# Generating more Kawazoe-Takahashi Genus 2 Pairing-friendly Hyperelliptic Curves 

Ezekiel J Kachisa*<br>School of Computing<br>Dublin City University<br>Ireland<br>ekachisa@computing.dcu.ie


#### Abstract

Constructing pairing-friendly hyperelliptic curves with small $\rho$-values is one of challenges for practicability of pairing-friendly hyperelliptic curves. In this paper, we describe a method that extends the Kawazoe-Takahashi method of generating families of genus 2 ordinary pairing-friendly hyperelliptic curves by parameterizing the parameters as polynomials. With this approach we construct genus 2 ordinary pairingfriendly hyperelliptic curves with $2<\rho \leq 3$.


Keywords: pairing-friendly curves, hyperelliptic curves.

## 1 Introduction

Efficient implementation of pairing-based protocols such as one round three way key exchange [16], identity based encryption [3] and digital signatures [4], depends on what are called pairing-friendly curves. These are special curves with a large prime order subgroup, so that protocols can resist the known attacks, and small embedding degree for efficient finite field computations.

Even though there are many methods for constructing pairing-friendly elliptic curves [14], there are very few methods that address the problem of constructing ordinary pairing-friendly hyperelliptic curves of higher genus. The first explicit construction of ordinary hyperelliptic curve was shown by David Freeman [11]. Freeman modeled the Cocks-Pinch method [8] to construct ordinary hyperelliptic curves of genus 2. His algorithm produce curves over prime fields with prescribed embedding degree $k$ with $\rho$-value $\approx 8$. Kawazoe and Takahashi [18] constructed pairing-friendly hyperelliptic curves of the form $y^{2}=x^{5}+a x$ which produced Jacobian varieties with $\rho$-values between 3 and 4. Recently, Freeman and Satoh [15]

[^0]proposed algorithms for generating pairing-friendly hyperelliptic curves. In their construction it was shown that if an elliptic curve, $E$, is defined over a finite field, $\mathbb{F}_{p}$, and $\mathcal{A}$ is abelian variety isogenous over $\mathbb{F}_{p^{d}}$ to a product of two isomorphic elliptic curves then the abelian variety, $\mathcal{A}$, is isogenous over $\mathbb{F}_{p}$ to a primitive subvariety of the Weil restriction of $E$ from $\mathbb{F}_{p^{d}}$ to $\mathbb{F}_{p}$. Notably, the Freeman-Satoh algorithm produces hyperelliptic curves with better $\rho$ value than previously reported. The best, for example, achieves a $\rho$-value of $20 / 9$ for embedding degree $k=27$. However, the $\rho$-values of most embedding degrees for ordinary hyperelliptic curves remain too high for an efficient implementation.

For a curve to be suitable for implementation it should possess desirable properties which include efficient implementation of finite field arithmetic and the order of the Jacobian having a large prime factor.

In this paper we generate more Kawazoe-Takahashi genus 2 ordinary pairing-friendly hyperelliptic curves. In particular, we construct curves of embedding degrees $2,7,8,10,11,13,22,26,28,44$ and 52 with $\rho$-value between 2 and 3 .

We proceed as follows: In Section 2 we present mathematical background and facts on constructing pairing-friendly hyperelliptic curves while in Section 3 we discuss the construction of pairing-friendly hyperelliptic curves based on the Kawazoe-Takahashi algorithms and in Section 4 we present the generalization of Kawazoe-Takahashi algorithms for constructing pairing-friendly hyperelliptic curves and we give explicit examples. The paper is concluded in Section 5.

## 2 Pairing-friendly hyperelliptic curves

### 2.1 Mathematical background

Let $p>2$ be a prime, let $r$ be prime distinct from $p$. We denote a hyperelliptic curve of genus $g$ defined over a finite field $\mathbb{F}_{p}$ by $C$. This is a non-singular projective model of the affine curve of the form:

$$
\begin{equation*}
y^{2}=f(x) \tag{1}
\end{equation*}
$$

where $f(x)$ is a monic polynomial of degree $2 g+1$, has its coefficients in $\mathbb{F}_{p}[x]$ and has no multiple roots in $\overline{\mathbb{F}}_{p}$. We denote the Jacobian of $C$ by $J_{C}$ and a group of the $\mathbb{F}_{p}$-rational points of the Jacobian of $C$ by $J_{C}\left(\mathbb{F}_{p}\right)$. This group is isomorphic to degree zero divisor class group of $C$ over $\mathbb{F}_{p}$.

As in the elliptic curve case the embedding degree of Jacobian variety is defined as follows:

Definition 1 ([11]). Let $C$ be an hyperelliptic curve defined over a prime finite field $\mathbb{F}_{p}$. Let $r$ be a prime dividing $\# J_{C}\left(\mathbb{F}_{p}\right)$. The embedding degree of $J_{C}$ with respect to $r$ is the smallest positive integer $k$ such that $r \mid p^{k}-1$ but $r \nmid p^{i}-1$ for $0<i<k$.

The definition, as in the elliptic curve case, explains that $k$ is the smallest positive integer such that the extension field $\mathbb{F}_{p^{k}}$, contains a set of $r$ th roots of unity. Hence we refer to a curve $C$ as having embedding degree $k$ with respect to $r$ if and only if a subgroup of order $r$ of its Jacobian $J_{C}$ does. As such, for an efficient arithmetic implementation curves must have small embedding degree so that arithmetic in $\mathbb{F}_{p^{k}}$ is feasible. Furthermore, we require that the size of the finite field, $\mathbb{F}_{p}$, be as small as possible in relation to the the size of the prime order subgroup $r$. This is measured by a parameter known as the $\rho$-value. For a $g$-dimensional abelian variety defined over $\mathbb{F}_{p}$ this parameter is defined as:

$$
\rho=\frac{g \log (\mathrm{p})}{\log (\mathrm{r})} .
$$

In the ideal case the abelian varieties of dimension $g$ have a prime number of points in which case $\rho \approx 1$. For pairing-friendly one-dimensional abelian varieties one can reach the ideal case by using the constructions in [19], [6] and [10]. However, this proves not be the case with higher dimensional abelian varieties. Hence the interest has been to construct higher dimensional abelian varieties with low embedding degrees and small $\rho$ values. And the same time, for security reasons we require $r$ large enough so that discrete logarithm problem (DLP) in the subgroup of prime order $r$ is suitably hard and $k$ sufficiently large enough so that the (DLP) in $\mathbb{F}_{p^{k}}^{*}$, withstand the known attacks.

There are two main cryptographic pairings, the Weil and the Tate. In both cases the basic idea is to embed the cryptographic group of order $r$ into a multiplicative group of $r$ th roots of unity, $\mu_{r}$. A non-degenerate, bilinear map for the Tate pairing, for example, is defined by the following map:

$$
t_{r}: J_{C}\left(\mathbb{F}_{p^{k}}\right)[r] \times J_{C}\left(\mathbb{F}_{p^{k}}\right) / J_{C}\left(\mathbb{F}_{p^{k}}\right) \longrightarrow\left(\mathbb{F}_{p^{k}}^{*}\right) /\left(\mathbb{F}_{p^{k}}^{*}\right)^{r}
$$

## 3 Kawazoe-Takahashi hyperelliptic curves

Kawazoe and Takahashi [18] presented an algorithm which constructed hyperelliptic curves of the form $y^{2}=x^{5}+a x$ with ordinary Jacobians. Their construction used two approaches, one was based on the CocksPinch method [8] of constructing ordinary pairing-friendly elliptic curves
and the other was based on cyclotomic polynomials. This idea was first proposed by Brezing and Weng in [7]. However, both approaches are based on the predefined sizes of the Jacobians as presented in [9]. The order of the Jacobian, $\# J_{C}$, is closely related to the characteristic polynomial, $\chi(t)$, of the Frobenius endormorphism, $\pi$.

Consequently, for genus 2 curves the $\chi(t)$ of the Frobenius is a polynomial known to have the following form:

$$
\begin{equation*}
\chi(t)=t^{4}-a_{1} t^{3}+a_{2} t^{2}-a_{1} p t+p^{2} \tag{2}
\end{equation*}
$$

within $a_{1}, a_{2} \in \mathbb{F}_{p}$ and furthermore $\left|a_{1}\right| \leq 4 p$ and $\left|a_{2}\right| \leq 6 p$. Hence, $\# J_{C}$ is determined from Equation 2 by the following relation:

$$
\begin{equation*}
\# J_{C}=\chi(1)=1-a_{1}+a_{2}-a_{1} p+p^{2} . \tag{3}
\end{equation*}
$$

The Hasse-Weil bound describes the interval in which the order of the Jacobian is found as follows:

$$
\begin{equation*}
\left\lceil(\sqrt{p}-1)^{2 g}\right\rceil \leq \# J_{C} \leq\left\lfloor(\sqrt{p}+1)^{2 g}\right\rfloor \tag{4}
\end{equation*}
$$

Theorem 1 below outlines the characteristic polynomials which defines hyperelliptic curves, $C$, of the form $y^{2}=x^{5}+a x$ defined over $\mathbb{F}_{p}$. The $J_{C}$ of $C$ for these cases is a simple ordinary Jacobian over $\mathbb{F}_{p}$.

Theorem 1 ([9],[18]). Let $p$ be an odd prime, $C$ a hyperelliptic curve defined over $\mathbb{F}_{p}$ by equation $y^{2}=x^{5}+a x$, Jc the Jacobian variety of $C$ and $\chi(t)$ the characteristic polynomial of the pth power Frobenius map of C. Then the following holds: (In the following $c, d$ are integers such that $p=c^{2}+2 d^{2}$ and $c \equiv 1(\bmod 4), d \in \mathbb{Z}$ (such $c$ and $d$ exists if and only if $p \equiv 1,3(\bmod 8))$.

1) If $p \equiv 1 \bmod 8$ and $a^{(p-1) / 2} \equiv-1 \bmod p$, then $\chi(t)=t^{4}-4 d t^{3}+$ $8 d^{2} t^{2}-4 d p t+p^{2}$ and $2(-1)^{(p-1) / 8} d \equiv\left(a^{(p-1) / 8}+a^{3(p-1) / 8}\right) c \bmod p$
2) If $p \equiv 1 \bmod 8$ and $a^{(p-1) / 4} \equiv-1 \bmod p$, or if $p \equiv 3 \bmod 8$ and $a^{(p-1) / 2} \equiv-1 \bmod p$, then $\chi(t)=t^{4}+\left(4 c^{2}-2 p\right) t^{2}+p^{2}$

Using the formulae in Theorem 1 Kawazoe and Takahashi developed a Cocks-Pinch-like method to construct genus 2 ordinary pairing-friendly hyperelliptic curves of the form $y^{2}=x^{5}+a x$. As expected the curves generated by the Cocks-Pinch-like method had their $\rho$-values close to 4 . Furthermore, they also presented cyclotomic families. With this method they managed to construct a $k=24$ curve with $\rho=3$. In both cases the ultimate goal is to find integers $c$ and $d$ such that there is a prime
$p=c^{2}+2 d^{2}$ with $c \equiv 1(\bmod 4)$ and $\chi(1)$ having a large prime factor. Algorithms 1 and 2 developed from Theorem 1 construct individual genus 2 pairing-friendly hyperelliptic curves with $\rho \approx 4$.

## Algorithm 1: Kawazoe-Takahashi Type I pairing-friendly Hyperelliptic curves with $\# J_{C}=1-4 d+8 d^{2}-4 d p+p^{2}$

Input: $k \in \mathbb{Z}$.
Output: a hyperelliptic curve defined by $y^{2}=x^{5}+a x$ with Jacobian group having a prime subgroup of order $r$.

1. Choose $r$ a prime such that $l c m(8, k)$ divides $r-1$.
2. Choose $\zeta$ a primitive $k$ th root of unity in $(\mathbb{Z} / r \mathbb{Z})^{\times}, \omega$ a positive integer such that $\omega^{2} \equiv-1 \bmod r$ and $\sigma$ a positive integer such that $\sigma^{2} \equiv 2 \bmod r$.
3. Compute integers, $c, d$ such that:

- $c \equiv(\zeta+\omega)(\sigma(\omega+1))^{-1} \bmod r$ and $c \equiv 1 \bmod 4$
- $d \equiv(\zeta \omega+1)(2(\omega+1))^{-1} \bmod r$.

4. Compute a prime $p=\left(c^{2}+2 d^{2}\right)$ such that $p \equiv 1 \bmod 8$.
5. Find $a \in \mathbb{F}_{p}$ such that:

- $a^{(p-1) / 2} \equiv-1 \bmod p$ and $2(-1)^{(p-1) / 8} d \equiv\left(a^{(p-1) / 8}+a^{3(p-1) / 8}\right) c$ $\bmod p$.

6. Define a hyperelliptic curve $C$ by $y^{2}=x^{5}+a x$.
```
Algorithm 2: Kawazoe-Takahashi Type II pairing-friendly Hyper-
elliptic curves with \(\# J_{C}=1+\left(4 c^{2}-2 p\right)+p^{2}\)
    Input: \(k \in \mathbb{Z}\).
    Output: a hyperelliptic curve defined by \(y^{2}=x^{5}+a x\) with
    Jacobian group having a prime subgroup of order \(r\).
```

1. Choose $r$ a prime such that $l c m(8, k)$ divides $r-1$.
2. Choose $\zeta$ a primitive $k$ th root of unity in $(\mathbb{Z} / r \mathbb{Z})^{\times}, \omega$ positive integer such that $\omega^{2} \equiv-1 \bmod r$ and $\sigma$ a positive integer such that $\sigma^{2} \equiv 2$ $\bmod r$.
3. Compute integers, $c, d$ such that:

- $\left.c \equiv 2^{-1}(\zeta-1) \omega\right) \bmod r$ and $c \equiv 1 \bmod 4$
- $d \equiv(\zeta+1)(2 \sigma)^{-1} \bmod r$.

4. Compute a prime $p=\left(c^{2}+2 d^{2}\right)$ such that $p \equiv 1,3 \bmod 8$ and for some integer $\delta$ satisfying $\delta^{(p-1) / 2} \equiv-1 \bmod p$ and
5. Find $a \in \mathbb{F}_{p}$ such that:

- $a=\delta^{2}$ when $p \equiv 1 \bmod 8$ or $a=\delta$ when $p \equiv 3 \bmod 8$.

6. Define a hyperelliptic curve $C$ by $y^{2}=x^{5}+a x$.

Remark 1. The key feature in both algorithms is that $r$ is choosen such that $r-1$ is divisible by 8 so that $\mathbb{Z} / r \mathbb{Z}$ contains both $\sqrt{-1}$ and $\sqrt{2}$ for both $c$ and $d$ to satisfy the conditions in the algorithm.

## 4 Our generalization

We observe that one can do better if the algorithms are parametrized by polynomials in order to construct curves with specified bit size. We represent families of pairing-friendly curves for which parameters $c, d, r, p$ are parametrized as polynomials $c(z), d(z), r(z), p(z)$ in a variable $z$. In fact this idea of using polynomials was used in other constructions for pairing-friendly curves such as in [19],[2] [21] and [7].

When working with the polynomials we consider polynomials with rational coefficients. The definitions below describes a family of Kawazoe-Takahashi-type of pairing-friendly hyperelliptic curves.

Definition 2 ([14]). Let $g(z) \in \mathbb{Q}[z]$. We say that $g(z)$ represents primes if the following are satisfied:
$-g(z)$ is non constant irreducible polynomial.

- $g(z)$ has a positive leading coefficient.
$-g(z)$ represents integers i.e for $z_{0} \in \mathbb{Z}, g\left(z_{0}\right) \in \mathbb{Z}$.
$-g c d(\{g(z): z, g(z) \in \mathbb{Z}\})=1$

Definition 3. Let $c(z), d(z), r(z)$ and $p(z)$ be non-zero polynomials with rational coefficients. For a given positive integer $k$ the couple $(r(z), p(z))$ parameterizes a family of Kawazoe-Takahashi type of hyperelliptic curves with Jacobian $J_{C}$ whose embedding degree is $k$ if the following conditions are satisfied:
(i) $c(z)$ represents integers such that $c(z) \equiv 1 \bmod 4$;
(ii) $d(z)$ represents integers;
(iii) $p(z)=c(z)^{2}+2 d(z)^{2}$ represents primes;
(iv) $r(z)$ represents primes;
(v) $r(z) \mid 1-4 d(z)+8 d(z)^{2}-4 d(z) p(z)+p(z)^{2}$ or $r(z) \mid 1+\left(4 c(z)^{2}-2 p(z)\right)+$ $p(z)^{2}$
(vi) $\Phi_{k}(p(z)) \equiv 0 \bmod r(z)$, where $\Phi_{k}$ is the $k$ th cyclotomic polynomial.

And we define the $\rho$-value of this family as $\rho=\frac{2 \operatorname{deg}(p(z))}{\operatorname{deg}(r(z))}$.
In [9] they showed that there exists a simple ordinary abelian variety surface with characteristic polynomials of Frobenius $t^{4}-4 d+8 d^{2}-4 d p+$ $p^{2} \in \mathbb{Z}[t]$ or $t^{4}+\left(4 c^{2}-2 p\right)+p^{2} \in \mathbb{Z}[t]$ with certain conditons on $c$ and $d$. Hence Definition 3 part ( $i$ ) and ( $i i$ ) ensures that the polynomial representation of $c$ and $d$ conforms with the conditions. While condition $(v)$ of Definition 3 ensures that for a given $z$ for which $p(z)$ and $r(z)$ represents prime $r(z)$ divides $\# J_{C}(z)$. In otherwords, the order of the Jacobian of the constructed curve has a prime order subgroup of size $r(z)$. Finaly, condition ( $v i$ ) of Definition 3 ensures that the Jacobian of the constructed curve has embedding degree $k$.

With these definitions we now adapt Algorithms 1 and 2 to the polynomial context. This can be seen in Algorithms 3 and 4 below generalizing Algorithms 1 and 2 respectively. In particular we construct our curves by taking a similar approach as described in [17] for constructing pairingfriendly elliptic curves.

In general this method uses minimal polynomials rather than a cyclotomic polynomial in defining the size of the prime order subgroup. The difficult part is the choosing the right polynomial for representing the size of the cryptographic group.

```
Algorithm 3: Our generalization for finding pairing-friendly Hyperelliptic curves with \(\# J_{C}(z)=1-4 d(z)+8 d(z)^{2}-4 d(z) p(z)+p(z)^{2}\)
Input: \(k \in \mathbb{Z}, \ell=\operatorname{lcm}(8, k), K \cong \mathbb{Q}[z] / \Phi_{\ell}(z)\)
Output: Hyperelliptic curve of genus 2 defined by \(y^{2}=x^{5}+a x\).
```

1. Choose an irreducible polynomial $r(z) \in \mathbb{Z}[z]$.
2. Choose polynomials $s(z), \omega(z)$ and $\sigma(z)$ in $\mathbb{Q}[z]$ such that $s(z)$ is a primitive $k$ th root of unity, $\omega(z)=\sqrt{-1}$ and $\sigma(z)=\sqrt{2}$ in $K$.
3. Compute polynomials, $c(z), d(z)$ such that:

- $c(z) \equiv(s(z)+\omega(z))(\sigma(z)(\omega(z)+1))^{-1}$ in $\mathbb{Q}[z] / r(z)$.
- $d(z) \equiv(s(z) \omega(z)+1)(2(\omega(z)+1))^{-1}$ in $\mathbb{Q}[z] / r(z)$.

4. Compute a polynomial, $p(z)=c(z)^{2}+2 d(z)^{2}$.
5. For $z_{0} \in \mathbb{Z}$ such that:
$-p\left(z_{0}\right)$ and $r\left(z_{0}\right)$ represents primes and $p\left(z_{0}\right) \equiv 1 \bmod 8$ and $-c\left(z_{0}\right), d\left(z_{0}\right)$ represents integers and $c\left(z_{0}\right) \equiv 1 \bmod 4$.
find $a \in \mathbb{F}_{p\left(z_{0}\right)}$ satisfying:

- $a^{\left(p\left(z_{0}\right)-1\right) / 2} \equiv-1 \bmod p\left(z_{0}\right)$ and
- $2(-1)^{\left(p\left(z_{0}\right)-1\right) / 8} d\left(z_{0}\right) \equiv\left(a^{\left(p\left(z_{0}\right)-1\right) / 8}+a^{3\left(p\left(z_{0}\right)-1\right) / 8}\right) c\left(z_{0}\right) \bmod$ $p\left(z_{0}\right)$.

6. Output $\left(r\left(z_{0}\right), p\left(z_{0}\right), a\right)$
7. Define a hyperelliptic curve $C$ by $y^{2}=x^{5}+a x$.
```
Algorithm 4: Our generalization for finding pairing-friendly Hyperelliptic curves with \(\# J_{C}(z)=1+\left(4 c(z)^{2}-2 p(z)\right)+p(z)^{2}\)
Input: \(k \in \mathbb{Z}, \ell=\operatorname{lcm}(8, k), K \cong \mathbb{Q}[z] / \Phi_{\ell}(z)\)
Output: Hyperelliptic curve of genus 2 defined by \(y^{2}=x^{5}+a x\).
```

1. Choose an irreducible polynomial $r(z) \in \mathbb{Z}[z]$.
2. Choose polynomials $s(z), \omega(z)$ and $\sigma(z)$ in $\mathbb{Q}[z]$ such that $s(z)$ is a primitive $k$ th root of unity, $\omega(z)=\sqrt{-1}$ and $\sigma(z)=\sqrt{2}$ in $K$.
3. Compute polynomials, $c(z), d(z)$ such that

- $\left.c(z) \equiv 2^{-1}(s(z)-1) \omega(z)\right) \bmod r(z)$
- $d(z) \equiv(z(z)+1)(2 \sigma(z))^{-1} \bmod r(z)$

4. Compute an irreducible polynomial $p(z)=\left(c(z)^{2}+2 d(z)^{2}\right)$
5. For $z_{0} \in \mathbb{Z}$ such that:

- $p\left(z_{0}\right)$ and $r\left(z_{0}\right)$ represents primes and $p\left(z_{0}\right) \equiv 1,3 \bmod 8$ and
$-c\left(z_{0}\right), d\left(z_{0}\right)$ represents integers and $c\left(z_{0}\right) \equiv 1 \bmod 4$.

6. Find $a \in \mathbb{F}_{p}\left(z_{0}\right)$ such that:

- $a=\delta^{2}$ when $p\left(z_{0}\right) \equiv 1 \bmod 8$ or
- $a=\delta$ when $p\left(z_{0}\right) \equiv 3 \bmod 8$.

7. Output $\left(r\left(z_{0}\right), p\left(z_{0}\right), a\right)$.
8. Define a hyperelliptic curve $C$ by $y^{2}=x^{5}+a x$.

With this approach, apart from reconstructing the Kawazoe-Takahashi genus 2 curves, we discover new families of pairing-friendly hyperelliptic curve of embedding degree $k=2,7,8,10,11,13,22,26,28,44$ and 52 with $2<\rho \leq 3$.

The success depends on the the choice of the number field, $K$. Thus, in the initial step we set $K$ to be isomorphic to a cyclotomic field $\mathbb{Q}\left(\zeta_{\ell}\right)$ for some $\ell=\operatorname{lcm}(8, k)$. The condition on $\ell$ ensures $\mathbb{Q}[z] / r(z)$ contains square roots of -1 and 2 . We take the approach as described in [17] for constructing pairing-friendly elliptic curves for defining the irreducible polynomial $r(z)$. Even though this method is time consuming as it involves searching for a right element, it mostly gives a favorable irreducible polynomial $r(z)$, which defines the size of the prime order subgroup. Here we find a minimal polynomial of an element $\gamma \in \mathbb{Q}\left(\zeta_{\ell}\right)$ and call it $r(z)$, where $\gamma$ is not in any proper subfield of $\mathbb{Q}\left(\zeta_{\ell}\right)$. Since $\gamma$ is in no proper subfield, then we have $\mathbb{Q}\left(\zeta_{\ell}\right)=\mathbb{Q}(\gamma)$, where the degree of $\mathbb{Q}(\gamma)$ over $\mathbb{Q}$ is $\varphi(\ell)$, where $\varphi($.$) is Euler totient function.$

However, with most values of $k>10$ which are not multiples of 8 , the degree of $r(z)$ tends to be large. As observed in [14], for such curves this limits the number of usable primes. The current usable size of $r$ is in the range $\left[2^{160}, 2^{512}\right]$.

### 4.1 The algorithm explained

Step 1: Set up This involves initializing the algorithm by setting $\mathbb{Q}\left(\zeta_{\ell}\right)$ defined as $\mathbb{Q}[z] / \Phi_{\ell}(z)$. The Choice of this field ensures that it contains $\zeta_{k}$ and $\sqrt{-1}$ and $\sqrt{2}$. The ideal choice, in such a case, is $\mathbb{Q}\left(\zeta_{8}, \zeta_{k}\right)=$ $\mathbb{Q}\left(\zeta_{l c m(k, 8)}\right)$.

Step 2: Representing $\zeta_{k}, \sqrt{-1}$ and $\sqrt{2}$ We search for a favorable element, $\gamma \in \mathbb{Q}\left(\zeta_{\ell}\right)$ such that the minimal polynomial of $\gamma$ has degree $\varphi(\ell)$ and we call this $r(z)$. We redefine our field to $\mathbb{Q}[z] / r(z)$. In this field we find a polynomial that represents $\zeta_{k}, \sqrt{-1}$ and $\sqrt{2}$.

For $\zeta_{k}$ there are $\varphi(k)$ numbers of primitive $k$ th roots of unity. In fact if $\operatorname{gcd}(\alpha, k)=1$ then $\zeta_{k}^{\alpha}$ is also primitive $k$ th root of unity. To find the polynomial representation of $\sqrt{-1}$ and $\sqrt{2}$ in $\mathbb{Q}[z] / r(z)$ we find the solutions of the polynomials $z^{2}+1$ and $z^{2}-2$ in the number field isomorphic to $\mathbb{Q}[z] / r(z)$ respectively.

Steps 3,4,5: Finding the family All computations in the algorithm are done modulo $r(z)$ except when computing $p(z)$. It is likely that polynomials $p(z), c(z)$ and $d(z)$ have rational coefficient. At this point polynomials are tested to determine whether they represent intergers or primes as per Definition 3.

### 4.2 New curves

We now present a series of new curves constructed using the approach described above. Proving the theorems is simple considering $\gamma$ has minimal polynomial $r(z)$. We give a proof of Theorem 2. For the other curves the proofs are similar.

We start by constructing a curve of embedding degree, $k=7$. It is interesting to note that here we get a family with $\rho=8 / 3$.

Theorem 2. Let $k=7, \ell=56$. Let $\gamma=\zeta_{\ell}+1 \in \mathbb{Q}\left(\zeta_{\ell}\right)$ and define polynomials $r(z), p(z), c(z), d(z)$ by the following:
$r(z)=z^{24}-24 z^{23}+276 z^{22}-2024 z^{21}+10625 z^{20}-42484 z^{19}$

$$
\begin{aligned}
+ & 134406 z^{18}-344964 z^{17}+730627 z^{16}-1292016 z^{15}+1922616 z^{14} \\
- & 2419184 z^{13}+2580005 z^{12}-2332540 z^{11}+1784442 z^{10}-1150764 z^{9} \\
+ & 621877 z^{8}-279240 z^{7}+102948 z^{6}-30632 z^{5}+7175 z^{4}-1276 z^{3}+162 z^{2}-12 z+1 \\
p(z)= & \left(z^{32}-32 z^{31}+494 z^{30}-4900 z^{29}+35091 z^{28}-193284 z^{27}+\right. \\
& 851760 z^{26}-3084120 z^{25}+9351225 z^{24}-24075480 z^{23}+53183130 z^{22}- \\
& 101594220 z^{21}+168810915 z^{20}-245025900 z^{19}+311572260 z^{18}- \\
& 347677200 z^{17}+340656803 z^{16}-292929968 z^{15}+220707810 z^{14}-145300540 z^{13}+ \\
& 83242705 z^{12}-41279004 z^{11}+17609384 z^{10}-6432920 z^{9}+2023515 z^{8} \\
- & \left.569816 z^{7}+159446 z^{6}-49588 z^{5}+16186 z^{4}-4600 z^{3}+968 z^{2}-128 z+8\right) / 8 \\
c(z)= & \left(-z^{9}+9 z^{8}-37 z^{7}+91 z^{6}-147 z^{5}+161 z^{4}-119 z^{3}+57 z^{2}-16 z+2\right) / 2 \\
d(z)= & \left(z^{16}-16 z^{15}+119 z^{14}-546 z^{13}+1729 z^{12}-4004 z^{11}+7007 z^{10}\right. \\
- & \left.9438 z^{9}+9867 z^{8}-8008 z^{7}+5005 z^{6}-2366 z^{5}+819 z^{4}-196 z^{3}+28 z^{2}\right) / 4
\end{aligned}
$$

Then $(r(2 z), p(2 z))$ constructs a genus 2 hyperelliptic curves. The $\rho$-value of this family is $8 / 3$.

Proof. Since $\zeta_{\ell}+1 \in \mathbb{Q}\left(\zeta_{\ell}\right)$ has minimal polynomial $r(z)$, we apply Algorithm 3 by working in $\mathbb{Q}\left(\zeta_{56}\right)$ defined as $\mathbb{Q}[z] / r(z)$. We choose $\zeta_{7} \mapsto$ $(z-1)^{16}, \sqrt{-1} \mapsto(z-1)^{14}$ and $\sqrt{2} \mapsto z(z-1)^{7}(z-2)\left(z^{6}-7 z^{5}+21 z^{4}-\right.$ $\left.35 z^{3}+35 z^{2}-21 z+7\right)\left(z^{6}-5 z^{5}+11 z^{4}-13 z^{3}+9 z^{2}-3 z+1\right)$. Applying Algorithm 3 we find $p(z)$ as stated. Computations with PariGP [23], show that both $r(2 z)$ and $p(2 z)$ represents primes and $c(2 z)$ represents integers such that it is equivalent to 1 modulo 4. Furthermore, by Algorithm 3 the Jacobian of our hypothetical curve has a large prime order subgroup of order $r(z)$ and embedding degree, $k=7$.

Considering $z_{0}=758$ we now give an example of a 254 - bit prime subgroup that is constructed using the parameters in Theorem 2.

## Example 1.

$$
\begin{aligned}
r= & 21374855532566652890713665865251428761742681841141544849244 \backslash \\
& 05425230130090001 \\
p= & 741504661189142770769829861344257948821797401549707353154351 \backslash \\
& 08095481642765042445975666095781797666897 \\
c= & -21022477149693687350103984375 \\
d= & 192549300334893812717931530445605096860437011144944 \\
a= & 3 \\
\rho= & 2.646 \\
C: y^{2}= & x^{5}+3 x
\end{aligned}
$$

The next curve is of embedding degree $k=8$. According to [25] this family of curves admits higher order twists. This means that it is possible to have both inputs to a pairing defined over a base field. The previous record on this curve was $\rho=4$. In Theorem 3 below we outline the parameters that defines a family of hyperelliptic curves with $\rho=3$.

Theorem 3. Let $k=\ell=8$. Let $\gamma=\zeta_{\ell}^{3}+\zeta_{\ell}^{2}+\zeta_{\ell}+3 \in \mathbb{Q}\left(\zeta_{8}\right)$ and define polynomials $r(z), p(z), c(z), d(z)$ by the following:

$$
\begin{aligned}
& r(z)=z^{4}-12 z^{3}+60 z^{2}-144 z+136 \\
& p(z)=\left(11 z^{6}-188 z^{5}+1460 z^{4}-6464 z^{3}+17080 z^{2}-25408 z+16448\right) / 64 \\
& c(z)=\left(3 z^{3}-26 z^{2}+92 z-120\right) / 8 \\
& d(z)=\left(-z^{3}+8 z^{2}-26 z+32\right) / 8
\end{aligned}
$$

Then $(r(32 z) / 8, p(32 z))$ constructs a genus 2 hyperelliptic curves with embedding degree 8 . The $\rho$-value of this family is 3 .

This type of a curve is recommended at the 128 bit security level, see Table 3.1 in [1]. Below we give an example obtained using the above parameters.

Example 2.

$$
\begin{aligned}
r= & 131072000000009898508288000280324362739203528331792090742 \backslash \\
& 477643363528725893137(257 b i t s) \\
p= & 184549376000020905654747136986742251766767879474504560418 \backslash \\
& 252532669506933642904885116183766157641277112712983172884737 \\
c= & 1228800000000069598899200001314020933688082695322003440625 \\
d= & -409600000000231996416000004380073001064027565137751569916 \\
a= & 3 \\
\rho= & 3.012 \\
C: y^{2}= & x^{5}+3 x
\end{aligned}
$$

Theorem 4. Let $k=10, \ell=40$. Let $\gamma=\zeta_{\ell}+1 \in \mathbb{Q}\left(\zeta_{\ell}\right)$ and
define polynomials $r(z), p(z), c(z), d(z)$ by the following:

$$
\begin{aligned}
r(z)= & z^{16}-16 z^{15}+120 z^{14}-560 z^{13}+1819 z^{12}-4356 z^{11}+7942 z^{10}- \\
& 11220 z^{9}+12376 z^{8}-10656 z^{7}+7112 z^{6}-3632 z^{5}+1394 z^{4}-392 z^{3}+76 z^{2}-8 z+1 \\
p(z)= & \left(z^{24}-24 z^{23}+274 z^{22}-1980 z^{21}+10165 z^{20}-39444 z^{19}\right. \\
& +120156 z^{18}-294576 z^{17}+591090 z^{16}-981920 z^{15}+1360476 z^{14}-
\end{aligned}
$$

$$
\begin{aligned}
& 1578824 z^{13}+1536842 z^{12}-1253336 z^{11}+853248 z^{10}-482384 z^{9}+ \\
& \left.225861 z^{8}-88872 z^{7}+31522 z^{6}-11676 z^{5}+4802 z^{4}-1848 z^{3}+536 z^{2}-96 z+8\right) / 8 \\
c(z)= & \left(-z^{7}+7 z^{6}-22 z^{5}+40 z^{4}-45 z^{3}+31 z^{2}-12 z+2\right) / 2 \\
d(z)= & \left(z^{12}-12 z^{11}+65 z^{10}-210 z^{9}+450 z^{8}-672 z^{7}+714 z^{6}-540 z^{5}+285 z^{4}-\right. \\
& \left.100 z^{3}+20 z^{2}\right) / 4
\end{aligned}
$$

Then $(r(4 z), p(4 z))$ constructs a genus 2 hyperelliptic curve. The $\rho$-value of this family is 3 .

Below is a curve of embedding degree 10 with a prime subgroup of size 249 bits. The $\rho$-value of its $J_{C}$ is 3.036 .

Example 3.

$$
\begin{aligned}
r= & 47457491054103014068159312355967539444301108619814810948 \backslash \\
& 2797931132143318041 \\
p= & 339268047683548227442734898907507152190802484314819125499 \backslash \\
& 393410802175044822928270159666053912399467210953623356417 \\
c= & -1189724159035338550797061406711295 \\
d= & 411866512163557810321097788276510052727469786602189684736 \\
a= & 3 \\
\rho= & 3.036 \\
C: y^{2}= & x^{5}+3 x
\end{aligned}
$$

Theorem 5. Let $k=28, \ell=56$. Let $\gamma=\zeta_{\ell}+1 \in \mathbb{Q}\left(\zeta_{\ell}\right)$ and
define polynomials $r(z), p(z), c(z), d(z)$ by the following:

$$
\begin{aligned}
r(z)= & z^{24}-24 z^{23}+276 z^{22}-2024 z^{21}+10625 z^{20}-42484 z^{19}+ \\
& 134406 z^{18}-344964 z^{17}+730627 z^{16}-1292016 z^{15}+1922616 z^{14}- \\
& 2419184 z^{13}+2580005 z^{12}-2332540 z^{11}+1784442 z^{10}-1150764 z^{9}+621877 z^{8}- \\
& 279240 z^{7}+102948 z^{6}-30632 z^{5}+7175 z^{4}-1276 z^{3}+162 z^{2}-12 z+1 \\
p(z)= & \left(z^{36}-36 z^{35}+630 z^{34}-7140 z^{33}+58903 z^{32}-376928 z^{31}+\right. \\
& 1946800 z^{30}-8337760 z^{29}+30188421 z^{28}-93740556 z^{27}+252374850 z^{26}- \\
& 594076860 z^{25}+1230661575 z^{4}-2254790280 z^{23}+3667649460 z^{22}- \\
& 5311037640 z^{21}+6859394535 z^{20}-7909656300 z^{19}+8145387218 z^{18}- \\
& 7487525484 z^{17}+613613430 z^{16}-4473905808 z^{15}+2893567080 z^{14}-1653553104 z^{13}+ \\
& 830662287 z^{12}-364485108 z^{11}+138635550 z^{10}-45341540 z^{9}+12681910 z^{8}- \\
& \left.3054608 z^{7}+660688 z^{6}-141120 z^{5}+32008 z^{4}-7072 z^{3}+1256 z^{2}-144 z+8\right) / 8 \\
c(z)= & \left(-z^{11}+11 z^{10}-55 z^{9}+165 z^{8}-331 z^{7}+469 z^{6}-483 z^{5}+365 z^{4}-200 z^{3}+\right. \\
& \left.76 z^{2}-18 z+2\right) / 2
\end{aligned}
$$

$$
\begin{aligned}
d(z)= & \left(z^{18}-18 z^{17}+153 z^{16}-816 z^{15}+3059 z^{14}-8554 z^{13}+18473 z^{12}-31460 z^{11}\right. \\
& +42757 z^{10}-46618 z^{9}+40755 z^{8}-28392 z^{7}+15561 z^{6}-6566 z^{5}+2058 z^{4}- \\
& \left.448 z^{3}+56 z^{2}\right) / 4
\end{aligned}
$$

Then $(r(2 z), p(2 z))$ constructs a genus 2 hyperelliptic curve. The $\rho$-value of this family is $\rho \approx 3$.

Here is a curve with a 255 bit prime subgroup constructed from the above parameters:

Example 4.
$r=42491960053938594435112219237666767431311006357122111696 \backslash$ 690362883228500208481
$p=1094889169501305037288247123944801366479653316841535239280 \backslash$
568336193026632167195184728514564519636647060505191263121
$c=-66111539648877169993055611952337239$
$d=739894982244542944193343853775218465253390470331838998400$
$a=23$
$\rho=2.972$
$C: y^{2}=x^{5}+23 x$
The following family for $k=24$ has a similar $\rho$-value as to a family of $k=24$ reported in [18]. One can use the following parameters to construct a Kawazoe-Takahashi Type II pairing-friendly hyperelliptic curve of embedding degree $k=24$ with $\rho=3$.

Theorem 6. Let $k=\ell=24$. Let $\gamma=\zeta_{24}+1 \in \mathbb{Q}\left(\zeta_{24}\right)$ and define polynomials $r(z), p(z), c(z), d(z)$ by the following:

$$
\begin{aligned}
r(z)= & z^{8}-8 z^{7}+28 z^{6}-56 z^{5}+69 z^{4}-52 z^{3}+22 z^{2}-4 z+1 \\
p(z)= & \left(2 z^{12}-28 z^{11}+179 z^{10}-688 z^{9}+1766 z^{8}-3188 z^{7}+\right. \\
& \left.4155 z^{6}-3948 z^{5}+2724 z^{4}-1336 z^{3}+443 z^{2}-88 z+8\right) / 8 \\
c(z)= & \left(-z^{6}+7 z^{5}-20 z^{4}+30 z^{3}-25 z^{2}+11 z-2\right) / 2 \\
d(z)= & \left(z^{5}-4 z^{4}+5 z^{3}-2 z^{2}-z\right) / 4
\end{aligned}
$$

Then $(r(8 z+4) / 8, p(8 z+4))$ constructs a complete ordinary pairingfriendly genus 2 hyperelliptic curves with embedding degree 24 . The $\rho$ value of this family is 3 .

The following family is of embedding degree $k=2$ with $\rho=3$. In this case the parameters corresponds to a quadratic twist $C^{\prime}$ of the curve $C$ whose order of $J_{C}$ has a large prime of size $r$.

Theorem 7. Let $k=2, \ell=8$. Let $\gamma=\zeta_{8}^{2}+\zeta_{8}+1 \in \mathbb{Q}\left(\zeta_{8}\right)$ and define polynomials $r(z), p(z), c(z), d(z)$ by the following:

$$
\begin{aligned}
& r(z)=z^{4}-4 z^{3}+8 z^{2}-4 z+1 \\
& p(z)=\left(17 z^{6}-128 z^{5}+480 z^{4}-964 z^{3}+1089 z^{2}-476 z+68\right) / 36 \\
& c(z)=\left(z^{3}-4 z^{2}+7 z-2\right) / 2 \\
& d(z)=\left(-2 z^{3}+7 z^{2}-14 z+4\right) / 6
\end{aligned}
$$

Then $(r(36 z+8) / 9, p(36 z+8))$ constructs a genus 2 hyperelliptic curve. The $\rho$-value of this family is 3 .

Here is a curve with a 164 bit prime subgroup constructed from the above parameters:

Example 5.

$$
\begin{aligned}
r= & 18662407671139230451673881592011637799903138004697 \\
p= & 102792562578915164898226742137468734090998250325265 \backslash \\
& 6165164129909459559679217 \\
c= & 23328007191686179030939068128424560723 \\
d= & -15552004794459612687736644908426134338 \\
a= & 10 \\
\rho= & 3.049
\end{aligned}
$$

Here our genus 2 hyperelliptic equation is $C^{\prime}: y^{2}=x^{5}+10 x$ and hence $C: y^{2}=20\left(x^{5}+10 x\right)$ is the curve whose $\# J_{C}$ has a large prime $r$ and its embedding degree is 2 with repect to $r$.

We now present pairing-friendly hyperelliptic curves of embedding $k$ whose polynomial that defines the prime order subgroup $r(z)$, has its degree greater or equal to 40 . The polynomials that defines some of curves can be found in Appendix A. Currently these curves, as already pointed out, are only of theoretical interest. In this table $\ell=\operatorname{lcm}(k, 8)$.

Table 1. Families of curves, whose $\operatorname{deg}(r(z)) \geq 40$

| $k$ | $\gamma$ | Degree $(r(z))$ | Degree $(p(z))$ | $\rho$-value | Modular class |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | $\zeta_{\ell}$ | 40 | 48 | 2.400 | $3 \bmod 4$ |
| 13 | $\zeta_{\ell}+1$ | 48 | 64 | 2.667 | $4 \bmod 8$ |
| 22 | $\zeta_{\ell}+1$ | 40 | 56 | 2.800 | $0 \bmod 4$ |
| 26 | $\zeta_{\ell}$ | 48 | 56 | 2.333 | $3 \bmod 4$ |
| 44 | $\zeta_{\ell}+1$ | 48 | 64 | 2.600 | $0 \bmod 4$ |
| 52 | $\zeta_{\ell}+1$ | 48 | 60 | 2.500 | $0 \bmod 4$ |

## 5 Conclusion

We have presented an algorithm that produces more Kawazoe-Takahashi type of genus 2 pairing-friendly hyperelliptic curves. In addition we have presented new curves with better $\rho$-values. A problem with some of the reported curves is that the degree of the polynomial $r(z)$, which defines the prime order subgroup, is too large and hence a very small number, if any, of usable curves could be found. Table 2 summarises the the curves reported in this paper. Curves with $1 \leq \rho \leq 2$ remain elusive.

Table 2. Families of curves, $k<60$, with $2.000<\rho \leq 3.000$

| $k$ | Degree $(r(z))$ | Degree $(p(z))$ | $\rho$-value |
| :---: | :---: | :---: | :---: |
| 2 | 4 | 6 | 3.000 |
| 7 | 24 | 32 | 2.667 |
| 8 | 4 | 6 | 3.000 |
| 10 | 16 | 24 | 3.000 |
| 11 | 40 | 48 | 2.400 |
| 13 | 48 | 64 | 2.667 |
| 22 | 40 | 56 | 2.800 |
| 24 | 8 | 12 | 3.000 |
| 26 | 48 | 56 | 2.333 |
| 28 | 24 | 36 | 3.000 |
| 44 | 48 | 64 | 2.600 |
| 52 | 48 | 60 | 2.500 |

## References

1. Balakrishnan, J., Belding, J., Chisholm, S., Eisenträger, K., Stange, K. and Teske, E.: Pairings on hyperelliptic curves. Available at http://www.math. uwaterloo.ca/~eteske/teske/pairings.pdf (2009).
2. Barreto P.S.L.M., Lynn, B. and Scott, M.: Constructing elliptic curves with prescribed embedding degree. In: Cimato, S., Galdi C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 263-273, Springer-Verlag (2002).
3. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. SIAM Journal of Computing 32(3), pp. 586-615 (2003).
4. Boneh, D., Lynn, B., and Shacham, H.: Short signatures from the Weil Pairing. In: Boyd, C. (ed.). ASIACRYPT 2001. LNCS, vol. 2248, pp. 514-532. Springer, Verlag (2001).
5. Bosma, W., Cannon, J., and Playoust, C.: The Magma algebra system. I. The user language. J. Symbolic Comput. (1997). 24(3-4):235-265.
6. Barreto, P.S.L.M., and Naehrig M.: Pairing-friendly elliptic curves of prime order. Selected Areas in Cryptography - SAC'2005. LNCS, vol. 3897, pp 319-331 Springer (2006).
7. Brezing F. and Weng A.: Elliptic curves suitable for pairing based cryptography, Designs Codes and Cryptography, Vol. 37, No. 1, pp. 133-141 (2005).
8. Cocks, C. and Pinch, R. G. E.: Identity-based cryptosystems based on the Weil pairing. Unpublished manuscript (2001).
9. Furukawa, E., Kawazoe, M., Takahashi, T.: Counting points for hyperelliptic curves of type $y^{2}=x^{5}+a x$ over finite prime fields. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 26-41. Springer, Heidelberg (2004).
10. Freeman, D.: Constructing pairing-friendly elliptic curves with embedding Degree 10. In Algorithmic Number Theory Symposium ANTS-VII,LNCS, vol.4096, pp. 452-465. Springer, Heidelberg (2006).
11. Freeman, D.: A generalized Brezing-Weng method constructing ordinary pairingfriendly abelian varieties. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008, LNCS vol.5209, pp 148-163 Springer, Heidelberg (2008).
12. Freeman, D.: Constructing pairing-friendly genus 2 curves with ordinary Jacobians. In: Takagi, T., Okamoto, T., Okamoto, E.,Okamoto, T. (eds.) Pairing 2007. LNCS, vol.4575, pp. 152-176, Springer, Heidelberg (2007).
13. Freeman, D., Stevenhagen, P. and Streng, M.: Abelian varieties with prescribed embedding degree. In: var der Poorten, A.J., Stein, A. (eds.) ANTS-VIII 2008. LNCS, vol.5011, pp. 60-73. Springer, Heidelberg (2008).
14. Freeman, D., Scott, M. and Teske, E.: A Taxonomy of pairing-friendly elliptic curves. Journal of Cryptology. Volume 23 Issue 2 (2009).
15. Freeman, D., Satoh, T.:Constructing pairing-friendly hyperelliptic curves using Weil restrictions. Cryptography ePrint Archive, Report 2009/103 (2009). Available at http://eprint.iacr.org.
16. Joux, A.: A One Round Protocol for Tripartite Diffie-Hellman. In: Bosma, W. (ed.). ANTS 2000. LNCS, vol.1838, pp. 385-394. Springer, Heidelberg (2000).
17. Kachisa, E., Schaeffer, E.F. and Scott M.: Constructing Brezing-Weng pairing friendly elliptic curves using elements in the cyclotomic field. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS vol.5209, pp 126-135 Springer, Heidelberg (2008).
18. Kawazoe, M., Takahashi, T.: Pairing-friendly hyperelliptic curves with ordinary Jacobians of type $y^{2}=x^{5}+a x$. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS vol.5209, pp 164-177 Springer, Heidelberg (2008).
19. Miyaji, A., Nakabayashi, M. and Takano, S.: New explicit conditions of elliptic curve traces for FR-reduction. IEICE Trans. Fundamentals, E84 pp. 1234-1243 (2001).
20. Sakai, R., Ohgishi, K., and Kasahara, M.: (2000). Cryptosystems based on pairing. Symposium on Cryptography and Information Security (SCIS2000), Okinawa, Japan, Jan. 2628, 2000.
21. Scott, M., and Barreto, P. S.: Generating more MNT elliptic curves. Designs, Codes and Cryptography 38, 209-217 (2006).
22. Shamir, A.: Identity-Based cryptosystems and signature schemes. In: Blakery, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47-53. Springer, Heidelberg (1985).
23. PARI-GP, version 2.3.2, Bordeaux, 2006, http://pari.math.u-bordeaux. fr/.
24. Silverman, J. H.: The arithmetic of elliptic curves. Springer-Verlag (1986).
25. Zhang F.: Twisted Ate pairing on hyperelliptic curves and application. Cryptology ePrint Archive Report 2008/274 (2008), http: //eprint.iacr.org/2008/ 274/.

## Appendix A: More examples

Here we include the polynomials that define curves of some of the embedding degrees in Table 1.

Theorem 8. Let $k=11, \ell=88$. Let $\gamma=\zeta_{\ell} \in \mathbb{Q}\left(\zeta_{\ell}\right)$ and define polynomials $r(z), p(z), c(z), d(z)$ by the following:

$$
\begin{aligned}
r(z) & =z^{40}-z^{36}+z^{32}-z^{28}+z^{24}-z^{20}+z^{16}-z^{12}+z^{8}-z^{4}+1 \\
p(z) & =1 / 8\left(z^{48}-2 z^{46}+z^{44}+8 z^{24}+z^{4}-2 z^{2}+1\right) \\
c(z) & =-1 / 2\left(z^{13}+z^{11}\right) \\
d(z) & =1 / 4\left(z^{24}-z^{22}-z^{2}+1\right) \\
\rho & =12 / 5
\end{aligned}
$$

Family $(r(4 z+3) / 89, p(4 z+3))$
Theorem 9. Let $k=13, \ell=$ 104. Let $\gamma=\zeta_{\ell}+1 \in \mathbb{Q}\left(\zeta_{\ell}\right)$ and define polynomials $r(z), p(z), c(z), d(z)$ by the following:

$$
\begin{aligned}
r(z) & =z^{48}-48 z^{47}+1128 z^{46}+\ldots+2 z^{2}-24 z+1 \\
p(z) & =\left(z^{64}-64 z^{63}+2016 z^{62}-\ldots+4040 z^{2}-256 z+8\right) / 8 \\
c(z) & =-\left(z^{19}-19 z^{18}+171 z^{17}+\ldots+249 z^{2}-32 z+2\right) / 2 \\
d(z) & =\left(z^{32}-32 z^{31}+496 z^{30}-\ldots+20995 z^{4}-2340 z^{3}+156 z^{2}\right) / 4 \\
\rho & =8 / 3
\end{aligned}
$$

Family $(r(8 z+4), p(8 z+4)$
Theorem 10. Let $k=22, \ell=88$. Let $\gamma=\zeta_{\ell} \in \mathbb{Q}\left(\zeta_{\ell}\right)$ and define polynomials $r(z), p(z), c(z), d(z)$ by the following:

$$
\begin{aligned}
r(z) & =z^{40}-z^{36}+z^{32}-z^{28}+z^{24}-z^{20}+z^{16}-z^{12}+z^{8}-z^{4}+1 \\
p(z) & =\left(z^{56}-2 z^{50}+z^{44}+z^{28}+z^{12}-2 z^{6}+1\right) / 8 \\
c(z) & =-\left(z^{17}+z^{11}\right) / 2 \\
d(z) & =\left(z^{34}-z^{22}+z^{12}+1\right) / 4 \\
\rho & =14 / 5
\end{aligned}
$$

Family $(r(4 z+3) / 89, p(4 z+3))$
Theorem 11. Let $k=26, \ell=104$. Let $\gamma=\zeta_{\ell} \in \mathbb{Q}\left(\zeta_{\ell}\right)$ and define polynomials $r(z), p(z), c(z), d(z)$ by the following:

$$
\begin{aligned}
& \qquad \begin{aligned}
r(z) & =z^{48}-z^{44}+z^{40}-z^{36}+z^{32}-z^{28}+z^{24}-z^{20}+z^{16}-z^{12}+z^{8}-z^{4}+1 \\
p(z) & =\left(z^{56}-2 z^{54}+z^{52}+8 z^{28}+z^{4}-2 z^{2}+1\right) / 8 \\
c(z) & =-\left(z^{15}+z^{13}\right) / 2 \\
d(z) & =\left(z^{28}-z^{26}-z^{2}+1\right) / 4 \\
\rho & =7 / 3
\end{aligned} \\
& \text { Family }(r(4 z+3), p(4 z+3))
\end{aligned}
$$


[^0]:    * This author acknowledge support from the Science Foundation Ireland under Grant No. 06/MI/006 through Claude Shannon Institute

