
  

Abstract. In this work, we analyze and present experimental data evaluating the efficiency of several 

techniques for speeding up the computation of elliptic curve point multiplication on emerging x86-64 

processor architectures. In particular, we study the efficient combination of such techniques as 

elimination of conditional branches and incomplete reduction to achieve fast field arithmetic over pF . 

Furthermore, we study the impact of (true) data dependencies on these processors and propose several 

generic techniques to reduce the number of pipeline stalls, memory reads/writes and function calls. 

We also extend these techniques to field arithmetic over 2p
F , which is utilized as underlying field by 

the recently proposed Galbraith-Lin-Scott (GLS) method to achieve higher performance in the point 

multiplication. By efficiently combining all these methods with state-of-the-art elliptic curve 

algorithms we obtain high-speed implementations of point multiplication that are up to 31% faster 

than the best previous published results on similar platforms. This research is crucial for advancing 

high-speed cryptography on new emerging processor architectures.     

 
Keywords. Elliptic curve cryptosystem, point multiplication, field arithmetic scheduling, incomplete 

reduction, data dependence, pipeline stall, x86-64 instruction set, software implementation.   

1 INTRODUCTION 

Elliptic Curve Cryptography (ECC), discovered independently by Miller [38] and Koblitz 

[30] in mid 80’s, has gained widespread acceptance in recent years, taking over a central role 

in public-key cryptography that was previously exclusive to the classic RSA. This 

technological shift is partially explained by ECC’s reduced key length requirement to 

achieve certain security level. The latter brings many benefits such as reduced memory 

footprint, lower power consumption and faster execution time, among others.  

Point multiplication, defined as [ ]k P , where the point P has order r and is on an elliptic 

curve E over a prime field pF  (i.e., ( )pP E∈ F ) and [1, 1]k r∈ −  is an integer, is the central 

and most time-consuming operation in ECC over prime fields. Hence, its efficient realization 

has gained increasing importance for the industry and research communities and a plethora 

of methods have been proposed for speeding up this operation at its various computational 

levels. For instance, different studies have proposed methods using efficient arithmetic 

representations for the scalar [41][44][11][31], efficiently computable endomorphisms 

[20][19], fast precomputation schemes [36][34], efficient point formulae [7][8][25][37] and 

long integer modular arithmetic [29][40][9][47], and improved curve forms with fast 
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arithmetic [6][12][26][27]. Still, these research efforts usually need to be complemented with 

further analysis and actual implementations on different platforms that permit one to assess 

their practical effectiveness in the real world. Accordingly, many studies in that direction 

have focused on efficient implementations on constrained 8-bit microcontrollers [21][45], 

32-bit embedded devices [46][17], Graphical Processing Units (GPUs) [43], processors 

based on the Cell Broadband Engine Architecture (CBEA) [10], 32-bit x86-based processors 

[5][4], among others. Nevertheless, there are very few studies focusing on the analysis of 

efficient techniques for high-speed ECC point multiplication especially targeting the most 

recent x86-64 based processors, and this work tries to fill that gap. 

Modern CPUs from the notebook, desktop and server classes are decisively adopting the 

64-bit x86 instruction set (a.k.a. x86-64) developed by AMD [1]. The most relevant features 

of this new instruction set are the expansion of the general-purpose registers (GPRs) from 32 

to 64 bits, the execution of arithmetic and logical operations on 64-bit integers and an 

increment in the number of GPRs, among other enhancements. In addition, these processors 

usually exhibit a highly pipelined architecture, improved branch predictors and complex 

execution stages that offer parallelism at the instruction level. Thus, this increasingly high 

complexity brings new paradigms to the software and compiler developer.      

In this work, we analyze several techniques and evaluate their effectiveness to devise 

highly efficient field and point arithmetic for ECC over prime fields on architectures based 

on the x86-64 ISA. Specifically, we study the impact of branch misprediction for modular 

reduction and demonstrate quantitatively the benefit of eliminating conditional branches in 

modular addition, subtraction and multiplication/division by small constants. Moreover, we 

optimally combine this approach with the well-known technique of incomplete reduction 

(IR) [47] to achieve further cost reductions. Also, we analyze the influence of deeply 

pipelined architectures in the ECC point multiplication execution. In particular, we notice 

that the increased number of stages in certain pipeline architectures can make (true) data 

dependencies between contiguous field operations particularly expensive because these can 

potentially stall the execution for several clock cycles. These dependencies fall in the 

category of read-after-write (RAW), which are typically found between several field 

operations when the result of an operation is required as input by the following operation. In 

this work, we demonstrate the potentially high cost incurred by these dependencies, which is 

hardly avoided by compilers and dynamic schedulers in processors, and propose three 

techniques to reduce its effect: field arithmetic scheduling, merging of field operations and 

merging of point operations.  

The techniques above are applied to modular operations using a prime p, which are used 

for performing the pF  arithmetic in ECC over prime fields. However, these techniques are 

generic and can also be extended to different scenarios using other underlying fields. For 

instance, Galbraith et al. [19] recently proposed a faster way to do ECC that exploits an 

efficiently computable endomorphism to accelerate the execution of point multiplication 

over a quadratic extension field (a.k.a. GLS method). Accordingly, we extend our analysis to 

2p
F  arithmetic and show that the proposed techniques also lead to significant gains in 

performance in this case.  
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Our extensive tests assessing the techniques under analysis cover at least one 

representative x86-64 based CPU from each processor class: 1.66GHz Intel Atom N450 

from the notebook (and netbook) class, 2.66GHz Intel Core 2 Duo E6750 from the desktop 

class, and 2.83GHz Intel Xeon E5440 and 2.6GHz AMD Opteron 252 from the server (and 

workstation) class. 

Finally, to assess their effectiveness for a full point multiplication, the proposed 

techniques are applied to state-of-the-art implementations using Jacobian and (extended) 

Twisted Edwards coordinates on the targeted processors. Our measurements show that the 

proposed optimizations (in combination with state-of-the-art point formulas/coordinate 

systems, precomputation schemes and exponentiation methods) significantly speed up the 

execution time of point multiplication, surpassing with considerable margins previous state-

of-the-art implementations. For instance, we show that a 256-bit point multiplication for the 

case of Jacobian and (extended) Twisted Edwards coordinates can be computed in only 

337000 and 281000 cycles, respectively, on one core of an Intel Core 2 Duo processor. 

Compared to the previous results of 468000 and 362000 cycles (respect.) by Hisil et al. [27], 

our results achieve improvements of about 28% and 22% (respect.). In the case of the GLS 

method, for Jacobian and (extended) Twisted Edwards coord., we compute one point 

multiplication in about 252000 and 229000 cycles (respect.) on the same processor, which 

compared to the best previous results by Galbraith et al. [18][19] (326000 and 293000 

cycles, respect.) translate to improvements of about 23% and 22%, respectively. 

This work extends significantly the analysis and results presented by the authors in [35]. 

Our work is organized as follows. In Section 2, we briefly describe relevant features of 

x86-64 based processors, elliptic curves over prime fields and the recently proposed GLS 

method. In Section 3, we analyze the impact of combining the incomplete reduction 

technique with elimination of conditional branches to achieve high-performance field 

arithmetic. In Section 4, we analyze the effect of (true) data dependencies between 

contiguous field operations on different processors and propose several practical techniques 

to minimize it. In Section 5, we extend the proposed techniques to quadratic extension fields 

and study their impact when using the GLS method. Finally, in Section 6, we present our 

timings for point multiplication and compare them to the best previous results.   

2 PRELIMINARIES 

2.1 x86-64 based Processor Architectures 

For a background in computer architectures and experimental analysis on processors based 

on the x86-64 ISA, readers are referred to [28] and [15][16], respectively.   

Modern CPUs from the notebook, desktop and server classes are rapidly adopting the x86-

64 ISA proposed by AMD [1]. This new instruction set involves GPRs of 64 bits, arithmetic 

and logical operations on 64-bit integers, an increment in the number of GPRs, among other 

enhancements. Most importantly, modern processors based on this architecture exhibit deep 

pipelines with a high number of stages. For instance, experiments presented in [16] suggest 
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that Intel Atom, Intel Core 2 Duo and AMD processors have pipelines with 16, 15 and 12 

stages, respectively. There are two aspects related to the latter that are of special interest in 

this work: the high cost of branch mispredictions and data dependencies.   

Branch Predictors and Conditional Branches: 

The performance of branch predictors can be evaluated through the equation: 

                    (% % _ )idealCPI CPI Branch Branch misprediction penalty= + × × ,             (1) 

where:  

CPI: cycles per instruction. 

idealCPI : ideal CPI without hazards. Typically, equal to 1 for non-superscalar processors. 
%Branch : percentage of instructions that are branches. 

% _Branch misprediction : percentage of unsuccessful predictions. 

penalty: cost in cycles per misprediction. Roughly, equal to the number of stages in the 

pipeline.  

Let us consider the following conditioned executing statements:   
 

if condition 

   execute1  

else execute2  

 

which is typically translated to the following pseudocode using conditional branches: 
 

if condition branch to label1 

execute2 

branch to label2 

label1: 

  execute1 

label2: 

  ... 

 

If the predictor guesses correctly whether to branch to label1 or label2 most of the time, 

the penalty introduced by mispredictions is minimal. Sophisticated branch predictors such as 

local and global branch predictors combined with 2-level adaptive techniques (found in 

processors from Intel and AMD) can obtain about 97% of guesses correct for certain 

applications. This translates to small penalties with CPIs only increased by 9% for example 

(assuming that % 0.1Branch = , 15penalty =  and 0.5idealCPI =  in (1)). Otherwise, the 

penalty can be extremely high. Following the example above, the CPI increases by 250% if 

% _ 0.5Branch misprediction = .   

Unfortunately, the last scenario is expected to happen in certain field operations, such as 

addition and subtraction, in which the reduction step (typically implemented with a 

conditional branch) is required 50% of the time in a “random” pattern. Hence, it is better to 

eliminate conditional branches in these circumstances, as already implemented in some 

crypto libraries [22]. There are two possible solutions to achieve this:  
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• Using look-up tables: two values, 0 and the actual value required by the reduction 

step, are pre-stored and then selected accordingly during modular reduction using 

indexed indirect addressing mode. 

• Through branch predication: using predicated move instructions (e.g., cmov in x86) to 

load 0 or the actual value required by the reduction step. 

The previous approaches follow the same idea: the reduction step is performed every time. 

If the reduction is not actually required it is performed with the value 0, which does not 

affect the final result. These techniques have some additional advantages. They tend to 

reduce the code size and allow a more flexible scheduling of instructions that can lead to 

faster execution times.       

In Section 3.2, we analyze the impact of eliminating conditional branches during modular 

reduction, and present experimental data quantifying the gain in performance on x86-64 

based CPUs. Moreover, we efficiently combine this approach with the incomplete reduction 

technique. 

Data Dependencies: 

Let i and j be the computer orders of instructions iI  and jI  in a given program flow. We 

say that instruction jI  depends on instruction iI  if [28]: 

                           [ ( ) ( )] [ ( ) ( )] [ ( ) ( )]i j i j i jW I R I R I W I W I W I∩ ∪ ∩ ∪ ∩ ≠ ∅ ,                      (2) 
 

where ( )xR I  is the set of memory locations or registers read by xI  and ( )xW I  is the set of 

memory locations or registers written by xI . We can distinguish three cases: 

• True (data) dependence (or Read-After-Write, RAW): if i j<  and ( ) ( )i jW I R I∩ , 

i.e., if jI  reads something written by iI .  

• Anti-dependence (or Write-After-Read, WAR): if i j<  and ( ) ( )i jR I W I∩ , i.e., if iI  

reads a location later updated by jI . 

• Output dependence (or Write-After-Write, WAW): if i j<  and ( ) ( )i jW I W I∩ , i.e., 

if both iI  and jI  write the same location. 

Modern out-of-order processors and compilers deal relatively well with anti- and output 

dependencies through register renaming. However, true or RAW dependencies cannot be 

removed in the strict sense of the term and are more dangerous to the performance of 

architectures exploiting Instruction-Level Parallelism (ILP).  

In the case that instructions iI  and jI  , where i j< , have a RAW dependence and are 

“close” to each other such that a hazard is imminent, the pipeline needs to stall a number of 

cycles proportional to the time it takes iI  to complete its pipeline latency. There are two 

approaches to minimize the appearance of pipeline stalls: by instruction scheduling and 

using data forwarding. In particular, the former can be taken over by the compiler, the out-

of-order processor or the programmer (or a combination of these). In Section 4, we discuss 
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several software-based techniques that minimize the number of pipeline stalls caused by 

RAW dependencies between consecutive field operations on processors with deep pipelines 

such as x86-64 based CPUs.     

2.2 Elliptic Curve Cryptography  

For a background in elliptic curves, the reader is referred to [24]. The standard elliptic curve 

(also known as short Weierstrass curve) over a prime field pF  has the equation: 

                                                         2 3:wE y x ax b= + + ,                                                  (3) 
 

where , pa b∈F  and 3 24 27 0a b∆ = + ≠ . However, different curve forms exhibiting faster 

group arithmetic have been studied during the last few years. A good example is given by 

Twisted Edwards. This curve form, proposed in [3], is a generalization of Edwards curves 

[12] and has the equation:  

                                                2 2 2 2: 1tedwE ax y dx y+ = + ,                                             (4) 
 

where , pa d ∈F  are distinct nonzero elements. 

The points on equations (3) or (4) and the point at infinity, denoted by O, form an abelian 

group ( ( ), )pE +F  with a group law mainly consisting of two basic point operations: doubling 

(2P) and addition (P+Q) of points. In this setting, the main operation is known as point 

multiplication, which is denoted by [ ]k P , where ( )pP E∈ F , and can be seen as the 

computation [ ]k P P P P= + + +… , where P is added ( 1)k −  times. 

Because affine coordinates (point representation using ( , )x y  coordinates; denoted by A) 

are expensive over prime fields due to costly field inversions, the use of projective 

coordinates with the form ( : : )X Y Z  is preferred. In this work, we have chosen the 

following coordinate systems for assessing the techniques under analysis: 

• Jacobian coordinates (denoted by J), where each projective point ( : : )X Y Z  

corresponds to the affine point 2 3( / , / )X Z Y Z , 0Z ≠ . In this case, the standard 

equation (3) acquires the form 2 3 4 6Y X aXZ bZ= + + . 

• Combined homogenous/extended Twisted Edwards coordinates (denoted by / eE E ) 

[26]. In the extended version eE , the auxiliary coordinate T is added to the 

homogenous representation ( : : )X Y Z  such that each projective point ( : : : )X Y Z T  

corresponds to ( / , / ,1, / )X Z Y Z T Z  in affine, where /T XY Z= . With / eE E  

coordinates, the projective form of equation (4) is given by 
2 2 2 4 2 2( )aX Y Z Z dX Y+ = + . 

State-of-the-art formulas using J and / eE E  coordinates can be found in [32] and [26], 

respectively, and their costs are summarized in Table 1. Although variations to costs 

displayed in Table 1 exist (for instance, those obtained by trading multiplications for 

squarings [32][13]), these sometimes involve an increased number of “small” operations 

such as additions, subtractions and multiplications/divisions by constants. On various 
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platforms (including x86-64 based processors), that extra cost may not be negligible. 

Formulas in Table 1 have been selected so that the overall cost is minimal on the targeted 

platforms. The complete set of revised formulas with optimal number of multiplications and 

squarings and minimal number of “small” operations have been compiled in Appendix A.   

   
TABLE 1 

Costs of point operations on Weierstrass and Twisted Edwards curves 
1
. 

 

Point Operation Coord. 
Weierstrass  

( 3)a = −  
Coord. 

Twisted Edwards 

( 1)a = −  

  Doubling  2 →J J  4M + 4S 2 →E E  4M + 3S 

  Mixed addition + →J A J  8M + 3S e + →E A E  7M 

  General addition + →J J J    11M + 3S (1) e e+ →E E E  8M 

  Mixed Doubling-Addition 2 + →J A J 13M + 5S (2 )e + →E A E  11M + 3S 

  General Doubling-Addition 2 + →J J J   16M + 5S (1) (2 )e e+ →E E E 12M + 3S 

        (1) Using cached values. 

The Galbraith-Lin-Scott (GLS) Method: 

In this method by Galbraith et al. [19], ECC computations are performed on the quadratic 

twist of an elliptic curve over 2p
F  with an efficiently computable homomorphism 

( , )x yψ →  ( , )x yα β , ( )P Pψ λ= . Then, following [20], [ ]k P  is computed as a multiple 

point multiplication with form 0 1[ ] [ ]( )k P k Pλ+ , where 0k  and 1k  have approx. half the 

bitlength of k. 

For the case of the Weierstrass form, given equation (3) defined over pF , the quadratic 

twist wE′  over 2p
F  of 2( )w p

E F  is given by the equation:  

                                                      2 3 2 3:wE y x ax bµ µ′ = + + ,                                              (5) 
 

where µ  is a non-square in 2p
F . Following [19], we fix 3(mod 4)p ≡

 
and 22

p
iµ = + ∈F  

such that 1 pi = − ∈F  and 3 3( , ) ( , / )p

p
x y x y

µ
ψ µ µ

µ
= ⋅ ⋅ , where x , y  denote the Galois 

conjugates of x , y , respectively.   

For the case of Twisted Edwards, given equation (4) defined over pF , the quadratic twist 

tedwE′  over 2p
F  of 2( )tedw p

E F  is given by the equation: 

                                                  2 2 2 2: 1tedwE ax y dx yµ µ′ + = + ,                                           (6) 
 

where µ  is a non-square in 2p
F . Following [18], we fix 3(mod 4)p ≡  and 22

p
iµ = + ∈F  

such that 1 pi = − ∈F  and ( , ) ( / , )px y x yψ µ µ= ⋅  . 

Since for our case 2 ( 1)pp
= −F F , i.e., 1 pi = − ∈F , elements in 2p

F  can be represented 

by a bi+ , where , pa b∈F . For instance, an 2p
F  multiplication, as suggested in [19], can be 

performed using Karatsuba method [29] as ( ) ( ) ( )a bi c di ac bd+ ⋅ + = − +  

( ) ( ) (( )( ) )bc ad i ac bd a b c d ac bd i+ = − + + + − − , which requires 3 pF  multiplications and 

 
1
 Field operations: I = inversion, M = multiplication, S = squaring, Add = addition, Sub = subtraction, 

Mulx = multiplication by x, Divx = division by x, Neg = negation. 
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5 pF  additions/subtractions.  

Galbraith et al. showed that, in practice, the new method runs about 16% faster than the 

best previous implementation due to Gaudry and Thomé [23] on an Intel Core 2 Duo. For 

complete details and the security implications, the reader is referred to [18][19]. 

In this work, we analyze the performance of the field and point arithmetic exploiting our 

optimizing techniques on two “traditional” implementations (on Weierstrass and Twisted 

Edwards curves) and two implementations using the GLS method (again, one per curve). For 

the traditional case, we have written the underlying field arithmetic over pF  using hand-

written assembly language. In this case, we consider for maximal speed-up a pseudo-

Mersenne prime of the form 2mp c= − , where m n w= ⋅  on an w-bit platform, n +∈Z , and 

c is a “small” integer (i.e., 2 )wc < . These primes are highly efficient for performing 

modular reduction a prime p, and support other optimizations such as elimination of 

conditional branches. On the other hand, for the GLS method we reuse the very efficient 

modules for field arithmetic over 2p
F  provided with the crypto library MIRACL [42]. In 

this case, 2p
F  arithmetic provided by MIRACL considers a Mersenne prime with the form 

2 1t −  (i.e., t is prime). 

3 OPTIMIZING THE MODULAR REDUCTION 

In this section, we evaluate the performance gain of two techniques, namely incomplete 

reduction and elimination of conditional branches, and combine them to devise highly 

efficient field arithmetic with very fast modular reduction for operations such as addition, 

subtraction and division/multiplication by constants. We also show that incomplete reduction 

is not exclusive to addition/subtraction and can be easily extended to other operations, and 

that subtraction does not necessarily benefit from incomplete reduction when p is a smartly 

chosen pseudo-Mersenne prime. All tests described in this section were performed on our 

assembly language module implementing the field arithmetic over pF  and compiled with 

GCC version 4.4.1.  

3.1 Incomplete Reduction (IR)  

This technique was introduced by Yanik et al. [47]. Given two numbers in the range 

[0, 1]p − , it consists of allowing the result of an operation to stay in the range [0,2 1]s −  

instead of executing a complete reduction, where 2 2 1sp p< < − , s n w= ⋅ , w is the basic 

wordlength (typically, 8,16,32,64w = ) and n is the number of words. If the modulus is a 

pseudo-Mersenne prime of the form 2m c−  such that m s=  and 2wc < , then the method 

gets even more advantageous. In the case of addition, for example, the result can be reduced 

by first discarding the carry bit in the most significant word and then adding the correction 

value c, which fits in a single w-bit register. Also note that this last addition does not 

produces an overflow because 2 (2 1) (2 ) 2m m mc c× − − − − < . The procedure is illustrated 

for the case of modular addition in Algorithm 3.1(b), for which the reduction step described 

above is performed in Step 3. As can be seen in Algorithm 3.1(a), a complete reduction 

requires additionally the execution of Step 4 that performs a subtraction r p−  in case 
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2mp r≤ < , where r is the partial result from Step 2.   

Yanik et al. [47] also showed that subtraction can benefit from IR when using a prime p of 

arbitrary form. However, we show in the following that for primes of special form, such as 

pseudo-Mersenne primes, that is not necessarily the case.  

 

Algorithm 3.1  Modular addition with a pseudo-Mersenne prime 

INPUT: integers , [0, 1]a b p∈ − , 2
m

p c= − , m n w= ⋅ , where 
+

, ,n w c ∈Z  and 2
w

c <    

OUTPUT: (mod )r a b p= +
 
or  (mod 2 )

m
r a b= +  

(a) With Complete Reduction (b) With Incomplete Reduction 

    1.  carry = 0     1.  carry = 0 

    2.  For  i  from  0  to 1n −  do     2.  For  i  from  0  to 1n −  do 

         2.1.  ( , [ ]) [ ] [ ]carry r i a i b i carry← + +           2.1.  ( , [ ]) [ ] [ ]carry r i a i b i carry← + +  
    3.  If  1carry =      3.  If  1carry =  
         3.1.  carry = 0          3.1.  carry = 0 

         3.2.  ( , [0]) [0]carry r r c← +           3.2.  ( , [0]) [0]carry r r c← +  
         3.3.  For  i  from  1  to 1n −  do                     3.3.  For  i  from  1  to 1n −  do            

              3.3.1.  ( , [ ]) [ ]carry r i r i carry← +                   3.3.1.  ( , [ ]) [ ]carry r i r i carry← +  
    4.  Else     4.  Return r 
         4.1.  borrow = 0  

         4.2.  For  i  from  0  to 1n −  do             

              4.2.1. ( , [ ]) [ ] [ ]borrow R i r i p i borrow← − −   
         4.3.  If  borrow = 0    

              4.3.1. r R←   
    5.  Return r  

 

Algorithm 3.2  Modular subtraction with a pseudo-Mersenne 

prime and complete reduction 

INPUT: integers , [0, 1]a b p∈ − , 2
m

p c= − , m n w= ⋅ , 

where 
+

, ,n w c ∈Z  and 2
w

c <    

OUTPUT: (mod )r a b p= −  

    1.  borrow = 0 
    2.  For  i  from  0  to 1n −  do 

         2.1.  ( , [ ]) [ ] [ ]borrow r i a i b i borrow← − −  

    3.  If  1borrow =  
         3.1.  carry = 0 

         3.2.  For  i  from  0  to 1n −  do            

                 3.2.1.  ( , [ ]) [ ] [ ]carry r i r i p i carry← + +  
    4.  Return r 

 

Modular Subtraction. Let us consider Algorithm 3.2. After Step 2 we obtain the 

completely reduced value r a b= −  if 0borrow = . If, otherwise, 1borrow =  then this bit is 

discarded and the partial result is given by 2mr a b= − + , where b a> . This value is 

incorrect, because it has the extra addition with 2m . In step 3.2, we compute 
1( 2 ) (2 ) 2m m mr p a b c a b c ++ = − + + − = − − + , where 1 12 2 2m m ma b c + +< − − + <  since 
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2 0m c a b− + < − < . Then, by simply discarding the final carry from Step 3.2 (i.e., by 

subtracting 2m ) we obtain the correct, completely reduced result 
12 2m ma b c a b p+− − + − = − + , where 0 a b p p< − + < . Since Algorithm 3.2 gives the 

correct result without evaluating both values of borrow after Step 2 (similarly to the case of 

carry in Alg. 3.1(b)), there is no need for incomplete reduction in this case. 

Nevertheless, there are other types of “small” operations that may be benefited by the use 

of IR. We analyze in the following the cases that are useful to the setting of ECC over prime 

fields.  

Modular Addition (mod )a b p++++  with IR, where [0, 1]a p∈ −∈ −∈ −∈ −  and [0,2 1]mb ∈ −∈ −∈ −∈ − . In this 

case, after addition we get 10 2 2ma b c+≤ + ≤ − − , where 1 12 2 2 2m m mc+ +< − − <  for 

practical values of m. Thus, if there is no final carry the result r is incompletely reduced such 

that [0,2 1]mr ∈ − , as wanted. Otherwise, for the case 12 2 2m ma b c+≤ + ≤ − −  we discard 

the carry and add the correction value c such that 0 2 2 2 2m m mc a b c< ≤ + − + ≤ − <  to 

obtain an incompletely reduced result [0,2 1]mr ∈ − . Consequently, Algorithm 3.1(b) also 

allows adding two terms where one of them can be in incompletely reduced form.  

Modular Multiplication by 3 with IR, where [0, 1]a p∈ −∈ −∈ −∈ − . If this operation is performed 

by executing (mod )a a a p+ + , internally, the first addition (mod )r a a p= +
 
can be left 

incompletely reduced using Algorithm 3.1(b). Then, following the proof in the previous 

subsection, the final result (mod ) [0,2 1]mr a p+ ∈ −  can be obtained by adding the 

incompletely reduced value r with the completely reduced operand a.  

Modular Division /2(mod )a p  with IR, where [0,2 1]ma ∈ −∈ −∈ −∈ − . This operation is illustrated 

when using IR by Alg. 3.3(b). If the value a is even, then a division by 2 can be directly 

applied through Steps 3 and 4, where ( , [ ]) ( , [ ]) / 2carry r i carry r i←  represents the concurrent 

assignments ( 1).[ ] ( 2 [ ]) / 2i wr i carry r i+ ← ⋅ +   and [ ](mod 2)carry r i← . In this case, if 

[0,2 2]ma ∈ −  then the result 1[0,2 1]mr −∈ −  is completely reduced since 12 1 2m m c− − << −  

for practical values of m, such that 2wc <  and 1w m< − . If, otherwise, the operand a is odd, 

we first add p to a in Step 2.2 to obtain an equivalent from the residue class that is even. 

Then, 12 1 2 1m mc p a c+− + < + < − − , where the partial result has 1m +  bits maximum and 

is stored in ( , )carry r . The operation is then completed by dividing by 2 through Steps 3 and 

4, where the final result 12 ( 1) / 2 ( ) / 2 2 ( 1) / 2m mc p a c− − − < + < − + . Hence, the result is 

incompletely reduced because 2 2 ( 1) / 2 2 1m m mc c− ≤ − + ≤ − . If the result needs to be 

completely reduced then, for the case that ( ) / 2 [ ,2 ( 1) / 2 ]mp a p c+ ∈ − +   , one needs to 

additionally compute a subtraction with p such that 0 ( ) / 2 ( 1) / 2 2mp a p c c≤ + − < − < − , as 

performed in Steps 6 and 7 of Alg. 3.3(a).  

It is also interesting to note that in the case that input a is in completely reduced form, i.e., 

[0, 1]a p∈ − , after Step 4 in Alg. 3.3(b) we get 12 ( 1) / 2 ( ) / 2 2m mc p a c− − + < + < − , which 

is in completely reduced form. 
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Algorithm 3.3  Modular division by 2 with a pseudo-Mersenne prime 

INPUT: integers [0, 2 1]
m

a ∈ − , 2
m

p c= − , m n w= ⋅ , where 
+

, ,n w c ∈Z  and 2
w

c <    

OUTPUT: / 2 (mod )r a p=  or  / 2 (mod 2 )
m

r a=  

(a) With Complete Reduction (b) With Incomplete Reduction 

    1.  carry = 0   1.  carry = 0 

    2.  If  a  is odd   2.  If  a  is odd 

         2.2.  For  i  from  0  to 1n −  do        2.2.  For  i  from  0  to 1n −  do 

               2.2.1. ( , [ ]) [ ] [ ]carry r i a i p i carry← + +              2.2.1. ( , [ ]) [ ] [ ]carry r i a i p i carry← + +
    3.  ( , [ 1]) ( , [ 1]) / 2carry r n carry r n− ← −    3.  ( , [ 1]) ( , [ 1]) / 2carry r n carry r n− ← −   
    4.  For  i  from 2n −  to  0  do              4.  For  i  from 2n −  to  0  do            

         4.1.  ( , [ ]) ( , [ ]) / 2carry r i carry r i←         4.1.  ( , [ ]) ( , [ ]) / 2carry r i carry r i←  
    5.  borrow = 0     5.  Return r 

    6.  For  i  from  0  to 1n −  do             

         6.1. ( , [ ]) [ ] [ ]borrow R i r i p i borrow← − −   
    7.  If  borrow = 0    

         7.1. r R←   

    8.  Return r  

 

To evaluate in practice the advantage of using incomplete reduction, we implemented in 

assembly language both versions with and without IR of each operation discussed in this 

section. In Table 2, we summarize our results on the targeted Intel and AMD processors.   

 

TABLE 2 

Cost (in cycles) of modular operations when using incomplete reduction (IR) 

against complete reduction (CR); 
2562 189p = − .  

 

Modular Operation 

Atom N450 Core 2 Duo E6750 Opteron 252 

IR CR 
Cost reduction 

(%) 
IR CR 

Cost reduction 

(%) 
IR CR 

Cost reduction 

(%) 

  Addition 31 45 31% 20 25 20% 13 20 35% 

  Multiplication by 2 27 40 33% 19 24 21% 10 17 41% 

  Multiplication by 3 43 69 38% 28 43 35% 15 23 35% 

  Division by 2 57 61 7% 20 25 20% 11 18 39% 

 

As can be seen in Table 2, in our experiments using the pseudo-Mersenne prime 
2562 189p = −  we obtain significant reductions in cost ranging from 7% to up to 41% when 

using IR.  

It is important to note that, because multiplication and squaring may accept inputs in the 

range [0,2 1]m − , an operation using IR can precede any of these two operations. Thus, the 

reduction process (which is left “incomplete” by the operation using IR) is fully completed 

by these multiplications or squarings without any additional cost. If care is taken when 

implementing point operations, virtually all additions and multiplications/divisions by small 
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constants can be implemented with IR because most of them have results that are later 

required by multiplications or squarings only. See Appendix A for details about the 

scheduling of field operations pF  suggested for point formulas using Jacobian and 

(extended) Twisted Edwards coordinates. 

3.2 Elimination of Conditional Branches  

Conditional branches may be expensive in several modern processors with deep pipelines if 

the prediction strategy fails in most instances in a particular implementation. Recovering 

from a mispredicted branch requires the pipeline to flush, wasting several clock cycles that 

may increase the overall cost significantly. In particular, the reduction portion of modular 

addition, subtraction and other similar operations is traditionally expressed with a 

conditional branch. For example, let us consider the evaluation in Step 3 of Algorithm 3.1(b) 

for performing a modular addition with IR. Because , [0, 1]a b p∈ −  and 2m p c− =  (again 

considering 2mp c= −  and m s= ), where c is a relatively small number such that 2m p≈  

for practical estimates, the possible values for carry after computing a b+  in Step 2, where 

( ) [0,2 2]a b p+ ∈ − , are (approximately) equally distributed and describe a “random” 

sequence for all practical purposes. In this scenario, only an average of 50% of the 

predictions can be correct in the best case. Similar results are expected for conditional 

branches in other operations (see Algorithms 3.1-3.3). 

To avoid the latter effect, it is possible to eliminate conditional branches by using 

techniques such as look-up tables or branch predication (cf. §2.1). In Fig. 3.1, we illustrate 

the replacement of the conditional branch in Step 3 of Alg. 3.1(b) by a predicated move 

 

FIGURE 3.1 

Steps 3 and 4 of Alg. 3.1(b) for executing modular addition using IR, where 
2562 189p = − . The conditional branch is replaced by (a) cmov instruction 

(initial values %rax=0, %rcx=189) and (b) look-up table using indexed 

indirect addressing mode (preset values %rax=0, (%rcx)=0, 8(%rcx)= 

189). Partial addition a b+  from Step 2 is stored in registers %r8-r11 and 

final result is stored in x(%rdx). x86-64 assembly code uses AT&T syntax. 

 

(a) (b) 

 >  ⋮   >  ⋮  

 > cmovnc %rax,%rcx  > adcq $0,%rax 

 > addq %rcx,%r8  > addq (%rcx,%rax,8),%r8 

 > movq %r8,8(%rdx)   > movq %r8,8(%rdx)  

 > adcq $0,%r9  > adcq $0,%r9 

 > movq %r9,16(%rdx)   > movq %r9,16(%rdx)  

 > adcq $0,%r10  > adcq $0,%r10 

 > movq %r10,24(%rdx)   > movq %r10,24(%rdx)  

 > adcq $0,%r11  > adcq $0,%r11 

 > movq %r11,32(%rdx)   > movq %r11,32(%rdx)  

 > ret  > ret 
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instruction (Fig. 3.1(a)) and by a look-up table with indexed indirect addressing (Fig. 3.1(b)). 

In both cases, the strategy is to perform an addition with 0 if there is no carry-out (i.e., the 

reduction step is not required) or an addition with 189c = , where 2562 189p = − , if there is 

carry-out and the computation 256( 2 ) 189a b+ − +   is necessary. On the targeted CPUs, 

branch predication performs slightly better in most cases. This conclusion is platform-

dependent and, in our case, may be due to the faster execution of cmov in comparison to the 

memory access required by the look-up table approach. 

To quantify in practice the difference in performance obtained by implementing modular 

arithmetic with and without conditional branches, we tested both schemes on the targeted 

Intel and AMD processors. The results are summarized in Table 3. For addition, subtraction 

and division by 2, we use Algorithms 3.1(a), 3.2 and 3.3(a), respectively. In the case of 

addition and division by 2 using IR, we use Algorithms 3.1(b) and 3.3(b), respectively. 

Multiplication by 2 is a variation of the addition operation for which 2a  is computed as 

(mod )a a p+ .  

 

TABLE 3 
Cost (in cycles) of modular operations without conditional branches (w/o 

CB) against operations using conditional branches (with CB); 
2562 189p = − .  

 

Modular Operation 

Atom N450 

 
Core 2 Duo E6750 Opteron 252 

w/o 

CB 

With 

CB 

Cost reduction 

(%) 

w/o 

CB 

With 

CB 

Cost reduction 

(%) 

w/o 

CB 

With 

CB 

Cost reduction 

(%) 

  Subtraction 34 37 8% 21 37 43% 16 23 30% 

  Addition with IR 31 35 11% 20 37 46% 13 21 38% 

  Addition 45 43 −4.4% 25 39 36% 20 23 13% 

  Multiplication by 2 with IR 27 34 21% 19 38 50% 10 19 47% 

  Multiplication by 2 40 42 5% 24 38 37% 17 20 15% 

  Division by 2 with IR 57 66 14% 20 36 44% 11 18 39% 

  Division by 2 61 70 13% 25 39 36% 18 27 33% 

 

As shown in Table 3, the cost reductions obtained by eliminating CBs can be as high as 

50%. Remarkably, the greatest performance gains are obtained in the cases of operations 

exploiting IR. For instance, on Core 2 Duo, an addition using IR reduces its cost in 46% 

when CBs have been eliminated in comparison to only the 36% reduction obtained by an 

addition with complete reduction. Thus, elimination of CBs favors more strongly modular 

arithmetic using IR. This is due to the fact that modular operations exploiting IR allow very 

compact implementations that are even easier to schedule efficiently when branches are 

removed. It is also interesting to note that, when comparing Core 2 Duo’s and Opteron’s 

performances, gains are higher for the former processor, which has more stages in its 

pipeline. Roughly speaking, the gain obtained by eliminating (poorly predictable) CBs on 
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these architectures grows proportionally with the number of stages in the pipeline. In 

contrast, the gains on Intel Atom are significantly smaller since the pipeline execution and 

ILP on this in-order processor are much less efficient and, hence, the relative cost of 

misprediction penalty reduces, as can be deduced from eq. (1).    

Following the conclusions above, we have implemented ECC point formulas such that the 

gain obtained by combining IR and the elimination of CBs is maximal. The reader is referred 

to Appendix A for details about the cost of point formulas in terms of field operations.  

Next, we evaluate the cost of point doubling and doubling-addition (using Jacobian 

coordinates) when their “small” field operations are implemented with complete or 

incomplete reduction and with or without conditional branches. For the analysis, we use the 

revised doubling formula (1), Section 4.2, introduced in [35] and the doubling-addition 

formula (3.5), Section 3.2, introduced in [31]. The results are shown in Table 4. 

 

TABLE 4 
Cost (in cycles) of point operations with Jacobian coordinates when using incomplete 

reduction (IR) or complete reduction (CR) and with or without conditional branches 

(CB); 
2562 189p = − .  

 

Point operation 

Atom N450 Core 2 Duo E6750 Opteron 252 

CR and 

CBs 

CR and 

no CBs 

IR and  

no CBs 

CR and 

CBs 

CR and 

no CBs 

IR and  

no CBs 

CR and 

CBs 

CR and 

no CBs 

IR and no  

CBs 

Doubling   3480 3430 3381 1184 1094 1051 910 824 803 

Relative reduction (%) - 1% 3% - 8% 11% - 9% 12% 

Doubling-addition 8828 8697 8663 2656 2468 2443 2037 1851 1849 

Relative reduction (%) - 1% 2% - 7% 8% - 9% 9% 

Estimated relative 

reduction for 256-bit point 

multiplication (%) 

- 1% 3% - 8% 10% - 9% 11% 

 

As can be seen in Table 4, the computing costs of point doubling and doubling-addition on 

the AMD processor reduce in 12% and 9%, respectively, by combining the elimination of 

conditional branches with the use of incomplete reduction. Without taking into account 

precomputation and the final inversion to convert to affine, these reductions represent about 

11% of the computing cost of point multiplication. A similar figure is observed for Intel 

Core 2 Duo in which doubling and doubling-addition are reduced by approx. 11% and 8%, 

respectively. These savings represent a reduction of about 10% in the cost of point 

multiplication (again, without considering precomputation and the final inversion). In 

contrast, following previous observations (see Table 3) the techniques are less effective on 

architectures such as Intel Atom, where the ILP is less powerful and branch misprediction 

penalty is relatively less expensive. In this case, the cost reduction of point multiplication is 

only about 3%.       

A similar analysis to the one provided in this section can be performed on other platforms 
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to determine whether conditional branches should be removed. In such case, it would be 

necessary to test both the use of look-up tables and branch predication to determine which 

one is the most efficient replacement for branches. Also, some testing would help to 

determine the performance improvement obtained by these approaches in combination with 

incomplete reduction. 

4 MINIMIZING THE EFFECT OF DATA DEPENDENCIES 

In this section, we analyze (true) data dependencies between “close” field operations and 

propose three techniques to minimize their effect in the point multiplication performance.  

Corollary 4.1. Let iI  and jI  be write and read instructions, respectively, holding data 

dependence, i.e., ( ) ( )i jW I R I∩ ≠ ∅ , where i j<  and iI  and jI  are scheduled to be 

executed at the thi  and thj  cycle, respectively, in a non-superscalar pipelined architecture. 

Then, if writej iρ δ= − <  the pipeline is to be stalled for at least ( )writeδ ρ−  cycles, where 

writeδ  specifies the number of cycles required by the write instruction iI  to complete its 

pipeline latency after instruction fetching.  

Although Corollary 4.1 considers an ideal non-superscalar pipeline, it allows us to 

simplify the analysis on more complex processors. In particular, the value writeδ , which 

strongly depends on the particular characteristics of a given architecture, can be considered 

for practical purposes roughly equal to the pipeline size. Note, however, that there are 

hardware techniques such as data forwarding that allow a significant reduction in the value 

writeδ  by sending back the result of an operation into the decode stage so that this result is 

immediately available to a coming instruction before the current instruction commit/store the 

output. Unfortunately, in our application most modular operations are not able to efficiently 

exploit forwarding in case the result is required by the following operation because several 

consecutive writings to memory are involved in the process. To illustrate this problem let us 

consider the execution of two consecutive field additions in Figure 4.1.  For the remainder, 

given a field operation “∗ ”, the operation ← ∗res op1 op2  is denoted by 

operation(op1,op2,res). 

As can be seen in Figure 4.1, results stored in memory in the last stage of the first addition 

are read in the first stage of the second addition. In this example, four consecutive writings 

to memory and then four consecutive readings need to be performed because operands are 

256-bit long distributed over four 64-bit registers. In this case, if write xδ ρ>  for at least one 

of the dependences x indicated by arrows then the pipeline is expected to stall for at least 

( )write xδ ρ−  cycles. Then, for the writing/reading sequence in Figure 4.1, the pipeline is 

roughly stalled by max( )write xδ ρ−  for 0 4x≤ < .   

Definition 4.1. Two field operations ( , , )i m n pOP op op res  and ( , , )j r s tOP op op res  are said to 

be data dependent at the field arithmetic level if i j<  and p rres op=  or p sres op= , where 

iOP  and jOP  denote the field operations performed at positions thi  and thj  during a  



 

 

 

 
 

16        P. Longa and C. Gebotys 

 
FIGURE 4.1 

Field additions with RAW dependencies on an x86-64 CPU (
2562 189p = − ). 

High-level field operations are in the left column and low-level assembly 

instructions corresponding to each field operation are to the right. In this 

example, destination x(%rdx) (first field addition) = source x(%rdi) 

(second field addition). Dependencies are indicated by arrows.  

 
             ⋮  

  > addq %rcx,%r8 

  > movq %r8,8(%rdx)  

  > adcq $0,%r9 

  > movq %r9,16(%rdx)  

  > adcq $0,%r10 

  > movq %r10,24(%rdx)  

          ⋮   > adcq $0,%r11 

 > Add(op1,op2,res1)  > movq %r11,32(%rdx)  

 > Add(res1,op3,res2)  > xorq %rax,%rax 

    ⋮   > movq $0xBD,%rcx 

  > movq 8(%rdi),%r8 

  > addq 8(%rsi),%r8 

  > movq 16(%rdi),%r9 

  > adcq 16(%rsi),%r9 

  > movq 24(%rdi),%r10 

  > adcq 24(%rsi),%r10 

  > movq 32(%rdi),%r11 

  > adcq 32(%rsi),%r11 

      ⋮  

program execution, and op  and res  are registers holding the inputs and result, respectively. 

Then, this is called a contiguous data dependence in the field arithmetic if 1j i− = , i.e., iOP  

and jOP  are consecutive in the executing sequence. 

For the applications targeted in this work all field operations follow a similar 

writing/reading pattern to that one shown in Figure 4.1, and hence, two contiguous, data 

dependent field operations hold several data dependencies x between their internal write/read 

instructions. Following Definition 4.1 and Corollary 4.1, contiguous data dependencies pose 

a problem when write xδ ρ>  in a given implementation or processor architecture, in which 

case the pipeline is stalled by roughly max( )write xδ ρ−  cycles for all dependencies x. Note 

that at fewer dependent write/read instruction pairs (i.e., at smaller field sizes) the expression 

max( )write xδ ρ−
 
grows as well as the number of potential stalled cycles. Similarly, at larger 

basic wordlengths w max( )write xδ ρ−  is expected to increase, worsening the effect of 

contiguous data dependencies. 

Next, we propose three techniques that help to reduce the number of contiguous data 

dependencies in the field arithmetic and study several practical scenarios in which this would 

allow us to improve the execution performance of point multiplication.  
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4.1 Field Arithmetic Scheduling 

A straightforward solution to eliminate contiguous data dependencies is to perform a careful 

scheduling of the field operations inside point formulas in such a way that data-dependent 

field operations are not contiguous. For all practical purposes, we can consider that any field 

operation has an executing latency insδ  longer than the latency of a write instruction, i.e., 

ins writeδ δ> . Hence, by inserting any “independent” field operation between two consecutive 

operations holding contiguous data dependence we guarantee that the new relative positions 

,new xρ  of the data-dependent instructions accomplishes ,new x x ins writeρ ρ δ δ= + >  for all data 

dependencies x, where xρ  denotes the original relative positions between data-dependent 

write/read instructions. 

We have tested several field operation “arrangements” to observe the latter behavior on 

different processors. We detail here a few of our experiments with field multiplication on an 

Intel Core 2 Duo. For example, let us consider the field multiplication sequences given in 

Table 5. As can be seen, Sequence 1 involves a series of “ideal” data-independent field 

multiplications, where the output of a given operation is not an input to the immediately 

following operation. In this case, the execution reaches its maximal performance with an 

average of 110 cycles per multiplication because for any pair of data-dependent 

multiplications we have x writeρ δ>> . Contrarily, the second sequence is highly dependent 

because each output is required as input in the following operation. In this case, write xδ ρ>  

for at least one dependence x. This is the worst-case scenario with an average of 128 cycles 

per multiplication, which is about 14% less efficient than the “ideal” case. We have also 

studied other possible arrangements such as Sequence 3, in which operands of Sequence 2 

have been reordered. This slightly amortizes the impact of contiguous data dependencies 

because xρ  is increased, improving the performance to 125 cycles/multiplication. 

 

TABLE 5 

Various sequences of field operations with different levels of contiguous data 

dependence. 

 
  Sequence 1   Sequence 2    Sequence 3 

 > Mult(op1,op2,res1)   > Mult(op1,op2,res1)   > Mult(op2,op1,res1)  

 > Mult(op3,op4,res2)   > Mult(res1,op3,res2)   > Mult(op3,res1,res2)  

 > Mult(res1,op5,res3)  > Mult(res2,op4,res3)   > Mult(op4,res2,res3)  

 > Mult(res2,op6,res4)  > Mult(res3,op5,res4)   > Mult(op5,res3,res4)  

 

Similarly, we have also tested the effect of contiguous data dependencies on other field 

operations. In Table 6, we summarize the most representative field operation “arrangements” 

and their costs. As can be seen, the reductions in cost obtained by switching from an 

execution with strong contiguous data dependence (worst-case scenario with Sequence 2) to 

an execution with no contiguous data dependencies (best-case scenario with Sequence 1) 

range from approximately 9% to up to 33% on an Intel Core 2 Duo. Similar results were 

observed for the targeted AMD Opteron and Intel Xeon processors, where the high 
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performance of their architectures significantly reduce relative positions xρ  between their 

data-dependent write/read instructions, increasing the value max( )write xδ ρ− . Thus, 

minimizing contiguous data dependencies is expected to improve the execution of point 

multiplication on all these processors. In contrast, Sequences 1 and 2 perform similarly on 

processors such as Intel Atom, in which the much less powerful architecture tends to 

increase values xρ  such that write xδ ρ<  for all dependencies x. 

 

TABLE 6 
Average cost (in cycles) of modular operations using best-case (no 

contiguous data dependencies, Sequence 1) and worst-case (strong 

contiguous data dependence, Sequence 2) “arrangements” (
2562 189p = − , 

on a 2.66GHz Intel Core 2 Duo E6750).  

 

Modular Operation 

Core 2 Duo E6750 

Sequence 

1 

Sequence 

2 

Cost reduction 

(%) 

  Subtraction  21 23 9% 

  Addition with IR 20 24 17% 

  Multiplication by 2 with IR 19 23 17% 

  Multiplication by 3 with IR 28 34 18% 

  Division by 2 with IR 20 30 33% 

  Squaring 101 113 11% 

  Multiplication 110 128 14% 

 

4.2 Merging Point Operations 

This technique complements and increases the gain obtained by scheduling field operations. 

As expected, in some cases it is not possible to eliminate all contiguous data dependencies in 

a point formula. A clever way to increase the chances of eliminating more of these 

dependencies is by “merging” successive point operations into unified functions.  

For example, let us consider the following sequence of field operations for computing a 

point doubling using Jacobian coordinates: 1 1 1 1 1 12( , , ) ( , , )X Y Z X Y Z→
 

 
 > Sqr(Z1,t3)   > Mult(X1,t2,t4)   > Sqr(t1,t2) 

 > Sqr(Y1,t2)  > Mult(t1,t0,t3)   > DblSub(t2,t4,X1)
1
   •  

 > Add(X1,t3,t1)       > Sqr(t2,t0)   > Sub(t4,X1,t2)     •
 > Sub(X1,t3,t3)    > Div2(t3,t1)  > Mult(t1,t2,t4)    •
 > Mult3(t3,t0)   •        > Mult(Y1,Z1,Z1)  > Sub(t4,t0,Y1)     •

 

In total, there are five contiguous data dependencies between field operations (denoted by 

" "• ) in the sequence above. Note that the last stage accounts for most dependencies, which 

are very difficult to eliminate. However, if another point doubling follows, one could merge 

 
1
 DblSub(b,c,a) represents the operation 2 (mod )a b c p← − . See Section 4.3. 
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both successive operations and be able to reduce the number of contiguous data-dependent 

operations. Consider, for example, the following arrangement of two consecutive doublings 

 
 > Sqr(Z1,t3)   > Mult(t1,t0,t3)   > DblSub(t2,t4,X1)  > Mult3(t3,t1)  

 > Sqr(Y1,t2)  > Sqr(t2,t0)   > Sub(t4,X1,t2)  •   > Sqr(Y1,t2) 

 > Add(X1,t3,t1)   > Div2(t3,t1)  > Add(X1,t3,t5)  > Mult(t1,t5,t3)  

 > Sub(X1,t3,t3)   > Mult(Y1,Z1,Z1)  > Mult(t1,t2,t4)  > Mult(t2,X1,t4)  

 > Mult3(t3,t0)  •          > Sqr(t1,t2)   > Sub(X1,t3,t3)  > Div2(t3,t1)  

 > Mult(X1,t2,t4)   > Sqr(Z1,t3)   > Sub(t4,t0,Y1)    > … 

 

As can be seen, the sequence above (instructions from the second doubling are in bold) 

allows us to further reduce the number of dependencies from five to only two.  

In ECC implementations, it appears natural to merge successive doubling operations or a 

doubling and an addition. Efficient elliptic curve point multiplications [ ]k P  use the non-

adjacent form (NAF) in combination with some windowing strategy to recode the scalar k. 

For instance, width-w NAF (wNAF) guarantees at least w  successive doublings between 

point additions. Also, one can exploit the efficient doubling-addition operation by [31] for 

Jacobian coordinates or the combined (dedicated) doubling-(dedicated) addition by [26] for 

Twisted Edwards coordinates (see Table 1). Hence, an efficient solution for these systems is 

to merge ( 1)w −  consecutive doublings (for an optimal choice of w) in a separate function 

and merge each addition with the precedent doubling in another function. On the other hand, 

if an efficient doubling-addition formula is not available for certain setting, then it is 

suggested to merge w  consecutive doublings in one function and have the addition in a 

separate function. Note that for different coordinate systems/curve forms/point 

multiplication methods the optimal merging strategy may vary or include different 

operations. Remarkably, a side-effect of this technique is that the number of function calls to 

point formulas is also reduced dramatically.  

4.3 Merging Field Operations 

This technique consists in merging various field operations with common operands to 

implement them in a joint function. There are two scenarios where this approach becomes 

attractive: 

• The result of a field operation is required as input by a following operation: merging 

reduces the number of memory reads/writes and eliminates directly potential 

contiguous data dependencies. 

• Operands are required by more than one field operation: merging reduces the number 

of memory reads/writes. 

We remark that the feasibility of merging certain field operations depends strictly on the 

chosen platform and the number of general purpose registers available to the programmer/ 

compiler. Also, before deciding on a merging option implementers should analyze and test 
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the increase in the code size and how this affects the performance of the cache for example. 

Accordingly, in the setting of ECC over prime fields, multiplication and squaring are not 

recommended to be merged with other operations if multiple functions containing these 

operations are necessary. The code increase could potentially affect the cache performance.  

Taking into account the considerations above, we suggest the following merged field 

operations on x86-64 based processors using Jacobian and Twisted Edwards coordinates: 

2 (mod )a b p− , (mod )a a a p+ + , and the merging of (mod )a b p−  and 

( ) 2 (mod )a b c p− − . We remark that this list is not exhaustive. Different platforms with 

more registers may enable a much wider range of merging options. Also, other possibilities 

for merging could be available for different coordinate systems and/or underlying fields (for 

instance, see Section 5.2 for the merging options suggested for ECC implementations over 

quadratic extension fields).  

To illustrate the impact of scheduling field operations, merging point operations and 

merging field operations, we show in Table 7 the cost of point doubling using Jacobian 

coordinates when using these techniques in comparison with a naïve implementation with a 

high number of dependencies.  

 

TABLE 7 
Cost (in cycles) of point doubling using Jacobian coordinates with different number 

of contiguous data dependencies and the corresponding reduction in the cost of point 

multiplication. “Unscheduled” refers to implementations with a high number of 

dependencies (in this case, 10 per doubling and 13 per doubling-addition). 

Implementations that apply scheduling of field operations, merging of point 

operations and merging of field operations are listed under “Scheduled and merged” 

(in this case, 1.25 depend. per doubling and 3 per doubling-addition); 
2562 189p = − .

 
 

Point operation 

Atom N450 Core 2 Duo E6750 Opteron 252 

 “Unscheduled” 
   “Scheduled 

and merged” 
 “Unscheduled” 

    “Scheduled 

and merged” 
  “Unscheduled” 

    “Scheduled 

and merged” 

Doubling   3390 3332 1115            979 

12% 

786            726 

8% Relative reduction (%) - 2% - - 

Estimated reduction for 256-bit 

point multiplication (%) 
- 1% - 9% - 5% 

 

As can be seen in Table 7, by reducing the number of dependencies from ten to about one 

per doubling, minimizing function calls and reducing the number of memory reads/writes, 

we are able to reduce the cost of a doubling by 12% and 8% on Intel Core 2 Duo and AMD 

Opteron processors, respectively. It is also important to note that on a processor such as 

AMD Opteron, which has a smaller pipeline and consequently less lost due to contiguous 

data dependencies (smaller writeδ  with roughly the same values xρ  as Core 2 Duo), the 

estimated gain obtained with these techniques in the point multiplication is lower (5%) in 

comparison with the Intel processor (9%). Finally, following our analysis in previous 
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sections, Intel Atom only obtains a very small improvement in this case because contiguous 

data dependencies do not affect the execution performance (see Section 4.1).   

The reader is referred to Appendix A for details about the suggested field arithmetic 

scheduling, merging of point operations and merging of field operations for point formulas 

using Jacobian and (extended) Twisted Edwards coordinates.       

5 OPTIMIZATIONS FOR THE 2Fp
 FIELD ARITHMETIC 

The techniques and optimizations described so far are not exclusive to the popular pF
 
field 

arithmetic. In fact, the scheduling of field operations, merging of field operations and 

merging of point operations are generic and can be extended to different finite fields with 

similar benefits and results. In this section, we analyze how the aforementioned techniques 

can be applied to the arithmetic over a quadratic extension field 2p
F . This application has 

gained sudden importance thanks to the recently proposed GLS method [19], which exploits 

an efficiently computable homomorphism to speed up the execution of point multiplication 

over 2p
F . 

For our study, we consider the highly-optimized assembly module of the field arithmetic 

over 2p
F  written by M. Scott [42]. This module exploits the “nice” Mersenne prime 

1272 1p = − , which allows a very simple reduction step with no conditional branches. 

Although IR can also be applied to this scenario, in practice we observe that the gain is 

negligible on the platforms under study. Future work may consider the analysis of this 

technique on different platforms.    

5.1 Scheduling of field operations 

As described in Section 2.2, each 2p
F  operation consists of a few field operations over pF . 

Thus, the analysis of data dependencies and scheduling of operations should be performed 

taking into account this underlying layer. For instance, let us consider the execution of a 2p
F  

multiplication followed by a subtraction shown in Figure 5.1. Note that multiplication is 

implemented using Karatsuba with 3 pF  multiplications and 5 pF  additions/subtractions. 

As can be seen in Figure 5.1, the scheduling of the internal pF  operations of the 2p
F  

multiplication has been performed in such a way that contiguous data dependencies are 

minimal between pF  operations (there is only one dependence between DblSub and Sub in 

the last stage of multiplication). A similar analysis can be performed between contiguous 

higher-layer 2p
F  operations. In Figure 5.1, the last pF

 
operation of the multiplication and 

the first pF
 
operation of the subtraction hold contiguous data dependence. There are 

different solutions to eliminate this problem. For example, it can be eliminated by 

rescheduling the 2p
F  subtraction and addition, as shown in Figure 5.2(a). Note that addition 

does not hold any dependence with the multiplication or subtraction, as required. 

Alternatively, if internal pF  field operations of the subtraction are rescheduled, as shown in 

Figure 5.2(b), the contiguous data dependence is also eliminated. These strategies can be 

applied to point formulas to minimize the appearance of such dependencies.  
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FIGURE 5.1 

2
p
F  operations with contiguous data dependencies. High-level 2

p
F  operations 

are in the left column and their corresponding low-level pF  operations are in 

the right column. 2
p
F

 
elements ( )a bi+  are represented as (op[1],op[2]). 

Dependencies are indicated by arrows.  
             ⋮  

  > Add(op1[1],op1[2],t1) 

  > Add(op2[1],op2[2],t2) 

  > Mult(op1[2],op2[2],t3) 

  > Mult(t1,t2,res1[2]) 

  > Mult(op1[2],op2[1],res1[1]) 

    ⋮    > DblSub(res1[2],res1[1],t3) 

   > Mult(op1,op2,res1)         > Sub(res1[1],t3,res1[1]) 

 > Sub(res1,op3,res2)  > Sub(res1[1],op3[1],res2[1]) 

 > Add(op4,op5,res3)  > Sub(res1[2],op3[2],res2[2]) 

    ⋮        ⋮  

FIGURE 5.2 

(a) Contiguous data dependencies eliminated by scheduling 2
p
F  field 

operations.  
             ⋮  

  > Add(op1[1],op1[2],t1) 

  > Add(op2[1],op2[2],t2) 

  > Mult(op1[2],op2[2],t3) 

  > Mult(t1,t2,res1[2]) 

  > Mult(op1[2],op2[1],res1[1]) 

    ⋮    > DblSub(res1[2],res1[1],t3) 

   > Mult(op1,op2,res1)         > Sub(res1[1],t3,res1[1]) 

 > Add(op4,op5,res3)  ... 

 > Sub(res1,op3,res2)  > Sub(res1[1],op3[1],res2[1]) 

    ⋮  > Sub(res1[2],op3[2],res2[2]) 

            ⋮  

(b) Contiguous data dependencies eliminated by scheduling pF  field 

operations.  
             ⋮  

  > Add(op1[1],op1[2],t1) 

  > Add(op2[1],op2[2],t2) 

  > Mult(op1[2],op2[2],t3) 

  > Mult(t1,t2,res1[2]) 

  > Mult(op1[2],op2[1],res1[1]) 

    ⋮    > DblSub(res1[2],res1[1],t3) 

   > Mult(op1,op2,res1)         > Sub(res1[1],t3,res1[1]) 

 > Sub(res1,op3,res2)  > Sub(res1[2],op3[2],res2[2]) 

 > Add(op4,op5,res3)  > Sub(res1[1],op3[1],res2[1]) 

    ⋮        ⋮  
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The reader is referred to Appendix B for details about the scheduling of 2p
F  operations 

suggested for point formulas using Jacobian and (extended) Twisted Edwards coordinates. 

5.2 Merging of point and field operations 

In the case of the GLS method, merging of point doublings is not as advantageous as in the 

traditional scenario of ECC over pF  because most contiguous data dependencies can be 

eliminated by simply rescheduling field operations inside point formulas using the 

techniques from Section 5.1 (see Appendix B). Moreover, GLS employs point multiplication 

techniques such as interleaving (see Section 6.2), which does not guarantee a long series of 

consecutive doublings between additions. Nevertheless, it is still advantageous the use of the 

merged doubling-addition operation, which is a recurrent operation in interleaving.  

On the other hand, merging field operations is more advantageous in this scenario than 

over pF . There two reasons for this to happen. First, arithmetic over 2p
F  works on top of 

the arithmetic over pF , which opens new possibilities to merge more pF  operations. 

Second, operations are on fields of half size, which means that fewer registers are required 

for representing field elements and more registers are available for holding intermediate 

operands. 

For implementations using Jacobian and (extended) Twisted Edwards coordinates we 

suggest the following merged field operations on x86-64 based processors: 2 (mod )a b p− , 

( ) / 2 (mod )a a a p+ + , (mod )a b c p+ − , the merging of (mod )a b p+  and (mod )a b p− , 

the merging of (mod )a b p−  and (mod )c d p− , and the merging of (mod )a a p+  and 

(mod )a a a p+ + . Again, we remark that this list is not intended to be exhaustive and 

different merging options could be more advantageous or be available on different platforms 

with different coordinate systems or underlying fields. Please, refer to Appendix B for 

details about the merged 2p
F  operations suggested for the GLS method with J and / eE E  

coordinates.     

6   PERFORMANCE EVALUATION 

In this section, we combine and demonstrate the efficiency of the techniques described in 

Sections 3-5 to accelerate the computation of a full point multiplication using J and / eE E  

coord. For our implementations, we use the well-known MIRACL library by M. Scott [42], 

which contains an extensive set of cryptographic functions that simplified the development/ 

optimization process of our crypto routines. Comparisons focus on implementations of 

variable-scalar-variable-point elliptic curve point multiplication with approximately 128 bits 

of security.  

6.1 Details of the “Traditional” Implementations 

Field Arithmetic: 

As previously described, the field arithmetic over pF  was written using x86-64 compatible 
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assembly language and optimized by exploiting incomplete reduction and elimination of 

conditional branches for modular addition, subtraction and multiplication/division by 

constants (see Section 3). For the case of modular multiplication and squaring, there are two 

methods that are commonly preferred in the literature for implementation on GPPs: 

schoolbook (or operand scanning method) and Comba [9] (or product scanning method) (see 

Section 5.3 of [14] or Section 2.2.2 of [24]). Both methods require 2n  w-bit multiplications 

when multiplying two n-digit numbers. However, we choose to implement Comba’s method 

since it requires approx. 23n  w-bit additions, whereas schoolbook requires 24n . Our code 

was aggressively optimized by careful scheduling instructions to exploit the instruction-level 

parallelism.  

Point Arithmetic: 

For our implementations, we chose Jacobian and extended Twisted Edwards coord. (see 

Section 2.2) and used the formulas for doubling, addition and doubling-addition optimized 

by the authors (see Sections 4.1-4.2 of [35]). Thus, we use the execution patterns based on 

doublings and doubling-additions proposed by [31] and [26] for Jacobian and Twisted 

Edwards coordinates, respectively. The costs in terms of multiplications and squarings can 

be found in Table 1. Note that we use general additions (or general doubling-additions) 

because inversion is relatively expensive and its inclusion during precomputation cancels 

any gain using addition with mixed coordinates during the evaluation stage.  

This arithmetic layer was optimized through the use of the techniques described in Section 

4, namely field arithmetic scheduling, merging of point operations and merging of field 

operations. Because the maximal performance was found with a window of size 5 for the 

scalar recoding using wNAF (see next subsection), we merged four consecutive doublings 

into a joint function and every addition with the precedent doubling into another function. 

Please refer to Appendix A for complete details about these functions exhibiting minimal 

number of field operations, different merged field operations and reduced number of 

contiguous data dependencies.    

Point Multiplication and Precomputation:   

For scalar recoding, we use width-w Non-Adjacent Form (wNAF), which offers minimal 

nonzero density among signed binary representations for a given window width (i.e., for 

certain number of precomputed points) [2]. In particular, we use Alg. 3.35 of [24] for 

conversion from integer to wNAF representation. Although left-to-right conversion 

algorithms exist [2], which save memory and allow on-the-fly computation of point 

multiplication, they are not advantageous on the targeted CPUs. In fact, our tests show that 

converting the scalar to wNAF and then executing the point multiplication achieves higher 

performance than interleaving conversion and point multiplication. That is because the latter 

approach “interrupts” the otherwise smooth flow of point multiplication by calling the 

conversion function at every iteration of the double-and-add algorithm. Our choice is also 

justified because there are no stringent constraints in terms of memory in the targeted 
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platforms.   

For precomputation on J coordinates, we chose a variant of the LM scheme [36] that does 

not require inversions (see Section 7.1 of [33]). This method achieves the lowest cost for 

precomputing points, given by (5 2)M (2 4)SL L+ + + , where L represents the number of 

non-trivial points (note that we avoid here the S-M trading in the first doubling). On / eE E  

coordinates, we precompute points in the traditional way using the sequence 

2 2 2P P P P+ + + +… , adding 2P with general additions. Because precomputed points are 

left in projective form no inversion is required and the cost is given by (8 4)M 2SL + + . This 

involves computing 2P as 2 e→A E , which costs 5M 2S+  (one squaring is saved because 

1PZ = ; one extra multiplication is required to compute T coordinate of 2P), one mixed 

addition to compute 2P P+  as e e+ →A E E  that costs 7M and ( 1)L −  general additions 
e e e+ →E E E  that cost 8M each. For both coordinate systems, we chose a window with size 

5w =  (i.e., precomputing { ,[3] , ,[15] }P P P… , 7L = ), which is optimal and slightly better 

than fractional windows using 6L =  or 8.  

6.2 Details of the GLS-based Implementations 

As mentioned previously, for this case we make use of the optimized assembly module of 

the field arithmetic over 2p
F  written by M. Scott [42], which exploits the Mersenne prime 

1272 1p = −  allowing the use of a very simple reduction step with no conditional branches.  

For the point arithmetic, we slightly modify formulas for the “traditional” implementations 

since in this case these require a few extra multiplications with the twisted curve parameter µ 

(see Section 2.2). For example, the (dedicated) addition using extended Twisted Edwards 

coordinates with cost 8M (pp. 332 of [26]) cannot be used in this case and has to be replaced 

by a formula that costs 9M (also discussed in pp. 332 of [26] as “9M+1D”), which is one 

multiplication more expensive (“1D” is avoided because parameter a is still set to −1). 

Accordingly (and also following our discussions in Sections 4.1 and 5.1), the scheduling of 

the field arithmetic slightly differs. Moreover, different merging options for the field and 

point arithmetic are exploited (see Section 5.2). The reader is referred to Appendix B for 

complete details about the revised formulas exhibiting minimal number of field operations, 

different merged operations and reduced number of contiguous data dependencies.    

For the point multiplication, each of the two scalars 0k  and 1k  in the multiple point 

multiplication 0 1[ ] [ ]( )k P k Pλ+  is converted using fractional wNAF [39], and then the 

evaluation stage is executed using interleaving (see Alg. 3.51 of [24]). Similarly to our 

experiments with the “traditional” implementations, we remark that the separation of the 

conversion and evaluation stages yields better performance in our case.  

For precomputation on J, we use the LM scheme (see Section 4 of [36]) that has minimal 

cost among methods using only one inversion, i.e., 1I (9 1)M (2 5)SL L+ + + + , where L 

represents the number of non-trivial points (we avoid here the S-M trading in the first 

doubling). A fractional window with 6L =  achieves the optimal performance in our case. 

Again, on / eE E  coordinates we precompute points using general additions in the 

sequence 2 2P P P+ + +… . Precomputed points are better left in projective coordinates, in 
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which case the cost is given by (9 4)M 2SL + + . This cost involves the computation of 2P as 

2 e→A E , which costs 5M 2S+  (one squaring is saved because 1PZ = ; one extra 

multiplication is required to compute T coordinate of 2P), one mixed addition to compute 

2P P+  as e e+ →A E E  that costs 8M and ( 1)L −  general additions e e e+ →E E E  that cost 

9M each. In this case, an integral window of size 5w =  (i.e., 7L = ) achieves optimal 

performance. As pointed out by [19], precomputing { ,[3] ( ),[5] ( ), ,[2 1] ( )}P P P L Pψ ψ ψ+…   

can be done on-the-fly at low cost.  

6.3 Timings 

Here we summarize the timings obtained by our “traditional” implementations using / eE E  

and J coordinates (called ted256189 and jac256189, respect.) and our implementations 

using GLS with / eE E  and J coordinates (called ted1271gls and jac1271gls, respect.), when 

running them on a single core of Intel and AMD processors based on the x86-64 ISA. The 

curves used for these implementations are described in detail in Appendix C. For verification 

of each implementation, the results of 104 point multiplications with “random” scalars were 

all validated using MIRACL. Several “random” point multiplications were also verified with 

Magma. 

All the tested programs were compiled with GCC v4.4.1 on the Intel Core 2 Duo E6750 

and Intel Atom N450 and with GCC v4.3.4 on the Intel Xeon E5440 and AMD Opteron 252 

processors. For measuring computing time, we follow [23] and use a method based on cycle 

counts. To obtain our timings, we ran each implementation 105 times with randomly 

generated scalars, averaged and approximated the results to the nearest 1000 cycles. Table 8 

summarizes our results, labeled as ted1271gls, jac1271gls, ted256189 and jac256189. All 

costs include scalar conversion, the point multiplication computation (precomputation and 

evaluation stages) and the final normalization step to affine. For comparison purposes, Table 

8 also includes the cycle counts that we obtained when running the implementations by M. 

Scott (displayed as gls1271-ref4 and gls1271-ref3 [42]) on exactly the same platforms. 

Finally, the last 5 rows of the table detail cycle counts of several state-of-the-art 

implementations as reported in the literature. However, these referenced results are used 

only to provide an approximate comparison since the processor platforms are not identical 

(though they use very similar processors). 

As can be seen in Table 8, our fastest implementation on the targeted platforms is 

ted1271gls, using / eE E  with the GLS method. This implementation is about 22% faster 

than the previous record set by gls1271-ref4 [18] on a slightly different processor (1.66GHz 

Intel Core 2 Duo). A more precise comparison, however, would be between measurements 

on identical processor platforms. In this case, ted1271gls is approx. 20%, 22%, 22% and 

28% faster than gls1271-ref4 [42] on Atom N450, Core 2 Duo E6750, Xeon E5440 and 

Opteron 252, respectively. Although [42] uses inverted Twisted Edwards coordinates ( invE ), 

the improvement with the change of coordinates only explains a small fraction of the speed-

up. Similarly, in the case of J combined with GLS, jac1271gls is about 23% faster than the 

record set by gls1271-ref3 [19] on a 1.66GHZ Intel Core 2 Duo. When comparing cycle  
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TABLE 8 
Cost (in cycles) of point multiplication.  

 

Implementation Coordinates  Field arithmetic Atom N450 
Core 2 Duo 

E6750 
Xeon E5440 Opteron 252 

  ted1271gls / e
E E  

  
2p
F , 127-bit 588000 229000 230000 211000 

  jac1271gls  J 2p
F , 127-bit 644000 252000 255000 238000 

  ted256189 / e
E E  p

F , 256-bit 982000 281000 289000 232000 

  jac256189  J 
p
F , 256-bit 1168000 337000 343000 274000 

  gls1271-ref4 [42] inv
E  2p

F , 127-bit 732000 295000 296000 295000 

  gls1271-ref3 [42] J 2p
F , 127-bit 832000 332000 332000 341000 

  gls1271-ref4 [18] inv
E  2p

F , 127-bit -    293000  1 - - 

  gls1271-ref3 [19] J 2p
F , 127-bit -    326000  1 - - 

  curve25519 [23] Montgomery 
p
F , 255-bit -    386000  2 -    307000  4 

  Hisil et al. [27] / e
E E  p

F , 256-bit -   362000  3 - - 

  Hisil et al. [27] J 
p
F , 256-bit -   468000  3 - - 

(1) On a 1.66GHZ Intel Core 2 Duo.  (2) On a 2.66GHZ Intel Core 2 Duo E6700.  (3) On a 2.66GHZ Intel Core 2 Duo E6550.  

(4) On a 2.4GHZ AMD Celeron 250. 

 

counts on identical processor platforms, jac1271gls is 23%, 24%, 23% and 30% faster than 

gls1271-ref3 [42] on Atom N450, Core 2 Duo E6750, Xeon E5440 and Opteron 252, 

respect. Our implementations are also significantly faster than the implementation of 

Bernstein's curve25519 by Gaudry and Thomé [23]. For instance, ted1271gls is 41% faster 

than curve25519 [23] on a 2.66GHz Intel Core 2 Duo. 

If the GLS method is not considered, the fastest implementations using / eE E  and J 

coordinates are ted256189 and jac256189, respectively. In this case, ted256189 and 

jac256189 are 22% and 28% faster than the previous best cycle counts due to Hisil et al. [27] 

using also / eE E  and J coordinates, respectively, on a 2.66GHz Intel Core 2 Duo.  

It is also interesting to note that the performance boost given by the GLS method strongly 

depends on the characteristics of a given platform. For instance, ted1271gls and jac1271gls 

are about 40% and 45% faster than their “counterparts” over pF , namely ted256189 and 

jac256189, respectively, on an Intel Atom N450. On an Intel Core 2 Duo E6750, the 

differences reduce to 19% and 25% (respect.). And on an AMD Opteron processor, the 

differences reduce even further to only 9% and 13% (respect.). Thus, it seems to exist a 

correlation between an architecture’s “aggressiveness” for scheduling operations/exploiting 

ILP and the gap between the costs of pF
 
and 2p
F

 
operations on x86-64 based processors. In 

general, the greater such “aggressiveness” the smaller the 2p p
−F F

 
gap. And since working 

on the quadratic extension involves a considerable increase in the number of multiplications 

and additions, GLS loses its attractiveness if such gap is not large enough on certain 

platform. For the record, ted1271gls achieves the best cycle count on an AMD Opteron 

processor with an advantage of about 31% over the best previous result in the literature due 

to Gaudry and Thomé (i.e., curve25519 [23]). 
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7   CONCLUSIONS 

In this paper, we have combined efficiently techniques such as incomplete reduction and the 

elimination of conditional branches to implement highly efficient field arithmetic over prime 

fields. Moreover, we have studied the impact of data dependencies between field operations 

and proposed three techniques that reduce significantly the appearance of pipeline stalls on 

x86-64 based processors. Our methods also reduce the number of function calls and memory 

reads/writes and can be easily extended to different underlying fields. We have finally 

shown that, by combining efficiently all these techniques with state-of-the-art algorithms and 

formulas for ECC point multiplication, significant gains in performance are achieved. Our 

high-speed implementations are up to 31% faster than the best previous results in the 

literature. Although our implementations (in their current form) only compute [k]P where k 

and P vary, several of the optimizations discussed in this work are generic and can be easily 

adapted to speed up other implementations using a fixed point P, digital signatures and 

different coordinate systems/curve forms/underlying fields.  
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A    POINT OPERATIONS USING J AND /E Ee  COORDINATES 

The following Maple scripts verify formulas used for the “traditional” implementations 

discussed in this work. Note that point and field operations have been carefully merged and 

scheduled to reduce the number of function calls, memory reads/writes and potential pipeline 

stalls. Temporary registers are denoted by ti and M=multiplication, S=squaring, 

Add=addition, Sub=subtraction, Mulx=multiplication by x, Divx = division by x, 

Neg=negation. DblSub represents the computation 2 (mod )a b p−  and SubDblSub 

represents the merging of (mod )a b p−  and ( ) 2 (mod )a b c p− − . Underlined field 

operations are merged and operationIR represents a field operation using incomplete 

reduction. In practice, input registers are reused to store the result of an operation. 

 
# Weierstrass curve (for verification): 

x1:=X1/Z1^2; y1:=Y1/Z1^3; x2:=X2/Z2^2; y2:=Y2/Z2^3; ZZ2:=Z2^2; ZZZ2:=Z2^3; a:=-3; 

x3:=((3*x1^2+a)/(2*y1))^2-2*x1; y3:=((3*x1^2+a)/(2*y1))*(x1-x3)-y1; 

x4:=((y1-y2)/(x1-x2))^2-x2-x1; y4:=((y1-y2)/(x1-x2))*(x2-x4)-y2;  

x5:=((y1-y4)/(x1-x4))^2-x4-x1; y5:=((y1-y4)/(x1-x4))*(x4-x5)-y4; 

 

DBL, 2 →J J : 1 1 12( , , ) ( , , )out out outX Y Z X Y Z→ . Cost = 4M+4S+3Sub+1DblSub+1AddIR+ 
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1Mul3IR+1Div2IR; 5 contiguous data dependencies 

# In practice, Xout,Yout,Zout reuse the registers X1,Y1,Z1 for all cases below. 

t4:=Z1^2; t3:=Y1^2; t1:=X1+t4; t4:=X1-t4; t0:=3*t4; t5:=X1*t3; t4:=t1*t0; t0:=t3^2; 

t1:=t4/2; t3:=t1^2; Zout:=Y1*Z1; Xout:=t3-2*t5; t3:=t5-Xout; t5:=t1*t3; Yout:=t5-t0; 

simplify([x3-Xout/Zout^2]), simplify([y3-Yout/Zout^3]); # Check 

 

4DBL, 8 →J J : 1 1 18( , , ) ( , , )out out outX Y Z X Y Z→ . Cost = 4*(4M+4S+3Sub+1DblSub+ 

1AddIR+1Mul3IR+1Div2IR); 1.25 contiguous data dependencies/doubling 

t4:=Z1^2; t3:=Y1^2; t1:=X1+t4; t4:=X1-t4; t2:=3*t4; t5:=X1*t3; t4:=t1*t2; t0:=t3^2; 

t1:=t4/2; Zout:=Y1*Z1; t3:=t1^2; t4:=Z1^2; Xout:=t3-2*t5; t3:=t5-Xout; t2:=Xout+t4; 

t5:=t1*t3; t4:=Xout-t4; Yout:=t5-t0; t1:=3*t4; t3:=Yout^2; t4:=t1*t2; t5:=Xout*t3; 

t1:=t4/2; t0:=t3^2; t3:=t1^2; Zout:=Yout*Zout; Xout:=t3-2*t5; t4:=Zout^2; t3:=t5-

Xout; t2:=Xout+t4; t5:=t1*t3; t4:=Xout-t4; Yout:=t5-t0; t1:=3*t4; t3:=Yout^2; 

t4:=t1*t2; t5:=Xout*t3; t1:=t4/2; t0:=t3^2; t3:=t1^2; Zout:=Yout*Zout; Xout:=t3-2*t5; 

t4:=Zout^2; t3:=t5-Xout; t2:=Xout+t4; t5:=t1*t3; t4:=Xout-t4; Yout:=t5-t0; t1:=3*t4; 

t3:=Yout^2; t4:=t1*t2; t5:=Xout*t3; t1:=t4/2; t0:=t3^2; t3:=t1^2; Zout:=Yout*Zout; 

Xout:=t3-2*t5; t3:=t5-Xout; t5:=t1*t3; Yout:=t5-t0; 

 

mDBLADD, 2 + →J A J : 1 1 1 2 22( , , ) ( , ) ( , , )out out outX Y Z x y X Y Z+ → . Cost = 13M+5S+ 

7Sub+2DblSub+1AddIR+1Mul2IR; 5 contiguous data dependencies 

t5:=Z1^2; t6:=Z1*t5; t4:=x2*t5; t5:=y2*t6; t1:=t4-X1; t2:=t5-Y1; t4:=t2^2; t6:=t1^2; 

t5:=t6*X1; t0:=t1*t6; t3:=t4-2*t5; t4:=Z1*t1; t3:=t3-t5; t6:=t0*Y1; t3:=t3-t0; 

t1:=2*t6; Zout:=t4*t3; t4:=t2*t3; t0:=t3^2; t1:=t1+t4; t4:=t0*t5; t7:=t1^2; 

t5:=t0*t3; Xout:=t7-2*t4; Xout:=Xout-t5; t3:=Xout-t4; t0:=t5*t6; t4:=t1*t3; Yout:=t4-

t0; 

simplify([x5-Xout/Zout^2]), simplify([y5-Yout/Zout^3]); # Check  

 

DBLADD, 2 + →J J J : 2 3
1 1 1 2 2 2 2 22( , , ) ( , , , , ) ( , , )out out outX Y Z X Y Z Z Z X Y Z+ → . Cost = 

16M+5S+7Sub+2DblSub+1AddIR+1Mul2IR; 3 contiguous data dependencies 

t0:=X1*ZZ2; t5:=Z1^2; t7:=Y1*ZZZ2; t4:=X2*t5; t6:=t5*Z1; t1:=t4-t0; t5:=Y2*t6; 

t6:=t1^2; t2:=t5-t7; t4:=t2^2; t5:=t6*t0; t0:=t1*t6; t3:=t4-2*t5; t6:=Z1*t1; t3:=t3-

t5; t4:=Z2*t6; t3:=t3-t0; t6:=t7*t0; Zout:=t4*t3; t4:=t2*t3; t1:=2*t6; t0:=t3^2; 

t1:=t1+t4; t4:=t0*t5; t7:=t1^2; t5:=t0*t3; Xout:=t7-2*t4; Xout:=Xout-t5; t3:=Xout-t4; 

t0:=t5*t6; t4:=t1*t3; Yout:=t4-t0; 

simplify([x5-Xout/Zout^2]), simplify([y5-Yout/Zout^3]); # Check  

 
# Twisted Edwards curve (for verification): 

x1:=X1/Z1; y1:=Y1/Z1; x2:=X2/Z2; y2:=Y2/Z2; T2:=X2*Y2/Z2; a:=-1; 

x3:=(2*x1*y1)/(y1^2+a*x1^2); y3:=(y1^2-a*x1^2)/(2-y1^2-a*x1^2); 

x4:=(x3*y3+x2*y2)/(y3*y2+a*x3*x2); y4:=(x3*y3-x2*y2)/(x3*y2-y3*x2); 

 

DBL, 2 →E E : 1 1 12( , , ) ( , , )out out outX Y Z X Y Z→ . Cost = 4M+3S+1SubDblSub+1AddIR+ 
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1Mul2IR+1Neg; no contiguous data dependencies 

t1:=2*X1; t2:=X1^2; t4:=Y1^2; t3:=Z1^2; Xout:=t2+t4; t4:=t4-t2; t3:=t4-2*t3; 

t2:=t1*Y1; Yout:=-t4; Zout:=t4*t3; Yout:=Yout*Xout; Xout:=t3*t2; 

simplify([x3-Xout/Zout]), simplify([y3-Yout/Zout]); # Check 

# Iterate this code n times to implement nDBL with cost 

n(4M+3S+1SubDblSub+1AddIR+1Mul2IR+1Neg) 

 

Merged DBL–ADD, (2 )e e+ →E E E : 1 1 1 2 2 2 2 2 22( , , ) (( ),( ),2 ,2 )X Y Z X Y X Y Z T+ + − →

( , , )out out outX Y Z . Cost = 12M+3S+3Sub+1SubDblSub+4AddIR+1Mul2IR; no contiguous data 

dependencies 

# If Z2=1 (Merged DBL-mADD), t5:=(2*Z2)*t6 is replaced by t5:=2*t6 and the number of 

multiplies reduces to 11M at the expense of one extra Mul2 

t1:=2*X1; t5:=X1^2; t7:=Y1^2; t6:=Z1^2; Xout:=t5+t7; t7:=t7-t5; t6:=t7-2*t6; 

t5:=t1*Y1; t8:=t7*Xout; t0:=t7*t6; t7:=t6*t5; t6:=Xout*t5; Xout:=t7+t8; t1:=t7-t8; 

t7:=(2*T2)*t0; t5:=(2*Z2)*t6; t0:=(X2-Y2)*t1; t1:=t5+t7; t6:=(X2+Y2)*Xout; Xout:=t5-

t7; t7:=t0-t6; t0:=t0+t6; Xout:=Xout*t7; Yout:=t1*t0; Zout:=t0*t7; 

simplify([x4-Xout/Zout]), simplify([y4-Yout/Zout]); # Check 

B    POINT OPERATIONS USING J AND /E Ee  FOR THE GLS METHOD 

The following Maple scripts verify formulas used for the GLS-based implementations 

discussed in this work. In the remainder, DblSub represents 2 (mod )a b p−  or 

(mod )a b c p− − , Mul3Div2 represents ( ) / 2 (mod )a a a p+ + , AddSub represents the 

merging of (mod )a b p+  and (mod )a b p− , AddSub2 represents (mod )a b c p+ − , 

SubSub represents the merging of (mod )a b p−  and (mod )c d p− , and Mul2Mul3 

represents the merging of (mod )a a p+  and (mod )a a a p+ + . 
 

# Weierstrass curve (for verification): 

x1:=X1/Z1^2; y1:=Y1/Z1^3; a:=-3; 

x3:=((3*x1^2+u^2*a)/(2*y1))^2-2*x1; y3:=((3*x1^2+u^2*a)/(2*y1))*(x1-x3)-y1; 

x4:=((y1-y2)/(x1-x2))^2-x2-x1; y4:=((y1-y2)/(x1-x2))*(x2-x4)-y2;  

x5:=((y1-y4)/(x1-x4))^2-x4-x1; y5:=((y1-y4)/(x1-x4))*(x4-x5)-y4; 

 

DBL, 2 →J J : 1 1 12( , , ) ( , , )out out outX Y Z X Y Z→ . Cost = 4M+4S+2Sub+1DblSub+ 

1Mul3Div2+1AddSub+1Mulµ; no contiguous data dependencies 

# In practice, Xout,Yout,Zout reuse the registers X1,Y1,Z1 for all cases below. 

t2:=Z1^2; t3:=Y1^2; t1:=u*t2; t2:=X1+t1; t1:=X1-t1; t1:=3*t1/2; t4:=t3*X1; t1:=t2*t1; 

t3:=t3^2; Xout:=t1^2; Zout:=Y1*Z1; Xout:=Xout-2*t4; t2:=t4-Xout; t1:=t1*t2; Yout:=t1-

t3; 

simplify([x3-Xout/Zout^2]), simplify([y3-Yout/Zout^3]); # Check 

 

mADD, + →J A J : 1 1 1 2 2( , , ) ( , ) ( , , )out out outX Y Z x y X Y Z+ → . Cost = 8M+3S+5Sub+ 

1DblSub; no contiguous data dependencies 
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t2:=Z1^2; t1:=Z1*t2; t2:=t2*x2; t1:=t1*y2; t2:=t2-X1; t1:=t1-Y1; t3:=t2^2; t4:=t1^2; 

Zout:=Z1*t2; t2:=t2*t3; t3:=t3*X1; Xout:=t4-t2; Xout:=Xout-2*t3; t3:=t3-Xout; 

t1:=t1*t3; Yout:=t2*Y1; Yout:=t1-Yout; 

simplify([x4-Xout/Zout^2]), simplify([y4-Yout/Zout^3]); # Check 

 

mDBLADD, 2 + →J A J : 1 1 1 2 22( , , ) ( , ) ( , , )out out outX Y Z x y X Y Z+ → . Cost = 13M+5S+ 

2Sub+2DblSub+1SubSub+1Add+1Mul2+1Mul2Mul3+1Div2; no contiguous data depend. 

t2:=Z1^2; t1:=Z1*t2; t3:=x2*t2; t1:=y2*t1; t2:=t3-X1; t1:=t1-Y1; t3:=t2^2; t5:=t1^2; 

t4:=X1*t3; t3:=t2*t3; Xout:=2*t4; t4:=3*t4; Zout:=Z1*t2; t5:=t5-t3-t4; Yout:=t3*Y1; 

t1:=t1*t5; t2:=2*Yout; t3:=t5^2; t1:=t1+t2; t2:=Xout*t3; Xout:=t1^2; t3:=t5*t3; 

Xout:=Xout-t2-t3; t2:=t2/2; Zout:=Zout*t5; Yout:=Yout*t3; t2:=Xout-t2; t1:=t1*t2; 

Yout:=t1-Yout; 

simplify([x5-Xout/Zout^2]), simplify([y5-Yout/Zout^3]); # Check 

 
# Twisted Edwards curve (for verification): 

x1:=X1/Z1; y1:=Y1/Z1; a:=-1; 

x2:=X2/Z2; y2:=Y2/Z2; T2:=X2*Y2/Z2; x5:=X5/Z5; y5:=Y5/Z5; T5:=X5*Y5/Z5; 

x3:=(2*x1*y1)/(y1^2+u*a*x1^2); y3:=(y1^2-u*a*x1^2)/(2-y1^2-u*a*x1^2); 

x4:=(x3*y3+x2*y2)/(y3*y2+u*a*x3*x2); y4:=(x3*y3-x2*y2)/(x3*y2-y3*x2);  

x6:=(x4*y4+x5*y5)/(y4*y5+u*a*x4*x5); y6:=(x4*y4-x5*y5)/(x4*y5-y4*x5); 

 

DBL, 2 →E E : 1 1 12( , , ) ( , , )out out outX Y Z X Y Z→ . Cost = 4M+3S+1Sub+1AddSub+2Mul2+ 

1Mulµ; no contiguous data dependencies 

Zout:=Z1^2; t1:=2*X1; t2:=X1^2; t1:=t1*Y1; Xout:=u*t2; Yout:=Y1^2; Zout:=2*Zout; 

t2:=Yout-Xout; Yout:=Yout+Xout; Zout:=Zout-t2; Yout:=t2*Yout; Xout:=t1*Zout; 

Zout:=t2*Zout; 

simplify([x3-Xout/Zout]), simplify([y3-Yout/Zout]); # Check 

 

Merged DBL–ADD, (2 )e e+ →E E E : 1 1 1 2 2 2 22( , , ) ( , , , ) ( , , )out out outX Y Z X Y Z T X Y Z+ → . 

Cost = 13M+3S+3Sub+1Add+2AddSub+1AddSub2+2Mul2+2Mulµ; no contiguous data 

dependencies 

# If Z2=1 (Merged DBL-mADD), T1:=T1*Z2 is not needed and the number of multiplies 

reduces to 12M 

Zout:=Z1^2; t1:=2*X1; t2:=X1^2; t1:=t1*Y1; Xout:=u*t2; Yout:=Y1^2; Zout:=2*Zout; 

t2:=Yout-Xout; Yout:=Xout+Yout; Zout:=Zout-t2; T1:=t1*Yout; Yout:=t2*Yout; 

Xout:=t1*Zout; Zout:=t2*Zout; t1:=Xout*X2; T1:=T1*Z2; Zout:=Zout*T2; t2:=u*t1; 

t3:=T1+Zout; Zout:=T1-Zout; T1:=Yout*Y2; Xout:=Xout-Yout; Yout:=X2+Y2; t2:=T1-t2; 

Xout:=Xout*Yout; Yout:=Zout*t2; t1:=Xout+T1-t1; Zout:=t1*t2; Xout:=t1*t3; 

simplify([x4-Xout/Zout]), simplify([y4-Yout/Zout]); # Check 

 

Merged DBL–ADDADD, (2 )e e e+ + →E E E E : 1 1 1 2 2 2 22( , , ) ( , , , )X Y Z X Y Z T+ +

3 3 3 3( , , , ) ( , , )out out outX Y Z T X Y Z→ . Cost = 22M+3S+5Sub+2Add+3AddSub+2AddSub2+ 

2Mul2+3Mulµ; no contiguous data dependencies 

# If Z2=1, T1:=T1*Z2 is not needed and the number of multiplies reduces in 1M 

# If Z5=1, T1:=T1*Z5 is not needed and the number of multiplies reduces in 1M 

Zout:=Z1^2; t1:=2*X1; t2:=X1^2; t1:=t1*Y1; Xout:=u*t2; Yout:=Y1^2; Zout:=2*Zout; 
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t2:=Yout-Xout; Yout:=Xout+Yout; Zout:=Zout-t2; T1:=t1*Yout; Yout:=t2*Yout; 

Xout:=t1*Zout; Zout:=t2*Zout; t1:=Xout*X2; T1:=T1*Z2; Zout:=Zout*T2; t2:=u*t1; 

t3:=T1+Zout; Zout:=T1-Zout; T1:=Yout*Y2; Xout:=Xout-Yout; Yout:=X2+Y2; t2:=T1-t2; 

Xout:=Xout*Yout; Yout:=Zout*t2; Xout:=Xout+T1-t1; T1:=Zout*t3; Zout:=Xout*t2; 

Xout:=Xout*t3; t1:=Xout*X5; T1:=T1*Z5; Zout:=Zout*T5; t2:=u*t1; t3:=T1+Zout; 

Zout:=T1-Zout; T1:=Yout*Y5; Xout:=Xout-Yout; Yout:=X5+Y5; t2:=T1-t2; Xout:=Xout*Yout; 

Yout:=Zout*t2; Xout:=Xout+T1-t1; Zout:=Xout*t2; Xout:=Xout*t3; 

simplify([x6-Xout/Zout]), simplify([y6-Yout/Zout]); # Check 

C    THE CURVES 

The curves below provide approximately 128-bit level of security and were found by using a 

modified version of the Schoof's algorithm provided with MIRACL. 

 

− For the implementation on short Weierstrass form over pF  using J, we chose the curve 
2 3: 3wE y x x B= − + , where 2562 189p = − , 0 fd63c3319814da55e88e9328e96273cB = ×  

483dca6cc84df53ec8d91b1b3e0237064  and # ( ) 10w pE r=F  where r is the 253-bit prime: 
 

     11579208923731619542357098500868790785394551372836712768287417232790500318517 .  
 

The implementation corresponding to this curve is referred to as jac256189. 

 

− For Twisted Edwards over pF  using / eE E , we chose the curve :tedwE 2 2x y− + =  
2 21 358 x y+ , where 2562 189p = −  and # ( ) 4tedw pE r=F  where r is the 255-bit prime:    

 

 28948022309329048855892746252171976963381653644566793329716531190136815607949 . 
 

The implementation corresponding to this curve is referred to as ted256189. 

 

− Let 2 3: 3 44w glsE y x x− = − +  be defined over pF , where 1272 1p = − . For the case of the 

Weierstrass form using GLS, we use the quadratic twist 2 3: 3 44w glsE y x xµ µ−′ = − +  of  

2( )w gls p
E − F , where 22

p
iµ = + ∈F  is non-square. 2# ( )w gls p

E −′ F  is the 254-bit prime: 
 

     28948022309329048855892746252171976962649922236103390147584109517874592467701 .  
 

The same curve is also used in [19]. Our implementation corresponding to this curve is 

referred to as jac1271gls. 

 

− Let 2 2 2 2: 1 109tedw glsE x y x y− − + = +  be defined over pF , where 1272 1p = − . For the 

case of Twisted Edwards using the GLS method, we use the quadratic twist 
2 2 2 2: 1 109tedw glsE x y x yµ µ−′ − + = +  of 2( )tedw gls p

E − F , where 22
p

iµ = + ∈F  is non-square. 

In this case, 2# ( ) 4tedw gls p
E r−′ =F  where r is the 252-bit prime:  

 

     7237005577332262213973186563042994240709941236554960197665975021634500559269 . 
 

The implementation corresponding to this curve is referred to as ted1271gls. 


