

Abstract. In this work, we analyze and present experimental data evaluating the efficiency of several

techniques for speeding up the computation of elliptic curve point multiplication on emerging x86-64

processor architectures. In particular, we study the efficient combination of such techniques as

elimination of conditional branches and incomplete reduction to achieve fast field arithmetic over pF .

Furthermore, we study the impact of (true) data dependencies on these processors and propose several

generic techniques to reduce the number of pipeline stalls, memory reads/writes and function calls.

We also extend these techniques to field arithmetic over 2p
F , which is utilized as underlying field by

the recently proposed Galbraith-Lin-Scott (GLS) method to achieve higher performance in the point

multiplication. By efficiently combining all these methods with state-of-the-art elliptic curve

algorithms we obtain high-speed implementations of point multiplication that are up to 31% faster

than the best previous published results on similar platforms. This research is crucial for advancing

high-speed cryptography on new emerging processor architectures.

Keywords. Elliptic curve cryptosystem, point multiplication, field arithmetic scheduling, incomplete

reduction, data dependence, pipeline stall, x86-64 instruction set, software implementation.

1 INTRODUCTION

Elliptic Curve Cryptography (ECC), discovered independently by Miller [38] and Koblitz

[30] in mid 80’s, has gained widespread acceptance in recent years, taking over a central role

in public-key cryptography that was previously exclusive to the classic RSA. This

technological shift is partially explained by ECC’s reduced key length requirement to

achieve certain security level. The latter brings many benefits such as reduced memory

footprint, lower power consumption and faster execution time, among others.

Point multiplication, defined as []k P , where the point P has order r and is on an elliptic

curve E over a prime field pF (i.e., ()pP E∈ F) and [1, 1]k r∈ − is an integer, is the central

and most time-consuming operation in ECC over prime fields. Hence, its efficient realization

has gained increasing importance for the industry and research communities and a plethora

of methods have been proposed for speeding up this operation at its various computational

levels. For instance, different studies have proposed methods using efficient arithmetic

representations for the scalar [41][44][11][31], efficiently computable endomorphisms

[20][19], fast precomputation schemes [36][34], efficient point formulae [7][8][25][37] and

long integer modular arithmetic [29][40][9][47], and improved curve forms with fast

Analysis of Efficient Techniques for Fast Elliptic Curve Cryptography

on x86-64 based Processors

Patrick Longa, and Catherine Gebotys
Department of Electrical and Computer Engineering,

University of Waterloo, Canada,

{plonga,cgebotys}@uwaterloo.ca

2 P. Longa and C. Gebotys

arithmetic [6][12][26][27]. Still, these research efforts usually need to be complemented with

further analysis and actual implementations on different platforms that permit one to assess

their practical effectiveness in the real world. Accordingly, many studies in that direction

have focused on efficient implementations on constrained 8-bit microcontrollers [21][45],

32-bit embedded devices [46][17], Graphical Processing Units (GPUs) [43], processors

based on the Cell Broadband Engine Architecture (CBEA) [10], 32-bit x86-based processors

[5][4], among others. Nevertheless, there are very few studies focusing on the analysis of

efficient techniques for high-speed ECC point multiplication especially targeting the most

recent x86-64 based processors, and this work tries to fill that gap.

Modern CPUs from the notebook, desktop and server classes are decisively adopting the

64-bit x86 instruction set (a.k.a. x86-64) developed by AMD [1]. The most relevant features

of this new instruction set are the expansion of the general-purpose registers (GPRs) from 32

to 64 bits, the execution of arithmetic and logical operations on 64-bit integers and an

increment in the number of GPRs, among other enhancements. In addition, these processors

usually exhibit a highly pipelined architecture, improved branch predictors and complex

execution stages that offer parallelism at the instruction level. Thus, this increasingly high

complexity brings new paradigms to the software and compiler developer.

In this work, we analyze several techniques and evaluate their effectiveness to devise

highly efficient field and point arithmetic for ECC over prime fields on architectures based

on the x86-64 ISA. Specifically, we study the impact of branch misprediction for modular

reduction and demonstrate quantitatively the benefit of eliminating conditional branches in

modular addition, subtraction and multiplication/division by small constants. Moreover, we

optimally combine this approach with the well-known technique of incomplete reduction

(IR) [47] to achieve further cost reductions. Also, we analyze the influence of deeply

pipelined architectures in the ECC point multiplication execution. In particular, we notice

that the increased number of stages in certain pipeline architectures can make (true) data

dependencies between contiguous field operations particularly expensive because these can

potentially stall the execution for several clock cycles. These dependencies fall in the

category of read-after-write (RAW), which are typically found between several field

operations when the result of an operation is required as input by the following operation. In

this work, we demonstrate the potentially high cost incurred by these dependencies, which is

hardly avoided by compilers and dynamic schedulers in processors, and propose three

techniques to reduce its effect: field arithmetic scheduling, merging of field operations and

merging of point operations.

The techniques above are applied to modular operations using a prime p, which are used

for performing the pF arithmetic in ECC over prime fields. However, these techniques are

generic and can also be extended to different scenarios using other underlying fields. For

instance, Galbraith et al. [19] recently proposed a faster way to do ECC that exploits an

efficiently computable endomorphism to accelerate the execution of point multiplication

over a quadratic extension field (a.k.a. GLS method). Accordingly, we extend our analysis to

2p
F arithmetic and show that the proposed techniques also lead to significant gains in

performance in this case.

Analysis of Efficient Techniques for Fast ECC on x86-64 based Processors 3

Our extensive tests assessing the techniques under analysis cover at least one

representative x86-64 based CPU from each processor class: 1.66GHz Intel Atom N450

from the notebook (and netbook) class, 2.66GHz Intel Core 2 Duo E6750 from the desktop

class, and 2.83GHz Intel Xeon E5440 and 2.6GHz AMD Opteron 252 from the server (and

workstation) class.

Finally, to assess their effectiveness for a full point multiplication, the proposed

techniques are applied to state-of-the-art implementations using Jacobian and (extended)

Twisted Edwards coordinates on the targeted processors. Our measurements show that the

proposed optimizations (in combination with state-of-the-art point formulas/coordinate

systems, precomputation schemes and exponentiation methods) significantly speed up the

execution time of point multiplication, surpassing with considerable margins previous state-

of-the-art implementations. For instance, we show that a 256-bit point multiplication for the

case of Jacobian and (extended) Twisted Edwards coordinates can be computed in only

337000 and 281000 cycles, respectively, on one core of an Intel Core 2 Duo processor.

Compared to the previous results of 468000 and 362000 cycles (respect.) by Hisil et al. [27],

our results achieve improvements of about 28% and 22% (respect.). In the case of the GLS

method, for Jacobian and (extended) Twisted Edwards coord., we compute one point

multiplication in about 252000 and 229000 cycles (respect.) on the same processor, which

compared to the best previous results by Galbraith et al. [18][19] (326000 and 293000

cycles, respect.) translate to improvements of about 23% and 22%, respectively.

This work extends significantly the analysis and results presented by the authors in [35].

Our work is organized as follows. In Section 2, we briefly describe relevant features of

x86-64 based processors, elliptic curves over prime fields and the recently proposed GLS

method. In Section 3, we analyze the impact of combining the incomplete reduction

technique with elimination of conditional branches to achieve high-performance field

arithmetic. In Section 4, we analyze the effect of (true) data dependencies between

contiguous field operations on different processors and propose several practical techniques

to minimize it. In Section 5, we extend the proposed techniques to quadratic extension fields

and study their impact when using the GLS method. Finally, in Section 6, we present our

timings for point multiplication and compare them to the best previous results.

2 PRELIMINARIES

2.1 x86-64 based Processor Architectures

For a background in computer architectures and experimental analysis on processors based

on the x86-64 ISA, readers are referred to [28] and [15][16], respectively.

Modern CPUs from the notebook, desktop and server classes are rapidly adopting the x86-

64 ISA proposed by AMD [1]. This new instruction set involves GPRs of 64 bits, arithmetic

and logical operations on 64-bit integers, an increment in the number of GPRs, among other

enhancements. Most importantly, modern processors based on this architecture exhibit deep

pipelines with a high number of stages. For instance, experiments presented in [16] suggest

4 P. Longa and C. Gebotys

that Intel Atom, Intel Core 2 Duo and AMD processors have pipelines with 16, 15 and 12

stages, respectively. There are two aspects related to the latter that are of special interest in

this work: the high cost of branch mispredictions and data dependencies.

Branch Predictors and Conditional Branches:

The performance of branch predictors can be evaluated through the equation:

 (% % _)idealCPI CPI Branch Branch misprediction penalty= + × × , (1)

where:

CPI: cycles per instruction.

idealCPI : ideal CPI without hazards. Typically, equal to 1 for non-superscalar processors.
%Branch : percentage of instructions that are branches.

% _Branch misprediction : percentage of unsuccessful predictions.

penalty: cost in cycles per misprediction. Roughly, equal to the number of stages in the

pipeline.

Let us consider the following conditioned executing statements:

if condition

 execute1

else execute2

which is typically translated to the following pseudocode using conditional branches:

if condition branch to label1

execute2

branch to label2

label1:

 execute1

label2:

 ...

If the predictor guesses correctly whether to branch to label1 or label2 most of the time,

the penalty introduced by mispredictions is minimal. Sophisticated branch predictors such as

local and global branch predictors combined with 2-level adaptive techniques (found in

processors from Intel and AMD) can obtain about 97% of guesses correct for certain

applications. This translates to small penalties with CPIs only increased by 9% for example

(assuming that % 0.1Branch = , 15penalty = and 0.5idealCPI = in (1)). Otherwise, the

penalty can be extremely high. Following the example above, the CPI increases by 250% if

% _ 0.5Branch misprediction = .

Unfortunately, the last scenario is expected to happen in certain field operations, such as

addition and subtraction, in which the reduction step (typically implemented with a

conditional branch) is required 50% of the time in a “random” pattern. Hence, it is better to

eliminate conditional branches in these circumstances, as already implemented in some

crypto libraries [22]. There are two possible solutions to achieve this:

Analysis of Efficient Techniques for Fast ECC on x86-64 based Processors 5

• Using look-up tables: two values, 0 and the actual value required by the reduction

step, are pre-stored and then selected accordingly during modular reduction using

indexed indirect addressing mode.

• Through branch predication: using predicated move instructions (e.g., cmov in x86) to

load 0 or the actual value required by the reduction step.

The previous approaches follow the same idea: the reduction step is performed every time.

If the reduction is not actually required it is performed with the value 0, which does not

affect the final result. These techniques have some additional advantages. They tend to

reduce the code size and allow a more flexible scheduling of instructions that can lead to

faster execution times.

In Section 3.2, we analyze the impact of eliminating conditional branches during modular

reduction, and present experimental data quantifying the gain in performance on x86-64

based CPUs. Moreover, we efficiently combine this approach with the incomplete reduction

technique.

Data Dependencies:

Let i and j be the computer orders of instructions iI and jI in a given program flow. We

say that instruction jI depends on instruction iI if [28]:

 [() ()] [() ()] [() ()]i j i j i jW I R I R I W I W I W I∩ ∪ ∩ ∪ ∩ ≠ ∅ , (2)

where ()xR I is the set of memory locations or registers read by xI and ()xW I is the set of

memory locations or registers written by xI . We can distinguish three cases:

• True (data) dependence (or Read-After-Write, RAW): if i j< and () ()i jW I R I∩ ,

i.e., if jI reads something written by iI .

• Anti-dependence (or Write-After-Read, WAR): if i j< and () ()i jR I W I∩ , i.e., if iI

reads a location later updated by jI .

• Output dependence (or Write-After-Write, WAW): if i j< and () ()i jW I W I∩ , i.e.,

if both iI and jI write the same location.

Modern out-of-order processors and compilers deal relatively well with anti- and output

dependencies through register renaming. However, true or RAW dependencies cannot be

removed in the strict sense of the term and are more dangerous to the performance of

architectures exploiting Instruction-Level Parallelism (ILP).

In the case that instructions iI and jI , where i j< , have a RAW dependence and are

“close” to each other such that a hazard is imminent, the pipeline needs to stall a number of

cycles proportional to the time it takes iI to complete its pipeline latency. There are two

approaches to minimize the appearance of pipeline stalls: by instruction scheduling and

using data forwarding. In particular, the former can be taken over by the compiler, the out-

of-order processor or the programmer (or a combination of these). In Section 4, we discuss

6 P. Longa and C. Gebotys

several software-based techniques that minimize the number of pipeline stalls caused by

RAW dependencies between consecutive field operations on processors with deep pipelines

such as x86-64 based CPUs.

2.2 Elliptic Curve Cryptography

For a background in elliptic curves, the reader is referred to [24]. The standard elliptic curve

(also known as short Weierstrass curve) over a prime field pF has the equation:

 2 3:wE y x ax b= + + , (3)

where , pa b∈F and 3 24 27 0a b∆ = + ≠ . However, different curve forms exhibiting faster

group arithmetic have been studied during the last few years. A good example is given by

Twisted Edwards. This curve form, proposed in [3], is a generalization of Edwards curves

[12] and has the equation:

 2 2 2 2: 1tedwE ax y dx y+ = + , (4)

where , pa d ∈F are distinct nonzero elements.

The points on equations (3) or (4) and the point at infinity, denoted by O, form an abelian

group ((),)pE +F with a group law mainly consisting of two basic point operations: doubling

(2P) and addition (P+Q) of points. In this setting, the main operation is known as point

multiplication, which is denoted by []k P , where ()pP E∈ F , and can be seen as the

computation []k P P P P= + + +… , where P is added (1)k − times.

Because affine coordinates (point representation using (,)x y coordinates; denoted by A)

are expensive over prime fields due to costly field inversions, the use of projective

coordinates with the form (: :)X Y Z is preferred. In this work, we have chosen the

following coordinate systems for assessing the techniques under analysis:

• Jacobian coordinates (denoted by J), where each projective point (: :)X Y Z

corresponds to the affine point 2 3(/ , /)X Z Y Z , 0Z ≠ . In this case, the standard

equation (3) acquires the form 2 3 4 6Y X aXZ bZ= + + .

• Combined homogenous/extended Twisted Edwards coordinates (denoted by / eE E)

[26]. In the extended version eE , the auxiliary coordinate T is added to the

homogenous representation (: :)X Y Z such that each projective point (: : :)X Y Z T

corresponds to (/ , / ,1, /)X Z Y Z T Z in affine, where /T XY Z= . With / eE E

coordinates, the projective form of equation (4) is given by
2 2 2 4 2 2()aX Y Z Z dX Y+ = + .

State-of-the-art formulas using J and / eE E coordinates can be found in [32] and [26],

respectively, and their costs are summarized in Table 1. Although variations to costs

displayed in Table 1 exist (for instance, those obtained by trading multiplications for

squarings [32][13]), these sometimes involve an increased number of “small” operations

such as additions, subtractions and multiplications/divisions by constants. On various

Analysis of Efficient Techniques for Fast ECC on x86-64 based Processors 7

platforms (including x86-64 based processors), that extra cost may not be negligible.

Formulas in Table 1 have been selected so that the overall cost is minimal on the targeted

platforms. The complete set of revised formulas with optimal number of multiplications and

squarings and minimal number of “small” operations have been compiled in Appendix A.

TABLE 1

Costs of point operations on Weierstrass and Twisted Edwards curves
1
.

Point Operation Coord.
Weierstrass

(3)a = −
Coord.

Twisted Edwards

(1)a = −

 Doubling 2 →J J 4M + 4S 2 →E E 4M + 3S

 Mixed addition + →J A J 8M + 3S e + →E A E 7M

 General addition + →J J J 11M + 3S (1) e e+ →E E E 8M

 Mixed Doubling-Addition 2 + →J A J 13M + 5S (2)e + →E A E 11M + 3S

 General Doubling-Addition 2 + →J J J 16M + 5S (1) (2)e e+ →E E E 12M + 3S

 (1) Using cached values.

The Galbraith-Lin-Scott (GLS) Method:

In this method by Galbraith et al. [19], ECC computations are performed on the quadratic

twist of an elliptic curve over 2p
F with an efficiently computable homomorphism

(,)x yψ → (,)x yα β , ()P Pψ λ= . Then, following [20], []k P is computed as a multiple

point multiplication with form 0 1[] []()k P k Pλ+ , where 0k and 1k have approx. half the

bitlength of k.

For the case of the Weierstrass form, given equation (3) defined over pF , the quadratic

twist wE′ over 2p
F of 2()w p

E F is given by the equation:

 2 3 2 3:wE y x ax bµ µ′ = + + , (5)

where µ is a non-square in 2p
F . Following [19], we fix 3(mod 4)p ≡

and 22

p
iµ = + ∈F

such that 1 pi = − ∈F and 3 3(,) (, /)p

p
x y x y

µ
ψ µ µ

µ
= ⋅ ⋅ , where x , y denote the Galois

conjugates of x , y , respectively.

For the case of Twisted Edwards, given equation (4) defined over pF , the quadratic twist

tedwE′ over 2p
F of 2()tedw p

E F is given by the equation:

 2 2 2 2: 1tedwE ax y dx yµ µ′ + = + , (6)

where µ is a non-square in 2p
F . Following [18], we fix 3(mod 4)p ≡ and 22

p
iµ = + ∈F

such that 1 pi = − ∈F and (,) (/ ,)px y x yψ µ µ= ⋅ .

Since for our case 2 (1)pp
= −F F , i.e., 1 pi = − ∈F , elements in 2p

F can be represented

by a bi+ , where , pa b∈F . For instance, an 2p
F multiplication, as suggested in [19], can be

performed using Karatsuba method [29] as () () ()a bi c di ac bd+ ⋅ + = − +

() () (()())bc ad i ac bd a b c d ac bd i+ = − + + + − − , which requires 3 pF multiplications and

1
 Field operations: I = inversion, M = multiplication, S = squaring, Add = addition, Sub = subtraction,

Mulx = multiplication by x, Divx = division by x, Neg = negation.

8 P. Longa and C. Gebotys

5 pF additions/subtractions.

Galbraith et al. showed that, in practice, the new method runs about 16% faster than the

best previous implementation due to Gaudry and Thomé [23] on an Intel Core 2 Duo. For

complete details and the security implications, the reader is referred to [18][19].

In this work, we analyze the performance of the field and point arithmetic exploiting our

optimizing techniques on two “traditional” implementations (on Weierstrass and Twisted

Edwards curves) and two implementations using the GLS method (again, one per curve). For

the traditional case, we have written the underlying field arithmetic over pF using hand-

written assembly language. In this case, we consider for maximal speed-up a pseudo-

Mersenne prime of the form 2mp c= − , where m n w= ⋅ on an w-bit platform, n +∈Z , and

c is a “small” integer (i.e., 2)wc < . These primes are highly efficient for performing

modular reduction a prime p, and support other optimizations such as elimination of

conditional branches. On the other hand, for the GLS method we reuse the very efficient

modules for field arithmetic over 2p
F provided with the crypto library MIRACL [42]. In

this case, 2p
F arithmetic provided by MIRACL considers a Mersenne prime with the form

2 1t − (i.e., t is prime).

3 OPTIMIZING THE MODULAR REDUCTION

In this section, we evaluate the performance gain of two techniques, namely incomplete

reduction and elimination of conditional branches, and combine them to devise highly

efficient field arithmetic with very fast modular reduction for operations such as addition,

subtraction and division/multiplication by constants. We also show that incomplete reduction

is not exclusive to addition/subtraction and can be easily extended to other operations, and

that subtraction does not necessarily benefit from incomplete reduction when p is a smartly

chosen pseudo-Mersenne prime. All tests described in this section were performed on our

assembly language module implementing the field arithmetic over pF and compiled with

GCC version 4.4.1.

3.1 Incomplete Reduction (IR)

This technique was introduced by Yanik et al. [47]. Given two numbers in the range

[0, 1]p − , it consists of allowing the result of an operation to stay in the range [0,2 1]s −

instead of executing a complete reduction, where 2 2 1sp p< < − , s n w= ⋅ , w is the basic

wordlength (typically, 8,16,32,64w =) and n is the number of words. If the modulus is a

pseudo-Mersenne prime of the form 2m c− such that m s= and 2wc < , then the method

gets even more advantageous. In the case of addition, for example, the result can be reduced

by first discarding the carry bit in the most significant word and then adding the correction

value c, which fits in a single w-bit register. Also note that this last addition does not

produces an overflow because 2 (2 1) (2) 2m m mc c× − − − − < . The procedure is illustrated

for the case of modular addition in Algorithm 3.1(b), for which the reduction step described

above is performed in Step 3. As can be seen in Algorithm 3.1(a), a complete reduction

requires additionally the execution of Step 4 that performs a subtraction r p− in case

Analysis of Efficient Techniques for Fast ECC on x86-64 based Processors 9

2mp r≤ < , where r is the partial result from Step 2.

Yanik et al. [47] also showed that subtraction can benefit from IR when using a prime p of

arbitrary form. However, we show in the following that for primes of special form, such as

pseudo-Mersenne primes, that is not necessarily the case.

Algorithm 3.1 Modular addition with a pseudo-Mersenne prime

INPUT: integers , [0, 1]a b p∈ − , 2
m

p c= − , m n w= ⋅ , where
+

, ,n w c ∈Z and 2
w

c <

OUTPUT: (mod)r a b p= +

or (mod 2)

m
r a b= +

(a) With Complete Reduction (b) With Incomplete Reduction

 1. carry = 0 1. carry = 0

 2. For i from 0 to 1n − do 2. For i from 0 to 1n − do

 2.1. (, []) [] []carry r i a i b i carry← + + 2.1. (, []) [] []carry r i a i b i carry← + +
 3. If 1carry = 3. If 1carry =
 3.1. carry = 0 3.1. carry = 0

 3.2. (, [0]) [0]carry r r c← + 3.2. (, [0]) [0]carry r r c← +
 3.3. For i from 1 to 1n − do 3.3. For i from 1 to 1n − do

 3.3.1. (, []) []carry r i r i carry← + 3.3.1. (, []) []carry r i r i carry← +
 4. Else 4. Return r
 4.1. borrow = 0

 4.2. For i from 0 to 1n − do

 4.2.1. (, []) [] []borrow R i r i p i borrow← − −
 4.3. If borrow = 0

 4.3.1. r R←
 5. Return r

Algorithm 3.2 Modular subtraction with a pseudo-Mersenne

prime and complete reduction

INPUT: integers , [0, 1]a b p∈ − , 2
m

p c= − , m n w= ⋅ ,

where
+

, ,n w c ∈Z and 2
w

c <

OUTPUT: (mod)r a b p= −

 1. borrow = 0
 2. For i from 0 to 1n − do

 2.1. (, []) [] []borrow r i a i b i borrow← − −

 3. If 1borrow =
 3.1. carry = 0

 3.2. For i from 0 to 1n − do

 3.2.1. (, []) [] []carry r i r i p i carry← + +
 4. Return r

Modular Subtraction. Let us consider Algorithm 3.2. After Step 2 we obtain the

completely reduced value r a b= − if 0borrow = . If, otherwise, 1borrow = then this bit is

discarded and the partial result is given by 2mr a b= − + , where b a> . This value is

incorrect, because it has the extra addition with 2m . In step 3.2, we compute
1(2) (2) 2m m mr p a b c a b c ++ = − + + − = − − + , where 1 12 2 2m m ma b c + +< − − + < since

10 P. Longa and C. Gebotys

2 0m c a b− + < − < . Then, by simply discarding the final carry from Step 3.2 (i.e., by

subtracting 2m) we obtain the correct, completely reduced result
12 2m ma b c a b p+− − + − = − + , where 0 a b p p< − + < . Since Algorithm 3.2 gives the

correct result without evaluating both values of borrow after Step 2 (similarly to the case of

carry in Alg. 3.1(b)), there is no need for incomplete reduction in this case.

Nevertheless, there are other types of “small” operations that may be benefited by the use

of IR. We analyze in the following the cases that are useful to the setting of ECC over prime

fields.

Modular Addition (mod)a b p++++ with IR, where [0, 1]a p∈ −∈ −∈ −∈ − and [0,2 1]mb ∈ −∈ −∈ −∈ − . In this

case, after addition we get 10 2 2ma b c+≤ + ≤ − − , where 1 12 2 2 2m m mc+ +< − − < for

practical values of m. Thus, if there is no final carry the result r is incompletely reduced such

that [0,2 1]mr ∈ − , as wanted. Otherwise, for the case 12 2 2m ma b c+≤ + ≤ − − we discard

the carry and add the correction value c such that 0 2 2 2 2m m mc a b c< ≤ + − + ≤ − < to

obtain an incompletely reduced result [0,2 1]mr ∈ − . Consequently, Algorithm 3.1(b) also

allows adding two terms where one of them can be in incompletely reduced form.

Modular Multiplication by 3 with IR, where [0, 1]a p∈ −∈ −∈ −∈ − . If this operation is performed

by executing (mod)a a a p+ + , internally, the first addition (mod)r a a p= +

can be left

incompletely reduced using Algorithm 3.1(b). Then, following the proof in the previous

subsection, the final result (mod) [0,2 1]mr a p+ ∈ − can be obtained by adding the

incompletely reduced value r with the completely reduced operand a.

Modular Division /2(mod)a p with IR, where [0,2 1]ma ∈ −∈ −∈ −∈ − . This operation is illustrated

when using IR by Alg. 3.3(b). If the value a is even, then a division by 2 can be directly

applied through Steps 3 and 4, where (, []) (, []) / 2carry r i carry r i← represents the concurrent

assignments (1).[] (2 []) / 2i wr i carry r i+ ← ⋅ + and [](mod 2)carry r i← . In this case, if

[0,2 2]ma ∈ − then the result 1[0,2 1]mr −∈ − is completely reduced since 12 1 2m m c− − << −

for practical values of m, such that 2wc < and 1w m< − . If, otherwise, the operand a is odd,

we first add p to a in Step 2.2 to obtain an equivalent from the residue class that is even.

Then, 12 1 2 1m mc p a c+− + < + < − − , where the partial result has 1m + bits maximum and

is stored in (,)carry r . The operation is then completed by dividing by 2 through Steps 3 and

4, where the final result 12 (1) / 2 () / 2 2 (1) / 2m mc p a c− − − < + < − + . Hence, the result is

incompletely reduced because 2 2 (1) / 2 2 1m m mc c− ≤ − + ≤ − . If the result needs to be

completely reduced then, for the case that () / 2 [,2 (1) / 2]mp a p c+ ∈ − + , one needs to

additionally compute a subtraction with p such that 0 () / 2 (1) / 2 2mp a p c c≤ + − < − < − , as

performed in Steps 6 and 7 of Alg. 3.3(a).

It is also interesting to note that in the case that input a is in completely reduced form, i.e.,

[0, 1]a p∈ − , after Step 4 in Alg. 3.3(b) we get 12 (1) / 2 () / 2 2m mc p a c− − + < + < − , which

is in completely reduced form.

Analysis of Efficient Techniques for Fast ECC on x86-64 based Processors 11

Algorithm 3.3 Modular division by 2 with a pseudo-Mersenne prime

INPUT: integers [0, 2 1]
m

a ∈ − , 2
m

p c= − , m n w= ⋅ , where
+

, ,n w c ∈Z and 2
w

c <

OUTPUT: / 2 (mod)r a p= or / 2 (mod 2)
m

r a=

(a) With Complete Reduction (b) With Incomplete Reduction

 1. carry = 0 1. carry = 0

 2. If a is odd 2. If a is odd

 2.2. For i from 0 to 1n − do 2.2. For i from 0 to 1n − do

 2.2.1. (, []) [] []carry r i a i p i carry← + + 2.2.1. (, []) [] []carry r i a i p i carry← + +
 3. (, [1]) (, [1]) / 2carry r n carry r n− ← − 3. (, [1]) (, [1]) / 2carry r n carry r n− ← −
 4. For i from 2n − to 0 do 4. For i from 2n − to 0 do

 4.1. (, []) (, []) / 2carry r i carry r i← 4.1. (, []) (, []) / 2carry r i carry r i←
 5. borrow = 0 5. Return r

 6. For i from 0 to 1n − do

 6.1. (, []) [] []borrow R i r i p i borrow← − −
 7. If borrow = 0

 7.1. r R←

 8. Return r

To evaluate in practice the advantage of using incomplete reduction, we implemented in

assembly language both versions with and without IR of each operation discussed in this

section. In Table 2, we summarize our results on the targeted Intel and AMD processors.

TABLE 2

Cost (in cycles) of modular operations when using incomplete reduction (IR)

against complete reduction (CR);
2562 189p = − .

Modular Operation

Atom N450 Core 2 Duo E6750 Opteron 252

IR CR
Cost reduction

(%)
IR CR

Cost reduction

(%)
IR CR

Cost reduction

(%)

 Addition 31 45 31% 20 25 20% 13 20 35%

 Multiplication by 2 27 40 33% 19 24 21% 10 17 41%

 Multiplication by 3 43 69 38% 28 43 35% 15 23 35%

 Division by 2 57 61 7% 20 25 20% 11 18 39%

As can be seen in Table 2, in our experiments using the pseudo-Mersenne prime
2562 189p = − we obtain significant reductions in cost ranging from 7% to up to 41% when

using IR.

It is important to note that, because multiplication and squaring may accept inputs in the

range [0,2 1]m − , an operation using IR can precede any of these two operations. Thus, the

reduction process (which is left “incomplete” by the operation using IR) is fully completed

by these multiplications or squarings without any additional cost. If care is taken when

implementing point operations, virtually all additions and multiplications/divisions by small

12 P. Longa and C. Gebotys

constants can be implemented with IR because most of them have results that are later

required by multiplications or squarings only. See Appendix A for details about the

scheduling of field operations pF suggested for point formulas using Jacobian and

(extended) Twisted Edwards coordinates.

3.2 Elimination of Conditional Branches

Conditional branches may be expensive in several modern processors with deep pipelines if

the prediction strategy fails in most instances in a particular implementation. Recovering

from a mispredicted branch requires the pipeline to flush, wasting several clock cycles that

may increase the overall cost significantly. In particular, the reduction portion of modular

addition, subtraction and other similar operations is traditionally expressed with a

conditional branch. For example, let us consider the evaluation in Step 3 of Algorithm 3.1(b)

for performing a modular addition with IR. Because , [0, 1]a b p∈ − and 2m p c− = (again

considering 2mp c= − and m s=), where c is a relatively small number such that 2m p≈

for practical estimates, the possible values for carry after computing a b+ in Step 2, where

() [0,2 2]a b p+ ∈ − , are (approximately) equally distributed and describe a “random”

sequence for all practical purposes. In this scenario, only an average of 50% of the

predictions can be correct in the best case. Similar results are expected for conditional

branches in other operations (see Algorithms 3.1-3.3).

To avoid the latter effect, it is possible to eliminate conditional branches by using

techniques such as look-up tables or branch predication (cf. §2.1). In Fig. 3.1, we illustrate

the replacement of the conditional branch in Step 3 of Alg. 3.1(b) by a predicated move

FIGURE 3.1

Steps 3 and 4 of Alg. 3.1(b) for executing modular addition using IR, where
2562 189p = − . The conditional branch is replaced by (a) cmov instruction

(initial values %rax=0, %rcx=189) and (b) look-up table using indexed

indirect addressing mode (preset values %rax=0, (%rcx)=0, 8(%rcx)=

189). Partial addition a b+ from Step 2 is stored in registers %r8-r11 and

final result is stored in x(%rdx). x86-64 assembly code uses AT&T syntax.

(a) (b)

 > ⋮ > ⋮

 > cmovnc %rax,%rcx > adcq $0,%rax

 > addq %rcx,%r8 > addq (%rcx,%rax,8),%r8

 > movq %r8,8(%rdx) > movq %r8,8(%rdx)

 > adcq $0,%r9 > adcq $0,%r9

 > movq %r9,16(%rdx) > movq %r9,16(%rdx)

 > adcq $0,%r10 > adcq $0,%r10

 > movq %r10,24(%rdx) > movq %r10,24(%rdx)

 > adcq $0,%r11 > adcq $0,%r11

 > movq %r11,32(%rdx) > movq %r11,32(%rdx)

 > ret > ret

Analysis of Efficient Techniques for Fast ECC on x86-64 based Processors 13

instruction (Fig. 3.1(a)) and by a look-up table with indexed indirect addressing (Fig. 3.1(b)).

In both cases, the strategy is to perform an addition with 0 if there is no carry-out (i.e., the

reduction step is not required) or an addition with 189c = , where 2562 189p = − , if there is

carry-out and the computation 256(2) 189a b+ − + is necessary. On the targeted CPUs,

branch predication performs slightly better in most cases. This conclusion is platform-

dependent and, in our case, may be due to the faster execution of cmov in comparison to the

memory access required by the look-up table approach.

To quantify in practice the difference in performance obtained by implementing modular

arithmetic with and without conditional branches, we tested both schemes on the targeted

Intel and AMD processors. The results are summarized in Table 3. For addition, subtraction

and division by 2, we use Algorithms 3.1(a), 3.2 and 3.3(a), respectively. In the case of

addition and division by 2 using IR, we use Algorithms 3.1(b) and 3.3(b), respectively.

Multiplication by 2 is a variation of the addition operation for which 2a is computed as

(mod)a a p+ .

TABLE 3
Cost (in cycles) of modular operations without conditional branches (w/o

CB) against operations using conditional branches (with CB);
2562 189p = − .

Modular Operation

Atom N450

Core 2 Duo E6750 Opteron 252

w/o

CB

With

CB

Cost reduction

(%)

w/o

CB

With

CB

Cost reduction

(%)

w/o

CB

With

CB

Cost reduction

(%)

 Subtraction 34 37 8% 21 37 43% 16 23 30%

 Addition with IR 31 35 11% 20 37 46% 13 21 38%

 Addition 45 43 −4.4% 25 39 36% 20 23 13%

 Multiplication by 2 with IR 27 34 21% 19 38 50% 10 19 47%

 Multiplication by 2 40 42 5% 24 38 37% 17 20 15%

 Division by 2 with IR 57 66 14% 20 36 44% 11 18 39%

 Division by 2 61 70 13% 25 39 36% 18 27 33%

As shown in Table 3, the cost reductions obtained by eliminating CBs can be as high as

50%. Remarkably, the greatest performance gains are obtained in the cases of operations

exploiting IR. For instance, on Core 2 Duo, an addition using IR reduces its cost in 46%

when CBs have been eliminated in comparison to only the 36% reduction obtained by an

addition with complete reduction. Thus, elimination of CBs favors more strongly modular

arithmetic using IR. This is due to the fact that modular operations exploiting IR allow very

compact implementations that are even easier to schedule efficiently when branches are

removed. It is also interesting to note that, when comparing Core 2 Duo’s and Opteron’s

performances, gains are higher for the former processor, which has more stages in its

pipeline. Roughly speaking, the gain obtained by eliminating (poorly predictable) CBs on

14 P. Longa and C. Gebotys

these architectures grows proportionally with the number of stages in the pipeline. In

contrast, the gains on Intel Atom are significantly smaller since the pipeline execution and

ILP on this in-order processor are much less efficient and, hence, the relative cost of

misprediction penalty reduces, as can be deduced from eq. (1).

Following the conclusions above, we have implemented ECC point formulas such that the

gain obtained by combining IR and the elimination of CBs is maximal. The reader is referred

to Appendix A for details about the cost of point formulas in terms of field operations.

Next, we evaluate the cost of point doubling and doubling-addition (using Jacobian

coordinates) when their “small” field operations are implemented with complete or

incomplete reduction and with or without conditional branches. For the analysis, we use the

revised doubling formula (1), Section 4.2, introduced in [35] and the doubling-addition

formula (3.5), Section 3.2, introduced in [31]. The results are shown in Table 4.

TABLE 4
Cost (in cycles) of point operations with Jacobian coordinates when using incomplete

reduction (IR) or complete reduction (CR) and with or without conditional branches

(CB);
2562 189p = − .

Point operation

Atom N450 Core 2 Duo E6750 Opteron 252

CR and

CBs

CR and

no CBs

IR and

no CBs

CR and

CBs

CR and

no CBs

IR and

no CBs

CR and

CBs

CR and

no CBs

IR and no

CBs

Doubling 3480 3430 3381 1184 1094 1051 910 824 803

Relative reduction (%) - 1% 3% - 8% 11% - 9% 12%

Doubling-addition 8828 8697 8663 2656 2468 2443 2037 1851 1849

Relative reduction (%) - 1% 2% - 7% 8% - 9% 9%

Estimated relative

reduction for 256-bit point

multiplication (%)

- 1% 3% - 8% 10% - 9% 11%

As can be seen in Table 4, the computing costs of point doubling and doubling-addition on

the AMD processor reduce in 12% and 9%, respectively, by combining the elimination of

conditional branches with the use of incomplete reduction. Without taking into account

precomputation and the final inversion to convert to affine, these reductions represent about

11% of the computing cost of point multiplication. A similar figure is observed for Intel

Core 2 Duo in which doubling and doubling-addition are reduced by approx. 11% and 8%,

respectively. These savings represent a reduction of about 10% in the cost of point

multiplication (again, without considering precomputation and the final inversion). In

contrast, following previous observations (see Table 3) the techniques are less effective on

architectures such as Intel Atom, where the ILP is less powerful and branch misprediction

penalty is relatively less expensive. In this case, the cost reduction of point multiplication is

only about 3%.

A similar analysis to the one provided in this section can be performed on other platforms

Analysis of Efficient Techniques for Fast ECC on x86-64 based Processors 15

to determine whether conditional branches should be removed. In such case, it would be

necessary to test both the use of look-up tables and branch predication to determine which

one is the most efficient replacement for branches. Also, some testing would help to

determine the performance improvement obtained by these approaches in combination with

incomplete reduction.

4 MINIMIZING THE EFFECT OF DATA DEPENDENCIES

In this section, we analyze (true) data dependencies between “close” field operations and

propose three techniques to minimize their effect in the point multiplication performance.

Corollary 4.1. Let iI and jI be write and read instructions, respectively, holding data

dependence, i.e., () ()i jW I R I∩ ≠ ∅ , where i j< and iI and jI are scheduled to be

executed at the thi and thj cycle, respectively, in a non-superscalar pipelined architecture.

Then, if writej iρ δ= − < the pipeline is to be stalled for at least ()writeδ ρ− cycles, where

writeδ specifies the number of cycles required by the write instruction iI to complete its

pipeline latency after instruction fetching.

Although Corollary 4.1 considers an ideal non-superscalar pipeline, it allows us to

simplify the analysis on more complex processors. In particular, the value writeδ , which

strongly depends on the particular characteristics of a given architecture, can be considered

for practical purposes roughly equal to the pipeline size. Note, however, that there are

hardware techniques such as data forwarding that allow a significant reduction in the value

writeδ by sending back the result of an operation into the decode stage so that this result is

immediately available to a coming instruction before the current instruction commit/store the

output. Unfortunately, in our application most modular operations are not able to efficiently

exploit forwarding in case the result is required by the following operation because several

consecutive writings to memory are involved in the process. To illustrate this problem let us

consider the execution of two consecutive field additions in Figure 4.1. For the remainder,

given a field operation “∗ ”, the operation ← ∗res op1 op2 is denoted by

operation(op1,op2,res).

As can be seen in Figure 4.1, results stored in memory in the last stage of the first addition

are read in the first stage of the second addition. In this example, four consecutive writings

to memory and then four consecutive readings need to be performed because operands are

256-bit long distributed over four 64-bit registers. In this case, if write xδ ρ> for at least one

of the dependences x indicated by arrows then the pipeline is expected to stall for at least

()write xδ ρ− cycles. Then, for the writing/reading sequence in Figure 4.1, the pipeline is

roughly stalled by max()write xδ ρ− for 0 4x≤ < .

Definition 4.1. Two field operations (, ,)i m n pOP op op res and (, ,)j r s tOP op op res are said to

be data dependent at the field arithmetic level if i j< and p rres op= or p sres op= , where

iOP and jOP denote the field operations performed at positions thi and thj during a

16 P. Longa and C. Gebotys

FIGURE 4.1

Field additions with RAW dependencies on an x86-64 CPU (
2562 189p = −).

High-level field operations are in the left column and low-level assembly

instructions corresponding to each field operation are to the right. In this

example, destination x(%rdx) (first field addition) = source x(%rdi)

(second field addition). Dependencies are indicated by arrows.

 ⋮

 > addq %rcx,%r8

 > movq %r8,8(%rdx)

 > adcq $0,%r9

 > movq %r9,16(%rdx)

 > adcq $0,%r10

 > movq %r10,24(%rdx)

 ⋮ > adcq $0,%r11

 > Add(op1,op2,res1) > movq %r11,32(%rdx)

 > Add(res1,op3,res2) > xorq %rax,%rax

 ⋮ > movq $0xBD,%rcx

 > movq 8(%rdi),%r8

 > addq 8(%rsi),%r8

 > movq 16(%rdi),%r9

 > adcq 16(%rsi),%r9

 > movq 24(%rdi),%r10

 > adcq 24(%rsi),%r10

 > movq 32(%rdi),%r11

 > adcq 32(%rsi),%r11

 ⋮

program execution, and op and res are registers holding the inputs and result, respectively.

Then, this is called a contiguous data dependence in the field arithmetic if 1j i− = , i.e., iOP

and jOP are consecutive in the executing sequence.

For the applications targeted in this work all field operations follow a similar

writing/reading pattern to that one shown in Figure 4.1, and hence, two contiguous, data

dependent field operations hold several data dependencies x between their internal write/read

instructions. Following Definition 4.1 and Corollary 4.1, contiguous data dependencies pose

a problem when write xδ ρ> in a given implementation or processor architecture, in which

case the pipeline is stalled by roughly max()write xδ ρ− cycles for all dependencies x. Note

that at fewer dependent write/read instruction pairs (i.e., at smaller field sizes) the expression

max()write xδ ρ−

grows as well as the number of potential stalled cycles. Similarly, at larger

basic wordlengths w max()write xδ ρ− is expected to increase, worsening the effect of

contiguous data dependencies.

Next, we propose three techniques that help to reduce the number of contiguous data

dependencies in the field arithmetic and study several practical scenarios in which this would

allow us to improve the execution performance of point multiplication.

Analysis of Efficient Techniques for Fast ECC on x86-64 based Processors 17

4.1 Field Arithmetic Scheduling

A straightforward solution to eliminate contiguous data dependencies is to perform a careful

scheduling of the field operations inside point formulas in such a way that data-dependent

field operations are not contiguous. For all practical purposes, we can consider that any field

operation has an executing latency insδ longer than the latency of a write instruction, i.e.,

ins writeδ δ> . Hence, by inserting any “independent” field operation between two consecutive

operations holding contiguous data dependence we guarantee that the new relative positions

,new xρ of the data-dependent instructions accomplishes ,new x x ins writeρ ρ δ δ= + > for all data

dependencies x, where xρ denotes the original relative positions between data-dependent

write/read instructions.

We have tested several field operation “arrangements” to observe the latter behavior on

different processors. We detail here a few of our experiments with field multiplication on an

Intel Core 2 Duo. For example, let us consider the field multiplication sequences given in

Table 5. As can be seen, Sequence 1 involves a series of “ideal” data-independent field

multiplications, where the output of a given operation is not an input to the immediately

following operation. In this case, the execution reaches its maximal performance with an

average of 110 cycles per multiplication because for any pair of data-dependent

multiplications we have x writeρ δ>> . Contrarily, the second sequence is highly dependent

because each output is required as input in the following operation. In this case, write xδ ρ>

for at least one dependence x. This is the worst-case scenario with an average of 128 cycles

per multiplication, which is about 14% less efficient than the “ideal” case. We have also

studied other possible arrangements such as Sequence 3, in which operands of Sequence 2

have been reordered. This slightly amortizes the impact of contiguous data dependencies

because xρ is increased, improving the performance to 125 cycles/multiplication.

TABLE 5

Various sequences of field operations with different levels of contiguous data

dependence.

 Sequence 1 Sequence 2 Sequence 3

 > Mult(op1,op2,res1) > Mult(op1,op2,res1) > Mult(op2,op1,res1)

 > Mult(op3,op4,res2) > Mult(res1,op3,res2) > Mult(op3,res1,res2)

 > Mult(res1,op5,res3) > Mult(res2,op4,res3) > Mult(op4,res2,res3)

 > Mult(res2,op6,res4) > Mult(res3,op5,res4) > Mult(op5,res3,res4)

Similarly, we have also tested the effect of contiguous data dependencies on other field

operations. In Table 6, we summarize the most representative field operation “arrangements”

and their costs. As can be seen, the reductions in cost obtained by switching from an

execution with strong contiguous data dependence (worst-case scenario with Sequence 2) to

an execution with no contiguous data dependencies (best-case scenario with Sequence 1)

range from approximately 9% to up to 33% on an Intel Core 2 Duo. Similar results were

observed for the targeted AMD Opteron and Intel Xeon processors, where the high

18 P. Longa and C. Gebotys

performance of their architectures significantly reduce relative positions xρ between their

data-dependent write/read instructions, increasing the value max()write xδ ρ− . Thus,

minimizing contiguous data dependencies is expected to improve the execution of point

multiplication on all these processors. In contrast, Sequences 1 and 2 perform similarly on

processors such as Intel Atom, in which the much less powerful architecture tends to

increase values xρ such that write xδ ρ< for all dependencies x.

TABLE 6
Average cost (in cycles) of modular operations using best-case (no

contiguous data dependencies, Sequence 1) and worst-case (strong

contiguous data dependence, Sequence 2) “arrangements” (
2562 189p = − ,

on a 2.66GHz Intel Core 2 Duo E6750).

Modular Operation

Core 2 Duo E6750

Sequence

1

Sequence

2

Cost reduction

(%)

 Subtraction 21 23 9%

 Addition with IR 20 24 17%

 Multiplication by 2 with IR 19 23 17%

 Multiplication by 3 with IR 28 34 18%

 Division by 2 with IR 20 30 33%

 Squaring 101 113 11%

 Multiplication 110 128 14%

4.2 Merging Point Operations

This technique complements and increases the gain obtained by scheduling field operations.

As expected, in some cases it is not possible to eliminate all contiguous data dependencies in

a point formula. A clever way to increase the chances of eliminating more of these

dependencies is by “merging” successive point operations into unified functions.

For example, let us consider the following sequence of field operations for computing a

point doubling using Jacobian coordinates: 1 1 1 1 1 12(, ,) (, ,)X Y Z X Y Z→

 > Sqr(Z1,t3) > Mult(X1,t2,t4) > Sqr(t1,t2)

 > Sqr(Y1,t2) > Mult(t1,t0,t3) > DblSub(t2,t4,X1)
1
 •

 > Add(X1,t3,t1) > Sqr(t2,t0) > Sub(t4,X1,t2) •
 > Sub(X1,t3,t3) > Div2(t3,t1) > Mult(t1,t2,t4) •
 > Mult3(t3,t0) • > Mult(Y1,Z1,Z1) > Sub(t4,t0,Y1) •

In total, there are five contiguous data dependencies between field operations (denoted by

" "•) in the sequence above. Note that the last stage accounts for most dependencies, which

are very difficult to eliminate. However, if another point doubling follows, one could merge

1
 DblSub(b,c,a) represents the operation 2 (mod)a b c p← − . See Section 4.3.

Analysis of Efficient Techniques for Fast ECC on x86-64 based Processors 19

both successive operations and be able to reduce the number of contiguous data-dependent

operations. Consider, for example, the following arrangement of two consecutive doublings

 > Sqr(Z1,t3) > Mult(t1,t0,t3) > DblSub(t2,t4,X1) > Mult3(t3,t1)

 > Sqr(Y1,t2) > Sqr(t2,t0) > Sub(t4,X1,t2) • > Sqr(Y1,t2)

 > Add(X1,t3,t1) > Div2(t3,t1) > Add(X1,t3,t5) > Mult(t1,t5,t3)

 > Sub(X1,t3,t3) > Mult(Y1,Z1,Z1) > Mult(t1,t2,t4) > Mult(t2,X1,t4)

 > Mult3(t3,t0) • > Sqr(t1,t2) > Sub(X1,t3,t3) > Div2(t3,t1)

 > Mult(X1,t2,t4) > Sqr(Z1,t3) > Sub(t4,t0,Y1) > …

As can be seen, the sequence above (instructions from the second doubling are in bold)

allows us to further reduce the number of dependencies from five to only two.

In ECC implementations, it appears natural to merge successive doubling operations or a

doubling and an addition. Efficient elliptic curve point multiplications []k P use the non-

adjacent form (NAF) in combination with some windowing strategy to recode the scalar k.

For instance, width-w NAF (wNAF) guarantees at least w successive doublings between

point additions. Also, one can exploit the efficient doubling-addition operation by [31] for

Jacobian coordinates or the combined (dedicated) doubling-(dedicated) addition by [26] for

Twisted Edwards coordinates (see Table 1). Hence, an efficient solution for these systems is

to merge (1)w − consecutive doublings (for an optimal choice of w) in a separate function

and merge each addition with the precedent doubling in another function. On the other hand,

if an efficient doubling-addition formula is not available for certain setting, then it is

suggested to merge w consecutive doublings in one function and have the addition in a

separate function. Note that for different coordinate systems/curve forms/point

multiplication methods the optimal merging strategy may vary or include different

operations. Remarkably, a side-effect of this technique is that the number of function calls to

point formulas is also reduced dramatically.

4.3 Merging Field Operations

This technique consists in merging various field operations with common operands to

implement them in a joint function. There are two scenarios where this approach becomes

attractive:

• The result of a field operation is required as input by a following operation: merging

reduces the number of memory reads/writes and eliminates directly potential

contiguous data dependencies.

• Operands are required by more than one field operation: merging reduces the number

of memory reads/writes.

We remark that the feasibility of merging certain field operations depends strictly on the

chosen platform and the number of general purpose registers available to the programmer/

compiler. Also, before deciding on a merging option implementers should analyze and test

20 P. Longa and C. Gebotys

the increase in the code size and how this affects the performance of the cache for example.

Accordingly, in the setting of ECC over prime fields, multiplication and squaring are not

recommended to be merged with other operations if multiple functions containing these

operations are necessary. The code increase could potentially affect the cache performance.

Taking into account the considerations above, we suggest the following merged field

operations on x86-64 based processors using Jacobian and Twisted Edwards coordinates:

2 (mod)a b p− , (mod)a a a p+ + , and the merging of (mod)a b p− and

() 2 (mod)a b c p− − . We remark that this list is not exhaustive. Different platforms with

more registers may enable a much wider range of merging options. Also, other possibilities

for merging could be available for different coordinate systems and/or underlying fields (for

instance, see Section 5.2 for the merging options suggested for ECC implementations over

quadratic extension fields).

To illustrate the impact of scheduling field operations, merging point operations and

merging field operations, we show in Table 7 the cost of point doubling using Jacobian

coordinates when using these techniques in comparison with a naïve implementation with a

high number of dependencies.

TABLE 7
Cost (in cycles) of point doubling using Jacobian coordinates with different number

of contiguous data dependencies and the corresponding reduction in the cost of point

multiplication. “Unscheduled” refers to implementations with a high number of

dependencies (in this case, 10 per doubling and 13 per doubling-addition).

Implementations that apply scheduling of field operations, merging of point

operations and merging of field operations are listed under “Scheduled and merged”

(in this case, 1.25 depend. per doubling and 3 per doubling-addition);
2562 189p = − .

Point operation

Atom N450 Core 2 Duo E6750 Opteron 252

 “Unscheduled”
 “Scheduled

and merged”
 “Unscheduled”

 “Scheduled

and merged”
 “Unscheduled”

 “Scheduled

and merged”

Doubling 3390 3332 1115 979

12%

786 726

8% Relative reduction (%) - 2% - -

Estimated reduction for 256-bit

point multiplication (%)
- 1% - 9% - 5%

As can be seen in Table 7, by reducing the number of dependencies from ten to about one

per doubling, minimizing function calls and reducing the number of memory reads/writes,

we are able to reduce the cost of a doubling by 12% and 8% on Intel Core 2 Duo and AMD

Opteron processors, respectively. It is also important to note that on a processor such as

AMD Opteron, which has a smaller pipeline and consequently less lost due to contiguous

data dependencies (smaller writeδ with roughly the same values xρ as Core 2 Duo), the

estimated gain obtained with these techniques in the point multiplication is lower (5%) in

comparison with the Intel processor (9%). Finally, following our analysis in previous

Analysis of Efficient Techniques for Fast ECC on x86-64 based Processors 21

sections, Intel Atom only obtains a very small improvement in this case because contiguous

data dependencies do not affect the execution performance (see Section 4.1).

The reader is referred to Appendix A for details about the suggested field arithmetic

scheduling, merging of point operations and merging of field operations for point formulas

using Jacobian and (extended) Twisted Edwards coordinates.

5 OPTIMIZATIONS FOR THE 2Fp
 FIELD ARITHMETIC

The techniques and optimizations described so far are not exclusive to the popular pF

field

arithmetic. In fact, the scheduling of field operations, merging of field operations and

merging of point operations are generic and can be extended to different finite fields with

similar benefits and results. In this section, we analyze how the aforementioned techniques

can be applied to the arithmetic over a quadratic extension field 2p
F . This application has

gained sudden importance thanks to the recently proposed GLS method [19], which exploits

an efficiently computable homomorphism to speed up the execution of point multiplication

over 2p
F .

For our study, we consider the highly-optimized assembly module of the field arithmetic

over 2p
F written by M. Scott [42]. This module exploits the “nice” Mersenne prime

1272 1p = − , which allows a very simple reduction step with no conditional branches.

Although IR can also be applied to this scenario, in practice we observe that the gain is

negligible on the platforms under study. Future work may consider the analysis of this

technique on different platforms.

5.1 Scheduling of field operations

As described in Section 2.2, each 2p
F operation consists of a few field operations over pF .

Thus, the analysis of data dependencies and scheduling of operations should be performed

taking into account this underlying layer. For instance, let us consider the execution of a 2p
F

multiplication followed by a subtraction shown in Figure 5.1. Note that multiplication is

implemented using Karatsuba with 3 pF multiplications and 5 pF additions/subtractions.

As can be seen in Figure 5.1, the scheduling of the internal pF operations of the 2p
F

multiplication has been performed in such a way that contiguous data dependencies are

minimal between pF operations (there is only one dependence between DblSub and Sub in

the last stage of multiplication). A similar analysis can be performed between contiguous

higher-layer 2p
F operations. In Figure 5.1, the last pF

operation of the multiplication and

the first pF

operation of the subtraction hold contiguous data dependence. There are

different solutions to eliminate this problem. For example, it can be eliminated by

rescheduling the 2p
F subtraction and addition, as shown in Figure 5.2(a). Note that addition

does not hold any dependence with the multiplication or subtraction, as required.

Alternatively, if internal pF field operations of the subtraction are rescheduled, as shown in

Figure 5.2(b), the contiguous data dependence is also eliminated. These strategies can be

applied to point formulas to minimize the appearance of such dependencies.

22 P. Longa and C. Gebotys

FIGURE 5.1

2
p
F operations with contiguous data dependencies. High-level 2

p
F operations

are in the left column and their corresponding low-level pF operations are in

the right column. 2
p
F

elements ()a bi+ are represented as (op[1],op[2]).

Dependencies are indicated by arrows.
 ⋮

 > Add(op1[1],op1[2],t1)

 > Add(op2[1],op2[2],t2)

 > Mult(op1[2],op2[2],t3)

 > Mult(t1,t2,res1[2])

 > Mult(op1[2],op2[1],res1[1])

 ⋮ > DblSub(res1[2],res1[1],t3)

 > Mult(op1,op2,res1) > Sub(res1[1],t3,res1[1])

 > Sub(res1,op3,res2) > Sub(res1[1],op3[1],res2[1])

 > Add(op4,op5,res3) > Sub(res1[2],op3[2],res2[2])

 ⋮ ⋮

FIGURE 5.2

(a) Contiguous data dependencies eliminated by scheduling 2
p
F field

operations.
 ⋮

 > Add(op1[1],op1[2],t1)

 > Add(op2[1],op2[2],t2)

 > Mult(op1[2],op2[2],t3)

 > Mult(t1,t2,res1[2])

 > Mult(op1[2],op2[1],res1[1])

 ⋮ > DblSub(res1[2],res1[1],t3)

 > Mult(op1,op2,res1) > Sub(res1[1],t3,res1[1])

 > Add(op4,op5,res3) ...

 > Sub(res1,op3,res2) > Sub(res1[1],op3[1],res2[1])

 ⋮ > Sub(res1[2],op3[2],res2[2])

 ⋮

(b) Contiguous data dependencies eliminated by scheduling pF field

operations.
 ⋮

 > Add(op1[1],op1[2],t1)

 > Add(op2[1],op2[2],t2)

 > Mult(op1[2],op2[2],t3)

 > Mult(t1,t2,res1[2])

 > Mult(op1[2],op2[1],res1[1])

 ⋮ > DblSub(res1[2],res1[1],t3)

 > Mult(op1,op2,res1) > Sub(res1[1],t3,res1[1])

 > Sub(res1,op3,res2) > Sub(res1[2],op3[2],res2[2])

 > Add(op4,op5,res3) > Sub(res1[1],op3[1],res2[1])

 ⋮ ⋮

Analysis of Efficient Techniques for Fast ECC on x86-64 based Processors 23

The reader is referred to Appendix B for details about the scheduling of 2p
F operations

suggested for point formulas using Jacobian and (extended) Twisted Edwards coordinates.

5.2 Merging of point and field operations

In the case of the GLS method, merging of point doublings is not as advantageous as in the

traditional scenario of ECC over pF because most contiguous data dependencies can be

eliminated by simply rescheduling field operations inside point formulas using the

techniques from Section 5.1 (see Appendix B). Moreover, GLS employs point multiplication

techniques such as interleaving (see Section 6.2), which does not guarantee a long series of

consecutive doublings between additions. Nevertheless, it is still advantageous the use of the

merged doubling-addition operation, which is a recurrent operation in interleaving.

On the other hand, merging field operations is more advantageous in this scenario than

over pF . There two reasons for this to happen. First, arithmetic over 2p
F works on top of

the arithmetic over pF , which opens new possibilities to merge more pF operations.

Second, operations are on fields of half size, which means that fewer registers are required

for representing field elements and more registers are available for holding intermediate

operands.

For implementations using Jacobian and (extended) Twisted Edwards coordinates we

suggest the following merged field operations on x86-64 based processors: 2 (mod)a b p− ,

() / 2 (mod)a a a p+ + , (mod)a b c p+ − , the merging of (mod)a b p+ and (mod)a b p− ,

the merging of (mod)a b p− and (mod)c d p− , and the merging of (mod)a a p+ and

(mod)a a a p+ + . Again, we remark that this list is not intended to be exhaustive and

different merging options could be more advantageous or be available on different platforms

with different coordinate systems or underlying fields. Please, refer to Appendix B for

details about the merged 2p
F operations suggested for the GLS method with J and / eE E

coordinates.

6 PERFORMANCE EVALUATION

In this section, we combine and demonstrate the efficiency of the techniques described in

Sections 3-5 to accelerate the computation of a full point multiplication using J and / eE E

coord. For our implementations, we use the well-known MIRACL library by M. Scott [42],

which contains an extensive set of cryptographic functions that simplified the development/

optimization process of our crypto routines. Comparisons focus on implementations of

variable-scalar-variable-point elliptic curve point multiplication with approximately 128 bits

of security.

6.1 Details of the “Traditional” Implementations

Field Arithmetic:

As previously described, the field arithmetic over pF was written using x86-64 compatible

24 P. Longa and C. Gebotys

assembly language and optimized by exploiting incomplete reduction and elimination of

conditional branches for modular addition, subtraction and multiplication/division by

constants (see Section 3). For the case of modular multiplication and squaring, there are two

methods that are commonly preferred in the literature for implementation on GPPs:

schoolbook (or operand scanning method) and Comba [9] (or product scanning method) (see

Section 5.3 of [14] or Section 2.2.2 of [24]). Both methods require 2n w-bit multiplications

when multiplying two n-digit numbers. However, we choose to implement Comba’s method

since it requires approx. 23n w-bit additions, whereas schoolbook requires 24n . Our code

was aggressively optimized by careful scheduling instructions to exploit the instruction-level

parallelism.

Point Arithmetic:

For our implementations, we chose Jacobian and extended Twisted Edwards coord. (see

Section 2.2) and used the formulas for doubling, addition and doubling-addition optimized

by the authors (see Sections 4.1-4.2 of [35]). Thus, we use the execution patterns based on

doublings and doubling-additions proposed by [31] and [26] for Jacobian and Twisted

Edwards coordinates, respectively. The costs in terms of multiplications and squarings can

be found in Table 1. Note that we use general additions (or general doubling-additions)

because inversion is relatively expensive and its inclusion during precomputation cancels

any gain using addition with mixed coordinates during the evaluation stage.

This arithmetic layer was optimized through the use of the techniques described in Section

4, namely field arithmetic scheduling, merging of point operations and merging of field

operations. Because the maximal performance was found with a window of size 5 for the

scalar recoding using wNAF (see next subsection), we merged four consecutive doublings

into a joint function and every addition with the precedent doubling into another function.

Please refer to Appendix A for complete details about these functions exhibiting minimal

number of field operations, different merged field operations and reduced number of

contiguous data dependencies.

Point Multiplication and Precomputation:

For scalar recoding, we use width-w Non-Adjacent Form (wNAF), which offers minimal

nonzero density among signed binary representations for a given window width (i.e., for

certain number of precomputed points) [2]. In particular, we use Alg. 3.35 of [24] for

conversion from integer to wNAF representation. Although left-to-right conversion

algorithms exist [2], which save memory and allow on-the-fly computation of point

multiplication, they are not advantageous on the targeted CPUs. In fact, our tests show that

converting the scalar to wNAF and then executing the point multiplication achieves higher

performance than interleaving conversion and point multiplication. That is because the latter

approach “interrupts” the otherwise smooth flow of point multiplication by calling the

conversion function at every iteration of the double-and-add algorithm. Our choice is also

justified because there are no stringent constraints in terms of memory in the targeted

Analysis of Efficient Techniques for Fast ECC on x86-64 based Processors 25

platforms.

For precomputation on J coordinates, we chose a variant of the LM scheme [36] that does

not require inversions (see Section 7.1 of [33]). This method achieves the lowest cost for

precomputing points, given by (5 2)M (2 4)SL L+ + + , where L represents the number of

non-trivial points (note that we avoid here the S-M trading in the first doubling). On / eE E

coordinates, we precompute points in the traditional way using the sequence

2 2 2P P P P+ + + +… , adding 2P with general additions. Because precomputed points are

left in projective form no inversion is required and the cost is given by (8 4)M 2SL + + . This

involves computing 2P as 2 e→A E , which costs 5M 2S+ (one squaring is saved because

1PZ = ; one extra multiplication is required to compute T coordinate of 2P), one mixed

addition to compute 2P P+ as e e+ →A E E that costs 7M and (1)L − general additions
e e e+ →E E E that cost 8M each. For both coordinate systems, we chose a window with size

5w = (i.e., precomputing { ,[3] , ,[15] }P P P… , 7L =), which is optimal and slightly better

than fractional windows using 6L = or 8.

6.2 Details of the GLS-based Implementations

As mentioned previously, for this case we make use of the optimized assembly module of

the field arithmetic over 2p
F written by M. Scott [42], which exploits the Mersenne prime

1272 1p = − allowing the use of a very simple reduction step with no conditional branches.

For the point arithmetic, we slightly modify formulas for the “traditional” implementations

since in this case these require a few extra multiplications with the twisted curve parameter µ

(see Section 2.2). For example, the (dedicated) addition using extended Twisted Edwards

coordinates with cost 8M (pp. 332 of [26]) cannot be used in this case and has to be replaced

by a formula that costs 9M (also discussed in pp. 332 of [26] as “9M+1D”), which is one

multiplication more expensive (“1D” is avoided because parameter a is still set to −1).

Accordingly (and also following our discussions in Sections 4.1 and 5.1), the scheduling of

the field arithmetic slightly differs. Moreover, different merging options for the field and

point arithmetic are exploited (see Section 5.2). The reader is referred to Appendix B for

complete details about the revised formulas exhibiting minimal number of field operations,

different merged operations and reduced number of contiguous data dependencies.

For the point multiplication, each of the two scalars 0k and 1k in the multiple point

multiplication 0 1[] []()k P k Pλ+ is converted using fractional wNAF [39], and then the

evaluation stage is executed using interleaving (see Alg. 3.51 of [24]). Similarly to our

experiments with the “traditional” implementations, we remark that the separation of the

conversion and evaluation stages yields better performance in our case.

For precomputation on J, we use the LM scheme (see Section 4 of [36]) that has minimal

cost among methods using only one inversion, i.e., 1I (9 1)M (2 5)SL L+ + + + , where L

represents the number of non-trivial points (we avoid here the S-M trading in the first

doubling). A fractional window with 6L = achieves the optimal performance in our case.

Again, on / eE E coordinates we precompute points using general additions in the

sequence 2 2P P P+ + +… . Precomputed points are better left in projective coordinates, in

26 P. Longa and C. Gebotys

which case the cost is given by (9 4)M 2SL + + . This cost involves the computation of 2P as

2 e→A E , which costs 5M 2S+ (one squaring is saved because 1PZ = ; one extra

multiplication is required to compute T coordinate of 2P), one mixed addition to compute

2P P+ as e e+ →A E E that costs 8M and (1)L − general additions e e e+ →E E E that cost

9M each. In this case, an integral window of size 5w = (i.e., 7L =) achieves optimal

performance. As pointed out by [19], precomputing { ,[3] (),[5] (), ,[2 1] ()}P P P L Pψ ψ ψ+…

can be done on-the-fly at low cost.

6.3 Timings

Here we summarize the timings obtained by our “traditional” implementations using / eE E

and J coordinates (called ted256189 and jac256189, respect.) and our implementations

using GLS with / eE E and J coordinates (called ted1271gls and jac1271gls, respect.), when

running them on a single core of Intel and AMD processors based on the x86-64 ISA. The

curves used for these implementations are described in detail in Appendix C. For verification

of each implementation, the results of 104 point multiplications with “random” scalars were

all validated using MIRACL. Several “random” point multiplications were also verified with

Magma.

All the tested programs were compiled with GCC v4.4.1 on the Intel Core 2 Duo E6750

and Intel Atom N450 and with GCC v4.3.4 on the Intel Xeon E5440 and AMD Opteron 252

processors. For measuring computing time, we follow [23] and use a method based on cycle

counts. To obtain our timings, we ran each implementation 105 times with randomly

generated scalars, averaged and approximated the results to the nearest 1000 cycles. Table 8

summarizes our results, labeled as ted1271gls, jac1271gls, ted256189 and jac256189. All

costs include scalar conversion, the point multiplication computation (precomputation and

evaluation stages) and the final normalization step to affine. For comparison purposes, Table

8 also includes the cycle counts that we obtained when running the implementations by M.

Scott (displayed as gls1271-ref4 and gls1271-ref3 [42]) on exactly the same platforms.

Finally, the last 5 rows of the table detail cycle counts of several state-of-the-art

implementations as reported in the literature. However, these referenced results are used

only to provide an approximate comparison since the processor platforms are not identical

(though they use very similar processors).

As can be seen in Table 8, our fastest implementation on the targeted platforms is

ted1271gls, using / eE E with the GLS method. This implementation is about 22% faster

than the previous record set by gls1271-ref4 [18] on a slightly different processor (1.66GHz

Intel Core 2 Duo). A more precise comparison, however, would be between measurements

on identical processor platforms. In this case, ted1271gls is approx. 20%, 22%, 22% and

28% faster than gls1271-ref4 [42] on Atom N450, Core 2 Duo E6750, Xeon E5440 and

Opteron 252, respectively. Although [42] uses inverted Twisted Edwards coordinates (invE),

the improvement with the change of coordinates only explains a small fraction of the speed-

up. Similarly, in the case of J combined with GLS, jac1271gls is about 23% faster than the

record set by gls1271-ref3 [19] on a 1.66GHZ Intel Core 2 Duo. When comparing cycle

Analysis of Efficient Techniques for Fast ECC on x86-64 based Processors 27

TABLE 8
Cost (in cycles) of point multiplication.

Implementation Coordinates Field arithmetic Atom N450
Core 2 Duo

E6750
Xeon E5440 Opteron 252

 ted1271gls / e
E E

2p
F , 127-bit 588000 229000 230000 211000

 jac1271gls J 2p
F , 127-bit 644000 252000 255000 238000

 ted256189 / e
E E p

F , 256-bit 982000 281000 289000 232000

 jac256189 J
p
F , 256-bit 1168000 337000 343000 274000

 gls1271-ref4 [42] inv
E 2p

F , 127-bit 732000 295000 296000 295000

 gls1271-ref3 [42] J 2p
F , 127-bit 832000 332000 332000 341000

 gls1271-ref4 [18] inv
E 2p

F , 127-bit - 293000 1 - -

 gls1271-ref3 [19] J 2p
F , 127-bit - 326000 1 - -

 curve25519 [23] Montgomery
p
F , 255-bit - 386000 2 - 307000 4

 Hisil et al. [27] / e
E E p

F , 256-bit - 362000 3 - -

 Hisil et al. [27] J
p
F , 256-bit - 468000 3 - -

(1) On a 1.66GHZ Intel Core 2 Duo. (2) On a 2.66GHZ Intel Core 2 Duo E6700. (3) On a 2.66GHZ Intel Core 2 Duo E6550.

(4) On a 2.4GHZ AMD Celeron 250.

counts on identical processor platforms, jac1271gls is 23%, 24%, 23% and 30% faster than

gls1271-ref3 [42] on Atom N450, Core 2 Duo E6750, Xeon E5440 and Opteron 252,

respect. Our implementations are also significantly faster than the implementation of

Bernstein's curve25519 by Gaudry and Thomé [23]. For instance, ted1271gls is 41% faster

than curve25519 [23] on a 2.66GHz Intel Core 2 Duo.

If the GLS method is not considered, the fastest implementations using / eE E and J

coordinates are ted256189 and jac256189, respectively. In this case, ted256189 and

jac256189 are 22% and 28% faster than the previous best cycle counts due to Hisil et al. [27]

using also / eE E and J coordinates, respectively, on a 2.66GHz Intel Core 2 Duo.

It is also interesting to note that the performance boost given by the GLS method strongly

depends on the characteristics of a given platform. For instance, ted1271gls and jac1271gls

are about 40% and 45% faster than their “counterparts” over pF , namely ted256189 and

jac256189, respectively, on an Intel Atom N450. On an Intel Core 2 Duo E6750, the

differences reduce to 19% and 25% (respect.). And on an AMD Opteron processor, the

differences reduce even further to only 9% and 13% (respect.). Thus, it seems to exist a

correlation between an architecture’s “aggressiveness” for scheduling operations/exploiting

ILP and the gap between the costs of pF

and 2p
F

operations on x86-64 based processors. In

general, the greater such “aggressiveness” the smaller the 2p p
−F F

gap. And since working

on the quadratic extension involves a considerable increase in the number of multiplications

and additions, GLS loses its attractiveness if such gap is not large enough on certain

platform. For the record, ted1271gls achieves the best cycle count on an AMD Opteron

processor with an advantage of about 31% over the best previous result in the literature due

to Gaudry and Thomé (i.e., curve25519 [23]).

28 P. Longa and C. Gebotys

7 CONCLUSIONS

In this paper, we have combined efficiently techniques such as incomplete reduction and the

elimination of conditional branches to implement highly efficient field arithmetic over prime

fields. Moreover, we have studied the impact of data dependencies between field operations

and proposed three techniques that reduce significantly the appearance of pipeline stalls on

x86-64 based processors. Our methods also reduce the number of function calls and memory

reads/writes and can be easily extended to different underlying fields. We have finally

shown that, by combining efficiently all these techniques with state-of-the-art algorithms and

formulas for ECC point multiplication, significant gains in performance are achieved. Our

high-speed implementations are up to 31% faster than the best previous results in the

literature. Although our implementations (in their current form) only compute [k]P where k

and P vary, several of the optimizations discussed in this work are generic and can be easily

adapted to speed up other implementations using a fixed point P, digital signatures and

different coordinate systems/curve forms/underlying fields.

Acknowledgments. This work was made possible by the facilities of the Shared

Hierarchical Academic Research Computing Network (SHARCNET) and Compute/Calcul

Canada. We would like to thank the Natural Sciences and Engineering Research Council of

Canada (NSERC) and the Ontario Centres of Excellence (OCE) for partially supporting this

work.

 REFERENCES

[1] Advanced Micro Devices, “AMD64 Architecture Programmer’s Manual, Volume 1: Application

Programming,” 2009. Available at
http://developer.amd.com/DOCUMENTATION/GUIDES/Pages/default.aspx

[2] R. Avanzi, “A Note on the Signed Sliding Window Integer Recoding and its Left-to-Right Analogue,” in

Workshop on Selected Areas in Cryptography (SAC 2004), LNCS Vol. 3357, pp. 130–143, Springer,

Heidelberg, 2005.

[3] D. Bernstein, P. Birkner, M. Joye, T. Lange and C. Peters, “Twisted Edwards Curves,” in Advances of

Cryptology - Africacrypt 2008, LNCS Vol. 5023, pp. 389–405, Springer, Heidelberg, 2008.

[4] D. Bernstein, “Curve25519: New Diffie-Hellman Speed Records,” in Public Key Cryptography (PKC’06),

LNCS Vol. 3958, pp. 229-240, Springer, Heidelberg, 2006.

[5] M. Brown, D. Hankerson, J. Lopez and A. Menezes, “Software Implementation of the NIST Elliptic Curves

over Prime Fields,” in Progress in Cryptology CT-RSA 2001, LNCS Vol. 2020, pp. 250-265, Springer,

Heidelberg, 2001.

[6] O. Billet and M. Joye, “The Jacobi Model of an Elliptic Curve and Side-Channel Analysis,” in AAECC

2003, LNCS Vol. 2643, pp. 34–42, Springer, Heidelberg, 2003.

[7] D. Chudnovsky and G. Chudnovsky, “Sequences of Numbers Generated by Addition in Formal Groups and

New Primality and Factorization Tests,” in Advances in Applied Mathematics, Vol. 7, No 4, pp. 385-434,

1986.

[8] H. Cohen, A. Miyaji and T. Ono, “Efficient Elliptic Curve Exponentiation using Mixed Coordinates,” in

Advances in Cryptology – Asiacrypt’98, LNCS Vol. 1514, pp. 51–65, Springer, Heidelberg, 1998.

[9] P. G. Comba, “Exponentiation Cryptosystems on the IBM PC,” in IBM Systems Journal, Vol. 29(4), pp.

526–538, 1990.

[10] C. Neil and P. Schwabe, “Fast Elliptic-Curve Cryptography on the Cell Broadband Engine,” in Progress in

Cryptology – Africacrypt 2009, LNCS Vol. 5580, pp. 368-385, Springer, Heidelberg, 2009.

Analysis of Efficient Techniques for Fast ECC on x86-64 based Processors 29

[11] V. Dimitrov, L. Imbert and P.K. Mishra, “Efficient and Secure Elliptic Curve Point Multiplication using

Double-Base Chains,” in Advances in Cryptology – Asiacrypt 2005, LNCS Vol. 3788, pp. 59–78, Springer,

Heidelberg, 2005.

[12] H. Edwards, “A Normal Form for Elliptic Curves,” in Bulletin of the American Mathematical Society, Vol.

44, pp. 393–422, 2007.

[13] D. Bernstein and T. Lange, “Explicit-Formula Database (EFD),” building on work by many authors, 2007.

Available at http://www.hyperelliptic.org/EFD/oldefd/

[14] S.S. Erdem, T. Yanik and Ç.K. Koç, “Fast Finite Field Multiplication,” in Ç.K. Koç (ed.) Cryptographic

Engineering, Chapter 5, Springer, 2009.

[15] A. Fog, “Instruction Tables: Lists of Instruction Latencies, Throughputs and Micro-operation Breakdowns

for Intel, AMD and VIA CPUs,” 2009. Available at http://www.agner.org/optimize/#manuals,

accessed on Jan. 2010.

[16] A. Fog, “The Microarchitecture of Intel, AMD and VIA CPUs,” 2009. Available at

http://www.agner.org/optimize/#manuals, accessed on January 2010.

[17] J. Großschädl, R. Avanzi, E. Savas and S. Tillich, “Energy-Efficient Software Implementation of Long

Integer Modular Arithmetic,” in Workshop on Cryptographic Hardware and Embedded Systems (CHES’05),

LNCS, Vol. 3659, pp. 75-90, Springer, Heidelberg, 2005.

[18] S. Galbraith, X. Lin and M. Scott, “Endomorphisms for Faster Elliptic Curve Cryptography on a Large

Class of Curves,” in Cryptology ePrint Archive, Report 2008/194, 2008.

[19] S. Galbraith, X. Lin and M. Scott, “Endomorphisms for Faster Elliptic Curve Cryptography on a Large

Class of Curves,” in Advances of Cryptology - Eurocrypt 2009, LNCS Vol. 5479, pp. 518–535, Springer,

Heidelberg, 2009.

[20] R. Gallant, R. Lambert and S. Vanstone, “Faster Point Multiplication on Elliptic Curves with Efficient

Endomorphisms,” in Advances of Cryptology - CRYPTO 2001, LNCS Vol. 2139, pp. 190–200, Springer,

Heidelberg, 2001.

[21] N. Gura, A. Patel, A. Wander, H. Eberle and S.C. Shantz, “Comparing Elliptic Curve Cryptography and

RSA on 8-bit CPUs,” in Workshop on Cryptographic Hardware and Embedded Systems (CHES’04), LNCS,

Vol. 3156, pp. 119-132, Springer, Heidelberg, 2004.

[22] P. Gaudry and E. Thomé, “mpFq – A Finite Field Library,” 2007–2009. Available at
http://mpfq.gforge.inria.fr/mpfq-1.0-rc2.tar.gz

[23] P. Gaudry and E. Thomé, “The mpFq Library and Implementing Curve-Based Key Exchanges,” in SPEED

2007, pp. 49–64, 2007.

[24] D. Hankerson, A. Menezes and S. Vanstone, “Guide to Elliptic Curve Cryptography,” Springer-Verlag,

2004.

[25] H. Hisil, K. Wong, G. Carter, E. Dawson, “Faster Group Operations on Elliptic Curves,” in Cryptology

ePrint Archive, Report 2007/441, 2007.

[26] H. Hisil, K. Wong, G. Carter and E. Dawson, “Twisted Edwards Curves Revisited,” in Advances of

Cryptology - Asiacrypt 2008, LNCS Vol. 5350, pp. 326–343, Springer, Heidelberg, 2008.

[27] H. Hisil, K. Wong, G. Carter and E. Dawson, “Jacobi Quartic Curves Revisited,” Cryptology ePrint

Archive, Report 2009/312, 2009.

[28] J. Hennessy and D. Patterson, “Computer Architecture: A Quantitative Approach,” Morgan Kaufman,

2006.

[29] A. A. Karatsuba and Y. P. Ofman, “Multiplication of Multidigit Numbers on Automata,” in Doklady

Akademii Nauk SSSR, Vol. 145(2), pp. 293–294, 1962.

[30] N. Koblitz, “Elliptic Curve Cryptosystems,” in Mathematics of Computation, Vol. 48, pp. 203–209, 1987.

[31] P. Longa, “Accelerating the Scalar Multiplication on Elliptic Curve Cryptosystems over Prime Fields,”

Master’s Thesis, University of Ottawa, 2007. Available at
http://patricklonga.bravehost.com/publications.html#thesis

[32] P. Longa, “ECC Point Arithmetic Formulae (EPAF),” 2008. Available at
http://patricklonga.bravehost.com/jacobian.html

[33] P. Longa and C. Gebotys, “Setting Speed Records with the (Fractional) Multibase Non-Adjacent Form

Method for Efficient Elliptic Curve Scalar Multiplication,” CACR technical report, CACR 2008-06, 2008..

[34] P. Longa and C. Gebotys, “Novel Precomputation Schemes for Elliptic Curve Cryptosystems,” in

International Conference on Applied Cryptography and Network Security (ACNS 2009), LNCS Vol. 5536,

pp. 71-88, Springer, Heidelberg, 2009.

30 P. Longa and C. Gebotys

[35] P. Longa and C. Gebotys, “Efficient Techniques for High-Speed Elliptic Curve Cryptography,” in

Workshop on Cryptographic Hardware and Embedded Systems (CHES 2010), 2010 (to appear). Available

at http://eprint.iacr.org/2010/315

[36] P. Longa and A. Miri, “New Composite Operations and Precomputation Scheme for Elliptic Curve

Cryptosystems over Prime Fields,” in International Conference on Practice and Theory in Public Key

Cryptography (PKC 2008), LNCS Vol. 4939, pp. 229–247, Springer, Heidelberg, 2008.

[37] P. Longa and A. Miri, “Fast and Flexible Elliptic Curve Point Arithmetic over Prime Fields,” in IEEE

Transactions on Computers, Vol. 57, No 3, pp. 289–302, 2008.

[38] V. Miller, “Use of Elliptic Curves in Cryptography,” in Advances in Cryptology - CRYPTO’85, LNCS Vol.

218, pp. 417–426, Springer, 1986.

[39] B. Möller, “Improved Techniques for Fast Exponentiation,” in International Conference of Information

Security and Cryptology (ICISC 2002), pp. 298-312, 2002.

[40] P. L. Montgomery, “Modular Multiplication without Trial Division,” in Mathematics of Computation, Vol.

44(170), pp. 519–521, 1985.

[41] G.W. Reitweisner, “Binary Arithmetic,” in Adv. Comput., Vol. 1, pp. 232–308, 1960.

[42] M. Scott, “MIRACL – Multiprecision Integer and Rational Arithmetic C/C++ Library,” 1988–2007.

Available at ftp://ftp.computing.dcu.ie/pub/crypto/miracl.zip

[43] R. Szerwinski and T. Güneysu, “Exploiting the Power of GPUs for Asymmetric Cryptography,” in

Workshop on Cryptographic Hardware and Embedded Systems (CHES’08), LNCS Vol. 5154, pp. 79–99,

2008.

[44] J.A. Solinas, “Efficient Arithmetic on Koblitz Curves,” in Design, Codes and Cryptography, Vol. 19, pp.

195–249, 2000.

[45] O. Ugus, D. Westhoff, R. Laue, A. Shoufan and S.A. Huss, “Optimized Implementation of Elliptic Curve

based Additive Homomorphic Encryption for Wireless Sensor Networks,” in Workshop on Embedded

Systems Security (WESS 2007), pp. 11–16, 2007.

[46] S.B. Xu and L. Batina, “Efficient Implementation of Elliptic Curve Cryptosystems on an ARM7 with

Hardware Accelerator,” in International Conference on Information and Communications Security

(ICICS’01), LNCS Vol. 2200, pp. 266-279, Springer, Heidelberg, 2001.

[47] T. Yanik, E. Savaş and C.K. Koç, “Incomplete Reduction in Modular Arithmetic,” in IEE Proceedings of

Computers and Digital Techniques, Vol. 149(2), pp. 46–52, 2002.

A POINT OPERATIONS USING J AND /E Ee COORDINATES

The following Maple scripts verify formulas used for the “traditional” implementations

discussed in this work. Note that point and field operations have been carefully merged and

scheduled to reduce the number of function calls, memory reads/writes and potential pipeline

stalls. Temporary registers are denoted by ti and M=multiplication, S=squaring,

Add=addition, Sub=subtraction, Mulx=multiplication by x, Divx = division by x,

Neg=negation. DblSub represents the computation 2 (mod)a b p− and SubDblSub

represents the merging of (mod)a b p− and () 2 (mod)a b c p− − . Underlined field

operations are merged and operationIR represents a field operation using incomplete

reduction. In practice, input registers are reused to store the result of an operation.

Weierstrass curve (for verification):

x1:=X1/Z1^2; y1:=Y1/Z1^3; x2:=X2/Z2^2; y2:=Y2/Z2^3; ZZ2:=Z2^2; ZZZ2:=Z2^3; a:=-3;

x3:=((3*x1^2+a)/(2*y1))^2-2*x1; y3:=((3*x1^2+a)/(2*y1))*(x1-x3)-y1;

x4:=((y1-y2)/(x1-x2))^2-x2-x1; y4:=((y1-y2)/(x1-x2))*(x2-x4)-y2;

x5:=((y1-y4)/(x1-x4))^2-x4-x1; y5:=((y1-y4)/(x1-x4))*(x4-x5)-y4;

DBL, 2 →J J : 1 1 12(, ,) (, ,)out out outX Y Z X Y Z→ . Cost = 4M+4S+3Sub+1DblSub+1AddIR+

Analysis of Efficient Techniques for Fast ECC on x86-64 based Processors 31

1Mul3IR+1Div2IR; 5 contiguous data dependencies

In practice, Xout,Yout,Zout reuse the registers X1,Y1,Z1 for all cases below.

t4:=Z1^2; t3:=Y1^2; t1:=X1+t4; t4:=X1-t4; t0:=3*t4; t5:=X1*t3; t4:=t1*t0; t0:=t3^2;

t1:=t4/2; t3:=t1^2; Zout:=Y1*Z1; Xout:=t3-2*t5; t3:=t5-Xout; t5:=t1*t3; Yout:=t5-t0;

simplify([x3-Xout/Zout^2]), simplify([y3-Yout/Zout^3]); # Check

4DBL, 8 →J J : 1 1 18(, ,) (, ,)out out outX Y Z X Y Z→ . Cost = 4*(4M+4S+3Sub+1DblSub+

1AddIR+1Mul3IR+1Div2IR); 1.25 contiguous data dependencies/doubling

t4:=Z1^2; t3:=Y1^2; t1:=X1+t4; t4:=X1-t4; t2:=3*t4; t5:=X1*t3; t4:=t1*t2; t0:=t3^2;

t1:=t4/2; Zout:=Y1*Z1; t3:=t1^2; t4:=Z1^2; Xout:=t3-2*t5; t3:=t5-Xout; t2:=Xout+t4;

t5:=t1*t3; t4:=Xout-t4; Yout:=t5-t0; t1:=3*t4; t3:=Yout^2; t4:=t1*t2; t5:=Xout*t3;

t1:=t4/2; t0:=t3^2; t3:=t1^2; Zout:=Yout*Zout; Xout:=t3-2*t5; t4:=Zout^2; t3:=t5-

Xout; t2:=Xout+t4; t5:=t1*t3; t4:=Xout-t4; Yout:=t5-t0; t1:=3*t4; t3:=Yout^2;

t4:=t1*t2; t5:=Xout*t3; t1:=t4/2; t0:=t3^2; t3:=t1^2; Zout:=Yout*Zout; Xout:=t3-2*t5;

t4:=Zout^2; t3:=t5-Xout; t2:=Xout+t4; t5:=t1*t3; t4:=Xout-t4; Yout:=t5-t0; t1:=3*t4;

t3:=Yout^2; t4:=t1*t2; t5:=Xout*t3; t1:=t4/2; t0:=t3^2; t3:=t1^2; Zout:=Yout*Zout;

Xout:=t3-2*t5; t3:=t5-Xout; t5:=t1*t3; Yout:=t5-t0;

mDBLADD, 2 + →J A J : 1 1 1 2 22(, ,) (,) (, ,)out out outX Y Z x y X Y Z+ → . Cost = 13M+5S+

7Sub+2DblSub+1AddIR+1Mul2IR; 5 contiguous data dependencies

t5:=Z1^2; t6:=Z1*t5; t4:=x2*t5; t5:=y2*t6; t1:=t4-X1; t2:=t5-Y1; t4:=t2^2; t6:=t1^2;

t5:=t6*X1; t0:=t1*t6; t3:=t4-2*t5; t4:=Z1*t1; t3:=t3-t5; t6:=t0*Y1; t3:=t3-t0;

t1:=2*t6; Zout:=t4*t3; t4:=t2*t3; t0:=t3^2; t1:=t1+t4; t4:=t0*t5; t7:=t1^2;

t5:=t0*t3; Xout:=t7-2*t4; Xout:=Xout-t5; t3:=Xout-t4; t0:=t5*t6; t4:=t1*t3; Yout:=t4-

t0;

simplify([x5-Xout/Zout^2]), simplify([y5-Yout/Zout^3]); # Check

DBLADD, 2 + →J J J : 2 3
1 1 1 2 2 2 2 22(, ,) (, , , ,) (, ,)out out outX Y Z X Y Z Z Z X Y Z+ → . Cost =

16M+5S+7Sub+2DblSub+1AddIR+1Mul2IR; 3 contiguous data dependencies

t0:=X1*ZZ2; t5:=Z1^2; t7:=Y1*ZZZ2; t4:=X2*t5; t6:=t5*Z1; t1:=t4-t0; t5:=Y2*t6;

t6:=t1^2; t2:=t5-t7; t4:=t2^2; t5:=t6*t0; t0:=t1*t6; t3:=t4-2*t5; t6:=Z1*t1; t3:=t3-

t5; t4:=Z2*t6; t3:=t3-t0; t6:=t7*t0; Zout:=t4*t3; t4:=t2*t3; t1:=2*t6; t0:=t3^2;

t1:=t1+t4; t4:=t0*t5; t7:=t1^2; t5:=t0*t3; Xout:=t7-2*t4; Xout:=Xout-t5; t3:=Xout-t4;

t0:=t5*t6; t4:=t1*t3; Yout:=t4-t0;

simplify([x5-Xout/Zout^2]), simplify([y5-Yout/Zout^3]); # Check

Twisted Edwards curve (for verification):

x1:=X1/Z1; y1:=Y1/Z1; x2:=X2/Z2; y2:=Y2/Z2; T2:=X2*Y2/Z2; a:=-1;

x3:=(2*x1*y1)/(y1^2+a*x1^2); y3:=(y1^2-a*x1^2)/(2-y1^2-a*x1^2);

x4:=(x3*y3+x2*y2)/(y3*y2+a*x3*x2); y4:=(x3*y3-x2*y2)/(x3*y2-y3*x2);

DBL, 2 →E E : 1 1 12(, ,) (, ,)out out outX Y Z X Y Z→ . Cost = 4M+3S+1SubDblSub+1AddIR+

32 P. Longa and C. Gebotys

1Mul2IR+1Neg; no contiguous data dependencies

t1:=2*X1; t2:=X1^2; t4:=Y1^2; t3:=Z1^2; Xout:=t2+t4; t4:=t4-t2; t3:=t4-2*t3;

t2:=t1*Y1; Yout:=-t4; Zout:=t4*t3; Yout:=Yout*Xout; Xout:=t3*t2;

simplify([x3-Xout/Zout]), simplify([y3-Yout/Zout]); # Check

Iterate this code n times to implement nDBL with cost

n(4M+3S+1SubDblSub+1AddIR+1Mul2IR+1Neg)

Merged DBL–ADD, (2)e e+ →E E E : 1 1 1 2 2 2 2 2 22(, ,) ((),(),2 ,2)X Y Z X Y X Y Z T+ + − →

(, ,)out out outX Y Z . Cost = 12M+3S+3Sub+1SubDblSub+4AddIR+1Mul2IR; no contiguous data

dependencies

If Z2=1 (Merged DBL-mADD), t5:=(2*Z2)*t6 is replaced by t5:=2*t6 and the number of

multiplies reduces to 11M at the expense of one extra Mul2

t1:=2*X1; t5:=X1^2; t7:=Y1^2; t6:=Z1^2; Xout:=t5+t7; t7:=t7-t5; t6:=t7-2*t6;

t5:=t1*Y1; t8:=t7*Xout; t0:=t7*t6; t7:=t6*t5; t6:=Xout*t5; Xout:=t7+t8; t1:=t7-t8;

t7:=(2*T2)*t0; t5:=(2*Z2)*t6; t0:=(X2-Y2)*t1; t1:=t5+t7; t6:=(X2+Y2)*Xout; Xout:=t5-

t7; t7:=t0-t6; t0:=t0+t6; Xout:=Xout*t7; Yout:=t1*t0; Zout:=t0*t7;

simplify([x4-Xout/Zout]), simplify([y4-Yout/Zout]); # Check

B POINT OPERATIONS USING J AND /E Ee FOR THE GLS METHOD

The following Maple scripts verify formulas used for the GLS-based implementations

discussed in this work. In the remainder, DblSub represents 2 (mod)a b p− or

(mod)a b c p− − , Mul3Div2 represents () / 2 (mod)a a a p+ + , AddSub represents the

merging of (mod)a b p+ and (mod)a b p− , AddSub2 represents (mod)a b c p+ − ,

SubSub represents the merging of (mod)a b p− and (mod)c d p− , and Mul2Mul3

represents the merging of (mod)a a p+ and (mod)a a a p+ + .

Weierstrass curve (for verification):

x1:=X1/Z1^2; y1:=Y1/Z1^3; a:=-3;

x3:=((3*x1^2+u^2*a)/(2*y1))^2-2*x1; y3:=((3*x1^2+u^2*a)/(2*y1))*(x1-x3)-y1;

x4:=((y1-y2)/(x1-x2))^2-x2-x1; y4:=((y1-y2)/(x1-x2))*(x2-x4)-y2;

x5:=((y1-y4)/(x1-x4))^2-x4-x1; y5:=((y1-y4)/(x1-x4))*(x4-x5)-y4;

DBL, 2 →J J : 1 1 12(, ,) (, ,)out out outX Y Z X Y Z→ . Cost = 4M+4S+2Sub+1DblSub+

1Mul3Div2+1AddSub+1Mulµ; no contiguous data dependencies

In practice, Xout,Yout,Zout reuse the registers X1,Y1,Z1 for all cases below.

t2:=Z1^2; t3:=Y1^2; t1:=u*t2; t2:=X1+t1; t1:=X1-t1; t1:=3*t1/2; t4:=t3*X1; t1:=t2*t1;

t3:=t3^2; Xout:=t1^2; Zout:=Y1*Z1; Xout:=Xout-2*t4; t2:=t4-Xout; t1:=t1*t2; Yout:=t1-

t3;

simplify([x3-Xout/Zout^2]), simplify([y3-Yout/Zout^3]); # Check

mADD, + →J A J : 1 1 1 2 2(, ,) (,) (, ,)out out outX Y Z x y X Y Z+ → . Cost = 8M+3S+5Sub+

1DblSub; no contiguous data dependencies

Analysis of Efficient Techniques for Fast ECC on x86-64 based Processors 33

t2:=Z1^2; t1:=Z1*t2; t2:=t2*x2; t1:=t1*y2; t2:=t2-X1; t1:=t1-Y1; t3:=t2^2; t4:=t1^2;

Zout:=Z1*t2; t2:=t2*t3; t3:=t3*X1; Xout:=t4-t2; Xout:=Xout-2*t3; t3:=t3-Xout;

t1:=t1*t3; Yout:=t2*Y1; Yout:=t1-Yout;

simplify([x4-Xout/Zout^2]), simplify([y4-Yout/Zout^3]); # Check

mDBLADD, 2 + →J A J : 1 1 1 2 22(, ,) (,) (, ,)out out outX Y Z x y X Y Z+ → . Cost = 13M+5S+

2Sub+2DblSub+1SubSub+1Add+1Mul2+1Mul2Mul3+1Div2; no contiguous data depend.

t2:=Z1^2; t1:=Z1*t2; t3:=x2*t2; t1:=y2*t1; t2:=t3-X1; t1:=t1-Y1; t3:=t2^2; t5:=t1^2;

t4:=X1*t3; t3:=t2*t3; Xout:=2*t4; t4:=3*t4; Zout:=Z1*t2; t5:=t5-t3-t4; Yout:=t3*Y1;

t1:=t1*t5; t2:=2*Yout; t3:=t5^2; t1:=t1+t2; t2:=Xout*t3; Xout:=t1^2; t3:=t5*t3;

Xout:=Xout-t2-t3; t2:=t2/2; Zout:=Zout*t5; Yout:=Yout*t3; t2:=Xout-t2; t1:=t1*t2;

Yout:=t1-Yout;

simplify([x5-Xout/Zout^2]), simplify([y5-Yout/Zout^3]); # Check

Twisted Edwards curve (for verification):

x1:=X1/Z1; y1:=Y1/Z1; a:=-1;

x2:=X2/Z2; y2:=Y2/Z2; T2:=X2*Y2/Z2; x5:=X5/Z5; y5:=Y5/Z5; T5:=X5*Y5/Z5;

x3:=(2*x1*y1)/(y1^2+u*a*x1^2); y3:=(y1^2-u*a*x1^2)/(2-y1^2-u*a*x1^2);

x4:=(x3*y3+x2*y2)/(y3*y2+u*a*x3*x2); y4:=(x3*y3-x2*y2)/(x3*y2-y3*x2);

x6:=(x4*y4+x5*y5)/(y4*y5+u*a*x4*x5); y6:=(x4*y4-x5*y5)/(x4*y5-y4*x5);

DBL, 2 →E E : 1 1 12(, ,) (, ,)out out outX Y Z X Y Z→ . Cost = 4M+3S+1Sub+1AddSub+2Mul2+

1Mulµ; no contiguous data dependencies

Zout:=Z1^2; t1:=2*X1; t2:=X1^2; t1:=t1*Y1; Xout:=u*t2; Yout:=Y1^2; Zout:=2*Zout;

t2:=Yout-Xout; Yout:=Yout+Xout; Zout:=Zout-t2; Yout:=t2*Yout; Xout:=t1*Zout;

Zout:=t2*Zout;

simplify([x3-Xout/Zout]), simplify([y3-Yout/Zout]); # Check

Merged DBL–ADD, (2)e e+ →E E E : 1 1 1 2 2 2 22(, ,) (, , ,) (, ,)out out outX Y Z X Y Z T X Y Z+ → .

Cost = 13M+3S+3Sub+1Add+2AddSub+1AddSub2+2Mul2+2Mulµ; no contiguous data

dependencies

If Z2=1 (Merged DBL-mADD), T1:=T1*Z2 is not needed and the number of multiplies

reduces to 12M

Zout:=Z1^2; t1:=2*X1; t2:=X1^2; t1:=t1*Y1; Xout:=u*t2; Yout:=Y1^2; Zout:=2*Zout;

t2:=Yout-Xout; Yout:=Xout+Yout; Zout:=Zout-t2; T1:=t1*Yout; Yout:=t2*Yout;

Xout:=t1*Zout; Zout:=t2*Zout; t1:=Xout*X2; T1:=T1*Z2; Zout:=Zout*T2; t2:=u*t1;

t3:=T1+Zout; Zout:=T1-Zout; T1:=Yout*Y2; Xout:=Xout-Yout; Yout:=X2+Y2; t2:=T1-t2;

Xout:=Xout*Yout; Yout:=Zout*t2; t1:=Xout+T1-t1; Zout:=t1*t2; Xout:=t1*t3;

simplify([x4-Xout/Zout]), simplify([y4-Yout/Zout]); # Check

Merged DBL–ADDADD, (2)e e e+ + →E E E E : 1 1 1 2 2 2 22(, ,) (, , ,)X Y Z X Y Z T+ +

3 3 3 3(, , ,) (, ,)out out outX Y Z T X Y Z→ . Cost = 22M+3S+5Sub+2Add+3AddSub+2AddSub2+

2Mul2+3Mulµ; no contiguous data dependencies

If Z2=1, T1:=T1*Z2 is not needed and the number of multiplies reduces in 1M

If Z5=1, T1:=T1*Z5 is not needed and the number of multiplies reduces in 1M

Zout:=Z1^2; t1:=2*X1; t2:=X1^2; t1:=t1*Y1; Xout:=u*t2; Yout:=Y1^2; Zout:=2*Zout;

34 P. Longa and C. Gebotys

t2:=Yout-Xout; Yout:=Xout+Yout; Zout:=Zout-t2; T1:=t1*Yout; Yout:=t2*Yout;

Xout:=t1*Zout; Zout:=t2*Zout; t1:=Xout*X2; T1:=T1*Z2; Zout:=Zout*T2; t2:=u*t1;

t3:=T1+Zout; Zout:=T1-Zout; T1:=Yout*Y2; Xout:=Xout-Yout; Yout:=X2+Y2; t2:=T1-t2;

Xout:=Xout*Yout; Yout:=Zout*t2; Xout:=Xout+T1-t1; T1:=Zout*t3; Zout:=Xout*t2;

Xout:=Xout*t3; t1:=Xout*X5; T1:=T1*Z5; Zout:=Zout*T5; t2:=u*t1; t3:=T1+Zout;

Zout:=T1-Zout; T1:=Yout*Y5; Xout:=Xout-Yout; Yout:=X5+Y5; t2:=T1-t2; Xout:=Xout*Yout;

Yout:=Zout*t2; Xout:=Xout+T1-t1; Zout:=Xout*t2; Xout:=Xout*t3;

simplify([x6-Xout/Zout]), simplify([y6-Yout/Zout]); # Check

C THE CURVES

The curves below provide approximately 128-bit level of security and were found by using a

modified version of the Schoof's algorithm provided with MIRACL.

− For the implementation on short Weierstrass form over pF using J, we chose the curve
2 3: 3wE y x x B= − + , where 2562 189p = − , 0 fd63c3319814da55e88e9328e96273cB = ×

483dca6cc84df53ec8d91b1b3e0237064 and # () 10w pE r=F where r is the 253-bit prime:

 11579208923731619542357098500868790785394551372836712768287417232790500318517 .

The implementation corresponding to this curve is referred to as jac256189.

− For Twisted Edwards over pF using / eE E , we chose the curve :tedwE 2 2x y− + =
2 21 358 x y+ , where 2562 189p = − and # () 4tedw pE r=F where r is the 255-bit prime:

 28948022309329048855892746252171976963381653644566793329716531190136815607949 .

The implementation corresponding to this curve is referred to as ted256189.

− Let 2 3: 3 44w glsE y x x− = − + be defined over pF , where 1272 1p = − . For the case of the

Weierstrass form using GLS, we use the quadratic twist 2 3: 3 44w glsE y x xµ µ−′ = − + of

2()w gls p
E − F , where 22

p
iµ = + ∈F is non-square. 2# ()w gls p

E −′ F is the 254-bit prime:

 28948022309329048855892746252171976962649922236103390147584109517874592467701 .

The same curve is also used in [19]. Our implementation corresponding to this curve is

referred to as jac1271gls.

− Let 2 2 2 2: 1 109tedw glsE x y x y− − + = + be defined over pF , where 1272 1p = − . For the

case of Twisted Edwards using the GLS method, we use the quadratic twist
2 2 2 2: 1 109tedw glsE x y x yµ µ−′ − + = + of 2()tedw gls p

E − F , where 22
p

iµ = + ∈F is non-square.

In this case, 2# () 4tedw gls p
E r−′ =F where r is the 252-bit prime:

 7237005577332262213973186563042994240709941236554960197665975021634500559269 .

The implementation corresponding to this curve is referred to as ted1271gls.

