoppa] 270 | 570 [ 1050 | 1665 | 2415 | 3300 | 4455 [ 5775 [ 7260 | 8910 [10725[12705|14850|17160

Table S. ¢ = 2 and m = 15

[ » [ ] 18[19 ]2 [21 [ 2223 [24]25 ]2 [27]28]29 ] 3 ]
N [32385[36315]40470]44850[49455[54285[59340[64620[70125[75855[81810]87990]94395[101025

k_ [32513[32498[32483[32468(32453|3243832423|32408|32393[32378[32363[32348[32333 32318
Drandom | 0 [ 3817 | 7987 [12382]17002[21847|26917[32212|37732[43477|49447(55642|62062| 68707
Daoppa |19890[2281525935[29250(32760(36465|40365|44460(48750[53235[57915/62790|67860| 73125
mTGoppa | 19890]22815(25935[29250[32760[36465[40365[44460[4875053235/57915|62790|67860| 73125

Table 6. ¢ = 2 and m = 15

I r [ 31 [ 32 ]33 [ 3 [3 [36 ] 37 ]38 ]3[4 [ 4 [ 42 ]43]4]
N [107880[114960[122265[129795[137550]145530]153735]162165]170820]179700] 188805]198135[207690[217470
k[ 32303 [ 32288 | 32273 | 32258 | 32243 [ 32228 | 32213 [ 32198 [ 32183 | 32168 | 32153 [ 32138 [ 32123 [ 32108
Drandom | 75577 [ 82672 | 89992 [ 97537 [105307]113302]121522[129967|138637|147532|156652[165997|175567] 185362
Daoppa | 78585 | 84240 [ 90585 | 97537 [105307]113302]121522]129967|138637|147532[156652|165997 175567 | 185362
mTcoppa| 78585 | 84240 | 90585 | 97155 [103950]110970]118215|125685|133380|141300|149445|157815[166410[175230

Table 7. ¢ = 2 and m = 16

[ r [ 37456789 [wo[mnJr]n]14]15]16]
N 112820163160 [ 4560 | 6216 | 8128 [10296]12720[15400[18336]21528]24976[28680[32640
k_|65488]65472]65456]65440[65424]65408(65392|65376|65360|65344|65328|65312[65296[65280
Daniom | 0 [ 0T 0T 0] 0000 [O0[O0O[O0o]o0o]o0T]O0
Daoppa | 288 | 608 [ 1120 | 1776 | 2576 | 3520 | 4752 | 6160 | 7744 [ 9504 [11440[13552(15840]18304

mTcoppa| 288 | 608 | 1120 [ 1776 | 2576 [ 3520 | 4752 6160 | 7744 [ 9504 [11440]13552[15840]18304

Table 8. g = 2 and m = 16

[ » [ 17 ] 18] 19]20 [21 [22[]23[24[2 [26]27] 28 [ 29 [ 30 |
N [36856]41328]46056]51040]56280]61776]67528[73536]79800[86320[93096]100128]107416]114960

k |65264]65248]65232(65216]65200{65184/65168|65152|65136|65120|65104] 65088 [ 65072 [ 65056
Drandom | 0 [0 ] 0 [ 0 | 0 [ 0 [2360]8384[14664/21200(27992[ 35040 | 42344 | 49904
Daoppa |21216]24336/27664|31200|3494438896|43056|47424(52000[56784[61776] 66976 | 72384 | 78000
mTcoppa| 21216]24336/27664|31200|3494438896|43056]47424[52000[56784[61776] 66976 | 72384 | 78000




24 Jean-Charles Faugere, Valérie Gauthier, Ayoub Otmani, Ludovic Perret, and Jean-Pierre Tillich

Table 9. ¢ = 2 and m = 16

[ » [ 31 [ 32 ]33 [ 34 [ 35 [3 [ 37 ]38 ]3] 474 ] 42 ]48]
N [122760[130816]139128[147696]156520[165600]174936[184528]194376[204480]214840[225456]236328
k[ 65040 | 65024 [ 65008 | 64992 [ 64976 | 64960 [ 64944 | 64928 [ 64912 | 64896 | 64880 | 64864 | 64848
Drandom | 57720 [ 65792 | 74120 | 82704 | 91544 [100640|109992[119600|129464]139584|149960[160592[171480
Daoppa | 83824 [ 89856 | 96624 [103632[110880[118368|126096]134064|142272[150720|159408[ 168336177504
mTcoppa| 83824 | 89856 | 96624 [103632[110880]118368]126096|134064(142272[150720(159408|168336[177504

Table 10. g =4 and m = 6

I r [3]4]5]6[7[8]9J10]1n]2]13[14]15]16
N ]153]276[435]630 ] 861 [1128]1431]1770[2145[2556]3003[3486]4005[4560
k_[4078]4072[4066|4060[4054|4048[4042|40364030|40244018]4012[4006|4000

Dundom | 0 [0 JOJOJO[O]JO[O0O]O0O[O]O]O0]O0[560

Daremant | 6 | 18 | 60 | 120 [ 198 | 294 [ 408 | 540 [ 690 | 858 [1044|1248[1470]1710

mTemant| 6 | 18 [ 60 [ 120 [ 198 [ 294 | 408 | 540 | 690 [ 858 [1044[1248|1470]1710

Daoppa | 18 | 60 | 120 [ 198 | 294 [ 408 | 540 | 750 | 990 [1260]1560]1890|2250[2640

mTGoppa | 18 | 60 | 120 | 198 [ 294 | 408 | 540 | 750 [ 990 |1260[1560]1890[2250]2640

Table 11. ¢ =4 and m = 6

I r [17]18]19]20 21222324 [ 25 ] 26 [ 27 [ 28 ]2 [30]
N [5151[5778]6441[7140]7875[8646]9453[10296]11175[12090]13041[14028]15051[16110
k|3994[3988[3982[3976/3970|3964|3958] 3952 | 3946 [ 3940 [ 3934 [ 3928 | 3922 | 3916
Drandom | 1157]1790]2459(3164|3905|4682[5495[ 6344 [ 7229 [ 8150 | 9107 [10100[11129[12194
Daiemant_|2064[2448(2862[3306[3905[4682[5495( 6344 | 7229 [ 8150 | 9107 [10100[11129]12194
mTyiernant| 2064|2448|2862(3306[3780[4284[4818| 5382 | 5976 | 6600 | 7254 | 7938 [ 8652 [ 9396
Daoppa|3060[3510]3990[4500[5040[5610[6210] 6840 | 7500 | 8190 | 9107 [10100[11129[12194

mTGoppa |3060]3510[3990[4500[5040[5610]6210] 6840 | 7500 | 8190 | 8910 | 9660 [10440[11250




