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1 Introduction

The study of theoretical and practical aspects of integer factorization algorithms
is a subject of continuing interest for the security assessment of various common
public-key cryptosystems. Factorization milestones are therefore carefully mon-
itored by many applied cryptographers. Of these milestones, the ones that set
new records for general integer factorization count the number of bits of the
number factored and thus have direct implications for the size of RSA moduli.
They are of greatest cryptographic interest. Examples are the factorizations of a
512-bit RSA modulus [13] and, most recently, of a 768-bit one [18], both obtained
using the number field sieve (NFS, [21]).

NFS is an outgrowth of a method that is now referred to as special NFS
(SNFS), the invention of which was inspired by the strong desire of its inventor
(John Pollard) to factor the ninth Fermat number F9 = 229

+ 1 in 1990. SNFS
applies only to composites of a special form (such as F9) and is several orders of
magnitude faster than NFS applied to RSAmoduli of the same size. Nevertheless,
the successful factorization of F9 (indeed in 1990 [22]) was interpreted by many
as the writing on the wall for 512-bit RSA moduli: it took NFS almost a decade
to realize the perceived threat. SNFS records are also measured by the size of the
number factored. They still serve as warning signals. The current SNFS record
factorization of 21039−1 from [1] does not directly affect the security of 1024-bit
RSA moduli, but neither does it inspire any confidence in their continued usage.

The third category of integer factorization milestones, records obtained using
the elliptic curve method (ECM, [23]), belong more to the realm of recreational
mathematics. ECM, as further explained below, can only be expected to out-
perform NFS and SNFS in the presence of relatively small factors. ECM records
measure the size of the second largest factor or cofactor found. Regular RSA
moduli are known not to have small factors and NFS would factor them much



faster than ECM. Numbers of special form may have factors of any kind, so for
those ECM stands a chance to beat SNFS. It is indeed for such special numbers
that armies of factoring buffs are in a friendly worldwide competition to try and
squeeze the most out of ECM. Lists of annual and all-time records are carefully
maintained [11,29] and achievements are enthusiastically discussed on a variety
of discussion forums. Although to outsiders it may look a bit like growing grass,
with years without visible growth except for a thickening of the undergrowth,
this makes it all the more exciting when something happens: after a dry-spell of
more than three years, the August 2006 67-digit record was beaten in December
2009 by a 68-digit ECM factor. Not the long anticipated 70-digit factor yet, but
progress at last. In this paper we report on the latest, and even more recent,
ECM record, a 73-digit factor found in March 2010. That this unusually large
jump is not a fluke was shown by a slightly smaller, second 73-digit factor, found
in April 2010. We also report on how we happened into the ECM record business
and, more importantly, on the carry-less arithmetic operations that were used
and that are of independent interest.

None of the ECM factors reported on the various record lists has much cryp-
tographic significance. The only cryptographic implication of ECM records that
we are aware of has arguably rather weak practical importance, namely their
consequence for the RSA variant known as RSA multiprime. To gain a speedup
by a factor of r2 or r2

4 for the private operation in vanilla RSA or CRT-RSA,
respectively, one may select RSA moduli (of appropriate size to be out of reach of
NFS) that consist of the product of r > 2 primes of about the same size. Here r
must be chosen in such a way that ECM has a sufficiently low probability to find
the resulting relatively small prime factors. Our ECM record affirms that 1024-
bit RSA moduli with r ≥ 4 should be avoided [20] and may give RSA multiprime
practitioners some guidance how large r may be chosen. We suspect, however,
that most cryptographers are more interested in new ECM records because of
their mild entertainment value.

The limited cryptographic significance of ECM records does not imply that
ECM performance is cryptographically irrelevant as well. Indeed, this area has
seen a flurry of recent activity [26,25,16,15,6,5]. In [6], for instance, it is observed
that high performance ECM implementations on relatively inexpensive devices
(given their computational power, such as on graphics cards (GPUs)), may be
helpful to reach the next NFS factoring milestone. The memory-hungry NFS
sieving step generates large quantities of fairly small, say 100- to 200-bit com-
posites that must be factored. That task requires little memory and is therefore
best outsourced to cheap devices, so the siever can stay sieving and all resources
are used in a cost-conscious fashion.

This type of ECM work naturally follows from a line of research that is of
central interest to practical cryptology: fast arithmetic in finite fields and groups
of elliptic curves on any type of inexpensive device, ranging from game consoles
and GPUs to FPGAs and ASICs. Results affect not just the feasibility of crypto-
graphic applications but may also have cryptanalytic impact. For instance, the
very substantial amount of computing required for parallelized Pollard rho exper-
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iments to assess the security of elliptic curve cryptosystems may cost-effectively
be harvested from any combination of devices as mentioned above [2].

Similarly, the new ECM work presented in this paper was not pursued in
its own right. Instead it resulted from the conflux of two independent lines of
work, both cryptographically relevant, neither inspired by ECM, but nevertheless
resulting in entertaining ECM results. This story is told in Section 2, along with
a comparison with relevant previous work. Section 3 gives some background on
the Cell processor (on which we ran ECM) and describes its architecture. The
newly developed arithmetic to run ECM on the Cell processor is presented in
Section 4 and, finally, ECM on the Cell is described in Section 5, including our
new ECM records.

2 Background

As part of a potential (S)NFS project, we need a list of hard to factor composites
of the form 2M − 1 for exponents M in the range from 1 100 to 1 400. Because
SNFS factorization of each of these numbers requires on the order of 200 to tens of
thousands of years of computing on a single core3 the easy cases must be weeded
out from the current list of not fully factored candidates. That is typically done
using an ECM effort commensurate with the expected SNFS effort: the larger
the exponent, the harder one should try first with ECM.

ECM primer. ECM attempts to factor a composite using a number of indepen-
dent trials. Each trial consists of two phases, phase one with bound B1, which
is compute intensive but requires little memory, followed by a memory-hungry
phase two with bound B2.

Depending on the number of trials and the two bounds, the probability can
be estimated that a factor up to a specific size, if present, will be found. To
find a factor of up to 65 decimal digits with probability at least e−1

e ≈ 0.632
(when present), 24 000 ECM trials with B1 = 3 · 109 and B2 ≈ 1014 suffice. For
the same bounds, 110 000 trials suffice to find a 70-digit factor (when present)
with the same probability. On a single core, phase one for an ECM trial with M
around 1 100 takes on the order of six hours, phase two takes about one hour4
requiring many GBytes of RAM. For one of our candidates this implies about
20 core years for an ECM attempt to find a 65-digit factor, and about 90 core
years for a 70-digit one.

ECM needs many additions, subtractions, and multiplications modulo the
number being factored. Modular inversions are as much as possible avoided.
Phase one for any number of trials can easily be run in parallel in Single In-
struction Multiple Data (SIMD) fashion. During a large scale ECM effort, overall
3 All performance figures for regular processors will be for a single core of a 2.2 GHz
Athlon 2427 or of a 2.66 GHz Core2. These are good representatives of currently
popular processors with, for the rough figures presented, comparable performance.
If k cores are used, the wall clock time is reduced by a factor of k, due to the
embarrassingly parallel nature of our applications.

4 A generic composite of comparable size take about twice as long.
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throughput is, within reason, more important than latency per trial: being able
to process four simultaneous trials in a day is better, on the same platform, than
processing one trial every eight hours.

Finding large factors using ECM requires luck and persistence, but too much
of either is not advisable: if one’s coveted ECM result is deemed to be easier to
find using other methods than by means of ECM, then it will not be accepted
on record lists. See [11] for the criterion.

Running ECM on the target numbers. Given the “popularity” of numbers
of the form 2M−1, they have, since the invention of ECM in 1985, been subjected
to substantial ECM efforts by others. Although we would be surprised if factors
of 55 digits or less would still show up, we have no way to estimate the probability
that one of our candidate numbers still has a factor of, say, 65 digits. Thus, we
decided on an ECM effort down our entire list of candidates, aiming to find all
factors of up to, roughly, 65 digits (as that size is near the top range of what
seemed doable, cf. [11,29]), to lower the probability that any remaining number
later turns out to be an ECM miss: a number that could have been factored
easier using ECM. Since this was not a research effort but a simple production
run, we decided to use an off-the-shelf ECM package. Given its easy availability,
ease-of-use, excellent track-record, and ability to take advantage of the special
form of our numbers, we opted for the GMP-ECM package [31]. Other packages
may be faster, but we were not familiar with them [4].

Given the sizes of our server-clusters it would take several years to complete
an adequate number of ECM trials for all our target numbers. It would be a waste
of resources, because most of the time RAM would be underutilized. Worse, it
would be a misallocation of resources, since the server-clusters are meant for
(and fully occupied by) a variety of research projects and are not intended for
production runs.

By coincidence, the cluster of 215 Sony PlayStation 3 (PS3) game consoles
that we have access to had just finished a large cryptanalytic project and was not
working on anything that was considered to be urgent. Thus it was decided to
port phase one of GMP-ECM to the PS3 cluster, while running phase two, which
requires more memory than available on a PS3, on regular servers. This required
experimentation with the many different PS3-specific arithmetic packages that
we had developed over the years to find out which one would suit GMP-ECM
best. We achieved decent performance right away, and were lucky to stumble
upon a 63-digit prime factor (of 21187 − 1), not close to an ECM record but
encouraging nevertheless – and proving that conducting a thorough ECM search
makes sense. Closer study was then made of the arithmetic required for the
exponents M in our range of interest, resulting in the twice faster arithmetic
described in Section 4 and the ECM records reported in Section 5.

Although we are happy with any ECM factor that we find in this way, the
goal of the ECM project is to get a list of numbers that we failed to factor
using ECM so they can be used for our SNFS experiments. Only after the latter
experiments have been concluded can we tell how successful our ECM trials have
been – we can only hope that no factors of 65 digits or less were missed by ECM.
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The arithmetic package that we developed, however, is of interest in its own right
and may find other applications elsewhere as well.

Note that it has not been our goal to improve the ECM package that we put
on top of our enhanced arithmetic. There is every reason to expect that improve-
ments reported over GMP-ECM [31,30] that are based on different elliptic curve
arithmetic or representations, such as, for instance, described and implemented
in [3,4], apply to our overall performance figures as well. Besides these general
purpose implementations that target arbitrary sized numbers, there is a growing
interest in ECM as a cofactor factorization method for NFS applied to a 1024-bit
RSA modulus. In such applications, ECM is typically applied to composites in
the 200-bit range: see [26,25,16,15] for implementations on reconfigurable hard-
ware such as field-programmable gate arrays and [6,5] for GPUs. In [5] the Cell
architecture is covered as well.

3 The Cell processor and its architecture

Although it was introduced already over four years ago, the Cell processor as
embedded in the PS35 is still a relatively inexpensive and flexible source of
compute power. We have exploited this for a variety of cryptanalytic projects.
Examples include exhaustive key searches or password cracking, chosen prefix
collisions for the cryptographic hash function MD5 [27], the creation of a rogue
Certification Authority certificate [28], the solution of an elliptic curve discrete
logarithm problem over a 112-bit prime field [8], and the implementation of
arithmetic in an elliptic curve group over a degree-130 binary extension field [9].

The Cell processor is quite different from regular server or desktop processors.
Taking full advantage of it requires designing new software. It is worthwhile doing
so, because architectures similar to the Cell’s will soon be mainstream. It not
only helps us to take advantage of the Cell’s inexpensive processing power, it
also helps to prepare ourselves for future generations of processors.

The Cell’s main processing power comes from eight Synergistic Processing
Units (SPUs). They run independently from each other at 3.192GHz, each work-
ing on its own 256 kilobyte of fast local memory (the Local Store) for instruc-
tions and data and their own 128 registers of 128 bits each. The latter allow
SIMD operations on sixteen 8-bit, eight 16-bit, or four 32-bit integers. There are
many boolean operations, but integer multiplication is limited to several 4-way
SIMD 16 × 16 → 32-bit multipliers including a multiply-and-add. There is no
32 × 32 → 64-bit or 64 × 64 → 128-bit multiplier. The SPU has an odd and
even pipeline: per clock cycle it can dispatch one odd and one even instruction,
assuming the instructions are independent. Because the SPU lacks smart branch
prediction, branching is best avoided. The Cell also has a Power Processing El-
ement (PPE), a dual-threaded 64-bit processor with a 128-bit AltiVec/VMX
SIMD unit.
5 Early versions of the PS3 allow access to the Cell processor via Sony’s hypervisor.
This feature has been disabled in current versions.
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When running Linux, six SPUs can be used (one is disabled, and one is
reserved by the hypervisor6). We have access to a cluster of 215 PS3s, compris-
ing 1290 accessible SPUs. Thus, given the low memory requirement of phase one
of ECM, in principle 1290 phase one ECM trials can be run independently in
parallel, without any need for synchronization. However, as mentioned, our per-
formance measure is overall throughput, while latency per ECM trial is mostly
irrelevant. Given the SIMD-parallelizability of phase one of ECM and the 4-way
SIMD nature of the SPUs, it may thus pay off to run four trials in SIMD-parallel
fashion per SPU. This would result in 4 · 1290 = 5160 parallel phase one ECM
trials. As shown below, this is indeed what we did.

For some applications, multiple SIMD processes may even be interleaved, fill-
ing both pipelines to increase throughput, while possibly increasing per-process
latency. For our ECM trials below we did not do so but took advantage of in-
terleaving in another manner.

4 Arithmetic modulo 2M − 1 on the SPU

Any ECM package will have to rely, one way or another, on arithmetic modulo
the number to be factored. In this section we describe the SPU-arithmetic that
we developed for arithmetic modulo 2M − 1, for M well beyond one thousand.
As pointed out above our approach aims to optimize overall throughput.

Given the SPU’s instruction set, it turned out to be most advantageous
to use a 4-way SIMD approach (as already alluded to above), implying that
always four integers modulo 2M − 1 are operated upon simultaneously. This is
achieved as follows. Each 128-bit SPU register r is partitioned into four 32-bit
words r1, r2, r3, and r4. The different words ri of a single register r contain
bits of different integers modulo 2M − 1, but word ri of register r and word vi of
register v may both contain bits of the same integer modulo 2M−1: if s registers
are thought of as being stacked horizontally on top of each other, four different
integers modulo 2M − 1 are represented using the four disjoint parallel 32-bit
wide vertical columns of height s, respectively. It follows that s must be chosen
such that 32s ≥M . If t < 32 bits are used per word – as will frequently be done
below – then it must be the case that ts ≥M .

Addition and subtraction in 4-way SIMD fashion on a pair of 4-tuples of
integers modulo 2M −1 in radix 2t-representation, with each 4-tuple represented
by a stack of s registers of 128-bits as described above (for some s), is done by
applying s additions or subtractions to the matching pairs of registers (one from
each stack), combined with a moderate amount of fiddling around with carries.
The reduction modulo 2M − 1 most of the time affects just two of the radix-2t

digits, with probability on the order of 2−2t−1 that more digits are affected (in
which case it causes a slight stall for the other three calculations in the 4-tuple).
This can be made to work quickly for any reasonable value of t such as t = 32.

Multiplication is more challenging and is described in the remainder of this
section. A 4-tuple of 2M -bit numbers (containing the products of a pair of 4-
6 This may change, see [17].
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tuples of M -bit integers) can in principle be reduced modulo 2M − 1 by means
of a few of the above 4-tuple additions and subtractions modulo 2M − 1. In our
implementaton the reductions modulo 2M − 1 are folded into the final part of
the multiplications, as further elaborated upon below.

4.1 Carry-less M-bit×M-bit → 2M-bit multiplication on the SPU

We give an outline of our method to multiply twoM -bit numbers on the SPU. It
should be understood that our multiplication is done in 4-way SIMD fashion, so
it always operates on a pair of 4-tuples of M -bit integers and produces a 4-tuple
containing the respective 2M -bit products. Assume that M < 13 · 96 = 1248,
i.e., in the lower part of our range of interest. More generally one would put
M < u · v with v · (2u−1)2 < 231. This would also accommodate larger M -values.

Let a, b be two M -bit numbers to be multiplied. Assuming a and b are in
radix-232 representation (39 words of 32 bits for each), we first calculate their
signed 12-bit radix-213 representation: Pa(X) =

∑95
i=0 aiX

i ∈ Z[X] with
ai ∈ [−212, 212) such that Pa(213) = a, and similarly for b. The coefficients of the
polynomial P (X) = Pa(X) · Pb(X) =

∑190
i=0 piX

i satisfy |pi| ≤ 96 · (212)2 < 231,
so that P (X) can be computed modulo 232, and P (213) contains a signed 31-bit
radix-213 representation of the product a · b. If M < 13 · w with w < 96, the
degree of P (X) will be at most 2w − 2 < 190, which leads to savings here and
in the description below.

The polynomial P (X) is calculated using three levels of Karatsuba mul-
tiplication, resulting in 27 pairs of polynomials (P (j)

a (X), P (j)
b (X)) of degree

≤ 11, for j = 1, 2, . . . , 27 (in the more general case we can do 16 − u levels
of Karatsuba multiplication). This leads to 27 independent polynomial multi-
plications Q(j)(X) = P

(j)
a (X)P (j)

b (X), done using carry-less schoolbook multi-
plication. The polynomial P (X) is then obtained by carry-less additions and
subtractions of the appropriate Q(j)(X)’s. The desired product a · b can be ob-
tained by converting P (213) to its radix-232 representation. Below, however,
P (X) is used to find directly the radix-232 representation of the M -bit number
(a · b) mod (2M − 1).

Rationale. The idea to avoid carries by using a small radix is not new (cf. [14]
and [19, Section 4.6]). In [5], for instance, signed 12-bit radix-213 representation
as above is used along with the SPU’s 16 × 16 → 32-bit multiplication instruc-
tion, so that all additions done during a single schoolbook multiplication are
carry-less, requiring normalization to the proper radix-213 representation only
at the end of the multiplication. For our application on the same platform (the
SPU of the PS3), however, it turned out to be advantageous to transform the
2M -bit product, in unnormalized radix-213 representation (resulting from carry-
less additions: as explained above involving signed 31-bit digits), to the regular
radix-232 representation of its remainder modulo 2M − 1, before transforming
that representation to a signed 12-bit radix-213 representation again. At first
glance this looks rather awkward, but not only does the intermediate 32-bit
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representation allow fast addition and subtraction modulo 2M − 1 (as often re-
quired in elliptic curve arithmetic), the conversion to radix 232 can be made
to conveniently absorb the reduction modulo 2M − 1. The various conversions
are sufficiently fast that overall a speedup is achieved compared to any other
approach that we fully implemented.

Below we describe some relevant implementation details, including the two
radix conversion methods required. Our implementations are particularly suited
to the SPU, but the approach may have broader applicability.

4.2 Conversion from radix-232 to signed 12-bit radix-213

When converting 4-tuples of M -bit numbers from their regular radix-232 repre-
sentation to signed-digit radix-213 representation, we store the resulting 4-tuples
of two signed 12-bit integers in a 4-tuple of 32-bit words, one in the higher and
one in the lower 16-bit part. This halves the number of registers required to
represent 4-tuples ofM -bit integers while at several places speeding up the com-
putation by a factor of two.

Let C0 = 212 ·
∑95

i=0 213i be a precomputed constant, given in its radix-
232 representation. The polynomial Pa(X) =

∑95
i=0 aiX

i is determined by first
adding C0 to a, by extracting (using masks and shifts) the regular radix-213

representation
∑95

i=0 ãi · 213i of the sum a+C0, and by subtracting C0 again by
putting ai = ãi−212. The addition of C0 requires carries, as usual, but the other
two steps can mostly be parallelized into independent steps and run twice faster
if two 13-bit or two signed 12-bit pieces are packed into a single 32-bit word.

4.3 Conversion from signed 31-bit radix-213 to radix-232 modulo
2M − 1

The conversion from the resulting signed 31-bit radix-213 representation of the
product to its radix-232 representation is combined with the reduction of the
product modulo 2M−1. Thus, with P (X) =

∑190
i=0 piX

i as above, we compute the
M -bit number c =

∑38
j=0 cj · 232j ≡ P (213) mod (2M − 1). We use the following

precomputed constants:

– C1 ≡ −231 ·
∑190

i=0 213i mod (2M − 1), 0 ≤ C1 < 2M − 1.
– Integers ki, li and mi such that

13i = miM + 32li + ki with 0 ≤ 32li + ki < M and 0 ≤ ki < 32,

for 0 ≤ i < 191. Note that mi ∈ {0, 1, 2} because M > 827.

Given these values, the conversion is done in four steps:

1. Compute p̃i = pi + 231, which can be done in parallel for 0 ≤ i < 191. As
a result 0 ≤ p̃i < 232 for 0 ≤ i < 191. Note that (

∑190
i=0 p̃i · 213i) + C1 ≡

P (213) mod (2M − 1).
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2. Left shift p̃i over ki bits and right shift p̃i over 32− ki bits, to obtain di, ei

such that

p̃i · 213i ≡ di · 232li + ei · 232(li+1) mod (2M − 1), for 0 ≤ i < 191.

This can be done in parallel for 0 ≤ i < 191.
3. For 0 ≤ j < 39 compute

c̃j =
∑

i:li=j

di +
∑

i:li+1=j

ei (1)

while propagating carries to c̃j+1. This can be done partially in parallel.
Set c̃39 =

∑
i:li=38 ei (including the carries from c̃38). Note that reduction

moduli 2M −1 is effected by disregarding mi and grouping together identical
di-values and identical ei-values. As a result, c̃ =

∑39
j=0 c̃j · 232j satisfies

c̃+ C1 ≡ c mod (2M − 1).
4. Calculate c ≡ c̃ + C1 mod (2M − 1). Although the numbers are slightly

bigger, this calculation is in principle the same as regular addition mod-
ulo 2M − 1.

4.4 Optimizations

Swapping even for odd instructions. Modular arithmetic mostly relies on
the SPU’s arithmetic instructions, which are even pipeline instructions. Follow-
ing the approach from [24,10] one may replace an even instruction by one or more
odd ones with the same effect. Although this may increase the latency for the
functionality of each replaced even instruction and the number of instructions,
balancing the counts of even and odd instructions often decreases the overall
runtime. This method was used throughout our implementation. Examples are
sketched below.

Modular squaring. When squaring polynomials of degree at most 11, half of
the mixed products, i.e., 122−12

2 = 66 multiplications, can be saved by doubling
their resulting 21 sums (as the top elements are zero). Of these sums, the eleven
for coefficients of odd degree can be doubled for free during the conversion to
radix-232, by using for odd i precomputed integers k̃i, l̃i, and m̃i such that

13i+ 1 = m̃iM + 32l̃i + k̃i with 0 ≤ 32l̃i + k̃i < M and 0 ≤ k̃i < 32

instead of ki, li, and mi, as defined earlier. The ten remaining sums need to
be doubled before they are added to the corresponding squared input coeffi-
cient. Each doubling can conveniently be done by a single even pipeline shift
instruction. As suggested above, however, a doubling can be performed by four
odd pipeline instructions. The ten remaining doublings could thus be squeezed
in the odd pipeline, including all load and storage overheads7. As a result, all
required doublings came for free.
7 Interestingly, all 21 doublings would not have fit in the odd pipeline.
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Table 1: SPU cycle counts for 4-SIMD multiplications and squarings modulo
21193 − 1

a · b mod (21193 − 1) a2 mod (21193 − 1)

instructions cycles calculation of instructions cycleseven odd even odd
708 722 752 Pa(X) and Pb(X) Pa(X) 354 361 376

3389 1137 3905 Q(j) for 1 ≤ j ≤ 27 2107 2055 2130
1138 1078 1163 P (X) and (di, ei) for 0 ≤ i < 191 1139 1086 1171
906 907 936 c̃j for 0 ≤ j < 39 and c 900 905 931

6141 3844 6756 total 4500 4407 4608
6971 measured 4814

Conversion to radix-232. The computation of di and ei requires a shift by ki

and 32 − ki, respectively, for 0 ≤ i < 191, for a total of 384 even pipeline shift
instructions. If ki ≡ 0 mod 8, each can be replaced by a single odd pipeline byte
reordering instruction (or by no instruction if ki = 0). Shift counts bigger than 8
can be replaced by three odd pipeline instructions.

M-dependent optimization. The summation
∑

i:li+1=j ei, for all j, from
Eq. (1) does not exceed 232 for most M since ei is obtained by a right shift
over 32 − ki > 0 bits and the shift amounts usually differ. Thus, for such M ,
these summations do not generate carries.

We have written a program that generates SPU code for each value of M ,
with the applicable C0, C1, ki, li, mi (and k̃i, l̃i, m̃i) hard-coded and incorpo-
rating all optimizations mentioned. The resulting code and its performance thus
depends on the value of M used, with a slight variation between different M -
values. Representative instruction and cycle counts for 4-SIMD multiplication
and squaring modulo 21193 − 1 on a single SPU are given in Table 1. Because
78
144 · 3905 ≈ 2115, the 2130 cycles required for the calculation of the Q(j)’s while
squaring is very close to what one would expect based on the 3905 cycles required
while multiplying.

Overall speed. The figures in Table 1 count the number of cycles required
per SPU for four simultaneous modular multiplications. Because six SPUs are
available per PS3, a single PS3 can perform roughly 11 million multiplications
modulo 2M − 1, or roughly 16 million modular squarings, per second. This may
be compared to 209 million and 138 million multiplications modulo 192-bit and
224-bit special moduli, respectively, as reported for a single PS3 in [7], i.e.,
roughly a 13-fold slowdown for 5-fold bigger special moduli.

For generic moduli the same carry-less Karatsuba-based multiplication ap-
plies, but the reduction becomes more cumbersome. At worst our numbers will
be reduced to about 3.7 million and 5.3 million, respectively (but we expect that
an actual implementation can be made to work substantially faster). This may
be compared to roughly 102 million modular multiplications for generic moduli
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Table 2: SPU effort for 4-SIMD phase one ECM trials for 21193 − 1 with B1 = 3 · 109

operation cycles per call number of calls time
multiplication 6971 26 193 284 192 15.89h
squaring 4814 13 358 576 558 5.60h
addition-subtraction 268 18 990 126 989 0.44h
addition ≈ 180 523 868 924 0.01h
subtraction ≈ 180 523 868 924 0.01h

total 21.95h

in the 200-bit range, as reported for a single PS3 in [5], i.e., a 28-fold slowdown
for 6-fold bigger generic moduli.

5 ECM on the Cell applied to 2M − 1

For a single phase one ECM trial with phase one bound B1 = 3 · 109 (cf. Sec-
tion 2) GMP-ECM needs 6 155 419 355 additions and 523 868 924 doublings in
an elliptic curve group. With the elliptic curve arithmetic used by GMP-ECM,
an elliptic curve group addition requires four multiplications, two squarings and
three addition-subtractions (i.e., (c, d) = (a+b, a−b)); a doubling requires three
multiplications, two squarings, one addition-subtraction, one addition and one
subtraction. All arithmetic is modulo 2M − 1. Table 2 lists the resulting total
operation counts per phase one trial with B1 = 3 · 109 and, given the SPU’s
3.192GHz clock speed, estimates the wall-clock time for an SPU to complete
four phase one ECM trials. The measured wall-clock time was 22.03h, i.e., less
than 5 minutes more than the estimate in Table 2. With more than 24 phase one
ECM trials per day, a single PS3 is at least competitive with current quadcore
desktops.

With six SPUs per PS3 and 215 PS3, we can process 4 × 6 × 215 = 5160
phase one ECM trials in about 22 hours. With the number of trials from Sec-
tion 2, phase one for a 65-digit search takes less than four and a half days
and less than three weeks for a 70-digit search. Using our multi-core adapta-
tion of phase two of GMP-ECM, the corresponding phase two calculations (with
B2 = 103 971 375 307 818) take less than 4 and 18 days, respectively, on a 56 node
cluster (with two hexcore processors per node) that we have access to: each trial
takes 15 minutes on 4 cores, using at most 16 GBytes of RAM. Thus, the efforts
of the two clusters involved in our calculations are well matched.

After about three months of sustained calculations for severalM -values, four
new factors have been found, in the following order: a 63-digit factor for M =
1187, the 73-digit factor

1 808 422 353 177 349 564 546 512 035 512 530 001 279 481 259 854 248 860 454 348 989 451 026 887

for M = 1181, another 73-digit factor,

1 042 816 042 941 845 750 042 952 206 680 089 794 415 014 668 329 850 393 031 910 483 526 456 487,
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for M = 1163, and a 66-digit factor for M = 1073. The 241-bit, 73-digit prime
factor of 21181 − 1 is the current ECM record. The factor was found after some-
what more than 30 000 phase one trials at approximately the 8 800th correspond-
ing phase two trial, implying that we were quite lucky finding it. It was found for
σ = 4 000 027 779 (cf. [31]) with elliptic curve group order factoring into primes
at most B1 with the exception of one prime between B1 and B2:

24 · 32 · 13 · 23 · 61 · 379 · 13 477 · 272 603 · 12 331 747 · 19 481 797 ·

125 550 349 · 789 142 847 · 1 923 401 731 · 10 801 302 048 203.

Less, but still considerable luck was involved in finding the second 73-bit factor
(a bit smaller at 240 bits): it was found after about 50 000 ECM trials for σ =
3 000 085 158 and group order

22 · 32 · 5 · 23 · 1 429 · 28 229 · 139 133 · 249 677 · 389 749 · 15 487 861 ·

47 501 591 · 111 707 179 · 431 421 191 · 13 007 798 103 359.

So far our example number 21193 − 1 stubbornly resisted all ECM efforts to be
factored. For the numbers 2M − 1 that we fail to factor using ECM, such as for
M = 1193, our efforts will result in a reasonable degree of confidence that they
will not have a prime factor of 60 digits or less. Although we hope, during our
continuing efforts, not to miss factors up to the 65-digit range, with ECM one
can never be sure. Should we wish to find out, using SNFS is probably the best
option.

6 Conclusion

For integers M in the range from 1100 to 1400 we presented our PS3 implemen-
tation of multiplication of M -bit integers, processing 24 such multiplications
in parallel on a single PS3, and used it to obtain efficient multiplication mod-
ulo 2M − 1. The ideas underlying our implementation apply to many arithmetic
contexts of cryptologic relevance, such as elliptic curve cryptosystems and crypt-
analysis thereof.

We focussed on application of our arithmetic to elliptic curve factoring, as
a preparatory step for a potential (S)NFS factoring project. This led to the
two largest factors found using ECM so far, beating the previous ECM record
by 5 digits and, according to [12], finding 73-digit ECM factors almost two years
ahead of schedule.
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ence Foundation under grant numbers 200021-119776 and 206021-117409 and
by EPFL DIT. Paul Zimmermann kindly provided us with the elliptic curve
group orders.
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