
A Certifying Compiler for Zero-Knowledge
Proofs of Knowledge Based on Σ-Protocols?

José Bacelar Almeida1, Endre Bangerter2, Manuel Barbosa1,
Stephan Krenn3, Ahmad-Reza Sadeghi4, Thomas Schneider4

1 Universidade do Minho, Portugal
{jba,mbb}@di.uminho.pt

2 Bern University of Applied Sciences, Biel-Bienne, Switzerland
endre.bangerter@jdiv.org

3 Bern University of Applied Sciences, Biel-Bienne, Switzerland, and
University of Fribourg, Switzerland

stephan.krenn@bfh.ch
4 Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany

{ahmad.sadeghi,thomas.schneider}@trust.rub.de

Abstract. Zero-knowledge proofs of knowledge (ZK-PoK) are impor-
tant building blocks for numerous cryptographic applications. Although
ZK-PoK have very useful properties, their real world deployment is typ-
ically hindered by their significant complexity compared to other (non-
interactive) crypto primitives. Moreover, their design and implementa-
tion is time-consuming and error-prone.
We contribute to overcoming these challenges as follows: We present a
comprehensive specification language and a certifying compiler for ZK-
PoK protocols based on Σ-protocols and composition techniques known
in literature. The compiler allows the fully automatic translation of an
abstract description of a proof goal into an executable implementation.
Moreover, the compiler overcomes various restrictions of previous ap-
proaches, e.g., it supports the important class of exponentiation homo-
morphisms with hidden-order co-domain, needed for privacy-preserving
applications such as idemix. Finally, our compiler is certifying, in the
sense that it automatically produces a formal proof of security (sound-
ness) of the compiled protocol (currently covering special homomor-
phisms) using the Isabelle/HOL theorem prover.
Key words: Zero-Knowledge, Protocol Compiler, Formal Verification

1 Introduction

A zero-knowledge proof of knowledge (ZK-PoK) is a two-party protocol between
a prover and a verifier, which allows the prover to convince the verifier that
he knows a secret value that satisfies a given relation (proof of knowledge or
soundness property), without the verifier being able to learn anything about
the secret (zero-knowledge property). For a formal definition we refer to [1].
Fundamental results show that there are ZK-PoK for all languages in NP [2]. The

? This work was in part funded by the European Community’s Seventh Framework
Programme (FP7) under grant agreement no. 216499.

2 Almeida, Bangerter, Barbosa, Krenn, Sadeghi, and Schneider

corresponding protocols are of theoretical relevance, but are much too inefficient
to be used in practice.

Beside these generic protocols of mainly theoretical interest there are various
protocols which are efficient enough for real world use. Essentially, all these prac-
tically relevant ZK-PoK protocols are based on the so called Σ-protocols. What
is typically being proved using a basic Σ-protocol is the knowledge of a preimage
under a homomorphism (e.g., a secret discrete logarithm). These preimage proofs
can then be combined to considerably more complex protocols. In fact, many
systems in applied cryptography use such proofs as building blocks. Examples
include voting schemes [3,4], biometric authentication [5,6], group signatures [7],
interactive verifiable computation [8], e-cash [9,10] and secure multiparty com-
putation [11].

While many of these applications only exist on specification level, a direction
of applied research has produced first systems using ZK-PoKs that are deployed
in the real world. The probably most prominent example is Direct Anonymous
Attestation (DAA) [12], a privacy enhancing mechanism for remote authenti-
cation of computing platforms, which was adopted by the Trusted Computing
Group, an industry consortium of many IT enterprises. Another example is the
idemix anonymous credential system [13], which IBM released into the Eclipse
Higgins project, an open source effort dedicated to developing software for user-
centric identity management.

Up to now, design, implementation and verification of the formal crypto-
graphic security properties (i.e., zero-knowledge and soundness) as well as code
security properties (e.g., security against buffer overflows, side channel vulner-
abilities, etc.) is done “by hand”. In fact, past experiences, e.g., made when
realizing DAA and idemix, have shown that this is a time consuming and er-
ror prone task. This is certainly due to the fact that ZK-PoK are considerably
more complex than other non-interactive crypto primitives such as encryption
schemes.

In particular, the soundness property needs to be proved for each ZK-PoK
protocol from scratch. The proofs are often not inherently complex, but nev-
ertheless require an intricate knowledge of the techniques being used. This is
obviously a major hurdle in the real world adoption of ZK-PoK, since even ex-
perts in the field are not immune to protocol design errors. In fact, minor flaws
in protocol designs [14,15,16] (which can be fixed easily once detected) can lead
to serious security flaws [17,18,19].

In this paper we describe languages, a compiler and integrated tools that
support and partially automate the design, implementation and formal verifica-
tion of ZK-PoK based on Σ-protocols. The goal of our research is to overcome
the difficulties mentioned concerning the design and implementation of ZK-PoK,
and thus to bring ZK-PoK to practice by making them accessible to crypto and
security engineers.

A Certifying Compiler for ZK-PoK Based on Σ-Protocols 3

1.1 Our Contributions

In a nutshell, we present a toolbox that takes an abstract description of the proof
goal5 of a ZK-PoK as input, and produces a provably sound implementation of
a suitable protocol in the C language.

More precisely, we extend previous directions with the following functionali-
ties of practical and theoretical relevance:

– We present a comprehensive protocol specification language and compiler
which support most relevant Σ-protocols and composition techniques found
in the literature, including basic protocols for proving knowledge in arbi-
trary groups, AND and OR compositions, and techniques for proving linear
relations among secret pre-images (e.g., equality of two discrete logarithms).
A comprising summary of these techniques can be found in [20].
Examples of protocols that can be automatically generated by our compiler
include [3,4,5,6,7,8,9,10,11,12,13,21,22,23,24,25].

– Our compiler also absorbs certain design-level decisions. For instance, it
automatically chooses certain security parameters and intervals used in the
protocols to assert the statistical zero-knowledge property of discrete log
proofs in hidden order groups. It thus eliminates the potential of security
vulnerabilities resulting from inconsistent parameter choices. Further, the
compiler has capabilities to automatically rewrite the proof goal to reduce
the complexity of the generated protocol.

– Last but not least, our compiler partially alleviates the implementor from
the responsibility to establish a theoretical security guarantee for the pro-
tocol, by producing a formal proof of the theoretical soundness6 property.
Technically, the compiler produces a certificate that the protocol generated
by the compiler fulfills its specification. The validity of the certificate is then
formally verified by the Isabelle/HOL formal theorem prover [26]. That is,
our tool can be seen as a certifying compiler. This formal verification compo-
nent currently only supports a subset of the protocols for which our compiler
can generate code. Yet, it already covers a considerable class of applications,
such as [9,21,22].

1.2 Related Work

Compiler based (semi-)automatic generation of cryptographic protocols has at-
tracted considerable research interest recently, for instance in the field of multi-
party computations [27,28,29]. A first prototype of a ZK-PoK compiler was
started in [30,31], and extended in [32,33]. Yet, the compiler presented there

5 By proof goal, we refer to what a prover wants to demonstrate in zero-knowledge.
For instance, the proof goal can be to prove knowledge of a discrete logarithm.

6 The soundness property is arguably the most relevant security property for many
practical applications of ZK-PoK, as it essentially establishes that it is infeasible to
prove an invalid knowledge claim. However, our tool is currently being expanded to
cover other relevant security properties, namely the zero-knowledge property.

4 Almeida, Bangerter, Barbosa, Krenn, Sadeghi, and Schneider

is only capable to generate code for a subset of the proof goals our compiler can
handle. Neither does it offer any optimization or verification functionalities.

Symbolic models that are suitable for expressing and formally analyzing pro-
tocols that rely on zero-knowledge protocols as building blocks were presented
in [34,35]. The authors in [34] proposed the first mechanized analysis framework
for such protocols by extending the automatic tool ProVerif [36] and applied it to
the Direct Anonymous Attestation protocol [12]. The work in [37] proposed an
alternative solution to the same problem based on a type-based mechanism. Our
work does not overlap with these contributions, and can be seen as complemen-
tary. The previous frameworks assume that the underlying ZK-PoK components
are secure under adequate security models in order to prove the security of ar-
bitrary higher level protocols using these components. We work at a lower level
and focus on formally and automatically proving that specific ZK-PoK proto-
cols (that could potentially instantiate the components above) generated by our
compiler satisfy the standard computational security model for this primitive.
Recent results in establishing the computational soundness of ZK-PoK-aware
symbolic analysis can be found in [38]. Currently, we do not establish a connec-
tion between the security properties offered by the ZK-PoK protocols produced
by our compiler and the level of security required to enable the application of
computational soundness results.

We follow a recent alternative approach to obtaining computational security
guarantees through formal methods: directly transposing provable security argu-
ments to mechanized proof tools. This allows to deal directly with the intricacies
of security proofs, but the potential for mechanization is yet to match that of
symbolic analysis. In this work we provide further evidence that computational
security proofs can indeed be automatically constructed over mechanized proof
tools. The catch is that our verification component is highly specialized for (a
specific class in) the domain of ZK-PoK and relies on in-depth knowledge on
how the protocol was constructed. This stands in contrast with the recent work
by Barthe et al. [39] describing the formalization of the theory of ZK-PoK in
the Coq-based CertiCrypt tool [40], which at the moment is directed at the
human-driven interactive construction of security proofs.

Our work is also related to the formal security analysis of cryptographic pro-
tocol implementations. Goubault-Larrecq and Parrennes proposed a tool for the
analysis of cryptographic code written in C [41]. In [42,43], interesting approaches
for extracting models from protocol implementations written in F#, and auto-
matically verifying these models by compilation to symbolic models (resp. com-
putational models) in ProVerif [44] (resp. CryptoVerif [45]), can be found. As
above, the latter works target higher level protocols such as TLS (Transport
Layer Security) that use cryptographic primitives as underlying components.
Furthermore, the static cryptographic library that implements these primitives
must be trusted by assumption. Our work can be seen as a first step towards
a tool to automatically extend such a trusted computing base when ZK-PoK
protocols for different goals are required.

A Certifying Compiler for ZK-PoK Based on Σ-Protocols 5

Structure of this Document. In §2 we recap the theoretical framework used
by our compiler, which we present in §3. Finally, the formal verification infras-
tructure is explained in §4.

2 Preliminaries

We first recap some basic notation and theory underlying ZK-PoK .

2.1 Notation

By s ∈R S we denote the uniform random choice of an element s from set S.
The order of a group G is denoted by ordG. Finally, minDiv(a) is the smallest
prime dividing an integer a.

We use the notation from [46] for specifying ZK-PoK. A term like

ZPK

[
(χ1, χ2) : y1 = φ1(χ1) ∧ y2 = φ2(χ2) ∧ χ1 = aχ2

]
means “zero-knowledge proof of knowledge of values x1, x2 such that y1 = φ1(x1),
y2 = φ2(x2), and x1 = ax2”. Variables of which knowledge is proved are denoted
by Greek letters, whereas all other quantities (known to both parties) are denoted
by Latin letters. Note that this notation specifies a proof goal rather than a
protocol: it describes what has to be proved, but there may be various, differently
efficient protocols to do so.

We call a term like y = φ(x) in the proof goal an atomic predicate. A predicate
is the composition of atomic predicates and predicates using arbitrary many
(potentially none) boolean junctors And (∧) and Or (∨).

2.2 Σ-Protocols as ZK-PoK Protocols

Most practical ZK-PoK are based on Σ-protocols. Given probabilistic polynomial
time algorithms P1,P2,V, they have the following form: to prove knowledge of
a secret x satisfying a relation with some public y, the prover first sends a com-
mitment t := P1(x, y) to the verifier, who then draws a random challenge c
from a predefined challenge set C. Receiving c, the prover computes a response
s := P2(x, y, c). Now, if V(t, c, s, y) = true, the verifier accepts the proof, other-
wise it rejects. Whenever the verifier accepts, we call (t, c, s) an accepting protocol
transcript.

Formally, for the protocol to be a proof of knowledge with knowledge error κ,
there must be an algorithm E′ satisfying the following: whenever a (potentially
malicious) prover can make the verifier accept with probability ε > κ, E′ can
extract x from the prover in a number of steps proportional to (ε−κ)−1 [1]. For
Σ-protocols, this boils down to the existence of an efficient knowledge extractor
E, which takes as inputs two accepting protocol transcripts (t, c′, s′), (t, c′′, s′′)
with c′ 6= c′′, and y, and outputs a value x′ satisfying the relation [47,48].

A Σ-protocol satisfies the ZK property, if there is an efficient simulator S,
taking c, y as inputs, and outputting tuples that are indistinguishable from real
accepting protocol transcripts with challenge c [47,48].

6 Almeida, Bangerter, Barbosa, Krenn, Sadeghi, and Schneider

P[y, x] V[y]

P1 r ∈R G
t := φ(r) t - c ∈R C

P2 s := r + c · x c�

s - φ(s)
?
= t · yc V
↓

true/false

Fig. 1: The Σφ-protocol for performing ZPK[(χ) : y = φ(χ)].

2.3 Proving Atomic Predicates

We next summarize the basic techniques for proving atomic predicates.

The Σφ-Protocol. The Σφ-protocol allows to efficiently prove knowledge of
preimages under homomorphisms with a finite domain [21,49]. For instance,
it can be used to prove knowledge of the content of ciphertexts under the
Cramer/Shoup [50] or the RSA [51] encryption schemes, and many others [52,53,54,55,56].
Also, it can be used for all homomorphisms mapping into a group over elliptic
curves.

The protocol flow, as well as inputs and outputs of both parties, are shown
in Fig. 1. The Σφ-protocol is a ZK-PoK with knowledge error κ = 1/cmax for
suitably chosen challenge set C = {0, . . . , cmax−1}. Yet, while cmax = 2 can safely
be used for any homomorphism φ, the maximal value of cmax heavily depends
on φ. We thus briefly describe the theory needed for choosing C correctly.

Although finding a preimage x for a given y = φ(x) is usually hard for
homomorphisms φ used in cryptography, it is often easy to find the preimage
of a known power of y. Let, for example, the order q of the domain of φ be
known: given y = φ(x) we can efficiently compute a preimage of yq, as we have
yq = 1 = φ(0). Similarly, for homomorphisms φ : H× G → H : (a, b) 7→ ae · ψ(b)
(as used in [51,52,53,54]) a preimage of ye is given by (y, 0). It turns out that
this special property is crucial for reaching high efficiency in the Σφ-protocol.

Definition 1 (Special Homomorphisms [47]). A homomorphism φ : G → H
is special, if for any image y ∈ H a pair (u, v) ∈ G×Z\{0} satisfying φ(u) = yv

can efficiently be computed, where the value v has to be the same for all y. We
call (u, v) a pseudo preimage of y under φ, and v the special exponent of φ.

Theorem 2 (Knowledge Error of the Σφ-Protocol [47]). Let φ be a homo-
morphism with finite domain. Then the Σφ-protocol using C = {0, . . . , cmax − 1}
is a ZK-PoK with knowledge error κ = 1/cmax, if either cmax = 2, or φ is special
with special exponent v and cmax ≤ minDiv(v).

The ΣGSP- and the Σexp-Protocols. The practically important class of expo-
nentiation homomorphisms with hidden-order codomain (e.g., φ : Z→ Z∗n : a 7→
ga, where n is an RSA modulus, and g generates the quadratic residues modulo
n) cannot be treated with the Σφ-protocol.

A Certifying Compiler for ZK-PoK Based on Σ-Protocols 7

Two Σ-protocols for such homomorphisms can be found in the literature.
The ΣGSP-protocol generalizes the Σφ-protocol to the case of infinite domains
(i.e., G = Z), and can be used very efficiently if assumptions on the homo-
morphism φ are made [14,17]. On the other hand, the so-called Σexp-protocol
presented in [32,57] takes away these assumptions, by adding an auxiliary con-
struction based on a common reference string and some computational overhead.
Depending on the proof goal and certain implementation issues, either of these
two protocols can be more efficient. We refer to [58] for a detailed security and
efficiency analysis.

2.4 Operations on Σ-Protocols

Next, we briefly summarize some techniques, which allow one to use Σ-protocols
in a more general way than for proving atomic predicates only.

Reducing the knowledge error. The knowledge error of a Σ-protocol can
be reduced from κ to κr by repeating the protocol r times in parallel. The
verifier accepts the proof, if and only if it accepted all instances [1]. In this way,
arbitrarily small knowledge errors can be achieved.

Boolean composition. In practice, it is often necessary to prove knowledge of
multiple, or one out of a set of, secret values in one step. This can be achieved
by performing so-called And- respectively Or-compositions. While the former
requires the prover to know the secrets for all combined predicates to convince
the verifier, he only needs to know at least one of them for the latter. In this
case, the verifier will not be able to learn which secrets are actually known to
the prover [20].

For a Boolean And, the only difference to running the proofs for the combined
predicates independently in parallel is, that the verifier only sends one challenge
c, which is then used in all combined predicates.

Combining n predicates by a Boolean Or is a bit more involved. By allowing
the prover to choose the challenges ci for all but one predicate, he can simu-
late accepting protocol transcripts for those predicates he does not know the
secret for. The remaining challenge must then be chosen such that

∑n
i=1 ci ≡ c

mod cmax. To ensure this, the prover adds c1, . . . , cn to its response, which is now
given by ((s1, c1), . . . , (sn, cn)), where si is the response of the i-th predicate. In
addition to running all verification algorithms, the verifier also checks that the
ci add up to the challenge c.

Threshold composition. For instance, for a contract to become valid it may
be required that at least k out of n board members of a company sign the
document. Yet, the contracting party should not learn the identity of the signers.
Performing such a ZK-PoK by using nested And- and Or-compositions becomes
very inefficient if n is large. A much more efficient way for performing such n-
out-of-k threshold compositions is to apply the technique from [59], instantiated
with Shamir’s secret sharing scheme [60].

8 Almeida, Bangerter, Barbosa, Krenn, Sadeghi, and Schneider

Non-interactivity. Σ-protocols can be made non-interactive by applying the
Fiat/Shamir heuristic [61]. The idea is that the prover obtains a random chal-
lenge c by hashing its commitment Additionally to its verification algorithm V,
the verifier then also checks whether c was computed correctly. In this way, only
a single message has to be sent in the protocol, and the proof can easily be
converted into a signature proof of knowledge.

Algebraic relations among preimages. By re-adjusting the atomic predi-
cates of a proof goal, virtually any algebraic relations among the preimages can
be proven. For examples we refer to [20,25,62,63].

3 Compiler

In this section we describe our ZK-PoK compiler that automatically generates
provably sound implementations and documentation for specific classes of ZK-
PoK protocols from a high-level specification of the intended protocol. The mod-
ularly constructed compiler (cf. §3.1) is easy to use and can generate code and
documentation for many practical ZK-PoK protocols using arbitrary homomor-
phisms by applying the built-in techniques presented in §2 and several automatic
optimizations (cf. §3.2). Moreover, it is integrated with a tool that formally ver-
ifies the soundness of generated protocols for special homomorphisms (cf. §4).

3.1 Architecture

The architecture of our ZK-PoK compiler suite which is built from multiple
components is shown in Fig. 2. This allows to easily extend the compiler via
new plugins and backends. Furthermore, the single components are designed
modularly themselves, such that, e.g., the mathematical libraries used in the C
Backend can be exchanged with minor effort.

BackendsLATEXC

Protocol
Specification

Language (PSL)

Protocol
Compiler

Plugins

Σ2NIZK

Costs

Protocol
Verification

Toolbox

Protocol
Implementation
Language (PIL)

Code Documentation

Proof of
Soundness

Fig. 2: Architecture of our ZK-PoK compiler suite.

A Certifying Compiler for ZK-PoK Based on Σ-Protocols 9

Protocol Specification. The user formulates the specification of the intended
protocol in our Protocol Specification Language (PSL). This language is based
on the Camenisch-Stadler notation [46], and extends it to eliminate any equivo-
cation. As a result it allows to unambiguously specify complex Σ-protocols. On
a high level, PSL allows to specify the inputs and algebraic setting of the proof
goal, the types of Σ-protocols to be used, and their compositions. In particular,
PSL supports all Σ-protocols presented in §2.3 that can be arbitrarily composed
using the composition techniques described in §2.4. We give more details on PSL
later in §3.2.

Protocol Compiler. The Protocol Compiler translates the protocol specifica-
tion into the corresponding protocol implementation formulated in our Protocol
Implementation Language (PIL). This language can be thought of as a kind of
pseudo-code describing the protocol, i.e., the sequence of operations computed
by both parties (including group operations, random choices, checks, etc.) and
the messages sent between them. Further details on PIL are given in App. A.

Backends. Backends allow to transform the protocol implementation into vari-
ous output languages. The C Backend generates source code in the C program-
ming language for prover and verifier. By providing the GNU multi-precision
arithmetic library [64] this source code can be compiled into executable code.
The LATEX Backend generates a human-readable documentation of the protocol.
An example output generated by the LATEX backend is given in App. B.

Protocol Verification Toolbox. This formal verification component of our
compiler takes as input the protocol specification (PSL) and implementation
(PIL) files from a compilation run, and extracts from them the relevant informa-
tion to construct the corresponding proof of soundness. The proof is performed
automatically using the theorem prover Isabelle/HOL [65,66] which generates the
formal proof and a human-readable documentation on the soundness guarantees
of the generated protocol that can be used for product certification purposes.
More details are given in §4.

Plugins. The protocol implementation of the generated Σ-protocols can be
transformed with plugins. The Σ2NIZK plugin produces a non-interactive ZK-
PoK (NIZK) by applying the Fiat-Shamir transformation [61] (cf. §2.4). The
functionality of this plugin could easily be extended to signature proofs of knowl-
edge. The Costs plugin determines the abstract costs of the generated protocol,
i.e., the communication complexity and the number of operations that need to
be performed in each group. This allows to compare the complexity of different
protocols on an abstract level and in future releases to automatically select the
most efficient one.

3.2 Protocol Specification Language and Optimizations

Next, we describe the optimizations performed by our compiler and the rationale
underlying PSL. We show how to use the compiler for the following representative

10 Almeida, Bangerter, Barbosa, Krenn, Sadeghi, and Schneider

application example: In the context of a group-oriented application we want to
prove the following informal statement:

“One of two legitimate users has committed to message m without re-
vealing m or the identity of the user who committed.”

For computing a commitment c to message m with randomness r we use the
Pedersen commitment scheme [22] of the form c = gmhr, where g and h are
generators of the group H of known prime order q (e.g., Z∗p where p is prime
and q divides p − 1, or an elliptic curve group) and the committer does not
know logg h. To authenticate legitimate users we use Diffie-Hellman keys: each
user randomly picks a sufficiently large secret key ski, computes the public key
pki = gski and publishes pki. To ease presentation, we use the same group H for
commitments and keys of users, but the compiler could use different groups as
well.

Now, given the commitment c and the public keys pk1,pk2 of the two legiti-
mate users, the informal statement translates into this proof goal:

ZPK

[
(µ, ρ, σ1, σ2) : c = gµhρ ∧

(
pk1 = gσ1 ∨ pk2 = gσ2

)]
,

where (µ, ρ, σ1) = (m, r, sk1) or (µ, ρ, σ2) = (m, r, sk2) are possible sets of secrets
that allow to prove the relation. With homomorphisms ψ : (a, b) 7→ gahb and
φ : (a) 7→ ga we rewrite this as

ZPK

[
(µ, ρ, σ1, σ2) : c = ψ(µ, ρ)︸ ︷︷ ︸

P0

∧
(

pk1 = φ(σ1)︸ ︷︷ ︸
P1

∨pk2 = φ(σ2)︸ ︷︷ ︸
P2

)]
,

where the atomic predicates are P0, P1, and P2. This proof goal together with
the underlying algebraic setting can be expressed in PSL as shown in Fig. 3 and
described next. Each PSL file consists of the following sections:

Declarations { Prime(1024) p;
Prime(160) q;
G=Zmod+(q) m, r, sk_1, sk_2;
H=Zmod*(p) g@{order=q}, h@{order=q}, c@{order=q},

pk_1@{order=q}, pk_2@{order=q}; }
Inputs { Public := p,q,g,h,c,pk_1,pk_2;

ProverPrivate := m,r,sk_1,sk_2; }
Properties { KnowledgeError := 80;

ProtocolComposition := P_0 And (P_1 Or P_2); }
GlobalHomomorphisms { Homomorphism (phi : G -> H : (a) |-> (g^a)); }
// Predicates
SigmaPhi P_0 { Homomorphism (psi : G^2 -> H : (a,b) |-> (g^a * h^b));

ChallengeLength := 80; Relation ((c) = psi(m,r)); }
SigmaPhi P_1 { ChallengeLength := 80; Relation ((pk_1) = phi(sk_1)); }
SigmaPhi P_2 { ChallengeLength := 80; Relation ((pk_2) = phi(sk_2)); }

Fig. 3: PSL Example.

A Certifying Compiler for ZK-PoK Based on Σ-Protocols 11

Declarations. All variables used in the protocol must first be declared in this
section. PSL supports several data types with a given bit-length such as signed
integers (Int) or primes (Prime). Also intervals ([a,b]) and predefined mul-
tiplicative and additive groups are supported, e.g., Zmod*(p) denotes (Z∗p, ∗)
and Zmod+(q) denotes (Zq,+). In this section, an identifier can be assigned to
a group and constants can be predefined. The compiler also supports abstract
groups, which can be instantiated with one’s favorite group (e.g., such over el-
liptic curves). The order of elements can be annotated for verification purposes,
e.g., as g@{order=q}.

Inputs. Here, the inputs of the protocol are assigned to both parties by speci-
fying which ones are publicly known to both and which are private inputs of the
prover. All inputs must have been declared beforehand.

Properties. This section specifies the properties of the protocol to be generated.
For instance, KnowledgeError := 80 specifies an intended knowledge error κ of
2−80. The proof goal can be specified by combining the Σ-protocols of the atomic
predicates by arbitrarily nested Boolean And and Or operators. Furthermore, the
compiler supports n-out-of-k-threshold compositions [59] based on Shamir secret
sharing [60] as described in §2.4.

Optimizations. The compiler automatically applies transformations to the
proof goal in order to reduce the complexity of the generated protocol. For
instance, P_1 Or P_2 Or (P_1 And P_2) is simplified to P_1 Or P_2 which
halves the complexity of the resulting protocol. By introspecting the predicates,
further optimizations could be implemented easily.

GlobalHomomorphisms. Homomorphisms that appear in multiple atomic
predicates can be defined as global homomorphisms in this optional section. The
description of a homomorphism in PSL is a natural translation from the math-
ematical notation for homomorphisms consisting of name, domain, co-domain,
and the mapping function.

Predicates. Finally, the atomic predicates used in the proof goal composition
are specified. Each predicate is proved with a Σ-protocol: one of SigmaPhi,
SigmaGSP or SigmaExp. For each Σ-protocol, the relation between public images
and private preimages must be defined using local or global homomorphisms.
ChallengeLength specifies the maximum challenge length that can be used to
prove this atomic predicate with the given Σ-protocol (cf. §2.3 for details). Note
that this value depends, e.g., on the size of the special exponent of the ho-
momorphism, and thus, in general, cannot be automatically determined by the
compiler, as the factorization of the special exponent might not be available.

Optimizations. The compiler automatically determines the number of repe-
titions for each atomic predicate to achieve the intended knowledge error. For
proofs in hidden order groups using the Σexp-protocol the compiler automatically
chooses the size of the auxiliary modulus as described in [58] - the automatic
choice of the most efficient protocol Σexp or ΣGSP described therein is currently
being implemented. In future work, the automatic choice of parameter sizes could

12 Almeida, Bangerter, Barbosa, Krenn, Sadeghi, and Schneider

be automatically inferred from a higher-level specification of the intended proof
goal.

4 Verification

The Protocol Verification Toolbox (PVT) of our compiler suite (cf. Fig. 2) au-
tomatically produces a formal proof for the soundness property of the compiled
protocol. In other words it formally validates the guarantee obtained by a verifier
executing the compiled protocol: “The prover indeed knows a witness satisfying
the proof goal.”

Overview. The internal operation of the PVT is sketched in Fig. 4; the phases
(1) to (6) are explained in the following. As inputs, two files are given: the

Validate PSL/PIL Extract Proof Goal
and Verifier Code

Identity Proof
Template

Instantiate Proof
Template

Generate Isabelle
Input FileRun Isabelle

PSL File PIL File

Accept/Fail

1 2 3

456

Fig. 4: Internal operation of the Protocol Verification Toolbox (PVT).

protocol specification (a PSL file) that was fed as input to the compiler, and
the protocol implementation description that was produced by the compiler (a
PIL file). The PVT first checks (1) the syntactic correctness of the files and
their semantic consistency, e.g., it verifies that the PSL and PIL files operate on
the same groups, and other similar validations. Then, the information required
for the construction of the soundness proof is extracted (2). This information
essentially consists of the proof goal description from the PSL file and the code
for the verifier in the implementation file. In particular, the former includes
the definition of the concrete homomorphisms being used in the protocol, and
information about the algebraic properties of elements, homomorphisms, etc.7.

The reason for the verification toolbox only considering the verifier code is
that by definition [1] the soundness of the protocol essentially concerns providing
guarantees for the verifier, regardless of whether the prover is honestly executing
the protocol or not. Looking at the description of Σ-protocols in §2 and the
example PIL file included in App. C, one can see that the verifier code typically
is very simple. The exception is the final algebraic verification that is performed
on the last response from the prover, which determines whether the proof of

7 This justifies the verification-specific annotations in the PSL file, as described in §3.

A Certifying Compiler for ZK-PoK Based on Σ-Protocols 13

knowledge should be accepted. The theoretical soundness proof that we construct
essentially establishes that this algebraic check is correct with respect to the
proof goal, i.e., that it assures the verifier that the prover must know a valid
witness. The soundness proof is then generated in three steps:

a) Firstly, an adequate proof template is selected from those built into the tool
(3). If no adequate template exists for this particular protocol, then the user
is notified and the process terminates.

b) The proof template is instantiated with the concrete parameters correspond-
ing to the input protocol (4) and translated into an output file (5) compatible
with the Isabelle/HOL proof assistant: a theory file.

c) Finally, the proof assistant is executed on the theory file produced before
(6). If the proof assistant successfully finishes, then we have a formal proof
of the theoretical soundness of the protocol. Furthermore, the Isabelle/HOL
framework permits generating a human-readable version of the proof that
can be used for product documentation.

The process is fully automatic and achieving this was a major challenge to our
design. As can be seen in Fig. 4, our tool uses Isabelle/HOL [66] as a back-
end (6). In order to achieve automatic validation of the generated proofs, it
was necessary to construct a library of general lemmata and theorems in HOL
that capture, not only the properties of the algebraic constructions that are
used in ZK-PoK protocols, but also the generic provable security stepping stones
required to establish the theoretical soundness property. We therefore intensively
employed and extended the Isabelle/HOL Algebra Library [67], which contains
a wide range of formalizations of mathematical constructs. By relying on a set
of existing libraries such as this, development time was greatly shortened, and
we were able to create a proof environment in which we can express proof goals
in a notation that is very close to the standard mathematical notation adopted
in cryptography papers. More information about Isabelle/HOL can be found
in [65,66].

Remark. No verification is carried out at this moment of the executable code
that is generated from the PIL file, but this is a program correctness problem
rather than a theoretical security problem. It thus must be addressed using a
different techniques that we do not cover in this paper.

We next detail the most important aspects of our approach.

Proof strategy. Proving the soundness property of the ZK-PoK protocols pro-
duced by the compiler essentially means proving that the success probability of
a malicious prover in cheating the verifier is bounded by the intended knowledge
error. As described in §2.2, this involves proving the existence of (or simply to
construct) an efficient knowledge extractor.

Our verification component is currently capable of dealing with the Σφ-
protocol, which means handling proof goals involving special homomorphisms
(cf. Definition 1) for which it is possible to efficiently find pseudo-preimages. As
all special homomorphisms used in cryptography fall into one of the two classes

14 Almeida, Bangerter, Barbosa, Krenn, Sadeghi, and Schneider

described when introducing special homomorphisms in §2, the verification tool-
box has the ability to automatically find a pseudo-preimage for any concrete
homomorphism that it encounters without human interaction.

A central stepping stone in formally proving the existence of an efficient
knowledge extractor is the following lemma (which actually proves Theorem 2)
that we have formalized in HOL.

Lemma 3 (Shamir’s Trick [57]). Let (u1, v1) and (u2, v2) be pseudo-preimages
of y under homomorphism φ. If v1 and v2 are co-prime, then there exists a
polynomial time algorithm that computes a preimage x of y under φ. This algo-
rithm consists of the Extended Euclidean Algorithm to obtain a, b ∈ Z such that
av1 + bv2 = 1, and then calculating x = au1 + bu2.

In fact, given a special homomorphism and two accepting protocol transcripts
for a ZK-PoK of an atomic predicate, we prove the existence of a knowledge
extractor by ensuring that we may instantiate Lemma 3.

The compiler also supports composition with Boolean And and Or. If multiple
predicates are combined by And, the verification tool defines as proof goal the
existence of a knowledge extractor for each and all of them separately, i.e., one
needs to show that the witness for each predicate can be extracted independently
from the other predicates. In case of Or proofs (i.e., knowledge of one out of a
set of preimages), the proof strategy looks as follows. First, for each atomic
predicate, an Isabelle theorem proves the existence of a knowledge extractor. In
a second step, it is then shown that the assumptions of at least one of these
theorems are satisfied (i.e., that at least for one predicate we actually have
different challenges).

Isabelle/HOL formalization. The HOL theory file produced by the Protocol
Verification Toolbox is typical, in the sense that it contains a set of auxiliary
lemmata that are subsequently used as simplification rules, and a final lemma
with the goal to be proved. The purpose of the auxiliary lemmata is to decompose
the final goal into simpler and easy to prove subgoals. They allow a systematic
proof strategy that, because it is modularized, can handle proof goals of arbitrary
complexity. Concretely, the proof goal for a simple preimage ZK-PoK such as
those associated with Diffie-Hellman keys (pk = gsk) used in the example in §3
looks like the following theorem formulation:

Theorem (Proof Goal). Let G and H be commutative groups, where G rep-
resents the group of integers. Take as hypothesis the algebraic definition of the
exponentiation homomorphism φ : G → H, quantified for all values of G, i.e.,
fix g ∈ H with order q and assume ∀a ∈ G. φ(a) = ga.

Take a prime q > 2 and cmax ∈ Z such that 0 < cmax < q, take t,pk ∈ H such
that the order of pk is q, take s′, s′′ ∈ G and c′, c′′ ∈ Z such that 0 < c′, c′′ < cmax

and c′ 6= c′′, and assume φ(s′) = t · pkc
′ ∧ φ(s′′) = t · pkc

′′
.

Then there exist a, b ∈ Z such that φ(au+b∆s) = pk ∧ av+b∆c = 1, where
∆s := s′−s′′ and ∆c := c′−c′′, and (u, v) = (0, q) ∈ G×Z is a pseudo-preimage
of pk under φ.

A Certifying Compiler for ZK-PoK Based on Σ-Protocols 15

Instrumental in constructing the proof goal and auxiliary lemmata that per-
mit carrying out the formal proof are the verifier’s verification equations ex-
tracted from the PIL file. Indeed, the part of the proof goal that describes the
two transcripts of the protocol (t, c′, s′) and (t, c′′, s′′) is constructed by trans-
lating this verification equation into Isabelle/HOL. For example, the following
statement from the PIL file:

Verify((_t*(pk^_c)) == (g^_s));

will be translated into the Isabelle/HOL formalization

t⊗H (pk(∧H)c′) = g(∧H)s′; t⊗H (pk(∧H)c′′) = g(∧H)s′′; c′ 6= c′′;

where ⊗H and (∧H) represent the multiplicative and exponentiation operations
in H, respectively. A typical proof is then structured as follows.

A first lemma with these equations as hypothesis allows the system to make
a simple algebraic manipulation, (formally) proving the following:

(t⊗H (pk(∧H)c′))⊗H invH(t⊗H (pk(∧H)c′′)) = g(∧H)s′ ⊗H invH(g(∧H)s′′)

where invH represents the inversion operation for H. The subsequent lemmata
continue simplifying this equation, until we obtain:

pk(∧H)(c′ − c′′) = g(∧H)(s′ − s′′).

By introducing the homomorphism φ : G→ H we are able to show

pk(∧H)(∆c) = φ(∆s)

where ∆c = c′ − c′′ and ∆s = s′ − s′′. We thus obtained the pseudo-pre-
image (∆s,∆c) from the two accepting protocol transcripts. The second pseudo-
preimage, which is needed for Lemma 3, is found by analyzing the proof goal
extracted from the PSL file, which in our example was:

Relation((pk) = phi(sk)).

Recall that we have embedded in our tool the domain specific knowledge to gen-
erate pseudo-preimages for the class of protocols that we formally verify, so that
we introduce another explicit pseudo-preimage as an hypothesis in our proof, e.g.
(0, q), and prove that it satisfies the pseudo-preimage definition. At this point
we can instantiate the formalization of Lemma 3, and complete the proof for the
above theorem, which implies the existence of a knowledge extractor.

Proof goals for more complex Σ-protocols involving And and Or composi-
tion of simple preimage ZK-PoK are formalized as described in the previous
subsection and in line with the theoretic background introduced in §2. For And
combinations, the proof goal simply contains the conjunction of the independent
proof goals for each of the simple preimage proofs provided as atomic predicates.

16 Almeida, Bangerter, Barbosa, Krenn, Sadeghi, and Schneider

For Or combinations, the proof goal assumes the existence of two transcripts for
the composed protocol

((t1, . . . , tn), c′, ((s11, c
1
1), . . . , (sn1 , c

n
1)) with

n∑
i=1

ci1 ≡ c′ mod cmax

and analogously for c′′, such that c′ 6= c′′. It then states that, there exists an
i ∈ {1, . . . , n} for which we can construct a proof of existence of a knowledge
extractor such as that described above. The assumptions regarding the consis-
tency of the previous summations are, again, a direct consequence of the verifier
code as can be seen in the example in App. C.

References

1. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In Brickell, E., ed.:
CRYPTO 92. Volume 740 of LNCS., Springer (1993) 390–420

2. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems. Journal of the ACM
38 (1991) 691–729 Preliminary version in 27th FOCS, 1986.

3. Groth, J.: Non-interactive zero-knowledge arguments for voting. In Ioannidis, J.,
Keromytis, A., Yung, M., eds.: ACNS 05. Volume 3531 of LNCS., Springer (2005)
467–482

4. Han, W., Chen, K., Zheng, D.: Receipt-freeness for Groth e-voting schemes. Jour-
nal of Information Science and Engineering 25 (2009) 517–530

5. Bhargav-Spantzel, A., Squicciarini, A.C., Modi, S., Young, M., Bertino, E., Elliott,
S.J.: Privacy preserving multi-factor authentication with biometrics. Journal of
Computer Security 15 (2007) 529–560

6. Kikuchi, H., Nagai, K., Ogata, W., Nishigaki, M.: Privacy-preserving similarity
evaluation and application to remote biometrics authentication. Soft Computing
14 (2010) 529–536

7. Camenisch, J.: Group Signature Schemes and Payment Systems Based on the
Discrete Logarithm Problem. PhD thesis, ETH Zurich, Konstanz (1998)

8. Camenisch, J., Michels, M.: Proving in zero-knowledge that a number is the prod-
uct of two safe primes. In Stern, J., ed.: EUROCRYPT 99. Volume 1592 of LNCS.,
Springer (1999) 107–122

9. Brands, S.: Untraceable off-line cash in wallet with observers. In Stinson, D.R.,
ed.: CRYPTO 93. Volume 773 of LNCS., Springer (1994) 302–318

10. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Balancing accountability and
privacy using e-cash (extended abstract). In Prisco, R.D., Yung, M., eds.: SCN 06.
Volume 4116 of LNCS., Springer (2006) 141–155

11. Lindell, Y., Pinkas, B., Smart, N.P.: Implementing two-party computation effi-
ciently with security against malicious adversaries. In Ostrovsky, R., Prisco, R.D.,
Visconti, I., eds.: SCN 08. Volume 5229 of LNCS., Springer (2008) 2–20

12. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In Atluri,
V., Backes, M., Basin, D.A., Waidner, M., eds.: ACM CCS 04, ACM Press (2004)
132–145

13. Camenisch, J., Herreweghen, E.V.: Design and implementation of the idemix
anonymous credential system. In Atluri, V., ed.: ACM CCS 02, ACM Press (2002)
21–30

A Certifying Compiler for ZK-PoK Based on Σ-Protocols 17

14. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular
polynomial relations. In Kaliski, B., ed.: CRYPTO 97. Volume 1294 of LNCS.,
Springer (1997) 16–30

15. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably se-
cure coalition-resistant group signature scheme. In Bellare, M., ed.: CRYPTO 00.
Volume 1880 of LNCS., Springer (2000) 255–270

16. Bangerter, E., Camenisch, J., Maurer, U.: Efficient proofs of knowledge of discrete
logarithms and representations in groups with hidden order. In Vaudenay, S., ed.:
PKC 05. Volume 3386 of LNCS., Springer (2005) 154–171

17. Damg̊ard, I., Fujisaki, E.: A statistically-hiding integer commitment scheme based
on groups with hidden order. In Zheng, Y., ed.: ASIACRYPT 02. Volume 2501 of
LNCS., Springer (2002) 77–85

18. Cao, Z.: Analysis of one popular group signature scheme. In Lai, X., Chen, K.,
eds.: ASIACRYPT 06. Volume 4284 of LNCS., Springer (2006) 460–466

19. Kunz-Jacques, S., Martinet, G., Poupard, G., Stern, J.: Cryptanalysis of an efficient
proof of knowledge of discrete logarithm. In Yung, M., Dodis, Y., Kiayias, A.,
Malkin, T., eds.: PKC 06. Volume 3958 of LNCS., Springer (2006) 27–43

20. Smart, N.P., ed.: Final Report on Unified Theoretical Framework of Efficient Zero-
Knowledge Proofs of Knowledge. http://www.cace-project.eu (2009) CACE
Project Deliverable.

21. Schnorr, C.: Efficient signature generation by smart cards. Journal of Cryptology
4 (1991) 161–174

22. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In Feigenbaum, J., ed.: CRYPTO 91. Volume 576 of LNCS., Springer
(1992) 129–140

23. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In Pfitzmann, B., ed.: EU-
ROCRYPT 01. Volume 2045 of LNCS., Springer (2001) 93–118

24. Adelsbach, A., Sadeghi, A.R.: Zero-knowledge watermark detection and proof of
ownership. In: Information Hiding. Volume 2137 of LNCS., Springer (2001) 273–
288

25. Lipmaa, H.: On diophantine complexity and statistical zeroknowledge arguments.
In Laih, C.S., ed.: ASIACRYPT 03. Volume 2894 of LNCS., Springer (2003) 398–
415

26. Paulson, L.: Isabelle: a Generic Theorem Prover. Volume 828 of LNCS. Springer
(1994)

27. MacKenzie, P., Oprea, A., Reiter, M.K.: Automatic generation of two-party com-
putations. In: ACM CCS 03, ACM (2003) 210–219

28. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay — a secure two-party com-
putation system. In: USENIX Security 04. (2004) http://www.cs.huji.ac.il/

project/Fairplay/fairplay.html.

29. Damg̊ard, I., Geisler, M., Krøigaard, M., Nielsen, J.B.: Asynchronous multiparty
computation: Theory and implementation. In: PKC 09. Volume 5443. (2009) 160–
179

30. Briner, T.: Compiler for zero-knowledge proof-of-knowledge protocols. Master’s
thesis, ETH Zurich (2004)

31. Camenisch, J., Rohe, M., Sadeghi, A.R.: Sokrates - a compiler framework for zero-
knowledge protocols. In: Western European Workshop on Research in Cryptology
– WEWoRC 05. (2005)

http://www.cace-project.eu
http://www.cs.huji.ac.il/project/Fairplay/fairplay.html
http://www.cs.huji.ac.il/project/Fairplay/fairplay.html

18 Almeida, Bangerter, Barbosa, Krenn, Sadeghi, and Schneider

32. Bangerter, E., Camenisch, J., Krenn, S., Sadeghi, A.R., Schneider, T.: Automatic
generation of sound zero-knowledge protocols. Cryptology ePrint Archive, Report
2008/471 (2008) http://eprint.iacr.org/. Poster Session of EUROCRYPT 09.

33. Bangerter, E., Briner, T., Heneka, W., Krenn, S., Sadeghi, A.R., Schneider, T.:
Automatic generation of Σ-protocols. In: EuroPKI 09 (to appear). (2009)

34. Backes, M., Maffei, M., Unruh, D.: Zero-knowledge in the applied pi-calculus and
automated verification of the direct anonymous attestation protocol. In: IEEE
Symposium on Security and Privacy (SP 08). (2008) 202–215 Preprint on IACR
ePrint 2007/289.

35. Baskar, A., Ramanujam, R., Suresh, S.P.: A Dolev-Yao Model for Zero Knowledge.
In: Advances in Computer Science (ASIAN 09). Information Security and Privacy.
Volume 5913 of LNCS., Springer (2009) 137 – 146

36. Blanchet, B.: ProVerif: Cryptographic protocol verifier in the formal model. http:
//www.proverif.ens.fr (2010)

37. Backes, M., Hritcu, C., Maffei, M.: Type-checking zero-knowledge. In: ACM CCS
08, New York, NY, USA, ACM (2008) 357–370

38. Backes, M., Unruh, D.: Computational soundness of symbolic zero-knowledge
proofs against active attackers. In: IEEE Computer Security Foundations Sympo-
sium - CSF 08. (2008) 255–269 Preprint on IACR ePrint 2008/152.

39. Bather, G., Grégoire, B., Hedin, D., Heraud, S., Béguelin, S.: A machine-checked
formalization of Σ-protocols (2010) Manuscript.

40. Barthe, G., Grégoire, B., Béguelin, S.: Formal certification of code-based cryp-
tographic proofs. In: ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages – POPL 09. (2009) 90–101

41. Goubault-Larrecq, J., Parrennes, F.: Cryptographic protocol analysis on real
C code. In Cousot, R., ed.: International Conference on Verification, Model Check-
ing and Abstract Interpretation – VMCAI 05. Volume 3385 of LNCS., Springer
(2005) 363–379

42. Bhargavan, K., Fournet, C., Gordon, A., Tse, S.: Verified interoperable imple-
mentations of security protocols. ACM Trans. Program. Lang. Syst. 31 (2008)
1–61

43. Bhargavan, K., Fournet, C., Corin, R., Zalinescu, E.: Cryptographically verified
implementations for tls. In: ACM CCS 08, New York, NY, USA, ACM (2008)
459–468

44. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules.
In: CSFW ’01: Proceedings of the 14th IEEE workshop on Computer Security
Foundations, Washington, DC, USA, IEEE Computer Society (2001) 82

45. Blanchet, B.: A computationally sound mechanized prover for security protocols.
In: IEEE Symposium on Security and Privacy (SP 06), Washington, DC, USA,
IEEE Computer Society (2006) 140–154

46. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups
(extended abstract). In Kaliski, B., ed.: CRYPTO 97. Volume 1294 of LNCS.,
Springer (1997) 410–424

47. Cramer, R.: Modular Design of Secure yet Practical Cryptographic Protocols. PhD
thesis, CWI and University of Amsterdam (1997)

48. Damg̊ard, I.: On Σ-protocols (2004) Lecture on Cryptologic Protocol Theory;
Faculty of Science, University of Aarhus.

49. Guillou, L., Quisquater, J.J.: A “paradoxical” identity-based signature scheme
resulting from zero-knowledge. In Goldwasser, S., ed.: CRYPTO 88. Volume 403
of LNCS., Springer (1990) 216–231

http://eprint.iacr.org/
http://www.proverif.ens.fr
http://www.proverif.ens.fr

A Certifying Compiler for ZK-PoK Based on Σ-Protocols 19

50. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In Krawczyk, H., ed.: CRYPTO 98. Volume
1462 of LNCS., Springer (1998) 13–25

51. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21 (1978) 120–126

52. Okamoto, T., Uchiyama, S.: A new public-key cryptosystem as secure as factoring.
In Nyberg, K., ed.: EUROCRYPT 98. Volume 1403 of LNCS., Springer (1998) 308–
318

53. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In Stern, J., ed.: EUROCRYPT 99. Volume 1592 of LNCS., Springer
(1999) 223–238

54. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications of
Paillier’s probabilistic public-key system. In Kim, K., ed.: PKC 01. Volume 1992
of LNCS., Springer (2001) 119–136

55. Hanaoka, G., Kurosawa, K.: Efficient chosen ciphertext secure public key encryp-
tion under the computational Diffie-Hellman assumption. In Pieprzyk, J., ed.:
ASIACRYPT 08. Volume 5350 of LNCS., Springer (2008) 308–325

56. Gamal, T.E.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In Blakley, G.R., Chaum, D., eds.: CRYPTO 84. Volume 196 of LNCS.,
Springer (1985) 10–18

57. Bangerter, E.: Efficient Zero-Knowledge Proofs of Knowledge for Homomorphisms.
PhD thesis, Ruhr-University Bochum (2005)

58. Bangerter, E., Grünert, A., Krenn, S.: On the (in)practicability of zero-knowledge
proofs of knowledge using hidden-order groups. Technical report, Bern University
of Applied Sciences (CH), University of Fribourg (CH), and University of London
(GB) (2010)

59. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and
simplified design of witness hiding protocols. In Desmedt, Y., ed.: CRYPTO 94.
Volume 839 of LNCS., Springer (1994) 174–187

60. Shamir, A.: How to share a secret. Communications of the ACM 22 (1979) 612–613
61. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and

signature problems. In Odlyzko, A.M., ed.: CRYPTO 86. Volume 263 of LNCS.,
Springer (1987) 186–194

62. Brands, S.: Rapid demonstration of linear relations connected by boolean opera-
tors. In Fumy, W., ed.: EUROCRYPT 97. Volume 1233 of LNCS., Springer (1997)
318–333

63. Bresson, E., Stern, J.: Proofs of knowledge for non-monotone discrete-log formulae
and applications. In Chan, A., Gligor, V., eds.: ISC 02. Volume 2433 of LNCS.,
Springer (2002) 272–288

64. Granlund, T.: The GNU MP Bignum Library. http://gmplib.org/ (2010)
65. Nipkow, T., Paulson, L.: Isabelle web site. http://isabelle.in.tun.de (2010)
66. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL: a proof assistant for higher-

order logic. Volume 2283 of LNCS. Springer, London, UK (2002)
67. Ballarin, C., Kammüller, F., Paulson, L.: The Isabelle/HOL Algebra Library.

http://isabelle.in.tum.de/library/HOL/HOL-Algebra/document.pdf (2008)

A Protocol Implementation Language

From the PSL file, the compiler automatically generates a description of the pro-
tocol in the Protocol Implementation Language (PIL). This language describes

http://gmplib.org/
http://isabelle.in.tun.de
http://isabelle.in.tum.de/library/HOL/HOL-Algebra/document.pdf

20 Almeida, Bangerter, Barbosa, Krenn, Sadeghi, and Schneider

the algorithms for prover and verifier in detail, including the sequence of opera-
tions that are performed, and the messages exchanged between the two parties
(for an example see the PIL output generated from the PSL input of Fig. 3
in App. C). This PIL file is used for the automatic generation of the LATEX
documentation (cf. App. B), and source code in the C programming language
using the respective backends. The PIL description is also fed as an input to the
protocol verification toolbox described in §4.

B Generated LATEX Output for Example of §3.2

1 Declarations and Inputs

1.1 Common Declarations

p ∈ P1024

q ∈ P160

ksec = 80 ∈ Z
h, g, c, pk2, pk1 ∈ Z∗

p

1

1.2 Private Declarations – Prover

1.2.1 Prover’s Inputs

m, sk1, r, sk2 ∈ Zq

2

1.2.2 Global Variables

c2, c1 ∈ {0, 1}80

r2, r3, r1, r4, s3, s2, s1, s4 ∈ Zq

3

1.3 Private Declarations – Verifier

1.3.1 Global Variables

c ∈ {0, 1}80

t1, t2, t3 ∈ Z∗
p

4

2 Protocol Rounds

2.1 Prover – Round0

hq ?
= 1

gq ?
= 1

cq ?
= 1

pk2
q ?

= 1

pk1
q ?

= 1

5

2.2 Verifier – Round0

hq ?
= 1

gq ?
= 1

cq ?
= 1

pk2
q ?

= 1

pk1
q ?

= 1

6

A Certifying Compiler for ZK-PoK Based on Σ-Protocols 21

2.3 Prover – Round1

r1 ∈R Zq

r2 ∈R Zq

t1 := gr1 · hr2

If known: sk1 do:
| r3 ∈R Zq

| t2 := gr3

Else
| c1 ∈R {0, 1}80

| s3 ∈R Zq

| t2 := gs3 · pk1
((−(c1)))

End if

If known: sk2 do:
| r4 ∈R Zq

| t3 := gr4

Else
| c2 ∈R {0, 1}80

| s4 ∈R Zq

| t3 := gs4 · pk2
((−(c2)))

End if

t1; t2; t3;

✲

7

2.4 Verifier – Round1

c ∈R {0, 1}80

c;

✛

8

2.5 Prover – Round2

s1 := r1 + m · c
s2 := r2 + r · c
Complete (c1, c2) such that

c1 + c2 ≡ c mod 280

If known: sk1 do:
| s3 := r3 + sk1 · c1

End if

If known: sk2 do:
| s4 := r4 + sk2 · c2

End if

s1; s2; s3; s4; c1;

✲

9

2.6 Verifier – Round2

Local Round Variables:
c2 ∈ {0, 1}80

s1
?∈ Zq

s2
?∈ Zq

t1 · cc
?
= gs1 · hs2

Complete (c1, c2) such that
c1 + c2 ≡ c mod 280

s3
?∈ Zq

t2 · pk1
c1 ?

= gs3

s4
?∈ Zq

t3 · pk2
c2 ?

= gs4

10

22 Almeida, Bangerter, Barbosa, Krenn, Sadeghi, and Schneider

C Generated PIL Code for Example of §3.2

ExecutionOrder := (Prover.Round0, Verifier.Round0, Prover.Round1, Verifier.Round1,
Prover.Round2, Verifier.Round2);

Common (
Prime(1024) p;
Prime(160) q;
H=Zmod*(p) pk_1, g, c, h, pk_2

) {}

Prover(G=Zmod+(q) sk_2, sk_1, m, r) {
_C=Int(80) _c_2, _c_1;
G _r_2, _r_3, _r_1, _r_4, _s_3, _s_2, _s_1, _s_4;
Def (Void): Round0(Void) {

Verify((pk_1^q) == 1);
Verify((g^q) == 1);
Verify((c^q) == 1);
Verify((h^q) == 1);
Verify((pk_2^q) == 1);

}

Def (H _t_1, _t_2, _t_3): Round1(Void) {
_r_1 := Random(G);
_r_2 := Random(G);
_t_1 := ((g^_r_1)*(h^_r_2));
IfKnown(sk_1){

_r_3 := Random(G);
_t_2 := (g^_r_3);

} Else {
_c_1 := Random(_C);
_s_3 := Random(G);
_t_2 := ((g^_s_3)*(pk_1^(-(_c_1))));

}
IfKnown(sk_2){

_r_4 := Random(G);
_t_3 := (g^_r_4);

} Else {
_c_2 := Random(_C);
_s_4 := Random(G);
_t_3 := ((g^_s_4)*(pk_2^(-(_c_2))));

}
}

Def (_s_1; _s_2; _s_3; _s_4; _c_1): Round2(_C _c) {
_s_1 := (_r_1+(m*_c));
_s_2 := (_r_2+(r*_c));
Complete((_c_1,_c_2),_c,OR);
IfKnown(sk_1){

_s_3 := (_r_3+(sk_1*_c_1));
}
IfKnown(sk_2){

_s_4 := (_r_4+(sk_2*_c_2));
}

}
}

Verifier() {
_C=Int(80) _c;
H _t_1, _t_2, _t_3;
Def (Void): Round0(Void) {

Verify((pk_1^q) == 1);
Verify((g^q) == 1);
Verify((c^q) == 1);
Verify((h^q) == 1);
Verify((pk_2^q) == 1);

}

Def (_c): Round1(_t_1; _t_2; _t_3) {

A Certifying Compiler for ZK-PoK Based on Σ-Protocols 23

_c := Random(_C);
}

Def (Void): Round2(G=Zmod+(q) _s_1, _s_2, _s_3, _s_4; _C _c_1) {
_C _c_2;
CheckMembership(_s_1, G);
CheckMembership(_s_2, G);
Verify((_t_1*(c^_c)) == ((g^_s_1)*(h^_s_2)));
Complete((_c_1,_c_2),_c,OR);
CheckMembership(_s_3, G);
Verify((_t_2*(pk_1^_c_1)) == (g^_s_3));
CheckMembership(_s_4, G);
Verify((_t_3*(pk_2^_c_2)) == (g^_s_4));

}
}

	A Certifying Compiler for Zero-Knowledge Proofs of Knowledge Based on -Protocols
	José Bacelar Almeida, Endre Bangerter, Manuel Barbosa, Stephan Krenn, Ahmad-Reza Sadeghi, Thomas Schneider

