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Abstract. Constructing pairing-friendly hyperelliptic curves with small
ρ-values is one of challenges for practicability of pairing-friendly hyper-
elliptic curves. In this paper, we describe a method that extends the
Kawazoe-Takahashi method of generating families of genus 2 ordinary
pairing-friendly hyperelliptic curves by parameterizing the parameters as
polynomials. With this approach we construct genus 2 ordinary pairing-
friendly hyperelliptic curves with 2 < ρ ≤ 3.
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1 Introduction

Efficient implementation of pairing-based protocols such as one round
three way key exchange [16], identity based encryption [3] and digital
signatures [4], depends on what are called pairing-friendly curves. These
are special curves with a large prime order subgroup, so that protocols
can resist the known attacks, and small embedding degree for efficient
finite field computations.

Even though there are many methods for constructing pairing-friendly
elliptic curves [14], there are very few methods that address the problem
of constructing ordinary pairing-friendly hyperelliptic curves of higher
genus. The first explicit construction of ordinary hyperelliptic curve was
shown by David Freeman [11]. Freeman modeled the Cocks-Pinch method
[8] to construct ordinary hyperelliptic curves of genus 2. His algorithm
produce curves over prime fields with prescribed embedding degree k with
ρ-value ≈ 8. Kawazoe and Takahashi [18] constructed pairing-friendly hy-
perelliptic curves of the form y2 = x5 + ax which produced Jacobian va-
rieties with ρ-values between 3 and 4. Recently, Freeman and Satoh [15]
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proposed algorithms for generating pairing-friendly hyperelliptic curves.
In their construction it was shown that if an elliptic curve, E, is defined
over a finite field, Fp, and A is abelian variety isogenous over Fpd to a
product of two isomorphic elliptic curves then the abelian variety, A, is
isogenous over Fp to a primitive subvariety of the Weil restriction of E
from Fpd to Fp. Notably, the Freeman-Satoh algorithm produces hyperel-
liptic curves with better ρ value than previously reported. The best, for
example, achieves a ρ-value of 20/9 for embedding degree k = 27. How-
ever, the ρ-values of most embedding degrees for ordinary hyperelliptic
curves remain too high for an efficient implementation.

For a curve to be suitable for implementation it should possess de-
sirable properties which include efficient implementation of finite field
arithmetic and the order of the Jacobian having a large prime factor.

In this paper we generate more Kawazoe-Takahashi genus 2 ordinary
pairing-friendly hyperelliptic curves. In particular, we construct curves
of embedding degrees 2, 7, 8, 10, 11, 13, 22, 26, 28, 44 and 52 with ρ-value
between 2 and 3.

We proceed as follows: In Section 2 we present mathematical back-
ground and facts on constructing pairing-friendly hyperelliptic curves
while in Section 3 we discuss the construction of pairing-friendly hyper-
elliptic curves based on the Kawazoe-Takahashi algorithms and in Sec-
tion 4 we present the generalization of Kawazoe-Takahashi algorithms
for constructing pairing-friendly hyperelliptic curves and we give explicit
examples. The paper is concluded in Section 5.

2 Pairing-friendly hyperelliptic curves

2.1 Mathematical background

Let p > 2 be a prime, let r be prime distinct from p. We denote a hy-
perelliptic curve of genus g defined over a finite field Fp by C. This is a
non-singular projective model of the affine curve of the form:

y2 = f(x) (1)

where f(x) is a monic polynomial of degree 2g + 1, has its coefficients in
Fp[x] and has no multiple roots in F̄p. We denote the Jacobian of C by
JC and a group of the Fp-rational points of the Jacobian of C by JC(Fp).
This group is isomorphic to degree zero divisor class group of C over Fp.

As in the elliptic curve case the embedding degree of Jacobian variety
is defined as follows:
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Definition 1 ([11]). Let C be an hyperelliptic curve defined over a prime
finite field Fp. Let r be a prime dividing #JC(Fp). The embedding degree
of JC with respect to r is the smallest positive integer k such that r | pk−1
but r - pi − 1 for 0 < i < k.

The definition, as in the elliptic curve case, explains that k is the
smallest positive integer such that the extension field Fpk , contains a set of
rth roots of unity. Hence we refer to a curve C as having embedding degree
k with respect to r if and only if a subgroup of order r of its Jacobian JC
does. As such, for an efficient arithmetic implementation curves must have
small embedding degree so that arithmetic in Fpk is feasible. Furthermore,
we require that the size of the finite field, Fp, be as small as possible in
relation to the the size of the prime order subgroup r. This is measured
by a parameter known as the ρ-value. For a g-dimensional abelian variety
defined over Fp this parameter is defined as:

ρ = g log (p)
log (r) .

In the ideal case the abelian varieties of dimension g have a prime num-
ber of points in which case ρ ≈ 1. For pairing-friendly one-dimensional
abelian varieties one can reach the ideal case by using the constructions in
[19], [6] and [10]. However, this proves not be the case with higher dimen-
sional abelian varieties. Hence the interest has been to construct higher
dimensional abelian varieties with low embedding degrees and small ρ-
values. And the same time, for security reasons we require r large enough
so that discrete logarithm problem (DLP) in the subgroup of prime order
r is suitably hard and k sufficiently large enough so that the (DLP) in
F∗
pk

, withstand the known attacks.
There are two main cryptographic pairings, the Weil and the Tate. In

both cases the basic idea is to embed the cryptographic group of order
r into a multiplicative group of rth roots of unity, µr. A non-degenerate,
bilinear map for the Tate pairing, for example, is defined by the following
map:

tr : JC(Fpk)[r]× JC(Fpk)/JC(Fpk) −→ (F∗
pk

)/(F∗
pk

)r.

3 Kawazoe-Takahashi hyperelliptic curves

Kawazoe and Takahashi [18] presented an algorithm which constructed
hyperelliptic curves of the form y2 = x5 + ax with ordinary Jacobians.
Their construction used two approaches, one was based on the Cocks-
Pinch method [8] of constructing ordinary pairing-friendly elliptic curves
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and the other was based on cyclotomic polynomials. This idea was first
proposed by Brezing and Weng in [7]. However, both approaches are based
on the predefined sizes of the Jacobians as presented in [9]. The order of
the Jacobian, #JC , is closely related to the characteristic polynomial,
χ(t), of the Frobenius endormorphism, π.

Consequently, for genus 2 curves the χ(t) of the Frobenius is a poly-
nomial known to have the following form:

χ(t) = t4 − a1t3 + a2t
2 − a1pt+ p2 (2)

within a1, a2 ∈ Fp and furthermore | a1 |≤ 4p and | a2 |≤ 6p. Hence, #JC
is determined from Equation 2 by the following relation:

#JC = χ(1) = 1− a1 + a2 − a1p+ p2. (3)

The Hasse-Weil bound describes the interval in which the order of the
Jacobian is found as follows:⌈

(
√
p− 1)2g

⌉
≤ #JC ≤

⌊
(
√
p+ 1)2g

⌋
(4)

Theorem 1 below outlines the characteristic polynomials which defines
hyperelliptic curves, C, of the form y2 = x5 + ax defined over Fp. The JC
of C for these cases is a simple ordinary Jacobian over Fp.

Theorem 1 ([9],[18]). Let p be an odd prime, C a hyperelliptic curve
defined over Fp by equation y2 = x5 + ax, Jc the Jacobian variety of C
and χ(t) the characteristic polynomial of the pth power Frobenius map of
C. Then the following holds: (In the following c, d are integers such that
p = c2 + 2d2 and c ≡ 1 (mod 4),d ∈ Z (such c and d exists if and only if
p ≡ 1, 3 (mod 8)).

1) If p ≡ 1 mod 8 and a(p−1)/2 ≡ −1 mod p, then χ(t) = t4 − 4dt3 +
8d2t2 − 4dpt+ p2 and 2(−1)(p−1)/8d ≡ (a(p−1)/8 + a3(p−1)/8)c mod p

2) If p ≡ 1 mod 8 and a(p−1)/4 ≡ −1 mod p, or if p ≡ 3 mod 8 and
a(p−1)/2 ≡ −1 mod p, then χ(t) = t4 + (4c2 − 2p)t2 + p2

Using the formulae in Theorem 1 Kawazoe and Takahashi developed a
Cocks-Pinch-like method to construct genus 2 ordinary pairing-friendly
hyperelliptic curves of the form y2 = x5 + ax. As expected the curves
generated by the Cocks-Pinch-like method had their ρ-values close to 4.
Furthermore, they also presented cyclotomic families. With this method
they managed to construct a k = 24 curve with ρ = 3. In both cases
the ultimate goal is to find integers c and d such that there is a prime



Kawazoe-Takahashi Genus 2 Ordinary Pairing-friendly Hyperelliptic Curves 5

p = c2 + 2d2 with c ≡ 1 (mod 4) and χ(1) having a large prime factor.
Algorithms 1 and 2 developed from Theorem 1 construct individual genus
2 pairing-friendly hyperelliptic curves with ρ ≈ 4.

Algorithm 1: Kawazoe-Takahashi Type I pairing-friendly Hyper-
elliptic curves with #JC = 1− 4d+ 8d2 − 4dp+ p2

Input: k ∈ Z.
Output: a hyperelliptic curve defined by y2 = x5 + ax with
Jacobian group having a prime subgroup of order r.

1. Choose r a prime such that lcm(8, k) divides r − 1.
2. Choose ζ a primitive kth root of unity in (Z/rZ)×, ω a positive

integer such that ω2 ≡ −1 mod r and σ a positive integer such that
σ2 ≡ 2 mod r.

3. Compute integers, c, d such that:

• c ≡ (ζ + ω)(σ(ω + 1))−1 mod r and c ≡ 1 mod 4
• d ≡ (ζω + 1)(2(ω + 1))−1 mod r.

4. Compute a prime p = (c2 + 2d2) such that p ≡ 1 mod 8.
5. Find a ∈ Fp such that:

• a(p−1)/2 ≡ −1 mod p and 2(−1)(p−1)/8d ≡ (a(p−1)/8 + a3(p−1)/8)c
mod p.

6. Define a hyperelliptic curve C by y2 = x5 + ax.
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Algorithm 2: Kawazoe-Takahashi Type II pairing-friendly Hyper-
elliptic curves with #JC = 1 + (4c2 − 2p) + p2

Input: k ∈ Z.
Output: a hyperelliptic curve defined by y2 = x5 + ax with
Jacobian group having a prime subgroup of order r.

1. Choose r a prime such that lcm(8, k) divides r − 1.
2. Choose ζ a primitive kth root of unity in (Z/rZ)×, ω positive integer

such that ω2 ≡ −1 mod r and σ a positive integer such that σ2 ≡ 2
mod r.

3. Compute integers, c, d such that:

• c ≡ 2−1(ζ − 1)ω) mod r and c ≡ 1 mod 4
• d ≡ (ζ + 1)(2σ)−1 mod r.

4. Compute a prime p = (c2 + 2d2) such that p ≡ 1, 3 mod 8 and for
some integer δ satisfying δ(p−1)/2 ≡ −1 mod p and

5. Find a ∈ Fp such that:

• a = δ2 when p ≡ 1 mod 8 or a = δ when p ≡ 3 mod 8.

6. Define a hyperelliptic curve C by y2 = x5 + ax.

Remark 1. The key feature in both algorithms is that r is choosen such
that r − 1 is divisible by 8 so that Z/rZ contains both

√
−1 and

√
2 for

both c and d to satisfy the conditions in the algorithm.

4 Our generalization

We observe that one can do better if the algorithms are parametrized
by polynomials in order to construct curves with specified bit size. We
represent families of pairing-friendly curves for which parameters c, d, r, p
are parametrized as polynomials c(z), d(z), r(z), p(z) in a variable z. In
fact this idea of using polynomials was used in other constructions for
pairing-friendly curves such as in [19],[2] [21] and [7].

When working with the polynomials we consider polynomials with
rational coefficients. The definitions below describes a family of Kawazoe-
Takahashi-type of pairing-friendly hyperelliptic curves.

Definition 2 ([14]). Let g(z) ∈ Q[z]. We say that g(z) represents primes
if the following are satisfied:

– g(z) is non constant irreducible polynomial.
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– g(z) has a positive leading coefficient.

– g(z) represents integers i.e for z0 ∈ Z, g(z0) ∈ Z.

– gcd({g(z) : z, g(z) ∈ Z}) = 1

Definition 3. Let c(z), d(z), r(z) and p(z) be non-zero polynomials with
rational coefficients. For a given positive integer k the couple (r(z), p(z))
parameterizes a family of Kawazoe-Takahashi type of hyperelliptic curves
with Jacobian JC whose embedding degree is k if the following conditions
are satisfied:

(i) c(z) represents integers such that c(z) ≡ 1 mod 4;

(ii) d(z) represents integers;

(iii) p(z) = c(z)2 + 2d(z)2 represents primes;

(iv) r(z) represents primes;

(v) r(z)|1−4d(z)+8d(z)2−4d(z)p(z)+p(z)2 or r(z)|1+(4c(z)2−2p(z))+
p(z)2

(vi) Φk(p(z)) ≡ 0 mod r(z), where Φk is the kth cyclotomic polynomial.

And we define the ρ-value of this family as ρ = 2 deg(p(z))
deg(r(z)) .

In [9] they showed that there exists a simple ordinary abelian variety
surface with characteristic polynomials of Frobenius t4−4d+8d2−4dp+
p2 ∈ Z[t] or t4 + (4c2 − 2p) + p2 ∈ Z[t] with certain conditons on c
and d. Hence Definition 3 part (i) and (ii) ensures that the polynomial
representation of c and d conforms with the conditions. While condition
(v) of Definition 3 ensures that for a given z for which p(z) and r(z)
represents prime r(z) divides #JC(z). In otherwords, the order of the
Jacobian of the constructed curve has a prime order subgroup of size
r(z). Finaly, condition (vi) of Definition 3 ensures that the Jacobian of
the constructed curve has embedding degree k.

With these definitions we now adapt Algorithms 1 and 2 to the poly-
nomial context. This can be seen in Algorithms 3 and 4 below generalizing
Algorithms 1 and 2 respectively. In particular we construct our curves by
taking a similar approach as described in [17] for constructing pairing-
friendly elliptic curves.

In general this method uses minimal polynomials rather than a cyclo-
tomic polynomial in defining the size of the prime order subgroup. The
difficult part is the choosing the right polynomial for representing the size
of the cryptographic group.
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Algorithm 3: Our generalization for finding pairing-friendly Hyper-
elliptic curves with #JC(z) = 1− 4d(z) + 8d(z)2− 4d(z)p(z) + p(z)2

Input: k ∈ Z, ` = lcm(8, k),K ∼= Q[z]/Φ`(z)
Output: Hyperelliptic curve of genus 2 defined by y2 = x5 + ax.

1. Choose an irreducible polynomial r(z) ∈ Z[z].
2. Choose polynomials s(z), ω(z) and σ(z) in Q[z] such that s(z) is a

primitive kth root of unity, ω(z) =
√
−1 and σ(z) =

√
2 in K.

3. Compute polynomials, c(z), d(z) such that:

• c(z) ≡ (s(z) + ω(z))(σ(z)(ω(z) + 1))−1 in Q[z]/r(z).
• d(z) ≡ (s(z)ω(z) + 1)(2(ω(z) + 1))−1 in Q[z]/r(z).

4. Compute a polynomial, p(z) = c(z)2 + 2d(z)2.
5. For z0 ∈ Z such that:

– p(z0) and r(z0) represents primes and p(z0) ≡ 1 mod 8 and
– c(z0), d(z0) represents integers and c(z0) ≡ 1 mod 4.

find a ∈ Fp(z0) satisfying:

• a(p(z0)−1)/2 ≡ −1 mod p(z0) and
• 2(−1)(p(z0)−1)/8d(z0) ≡ (a(p(z0)−1)/8 + a3(p(z0)−1)/8)c(z0) mod
p(z0).

6. Output (r(z0), p(z0), a)
7. Define a hyperelliptic curve C by y2 = x5 + ax.
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Algorithm 4: Our generalization for finding pairing-friendly Hy-
perelliptic curves with #JC(z) = 1 + (4c(z)2 − 2p(z)) + p(z)2

Input: k ∈ Z, ` = lcm(8, k),K ∼= Q[z]/Φ`(z)
Output: Hyperelliptic curve of genus 2 defined by y2 = x5 + ax .

1. Choose an irreducible polynomial r(z) ∈ Z[z].
2. Choose polynomials s(z), ω(z) and σ(z) in Q[z] such that s(z) is a

primitive kth root of unity, ω(z) =
√
−1 and σ(z) =

√
2 in K.

3. Compute polynomials, c(z), d(z) such that

• c(z) ≡ 2−1(s(z)− 1)ω(z)) mod r(z)
• d(z) ≡ (z(z) + 1)(2σ(z))−1 mod r(z)

4. Compute an irreducible polynomial p(z) = (c(z)2 + 2d(z)2)
5. For z0 ∈ Z such that:

– p(z0) and r(z0) represents primes and p(z0) ≡ 1, 3 mod 8 and
– c(z0), d(z0) represents integers and c(z0) ≡ 1 mod 4.

6. Find a ∈ Fp(z0) such that:

• a = δ2 when p(z0) ≡ 1 mod 8 or
• a = δ when p(z0) ≡ 3 mod 8.

7. Output (r(z0), p(z0), a).
8. Define a hyperelliptic curve C by y2 = x5 + ax.

With this approach, apart from reconstructing the Kawazoe-Takahashi
genus 2 curves, we discover new families of pairing-friendly hyperelliptic
curve of embedding degree k = 2, 7, 8, 10, 11, 13, 22, 26, 28, 44 and 52 with
2 < ρ ≤ 3.

The success depends on the the choice of the number field, K. Thus,
in the initial step we set K to be isomorphic to a cyclotomic field Q(ζ`) for
some ` = lcm(8, k). The condition on ` ensures Q[z]/r(z) contains square
roots of −1 and 2. We take the approach as described in [17] for construct-
ing pairing-friendly elliptic curves for defining the irreducible polynomial
r(z). Even though this method is time consuming as it involves search-
ing for a right element, it mostly gives a favorable irreducible polynomial
r(z), which defines the size of the prime order subgroup . Here we find a
minimal polynomial of an element γ ∈ Q(ζ`) and call it r(z), where γ is
not in any proper subfield of Q(ζ`). Since γ is in no proper subfield, then
we have Q(ζ`) = Q(γ), where the degree of Q(γ) over Q is ϕ(`), where
ϕ(.) is Euler totient function.
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However, with most values of k > 10 which are not multiples of 8, the
degree of r(z) tends to be large. As observed in [14], for such curves this
limits the number of usable primes. The current usable size of r is in the
range [2160, 2512].

4.1 The algorithm explained

Step 1: Set up This involves initializing the algorithm by setting Q(ζ`)
defined as Q[z]/Φ`(z). The Choice of this field ensures that it contains
ζk and

√
−1 and

√
2. The ideal choice, in such a case, is Q(ζ8, ζk) =

Q(ζlcm(k,8)).

Step 2: Representing ζk,
√
−1 and

√
2 We search for a favorable

element, γ ∈ Q(ζ`) such that the minimal polynomial of γ has degree
ϕ(`) and we call this r(z). We redefine our field to Q[z]/r(z). In this field
we find a polynomial that represents ζk,

√
−1 and

√
2.

For ζk there are ϕ(k) numbers of primitive kth roots of unity. In fact
if gcd(α, k) = 1 then ζαk is also primitive kth root of unity. To find the
polynomial representation of

√
−1 and

√
2 in Q[z]/r(z) we find the solu-

tions of the polynomials z2 + 1 and z2− 2 in the number field isomorphic
to Q[z]/r(z) respectively.

Steps 3,4,5: Finding the family All computations in the algorithm are
done modulo r(z) except when computing p(z). It is likely that polynomi-
als p(z), c(z) and d(z) have rational coefficient. At this point polynomials
are tested to determine whether they represent intergers or primes as per
Definition 3.

4.2 New curves

We now present a series of new curves constructed using the approach
described above. Proving the theorems is simple considering γ has mini-
mal polynomial r(z). We give a proof of Theorem 2. For the other curves
the proofs are similar.

We start by constructing a curve of embedding degree, k = 7. It is
interesting to note that here we get a family with ρ = 8/3.

Theorem 2. Let k = 7, ` = 56. Let γ = ζ` + 1 ∈ Q(ζ`) and define
polynomials r(z), p(z), c(z), d(z) by the following:

r(z) = z24 − 24z23 + 276z22 − 2024z21 + 10625z20 − 42484z19
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+ 134406z18 − 344964z17 + 730627z16 − 1292016z15 + 1922616z14

− 2419184z13 + 2580005z12 − 2332540z11 + 1784442z10 − 1150764z9

+ 621877z8 − 279240z7 + 102948z6 − 30632z5 + 7175z4 − 1276z3 + 162z2 − 12z + 1

p(z) = (z32 − 32z31 + 494z30 − 4900z29 + 35091z28 − 193284z27 +

851760z26 − 3084120z25 + 9351225z24 − 24075480z23 + 53183130z22 −
101594220z21 + 168810915z20 − 245025900z19 + 311572260z18 −
347677200z17 + 340656803z16 − 292929968z15 + 220707810z14 − 145300540z13 +

83242705z12 − 41279004z11 + 17609384z10 − 6432920z9 + 2023515z8

− 569816z7 + 159446z6 − 49588z5 + 16186z4 − 4600z3 + 968z2 − 128z + 8)/8

c(z) = (−z9 + 9z8 − 37z7 + 91z6 − 147z5 + 161z4 − 119z3 + 57z2 − 16z + 2)/2

d(z) = (z16 − 16z15 + 119z14 − 546z13 + 1729z12 − 4004z11 + 7007z10

− 9438z9 + 9867z8 − 8008z7 + 5005z6 − 2366z5 + 819z4 − 196z3 + 28z2)/4

Then (r(2z), p(2z)) constructs a genus 2 hyperelliptic curves. The ρ-value
of this family is 8/3.

Proof. Since ζ` + 1 ∈ Q(ζ`) has minimal polynomial r(z), we apply Al-
gorithm 3 by working in Q(ζ56) defined as Q[z]/r(z). We choose ζ7 7→
(z− 1)16,

√
−1 7→ (z− 1)14 and

√
2 7→ z(z− 1)7(z− 2)(z6− 7z5 + 21z4−

35z3 + 35z2 − 21z + 7)(z6 − 5z5 + 11z4 − 13z3 + 9z2 − 3z + 1). Applying
Algorithm 3 we find p(z) as stated. Computations with PariGP [23], show
that both r(2z) and p(2z) represents primes and c(2z) represents integers
such that it is equivalent to 1 modulo 4. Furthermore, by Algorithm 3
the Jacobian of our hypothetical curve has a large prime order subgroup
of order r(z) and embedding degree, k = 7.

Considering z0 = 758 we now give an example of a 254- bit prime
subgroup that is constructed using the parameters in Theorem 2.

Example 1.

r = 213748555325666652890713665865251428761742681841141544849244\
05425230130090001

p = 741504661189142770769829861344257948821797401549707353154351\
08095481642765042445975666095781797666897

c = −21022477149693687350103984375

d = 192549300334893812717931530445605096860437011144944

a = 3

ρ = 2.646.

C : y2 = x5 + 3x



12 Ezekiel J Kachisa

The next curve is of embedding degree k = 8. According to [25] this
family of curves admits higher order twists. This means that it is possible
to have both inputs to a pairing defined over a base field. The previous
record on this curve was ρ = 4. In Theorem 3 below we outline the
parameters that defines a family of hyperelliptic curves with ρ = 3.

Theorem 3. Let k = ` = 8. Let γ = ζ3` + ζ2` + ζ` + 3 ∈ Q(ζ8) and
define polynomials r(z), p(z), c(z), d(z) by the following:

r(z) = z4 − 12z3 + 60z2 − 144z + 136

p(z) = (11z6 − 188z5 + 1460z4 − 6464z3 + 17080z2 − 25408z + 16448)/64

c(z) = (3z3 − 26z2 + 92z − 120)/8

d(z) = (−z3 + 8z2 − 26z + 32)/8

Then (r(32z)/8, p(32z)) constructs a genus 2 hyperelliptic curves with
embedding degree 8. The ρ-value of this family is 3.

This type of a curve is recommended at the 128 bit security level,
see Table 3.1 in [1]. Below we give an example obtained using the above
parameters.

Example 2.

r = 131072000000009898508288000280324362739203528331792090742\
477643363528725893137(257bits)

p = 184549376000020905654747136986742251766767879474504560418\
252532669506933642904885116183766157641277112712983172884737

c = 12288000000000695988992000013140209336688082695322003440625

d = −4096000000000231996416000004380073001064027565137751569916

a = 3

ρ = 3.012

C : y2 = x5 + 3x

Theorem 4. Let k = 10, ` = 40. Let γ = ζ` + 1 ∈ Q(ζ`) and

define polynomials r(z), p(z), c(z), d(z) by the following:

r(z) = z16 − 16z15 + 120z14 − 560z13 + 1819z12 − 4356z11 + 7942z10 −
11220z9 + 12376z8 − 10656z7 + 7112z6 − 3632z5 + 1394z4 − 392z3 + 76z2 − 8z + 1

p(z) = (z24 − 24z23 + 274z22 − 1980z21 + 10165z20 − 39444z19

+120156z18 − 294576z17 + 591090z16 − 981920z15 + 1360476z14 −
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1578824z13 + 1536842z12 − 1253336z11 + 853248z10 − 482384z9 +

225861z8 − 88872z7 + 31522z6 − 11676z5 + 4802z4 − 1848z3 + 536z2 − 96z + 8)/8

c(z) = (−z7 + 7z6 − 22z5 + 40z4 − 45z3 + 31z2 − 12z + 2)/2

d(z) = (z12 − 12z11 + 65z10 − 210z9 + 450z8 − 672z7 + 714z6 − 540z5 + 285z4 −
100z3 + 20z2)/4

Then (r(4z), p(4z)) constructs a genus 2 hyperelliptic curve. The ρ-value
of this family is 3.

Below is a curve of embedding degree 10 with a prime subgroup of
size 249 bits. The ρ-value of its JC is 3.036.

Example 3.

r = 47457491054103014068159312355967539444301108619814810948\
2797931132143318041

p = 339268047683548227442734898907507152190802484314819125499\
393410802175044822928270159666053912399467210953623356417

c = −1189724159035338550797061406711295

d = 411866512163557810321097788276510052727469786602189684736

a = 3

ρ = 3.036

C : y2 = x5 + 3x

Theorem 5. Let k = 28, ` = 56. Let γ = ζ` + 1 ∈ Q(ζ`) and
define polynomials r(z), p(z), c(z), d(z) by the following:

r(z) = z24 − 24z23 + 276z22 − 2024z21 + 10625z20 − 42484z19 +

134406z18 − 344964z17 + 730627z16 − 1292016z15 + 1922616z14 −
2419184z13 + 2580005z12 − 2332540z11 + 1784442z10 − 1150764z9 + 621877z8 −
279240z7 + 102948z6 − 30632z5 + 7175z4 − 1276z3 + 162z2 − 12z + 1

p(z) = (z36 − 36z35 + 630z34 − 7140z33 + 58903z32 − 376928z31 +

1946800z30 − 8337760z29 + 30188421z28 − 93740556z27 + 252374850z26 −
594076860z25 + 1230661575z24 − 2254790280z23 + 3667649460z22 −
5311037640z21 + 6859394535z20 − 7909656300z19 + 8145387218z18 −
7487525484z17 + 613613430z16 − 4473905808z15 + 2893567080z14 − 1653553104z13 +

830662287z12 − 364485108z11 + 138635550z10 − 45341540z9 + 12681910z8 −
3054608z7 + 660688z6 − 141120z5 + 32008z4 − 7072z3 + 1256z2 − 144z + 8)/8

c(z) = (−z11 + 11z10 − 55z9 + 165z8 − 331z7 + 469z6 − 483z5 + 365z4 − 200z3 +

76z2 − 18z + 2)/2
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d(z) = (z18 − 18z17 + 153z16 − 816z15 + 3059z14 − 8554z13 + 18473z12 − 31460z11

+42757z10 − 46618z9 + 40755z8 − 28392z7 + 15561z6 − 6566z5 + 2058z4 −
448z3 + 56z2)/4

Then (r(2z), p(2z)) constructs a genus 2 hyperelliptic curve. The ρ-value
of this family is ρ ≈ 3.

Here is a curve with a 255 bit prime subgroup constructed from the
above parameters:

Example 4.

r = 42491960053938594435112219237666767431311006357122111696\
690362883228500208481

p = 1094889169501305037288247123944801366479653316841535239280\
568336193026632167195184728514564519636647060505191263121

c = −66111539648877169993055611952337239

d = 739894982244542944193343853775218465253390470331838998400

a = 23

ρ = 2.972

C : y2 = x5 + 23x

The following family for k = 24 has a similar ρ-value as to a family
of k = 24 reported in [18]. One can use the following parameters to con-
struct a Kawazoe-Takahashi Type II pairing-friendly hyperelliptic curve
of embedding degree k = 24 with ρ = 3.

Theorem 6. Let k = ` = 24. Let γ = ζ24 + 1 ∈ Q(ζ24) and define
polynomials r(z), p(z), c(z), d(z) by the following:

r(z) = z8 − 8z7 + 28z6 − 56z5 + 69z4 − 52z3 + 22z2 − 4z + 1

p(z) = (2z12 − 28z11 + 179z10 − 688z9 + 1766z8 − 3188z7 +

4155z6 − 3948z5 + 2724z4 − 1336z3 + 443z2 − 88z + 8)/8

c(z) = (−z6 + 7z5 − 20z4 + 30z3 − 25z2 + 11z − 2)/2

d(z) = (z5 − 4z4 + 5z3 − 2z2 − z)/4

Then (r(8z + 4)/8, p(8z + 4)) constructs a complete ordinary pairing-
friendly genus 2 hyperelliptic curves with embedding degree 24. The ρ-
value of this family is 3.

The following family is of embedding degree k = 2 with ρ = 3. In this
case the parameters corresponds to a quadratic twist C ′ of the curve C
whose order of JC has a large prime of size r.
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Theorem 7. Let k = 2 , ` = 8. Let γ = ζ28 + ζ8 + 1 ∈ Q(ζ8) and define
polynomials r(z), p(z), c(z), d(z) by the following:

r(z) = z4 − 4z3 + 8z2 − 4z + 1

p(z) = (17z6 − 128z5 + 480z4 − 964z3 + 1089z2 − 476z + 68)/36

c(z) = (z3 − 4z2 + 7z − 2)/2

d(z) = (−2z3 + 7z2 − 14z + 4)/6

Then (r(36z + 8)/9, p(36z + 8)) constructs a genus 2 hyperelliptic curve.
The ρ-value of this family is 3.

Here is a curve with a 164 bit prime subgroup constructed from the
above parameters:

Example 5.

r = 18662407671139230451673881592011637799903138004697

p = 102792562578915164898226742137468734090998250325265\
6165164129909459559679217

c = 23328007191686179030939068128424560723

d = −15552004794459612687736644908426134338

a = 10

ρ = 3.049

Here our genus 2 hyperelliptic equation is C ′ : y2 = x5 + 10x and hence
C : y2 = 20(x5 + 10x) is the curve whose #JC has a large prime r and
its embedding degree is 2 with repect to r.

We now present pairing-friendly hyperelliptic curves of embedding
k whose polynomial that defines the prime order subgroup r(z), has its
degree greater or equal to 40. The polynomials that defines some of curves
can be found in Appendix A. Currently these curves, as already pointed
out, are only of theoretical interest. In this table ` = lcm(k, 8).

Table 1. Families of curves, whose deg(r(z)) ≥ 40

k γ Degree(r(z)) Degree(p(z)) ρ-value Modular class

11 ζ` 40 48 2.400 3 mod 4

13 ζ` + 1 48 64 2.667 4 mod 8

22 ζ` + 1 40 56 2.800 0 mod 4

26 ζ` 48 56 2.333 3 mod 4

44 ζ` + 1 48 64 2.600 0 mod 4

52 ζ` + 1 48 60 2.500 0 mod 4



16 Ezekiel J Kachisa

5 Conclusion

We have presented an algorithm that produces more Kawazoe-Takahashi
type of genus 2 pairing-friendly hyperelliptic curves. In addition we have
presented new curves with better ρ-values. A problem with some of the
reported curves is that the degree of the polynomial r(z), which defines
the prime order subgroup, is too large and hence a very small number, if
any, of usable curves could be found. Table 2 summarises the the curves
reported in this paper. Curves with 1 ≤ ρ ≤ 2 remain elusive.

Table 2. Families of curves, k < 60, with 2.000 < ρ ≤ 3.000

k Degree(r(z)) Degree(p(z)) ρ-value

2 4 6 3.000

7 24 32 2.667

8 4 6 3.000

10 16 24 3.000

11 40 48 2.400

13 48 64 2.667

22 40 56 2.800

24 8 12 3.000

26 48 56 2.333

28 24 36 3.000

44 48 64 2.600

52 48 60 2.500

References

1. Balakrishnan, J., Belding, J., Chisholm, S., Eisenträger, K., Stange, K. and
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Appendix A: More examples

Here we include the polynomials that define curves of some of the em-
bedding degrees in Table 1.

Theorem 8. Let k = 11, ` = 88. Let γ = ζ` ∈ Q(ζ`) and define polyno-
mials r(z), p(z), c(z), d(z) by the following:

r(z) = z40 − z36 + z32 − z28 + z24 − z20 + z16 − z12 + z8 − z4 + 1

p(z) = 1/8(z48 − 2z46 + z44 + 8z24 + z4 − 2z2 + 1)

c(z) = −1/2(z13 + z11)

d(z) = 1/4(z24 − z22 − z2 + 1)

ρ = 12/5

Family (r(4z + 3)/89, p(4z + 3))

Theorem 9. Let k = 13, ` = 104. Let γ = ζ` + 1 ∈ Q(ζ`) and define
polynomials r(z), p(z), c(z), d(z) by the following:

r(z) = z48 − 48z47 + 1128z46 + ...+ 2z2 − 24z + 1

p(z) = (z64 − 64z63 + 2016z62 − ...+ 4040z2 − 256z + 8)/8

c(z) = −(z19 − 19z18 + 171z17 + ...+ 249z2 − 32z + 2)/2

d(z) = (z32 − 32z31 + 496z30 − ...+ 20995z4 − 2340z3 + 156z2)/4

ρ = 8/3

Family (r(8z + 4), p(8z + 4)

Theorem 10. Let k = 22, ` = 88. Let γ = ζ` ∈ Q(ζ`) and define polyno-
mials r(z), p(z), c(z), d(z) by the following:

r(z) = z40 − z36 + z32 − z28 + z24 − z20 + z16 − z12 + z8 − z4 + 1

p(z) = (z56 − 2z50 + z44 + z28 + z12 − 2z6 + 1)/8

c(z) = −(z17 + z11)/2

d(z) = (z34 − z22 + z12 + 1)/4

ρ = 14/5

Family (r(4z + 3)/89, p(4z + 3))

Theorem 11. Let k = 26, ` = 104. Let γ = ζ` ∈ Q(ζ`) and define poly-
nomials r(z), p(z), c(z), d(z) by the following:

r(z) = z48 − z44 + z40 − z36 + z32 − z28 + z24 − z20 + z16 − z12 + z8 − z4 + 1

p(z) = (z56 − 2z54 + z52 + 8z28 + z4 − 2z2 + 1)/8

c(z) = −(z15 + z13)/2

d(z) = (z28 − z26 − z2 + 1)/4

ρ = 7/3

Family (r(4z + 3), p(4z + 3))


