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Abstract

We propose a Multi-Authority Attribute-Based Encryption (ABE) system. In our sys-
tem, any party can become an authority and there is no requirement for any global coor-
dination other than the creation of an initial set of common reference parameters. A party
can simply act as an ABE authority by creating a public key and issuing private keys to
different users that reflect their attributes. A user can encrypt data in terms of any boolean
formula over attributes issued from any chosen set of authorities. Finally, our system does
not require any central authority.

In constructing our system, our largest technical hurdle is to make it collusion resistant.
Prior Attribute-Based Encryption systems achieved collusion resistance when the ABE sys-
tem authority “tied” together different components (representing different attributes) of a
user’s private key by randomizing the key. However, in our system each component will
come from a potentially different authority, where we assume no coordination between such
authorities. We create new techniques to tie key components together and prevent collusion
attacks between users with different global identifiers.

We prove our system secure using the recent dual system encryption methodology where
the security proof works by first converting the challenge ciphertext and private keys to
a semi-functional form and then arguing security. We follow a recent variant of the dual
system proof technique due to Lewko and Waters and build our system using bilinear groups
of composite order. We prove security under similar static assumptions to the LW paper in
the random oracle model.

1 Introduction

Traditionally, we view encryption as a mechanism for a user, Alice, to confidentially encode
data to a target recipient, Bob. Alice encrypts the data under the recipient’s public key such
that only Bob, with knowledge of his private key, can decrypt it.

However, in many applications, we find we need to share data according to an encryption
policy without prior knowledge of who will be receiving the data. Suppose an administrator
needs to encrypt a junior faculty member’s performance review for all senior members of the
computer science department or anyone in the dean’s office. The administrator will want to
encrypt the review with the access policy (“Computer Science” AND “Tenured”) OR
“Dean’s Office”. In this system, only users with attributes (credentials) that match this
policy should be able to decrypt the document. The key challenge in building such systems is
to realize security against colluding users. For instance, the encrypted records should not be
accessible to a pair of unauthorized users, where one has the two credentials of “Tenured”
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and “Chemistry” and the other one has the credential of “Computer Science”. Neither
user is actually a tenured faculty member of the Computer Science Department.

Sahai and Waters [44] proposed a solution to the above problem that they called Attribute-
Based Encryption (ABE). In an ABE system, a party encrypting data can specify access to the
data as a boolean formula over a set of attributes. Each user in the system will be issued a
private key from an authority that reflects their attributes (or credentials). A user will be able
to decrypt a ciphertext if the attributes associated with their private key satisfy the boolean
formula ascribed to the ciphertext. A crucial property of ABE systems is that they resist
collusion attacks as described above.

Since the introduction of Attribute-Based Encryption, several works [8, 30, 43, 29, 23, 53,
21, 22, 37] have proposed different ABE systems and applications. In almost all ABE proposals,
private keys were issued by one central authority that would need to be in a position to verify all
the attributes or credentials it issued for each user in the system. These systems can be utilized
to share information according a policy over attributes issued within a domain or organization,
however, in many applications a party will want to share data according to a policy written over
attributes or credentials issued across different trust domains and organizations. For instance,
a party might want to share medical data only with a user who has the attribute of “Doctor”
issued by a medical organization and the attribute “Researcher” issued by the administrators
of a clinical trial. On a commercial application, two corporations such as Boeing and General
Electric might both issue attributes as part of a joint project. Using current ABE systems for
these applications can be problematic since one needs a single authority that is both able to
verify attributes across different organizations and issue private keys to every user in the system.

A Simple Approach and Its Limitations We would like to realize an encryption system
where a party can encrypt data for a policy written over attributes issued by different authorities.
A user in the system should be able to decrypt if their attributes (possibly issued by multiple
authorities) satisfy the policy specified by the ciphertext. In addition, the system should be
able to express complex policies and not require coordination amongst the authorities.

An initial step towards this goal is to simply “engineer” a system by utilizing existing
(Ciphertext-Policy) Attribute-Based Encryption schemes along with standard signature schemes.
In this proposal, a designated “central authority” will first create a set of public parameters.
Then any party wishing to become an “authority” will create a signature verification key VK
that will be associated with them. A user in the system with a globally verifiable identifier GID
will collect private keys for attributes that it has from different authorities.

Suppose that a user GID can demonstrate attributesX1, X2 to the authority with verification
key VK and attribute Y to the authority with verification key VK′. The user will obtain his
secret key as follows. First, he will obtain a signature of GID, (X1, X2) that verifies under
VK and a signature of GID, Y under VK′ from the two respective authorities (and any other
authorities). Next, the user will present these signature and verification key pairs to the central
authority. The central authority will first check that each signature verifies under the claimed
verification key and that each signature is on the same global identifier. Using an existing ABE
algorithm, it will then issue an attribute for each verification key and attribute pair. In the
above example, the user will get a key with attributes “VK, X1”, “VK, X2”, and “VK′, Y ”. We
note that the operation of the central authority is agnostic to the meaning of these verification
keys and attributes; indeed, it will not need to have any a priori relationship with any of the
authorities.

This simple system enjoys multiple benefits. Since encryption simply uses a prior ABE
system, we can achieve the same level of expressiveness and write a policy in terms of any
boolean formula. The system also requires minimum coordination between separate authorities.
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Any party can choose to be an authority by creating and publishing a verification key coupled
with a list of attributes it will manage. Different authorities will not need to coordinate or even
be aware of each other. There are several issues that will need to be dealt with in any larger
system, such as the choice of an appropriate global identifier 1 or a party’s decision as to which
authority it trusts to issue private keys related to certain attributes. For instance, one might
encrypt a policy using Experian’s verification key to attest for the attribute of a good FICO
(credit) score.

The major drawback of this simple engineered approach is that it requires a designated
central authority. This authority must be globally trustworthy, since its failure will compromise
the entire system. If we aim to build a large or even global scale system, this authority will
become a common bottleneck. Spreading a central authority’s keys over several machines to
alleviate performance pressures might simultaneously increase the risk of key exposure.

A few works have attempted to create new cryptographic solutions to the multi-authority
ABE problem. Chase [21] proposed an interesting solution that introduced the concept of using
a global identifier as a “linchpin” for tying users’ keys together. Her system relied on a central
authority and was limited to expressing a strict “AND” policy over a pre-determined set of
authorities. Therefore a party encrypting would be much more limited than in the simple
engineering approach outlined above. Müller, Katzenbeisser, and Eckert [41, 42] give a different
system with a centralized authority that realizes any LSSS access structure. Their construction
builds on the Waters system [53]; their proof is limited to non-adaptive queries. The system
achieves roughly the same functionality as the engineering approach above, except one can still
acquire attributes from additional authorities without revisiting the central authority. Chase
and Chow [22] showed how to remove the central authority using a distributed PRF; however, the
same limitations of an AND policy of a determined set of authorities remained. Lin et. al. [39]
give a threshold based scheme that is also somewhat decentralized. The set of authorities is
fixed ahead of time, and they must interact during the system setup. The system is only secure
up to collusions of m users, where m is a system parameter chosen at setup such that the cost
of operations and key storage scales with m.

Our Contribution We propose a new multi-authority Attribute-Based Encryption system.
In our system, any party can become an authority and there is no requirement for any global co-
ordination other than the creation of an initial set of common reference parameters. (These will
be created during a trusted setup.) A party can simply act as an authority by creating a public
key and issuing private keys to different users that reflect their attributes. Different authorities
need not even be aware of each other. We use the Chase [21] concept of global identifiers to
“link” private keys together that were issued to the same user by different authorities. A user
can encrypt data in terms of any boolean formula 2 over attributes issued from any chosen set
of authorities.

Finally, our system does not require any central authority. We thus avoid the performance
bottleneck incurred by relying on a central authority, which makes our system more scalable.
We also avoid placing absolute trust in a single designated entity which must remain active and
uncorrupted throughout the lifetime of the system. This is a crucial improvement for efficiency
as well as security, since even a central authority that remains uncorrupted may occasionally
fail for benign reasons, and a system that constantly relies on its participation will be forced

1The idea of applying a global identifier in the context of multi-authority ABE was first proposed by Chase [21].
Chase adapted the concept from its use in anonymous credential systems [19]. One previously suggested candidate
for a global identifier is a user’s social security number.

2Our system actually generalizes to handle any policy that can be expressed as a Linear Secret Sharing Scheme
(LSSS) or equivalently a monotone span program.
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to remain stagnant until it can be restored. In our system, authorities can function entirely
independently, and the failure or corruption of some authorities will not affect the operation
of functioning, uncorrupted authorities. This makes our system more robust then the other
approaches outlined above.

Challenges and Our Techniques In constructing our system, our central technical hurdle
is to make it collusion resistant. Prior Attribute-Based Encryption systems achieved collusion
resistance when the ABE system authority “tied” together different components (representing
different attributes) of a user’s private key by randomizing the key. Such randomization would
make the different key components compatible with each other, but not with the parts of a key
issued to another user.

In our setting, we want to satisfy the simultaneous goals of autonomous key generation and
collusion resistance. The requirement of autonomous key generation means that established
techniques for key randomization cannot be applied since there is no one party to compile all
the pieces together. Furthermore, in our system each component may come from a different
authority, where such authorities have no coordination and are possibly not even aware of each
other and there is no preset access structure.3

To overcome this, we develop a novel technique for tying a user’s key components together
and preventing collusion attacks between users with different global identifiers. At a high level,
instead of relying on one key generation call to tie all key components together, we will use a
hash function on the user’s global identity, GID to manage collusion resistance across multiple
key generations issued by different authorities.

In our system, we define a hash function H (modeled as a random oracle) that hashes each
identity to a (bilinear) group element. We will use the group element output from the hash
function H(GID) as the linchpin to tie keys together. Tying keys together in this manner is
more challenging than in the single authority case. Our main idea is to structure the decryption
mechanism at each satisfied node ‘x’ in the access tree such that a user will recover a target
group element of the form e(g, g)λx · e(g,H(GID))wx . This group element first contains a secret
share λx of a secret s in the exponent, and these shares can be combined to recover the message.
However, these will each be “blinded” by a share wx which is a share of 0 in the exponent with
base e(g,H(GID)). This structure allows for the decryption algorithm to both reconstruct the
main secret and to unblind it in parallel. If a user with a particular identifier GID satisfies the
access tree, he can reconstruct s in the exponent by raising the group elements to the proper
exponents. However, this operation will simultaneously reconstruct the share of 0 and thus
the e(g,H(GID)) terms will cancel out. Intuitively, if two users with different global identifiers
GID,GID′ attempt to collude, the cancelation will not work since the wx shares will have
different bases.

We prove our system secure using the recent dual system encryption methodology [52],
where the security proof works by first converting the challenge ciphertexts and private keys
to a semi-functional form and then arguing security. We follow a recent variant of the dual
system proof technique due to Lewko and Waters [38] and build our system using bilinear
groups of composite order. The absence of coordination between the authorities also introduces
a new technical challenge in applying the dual system encryption methodology. Due to the
decentralized nature of user’s keys, the techniques employed in [37] to achieve full security for
single authority ABE using dual system encryption are insufficient. We overcome this by using
two semi-functional subgroups instead of one, and switching between these allows us to defeat
the information-theoretic problem which is naturally encountered if one simply tries to apply

3Prior works [21, 22] assumed coordination ahead of time between different authorities and required a limited
access structure.
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the previous techniques. We prove security under similar assumptions to the LW paper in the
random oracle model.

Related Work Several of the roots of Attribute-Based Encryption can be traced back to
Identity Based Encryption (IBE), proposed by Shamir [45]. The first IBE schemes were con-
structed by Boneh and Franklin [13] and Cocks [24]. These initial systems were proven secure
in the random oracle model. Other standard model solutions followed [20, 9, 10, 51, 27], along
with extensions to the hierarchical IBE setting [34, 28, 11].

Attribute-based encryption was introduced by Sahai and Waters [44]. Subsequently, Goyal,
Pandey, Sahai, and Waters [30] formulated two complimentary forms of ABE: Ciphertext-
Policy Attribute-Based Encryption (CP-ABE) and Key-Policy Attribute-Based Encryption
(KP-ABE). In a CP-ABE system, keys are associated with sets of attributes and ciphertexts
are associated with access policies. In a KP-ABE system, the situation is reversed: keys are
associated with access policies and ciphertexts are associated with sets of attributes. Since
then, several different ABE systems have been proposed [8, 21, 23, 29, 43, 53, 22], as well as
related systems [14, 2]. The problem of building ABE systems with multiple authorities was
proposed by Sahai and Waters and first considered by Chase [21] and Chase and Chow [22].
Another interesting direction is the construction of “anonymous” or predicate encryption sys-
tems [36, 48, 17, 12, 1, 46, 37] where in addition to the data the encryption policy or other
properties are hidden. Other works have discussed similar problems without addressing collu-
sion resistance [3, 4, 5, 18, 40, 50]. In these systems, the data encryptor specifies an access
policy such that a set of users can decrypt the data only if the union of their credentials satisfies
the access policy.

Until recently, all ABE systems were proven secure in the selective model where an attacker
needed to declare the structure of the challenge ciphertext before seeing the public parameters.
Recently, Lewko, Okamoto, Sahai, Takashima and Waters [37] solved the open problem by
giving the first fully secure Attribute-Based Encryption systems. Their system applied the dual
system encryption methodology introduced by Waters [52] and techniques used by Lewko and
Waters [38]. Our proof uses some techniques from Lewko et. al. [37], but faces new challenges
from the multi-authority setting.

Organization In Section 2, we formally define multi-authority CP-ABE systems and their
security. In Section 3, we give our complexity assumptions. In Section 4, we present our multi-
authority CP-ABE system and outline the proof of its security. In Section 5, we discuss possible
extensions of our results. We define access structures, linear secret-sharing schemes (LSSS), and
composite order bilinear groups in Appendix A. We give the full details of our security proof
in Appendix C.

2 Multi-authority CP-ABE

Here we give the necessary background on multi-authority CP-ABE schemes and their security
definition. For background on access structures, linear secret-sharing schemes, and composite
order bilinear groups, see Appendix A.

A multi-authority Ciphertext-Policy Attribute-Based Encryption system is comprised of the
following five algorithms:

Global Setup(λ) → GP The global setup algorithm takes in the security parameter λ and
outputs global parameters GP for the system.
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Authority Setup(GP) → SK,PK Each authority runs the authority setup algorithm with
GP as input to produce its own secret key and public key pair, SK,PK.

Encrypt(M, (A, ρ),GP, {PK}) → CT The encryption algorithm takes in a message M , an
access matrix (A, ρ), the set of public keys for relevant authorities, and the global parameters.
It outputs a ciphertext CT.

KeyGen(GID,GP, i,SK) → Ki,GID The key generation algorithm takes in an identity GID,
the global parameters, an attribute i belonging to some authority, and the secret key SK for
this authority. It produces a key Ki,GID for this attribute, identity pair.

Decrypt(CT,GP, {Ki,GID})→ M The decryption algorithm takes in the global parameters,
the ciphertext, and a collection of keys corresponding to attribute, identity pairs all with the
same fixed identity GID. It outputs either the message M when the collection of attributes i
satisfies the access matrix corresponding to the ciphertext. Otherwise, decryption fails.

Definition 1. A multi-authority CP-ABE system is said to be correct if whenever GP is ob-
tained from the global setup algorithm, CT is obtained from the encryption algorithm on the
message M , and {Ki,GID} is a set of keys obtained from the key generation algorithm for the
same identity GID and for a set of attributes satisfying the access structure of the ciphertext,
Decrypt(CT,GP, {Ki,GID}) = M .

2.1 Security Definition

We define security for multi-authority Ciphertext-Policy Attribute-Based Encryption systems
by the following game between a challenger and an attacker. We assume that adversaries can
corrupt authorities only statically, but key queries are made adaptively. A static corruption
model is also used by Chase [21] and Chase and Chow [22], but we note that our model addi-
tionally allows the adversary to choose the public keys of the corrupted authorities for itself,
instead of having these initially generated by the challenger.

We let S denote the set of authorities and U denote the universe of attributes. We assume
each attribute is assigned to one authority (though each authority may control multiple at-
tributes). In practice, we can think of an attribute as being the concatenation of an authority’s
public key and a string attribute. This will ensure that if multiple authorities choose the same
string attribute, these will still correspond to distinct attributes in the system.

Setup The global setup algorithm is run. The attacker specifies a set S′ ⊆ S of corrupt
authorities. For good (non-corrupt) authorities in S − S′, the challenger obtains public key,
private key pairs by running the authority setup algorithm, and gives the public keys to the
attacker.

Key Query Phase 1 The attacker makes key queries by submitting pairs (i,GID) to the
challenger, where i is an attribute belonging to a good authority and GID is an identity. The
challenger responds by giving the attacker the corresponding key, Ki,GID.

Challenge Phase The attacker must specify two messages, M0,M1, and an access matrix
(A, ρ). The access matrix must satisfy the following constraint. We let V denote the subset of
rows of A labeled by attributes controlled by corrupt authorities. For each identity GID, we let
VGID denote the subset of rows of A labeled by attributes i for which the attacker has queried
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(i,GID). For each GID, we require that the subspace spanned by V ∪ VGID must not include
(1, 0, . . . , 0). (In other words, the attacker cannot ask for a set of keys that allow decryption, in
combination with any keys that can obtained from corrupt authorities.) The attacker must also
give the challenger the public keys for any corrupt authorities whose attributes appear in the
labeling ρ. The challenger flips a random coin β ∈ {0, 1} and sends the attacker an encryption
of Mβ under access matrix (A, ρ).

Key Query Phase 2 The attacker may submit additional key queries (i,GID), as long as
they do not violate the constraint on the challenge matrix (A, ρ).

Guess The attacker must submit a guess β′ for β. The attacker wins if β = β′.
The attacker’s advantage in this game is defined to be Pr[β = β′]− 1

2 .

Definition 2. A multi-authority Ciphertext-Policy Attribute-Based Encryption system is secure
(against static corruption of authorities) if all polynomial time attackers have at most a negligible
advantage in this security game.

2.2 Transformation from One-Use Multi-Authority CP-ABE

In Appendix B, we show how to construct a fully secure multi-authority CP-ABE system where
attributes are used multiple times in an access matrix from a fully secure multi-authority CP-
ABE system where attributes are used only once. We do this with a simple encoding technique.
This same transformation was employed by [37] for (single authority) CP-ABE.

3 Our Assumptions

We now state the complexity assumptions that we will rely on to prove security for our system.
These assumptions are formulated for a bilinear group G of order N = p1p2p3, a product of
3 primes. For background on these groups, see Appendix A. We note that these are similar
to the assumptions used in [38, 37]. While the fourth assumption is new, the first three are
instances of the class of General Subgroup Decision Assumptions described in [7]. This class
is defined as follows: in a bilinear group of order N = p1p2 . . . pn, there is a subgroup of order∏
i∈S pi for each subset S ⊆ {1, . . . , n}. We let S0, S1 denote two distinct subsets. We then

assume it is hard to distinguish a random element from the subgroup associated with S0 from a
random element of the subgroup associated with S1, even if one is given random elements from
subgroups associated with several subsets Zi which each satisfy either that S0∩Zi = ∅ = S1∩Zi
or S0 ∩ Zi 6= ∅ 6= S1 ∩ Zi. We prove our four specific assumptions are generically secure in
Appendix F, under the assumption that it is hard to find a nontrivial factor of the group order
N .

In the assumptions below, we let Gp1p2 , e.g., denote the subgroup of order p1p2 in G. When

we write g1
R←− Gp1 , we mean that g1 is chosen to be a random generator of Gp1 (so it is not

the identity element). Similarly, when we write T1
R←− G, we mean that T1 is chosen to be

a random generator of G (this is not quite the same as a uniformly random element, but the
distributions are negligibly close).

Assumption 1 (Subgroup decision problem for 3 primes) Given a group generator G,
we define the following distribution:

G = (N = p1p2p3, G,GT , e)
R←− G,
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g1
R←− Gp1 ,

D = (G, g1),

T1
R←− G, T2

R←− Gp1 .

We define the advantage of an algorithm A in breaking Assumption 1 to be:

Adv1G,A(λ) :=
∣∣Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]

∣∣.
We note that T1 can be written (uniquely) as the product of an element of Gp1 , an element

of Gp2 , and an element of Gp3 . We refer to these elements as the “Gp1 part of T1”, the “Gp2
part of T1”, and the “Gp3 part of T1” respectively. We will use this terminology in our proofs.

Definition 3. We say that G satisfies Assumption 1 if Adv1G,A(λ) is a negligible function of λ
for any polynomial time algorithm A.

Assumption 2 Given a group generator G, we define the following distribution:

G = (N = p1p2p3, G,GT , e)
R←− G,

g1, X1
R←− Gp1 , X2

R←− Gp2 , g3
R←− Gp3 ,

D = (G, g1, g3, X1X2),

T1
R←− Gp1 , T2

R←− Gp1p2 .

We define the advantage of an algorithm A in breaking Assumption 2 to be:

Adv2G,A(λ) :=
∣∣Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]

∣∣.
Definition 4. We say that G satisfies Assumption 2 if Adv2G,A(λ) is a negligible function of λ
for any polynomial time algorithm A.

Assumption 3 Given a group generator G, we define the following distribution:

G = (N = p1p2p3, G,GT , e),
R←− G,

g1, X1
R←− Gp1 , Y2

R←− Gp2 , X3, Y3
R←− Gp3 ,

D = (G, g1, X1X3, Y2Y3),

T1
R←− Gp1p2 , T2

R←− Gp1p3 .

We define the advantage of an algorithm A in breaking Assumption 3 to be:

Adv3G,A(λ) :=
∣∣Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]

∣∣.
Definition 5. We say that G satisfies Assumption 3 if Adv3G,A(λ) is a negligible function of λ
for any polynomial time algorithm A.
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Assumption 4 Given a group generator G, we define the following distribution:

G = (N = p1p2p3, G,GT , e),
R←− G,

g1
R←− Gp1 , g2

R←− Gp2 , g3
R←− Gp3 , a, b, c, d

R←− ZN ,

D = (G, g1, g2, g3, ga1 , gb1gb3, gc1, gac1 gd3),

T1 = e(g1, g1)abc, T2
R←− GT .

We define the advantage of an algorithm A in breaking Assumption 4 to be:

Adv4G,A(λ) :=
∣∣Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]

∣∣.
Definition 6. We say that G satisfies Assumption 4 if Adv4G,A(λ) is a negligible function of λ
for any polynomial time algorithm A.

4 Our Multi-Authority CP-ABE System

Overview We now present our one-use multi-authority ciphertext-policy attribute based en-
cryption system. We use a composite order bilinear group G, where the group order is a product
of three primes: N = p1p2p3. Except for the random oracle H which maps identities to random
group elements, the entire system is confined to the subgroup Gp1 in G. The subgroups Gp2
and Gp3 are used in our security proof, which employs the dual system encryption technique. In
a dual system, keys and ciphertexts can be either normal or semi-functional. Normal keys and
ciphertexts in our system will be contained in the subgroup Gp1 , while semi-functional keys and
ciphertexts will involve elements of the subgroups Gp2 and Gp3 . In other words, the subgroups
Gp2 and Gp3 form the semi-functional space, which is orthogonal to the subgroup Gp1 where
the normal keys and ciphertexts reside.

Preventing Collusion To prevent collusion attacks, our system uses the global identity
to “tie” together the various attributes belonging to a specific user so that they cannot be
successfully combined with another’s user’s attributes in decryption. More specifically, the
encryption algorithm blinds the message M with e(g1, g1)s, where g1 is a generator of the
subgroup Gp1 , and s is a randomly chosen value in ZN . The value s is then split into shares
λx according to the LSSS matrix, and the value 0 is split into shares ωx. The decryptor must
recover the blinding factor e(g1, g1)s by pairing their keys for attribute, identity pairs (i,GID)
with the ciphertext elements to obtain the shares of s. In doing so, the decryptor will introduce
terms of the form e(g1, H(GID))ωx . If the decryptor has a satisfying set of keys with the same
identity GID, these additional terms will cancel from the final result, since the ωx’s are shares
of 0. If two users with different identities GID and GID′ attempt to collude and combine their
keys, then there will be some terms of the form e(g1, H(GID))ωx and some terms of the form
e(g1, H(GID′))ωx′ , and these will not cancel with each other, thereby preventing the recovery
of e(g1, g1)s.

4.1 Construction

Global Setup(λ) → GP In the global setup, a bilinear group G of order N = p1p2p3 is
chosen. The global public parameters, GP, are N and a generator g1 of Gp1 . In addition, the
description of a hash function H : {0, 1}∗ → G that maps global identities GID to elements of
G is published. We will model H as a random oracle.
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Authority Setup(GP) → PK, SK For each attribute i belonging to the authority, the au-
thority chooses two random exponents αi, yi ∈ ZN and publishes PKj = {e(g1, g1)αi , gyi1 ∀i} as
its public key. It keeps SK = {αi, yi∀i} as its secret key.

Encrypt(M, (A, ρ),GP, {PK}) → CT The encryption algorithm takes in a message M , an
n × ` access matrix A with ρ mapping its rows to attributes, the global parameters, and the
public keys of the relevant authorities. It chooses a random s ∈ ZN and a random vector v ∈ Z`N
with s as its first entry. We let λx denote Ax · v, where Ax is row x of A. It also chooses a
random vector w ∈ Z`N with 0 as its first entry. We let ωx denote Ax · w. For each row Ax of
A, it chooses a random rx ∈ ZN . The ciphertext is computed as:

C0 = Me(g1, g1)s, C1,x = e(g1, g1)λxe(g1, g1)αρ(x)rx , C2,x = grx1 , C3,x = g
yρ(x)rx
1 gωx1 ∀x.

KeyGen(GID, i,SK,GP) → Ki,GID To create a key for GID for attribute i belonging to an
authority, the authority computes:

Ki,GID = gαi1 H(GID)yi .

Decrypt(CT, {Ki,GID},GP) → M We assume the ciphertext is encrypted under an access
matrix (A, ρ). To decrypt, the decryptor first obtains H(GID) from the random oracle. If the
decryptor has the secret keys {Kρ(x),GID} for a subset of rows Ax of A such that (1, 0, . . . , 0) is in
the span of these rows, then the decryptor proceeds as follows. For each such x, the decryptor
computes:

C1,x · e(H(GID), C3,x)/e(Kρ(x),GID, C2,x) = e(g1, g1)λxe(H(GID), g1)ωx .

The decryptor then chooses constants cx ∈ ZN such that
∑

x cxAx = (1, 0, . . . , 0) and
computes: ∏

x

(
e(g1, g1)λxe(H(GID), g1)ωx

)cx
= e(g1, g1)s.

(We recall that λx = Ax · v and ωx = Ax ·w, where v · (1, 0, . . . , 0) = s and w · (1, 0, . . . , 0) = 0.)
The message can then be obtained as:

M = C0/e(g1, g1)s.

4.2 Security

We apply a form of the dual system encryption technique to prove security; overcoming the
new challenges that arise in the multi-authority setting. In a dual system, keys and ciphertexts
can either be normal or semi-functional: normal keys can decrypt semi-functional ciphertexts,
semi-functional keys can decrypt normal ciphertexts, but semi-functional keys cannot decrypt
semi-functional ciphertexts. The proof proceeds by a hybrid argument over a sequence of games,
where we first change the challenge ciphertext to be semi-functional, and then change the keys
to be semi-functional one by one. To prove that these games are indistinguishable, we must
ensure that the simulator cannot test the form of the key being turned from normal to semi-
functional for itself by test decrypting a semi-functional ciphertext. We avoid this problem
employing the approach of [38, 37], where the simulator can only make a challenge ciphertext
and key pair which is nominally semi-functional, meaning that both the key and ciphertext
have semi-functional components, but these cancel out upon decryption. Thus, if the simulator
attempts to test the form of the key for itself, decryption will succeed unconditionally.
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New Challenges The existence of multiple authorities who do not coordinate with each
other introduces additional technical challenges in our case. Nominal semi-functionality must
be hidden from the attacker’s view, which is accomplished in [37] by using temporary “blinding
factors” in the semi-functional space that are active for one key at a time. Leaving these blinding
factors off for the other keys prevents leakage of information that would information-theoretically
reveal nominal semi-functionality in the attacker’s view. However, what allows these blinding
factors to be turned on and off is the stable presence of a semi-functional term attached to a
single element in each key derived from the master secret key. In the multi-authority case, we
do not have this sort of structural linchpin to rely on. We still need the blinding factors to hide
nominal semi-functionality, but we cannot simply excise them from the other semi-functional
keys to prevent their leakage. To overcome this, we use two subgroups for the semi-functional
space, and instead of removing the blinding factors from the other keys, we “switch” them from
one semi-functional subgroup to the other. This switch preserves semi-functionality of the keys
while avoiding leakage of information about the subgroup the semi-functional components have
been switched out of.

Hybrid Organization We now formally define our sequence of games. We will assume a
one-use restriction on attributes throughout the proof: this means that the row labeling ρ of
the challenge ciphertext access matrix (A, ρ) must be injective.

The first game, GameReal, is the real security game. We next define GameReal′ , which is like
the real security game, except that the random oracle maps identities GID to random elements
of Gp1 instead of G. We now define semi-functional ciphertexts and keys, which are used only
in the proof - not in the real system.

Semi-functional ciphertexts will contain terms from subgroups Gp2 and Gp3 . Semi-functional
keys will be of two types: semi-functional keys of Type 1 will have terms in Gp2 , while semi-
functional keys of Type 2 will have terms in Gp3 . When a semi-functional key of Type 1 is
used to decrypt a semi-functional ciphertext, the extra terms from Gp2 in the key will be paired
with the extra Gp2 terms in the ciphertext, which will cause decryption to fail. When a semi-
functional key of Type 2 is used to decrypt a semi-functional ciphertext, the extra terms from
Gp3 in the key will be paired with the extra Gp3 terms in the ciphertext, which will cause
decryption to fail.

To more precisely describe semi-functional ciphertexts and keys, we first fix random values
zi, ti ∈ ZN for each attribute i which will be common to semi-functional ciphertexts and keys.
These values are fixed per attribute, and do not vary for different users.

Semi-functional Ciphertexts To create a semi-functional ciphertext, we first run the en-
cryption algorithm to obtain a normal ciphertext,

C ′0, C
′
1,x, C

′
2,x, C

′
3,x ∀x.

We let g2, g3 denote generators of Gp2 and Gp3 respectively. We choose two random vectors
u2, u3 ∈ Z`N and set δx = Ax ·u2, σx = Ax ·u3 for each row Ax of the access matrix A. We let B
denote the subset of rows of A whose corresponding attributes belong to corrupted authorities.
We let B be the subset of rows of A whose corresponding attributes belong to good authorities.
For each row Ax ∈ B, we also choose random exponents γx, ψx ∈ ZN . The semi-functional
ciphertext is formed as:

C0 = C ′0, C1,x = C ′1,x, C2,x = C ′2,xg
γx
2 gψx3 , C3,x = C ′3,xg

δx+γxzρ(x)
2 g

σx+ψxtρ(x)
3 ∀x s.t. Ax ∈ B,
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C1,x = C ′1,x, C2,x = C ′2,x, C3,x = C ′3,xg
δx
2 g

σx
3 ∀x s.t. Ax ∈ B.

We say a ciphertext is nominally semi-functional when the values δx are shares of 0.

Semi-functional Keys We define the key for identity GID to be the collection of H(GID)
and all keys Ki,GID for attributes i belonging to good authorities requested by the attacker
throughout the game. (These queries may occur at different times.) Semi-functional keys for
an identity GID will be of two types: Type 1 or Type 2. To create a semi-functional key for
identity GID, we let H ′(GID) be a random element of Gp1 , and we choose a random exponent
c ∈ ZN .

To create a semi-functional key of Type 1, we define the random oracle’s output on GID to
be:

H(GID) = H ′(GID)gc2.

We create Ki,GID (for an attribute i controlled by a good authority) by first creating a normal
key K′i,GID and setting:

Ki,GID = K′i,GIDg
czi
2 .

To create a semi-functional key of Type 2, we define the random oracle’s output on GID to
be:

H(GID) = H ′(GID)gc3.

We create Ki,GID (for an attribute i controlled by a good authority) by first creating a normal
key K′i,GID and setting:

Ki,GID = K′i,GIDg
cti
3 .

We note that when a semi-functional key of Type 1 is used to decrypt a semi-functional
ciphertext, the additional terms e(g2, g2)cδx prevent decryption from succeeding, except when
the values δx are shares of 0 (i.e. when we have a nominally semi-functional ciphertext). When
a semi-functional key of Type 2 is used to decrypt a semi-functional ciphertext, the additional
terms e(g3, g3)cσx prevent successful decryption.

We now define Game0, which is like GameReal′ , except that the ciphertext given to the
attacker is semi-functional. We let q be the number of identities GID for which the attacker
makes key queries Ki,GID. We define Gamej,1 and Gamej,2 for each j from 1 to q as follows:

Gamej,1 This is like Game0, except that for the first j−1 queried identities, the received keys
are semi-functional of Type 2, and the received key for the jth queried identity is semi-functional
of Type 1. The remaining keys are normal.

Gamej,2 This is like Game0, except that for the first j queried identities, the received keys
are semi-functional of Type 2. The remaining keys are normal. We note that in Gameq,2, all
keys are semi-functional of Type 2.

GameFinal In this game, all keys are semi-functional of Type 2, and the ciphertext is a semi-
functional encryption of a random message. We note that the attacker has advantage 0 in this
game.

We show these games are indistinguishable in the following lemmas, the proofs of which
appear in Appendix C.

Lemma 7. Suppose there exists a polynomial time algorithm A such that GameRealAdvA −
GameReal′AdvA = ε. Then we can construct a polynomial time algorithm B with advantage ε
in breaking Assumption 1.
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Lemma 8. Suppose there exists a polynomial time algorithm A such that GameReal′AdvA −
Game0AdvA = ε. Then we can construct a polynomial time algorithm B with advantage negli-
gibly close to ε in breaking Assumption 1.

Lemma 9. Suppose there exists a polynomial time algorithm A such that Gamej−1,2AdvA −
Gamej,1AdvA = ε. Then we can construct a polynomial time algorithm B with advantage
negligibly close to ε in breaking Assumption 2.

Lemma 10. Suppose there exists a polynomial time algorithm A such that Gamej,1AdvA −
Gamej,2AdvA = ε. Then we can construct a polynomial time algorithm B with advantage ε in
breaking Assumption 3.

Lemma 11. Suppose there exists a polynomial time algorithm A such that Gameq,2AdvA −
GameFinalAdvA = ε. Then we can construct a polynomial time algorithm B with advantage ε
in breaking Assumption 4.

5 Discussion

There are multiple ways in which one might extend our work.

Removing the Random Oracle It would be desirable to remove the need for a random
oracle and replace it with a concrete function H mapping identities to group elements. One
approach would be to fix a degree d polynomial, P (x), and map identities in ZN to elements of G
by setting H(GID) := gP (GID), where g denotes a generator of the group G. This approach has
previously been employed to obtain large universe constructions for Attributed-Based encryption
[30]. The public parameters would then include {gP (xi)} for d + 1 points xi so that H(GID)
could be computed for any GID by polynomial interpolation. We note that P (x) is a (d + 1)-
wise independent function modulo primes, but this will leave the system vulnerable to collusion
attacks when ≥ d+ 1 users collude. Clearly, this is far from ideal, and we would prefer a better
method with stronger security guarantees.

Prime order groups An interesting direction is create a prime order group variant of our
system. Using groups of prime order can potentially lead to more efficient systems (via faster
group operations) and security under different assumptions. One approach is to simply use our
exact construction except use a group order of one prime (instead of a product of three primes).
Applying this setting results in an efficient system that we show to be generically secure in
Appendix D. However, this construction does not lend itself (to the best of our knowledge) to
a proof under a non-interactive assumption.

Another possible approach is to realize the subspaces needed for dual system encryption
proofs using vector spaces over prime order groups instead of subgroups. We note that several
systems such as BGN encryption [15], Groth-Ostrovsky-Sahai NIZK proofs [32], traitor trac-
ing [16] , and predicate encryption [17, 36] were originally developed in the composite order
setting, but later variants were developed in prime order groups [31, 47, 33, 35, 25, 26, 37]. 4

Ideally, a variant would result in security under a simple assumption such as the decision linear
assumption.

4Freeman [25] discusses a class of general transformations, although it does not encompass our construction.
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A Background

We now define access structures, linear secret-sharing schemes, and composite order bilinear
groups.

A.1 Access Structures

Definition 12. (Access Structure [6]) Let {P1, . . . , Pn} be a set of parties. A collection A ⊆
2{P1,...,Pn} is monotone if ∀B,C: if B ∈ A and B ⊆ C, then C ∈ A. An access structure
(respectively, monotone access structure) is a collection (respectively, monotone collection) A
of non-empty subsets of {P1, . . . , Pn}, i.e., A ⊆ 2{P1,...,Pn}\{}. The sets in A are called the
authorized sets, and the sets not in A are called the unauthorized sets.

In our setting, attributes will play the role of parties and we will only consider monotone
access structures. We observe that more general access structures can be (inefficiently) realized
with our techniques by letting the negation of an attribute be a separate attribute (this doubles
the total number of attributes).

A.2 Linear Secret-Sharing Schemes

Our construction will employ linear secret-sharing schemes (LSSS). We use the definition adapted
from [6].

Definition 13. (Linear Secret-Sharing Schemes (LSSS)) A secret sharing scheme Π over a set
of parties P is called linear (over Zp) if

1. The shares for each party form a vector over Zp.

2. There exists a matrix A called the share-generating matrix for Π. The matrix A has `
rows and n columns. For all x = 1, . . . , `, the xth row of A is labeled by a party ρ(x) (ρ is
a function from {1, . . . , `} to P). When we consider the column vector v = (s, r2, . . . , rn),
where s ∈ Zp is the secret to be shared and r2, . . . , rn ∈ Zp are randomly chosen, then Av
is the vector of ` shares of the secret s according to Π. The share (Av)x belongs to party
ρ(x).

We note the linear reconstruction property: we suppose that Π is an LSSS for access struc-
ture A. We let S denote an authorized set, and define I ⊆ {1, . . . , `} as I = {x|ρ(x) ∈ S}. Then
there exist constants {ωx ∈ Zp}x∈I such that, for any valid shares {λ}x of a secret s according
to Π, we have:

∑
x∈I ωxλx = s. These constants {ωx} can be found in polynomial time with

respect to the size of the share-generating matrix A [6].

Boolean Formulas Access policies can also be described in terms of monotonic boolean
formulas. LSSS access structures are more general, and can be derived from representations as
boolean formulas. There are standard techniques to convert any monotonic boolean formula
into a corresponding LSSS matrix. We can represent the boolean formula as an access tree,
where the interior nodes are AND and OR gates, and the leaf nodes correspond to attributes.
The number of rows in the corresponding LSSS matrix will be same as the number of leaf nodes
in the access tree. The conversion process is described in Appendix G.
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A.3 Composite Order Bilinear Groups

We construct our system using composite order bilinear groups, which were first introduced
in [15]. We define a group generator G, an algorithm which takes a security parameter λ as
input and outputs a description of a bilinear group G. For our purposes, we will have G output
(p1, p2, p3, G,GT , e) where p1, p2, p3 are distinct primes, G and GT are cyclic groups of order
N = p1p2p3, and e : G2 → GT is a map such that:

1. (Bilinear) ∀g, h ∈ G, a, b ∈ ZN , e(ga, hb) = e(g, h)ab

2. (Non-degenerate) ∃g ∈ G such that e(g, g) has order n in GT .

We assume that the group operations in G and GT as well as the bilinear map e are com-
putable in polynomial time with respect to λ and that the group descriptions of G and GT
include generators of the respective cyclic groups. We let Gp1 , Gp2 , and Gp3 denote the sub-
groups of order p1, p2, and p3 in G respectively. We note that when hi ∈ Gpi and hj ∈ Gpj for
i 6= j, e(hi, hj) is the identity element in GT . To show this, suppose h1 ∈ Gp1 and h2 ∈ Gp2 . Let
g denote a generator of G. Then, gp1p2 generates Gp3 , gp1p3 generates Gp2 , and gp2p3 generates
Gp1 . Hence, for some α1, α2, h1 = (gp2p3)α1 and h2 = (gp1p3)α2 . Then:

e(h1, h2) = e(gp2p3α1 , gp1p3α2) = e(gα1 , gp3α2)p1p2p3 = 1.

This orthogonality property of Gp1 , Gp2 , Gp3 will be used to implement semi-functionality in
our constructions.

B Transformation from One-Use Multi-Authority CP-ABE

We suppose that we have a multi-authority CP-ABE system on a universe U of attributes using
LSSS access matrices that is secure when we restrict the row labeling ρ of each matrix to be
injective (i.e. each attribute is used at most once). To construct a system that is secure when
we use an attribute ≤ k times in the row labeling of an access matrix, we make k copies of
each attribute in the system. For each attribute B, we replace it with k new “attributes”
B : 1, . . . , B : k (all controlled by the same authority that controlled B). When we want to
label a row of an access matrix with the attribute B, we label it with B : i for a fresh value of
i, so that each new “attribute” B : i is only used once.

To make a key for an identity, attribute pair (GID, B), the authority controlling attribute B
makes k keys corresponding to the pairs (GID, B : 1), . . . , (GID, B : k) and gives this collection
to the key requester. We let S denote a subset of attributes. If we define S′ := {B : 1, . . . , B :
k|B ∈ S}, then it follows that S′ satisfies an access matrix under our new labeling if and only if
S satisfies the access matrix under the original labeling (which used each B at most k times).
Security for our system that uses attributes at most k times now follows from the security of
the one-use system.

We will obtain a fully secure multi-authority CP-ABE system where attributes are used
multiple times by constructing a system which is secure where attributes are used only once in
an access matrix and then applying this transformation.

We note that the size of the universe of attributes will increase by a factor of k, as will
the size of keys. For our construction, the sizes of the public parameters for each authority
depend linearly on the number of attributes controlled by that authority, so these will expand
by a factor of k under this transformation. Private keys for an identity, attribute pair will also
expand by a factor of k. We note that the size of the access matrix does not change, so our
ciphertexts remain the same size.
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C Proof of Security

Lemma 7. Suppose there exists a polynomial time algorithm A such that GameRealAdvA −
GameReal′AdvA = ε. Then we can construct a polynomial time algorithm B with advantage ε
in breaking Assumption 1.

Proof. B receives N, g1, T . B will simulate either GameReal or GameReal′ with A, depending
on the value of T . B outputs g1 as the public generator of Gp1 and N as the group order. A
specifies a set S′ ⊆ S of corrupt authorities, where S is the set of all authorities in the system.
For each attribute i belonging to a good authority, B chooses random exponents αi, yi ∈ ZN
and gives A the public parameters e(g1, g1)αi , gyi1 .

When A first queries the random oracle for H(GID), B chooses a random exponent hGID ∈
ZN and sets H(GID) = T hGID . It stores this value so that it can respond consistently if H(GID)
is queried again. If T is a generator of Gp1 , these will be random elements of Gp1 . If T is a
generator of G, these will be random elements of G.

When A makes a key query (GID, i), B can generate the corresponding key by using the
key generation algorithm, since it knows αi and yi. (It sets H(GID) as above if this has not
been separately queried yet.) At some point, A gives B two messages M0 and M1 and an access
matrix (A, ρ). A additionally supplies B with the public parameters for any corrupted attributes
appearing in the matrix. B flips a random coin β ∈ {0, 1}. To create the challenge ciphertext
for Mβ, B uses the encryption algorithm.

If T is a generator of G, then B has properly simulated GameReal. If T is a generator of
Gp1 , then B has properly simulated GameReal′ . Thus, B can use A to attain advantage ε in
breaking Assumption 1.

Lemma 8. Suppose there exists a polynomial time algorithm A such that GameReal′AdvA −
Game0AdvA = ε. Then we can construct a polynomial time algorithm B with advantage negli-
gibly close to ε in breaking Assumption 1.

Proof. B receives N, g1, T . B will simulate either GameReal′ or Game0 with A, depending on the
value of T . B outputs g1 as the public generator of Gp1 and N as the group order. A specifies
a set S′ ⊆ S of corrupt authorities, where S is the the set of all authorities in the system. For
each attribute i belonging to a good authority, B chooses random exponents αi, yi ∈ ZN and
gives A the public parameters e(g1, g1)αi , gyi1 .

When A first queries the random oracle for H(GID), B chooses a random exponent hGID ∈
ZN and sets H(GID) = ghGID

1 . It stores this value so that it can respond consistently if H(GID)
is queried again. When A makes a key query (GID, i), B generates the corresponding key using
the key generation algorithm, since it knows αi and yi. (If necessary, it sets H(GID) as above.)

At some point, A gives B two messages, M0,M1, and an access matrix (A, ρ). B flips a
random coin β ∈ {0, 1}, and encrypts Mβ as follows. First, B chooses a random s ∈ ZN and
sets C0 = Me(g1, g1)s. B also chooses two vectors, v = (s, v2, . . . , v`), w = (0, w2, . . . , w`), where
v2, . . . , v`, w2, . . . , w` are chosen randomly from ZN . We let λx = Ax · v and ωx = Ax · w.
A additionally supplies B with public parameters gyi , e(g1, g1)αi for attributes i belonging to

corrupt authorities which are included in the access matrix (A, ρ). We let B denote the subset
of rows of A whose corresponding attributes belong to corrupted authorities. We let B be the
subset of rows of A whose corresponding attributes belong to good authorities. For each row
Ax in B, B chooses a random value rx ∈ ZN . For each row Ax ∈ B, B chooses a random value
r′x ∈ ZN , and will implicitly set rx = rr′x, where gr1 is the Gp1 part of T . We will also embed T
into the terms with shares ωx.

For each row Ax ∈ B, the ciphertext is formed as:

C1,x = e(g1, g1)λx (e(g1, g1)αρ(x))rx ,
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C2,x = grx1 , C3,x =
(
g
yρ(x)
1

)rx
Tωx .

For each row Ax ∈ B, the ciphertext is formed as:

C1,x = e(g1, g1)λxe(g1, T )αρ(x)r
′
x ,

C2,x = T r
′
x , C3,x = T yρ(x)r

′
xTωx .

We note that the Gp1 part of Tωx is gAx·rw1 , and rw is a random vector with first coordinate
equal to 0. Thus, if T ∈ Gp1 , this is a properly distributed normal ciphertext. If T ∈ G, then
this is a semi-functional ciphertext with parameters δx = Ax · cw modulo p2 where gc2 is the Gp2
part of T , σx = Ax · dw modulo p3 where gd3 is the Gp3 part of T , gγx2 equals the Gp2 part of
T r
′
x , gψx3 equals the Gp3 part of T r

′
x , zρ(x) = yρ(x) modulo p2, and tρ(x) = yρ(x) modulo p3.

To see that this is properly distributed, we note that since r′x, yρ(x) are chosen randomly in
ZN , their values modulo p1, modulo p2, and modulo p3 are uncorrelated by the Chinese Re-
mainder Theorem. This means that our γx, ψx, zρ(x), tρ(x) parameters are randomly distributed.
The entries w2, . . . , w` of w are also randomly distributed modulo p2, p3, however both δx and
σx are shares of 0 from the simulator’s perspective. We must argue that these appear to be
shares of a random exponent in A’s view.

We note that the shares δx, σx for rows Ax ∈ B are information-theoretically revealed to
A, but the space R spanned by these rows cannot include the vector (1, 0, . . . , 0). This means
there is some vector u such that u is orthogonal to R modulo p2, but u is not orthogonal to
(1, 0, . . . , 0). We fix a basis including the vector u, and write cw = w′+au for some a modulo p2

and w′ in the span of the other basis elements. We note that w′ is uniformly distributed in this
space (modulo p2) and reveals no information about a (modulo p2). Now, the first coordinate of
cw modulo p2 depends on the value of a, and the shares δx for Ax ∈ B contain no information
about a (since u is orthogonal to R). The only information A receives about the value of a
appears in exponents of the form δx + γxzρ(x), where the zρ(x) is a new random value each time
that appears nowhere else (recall that ρ is constrained to be injective). As long as γx does not
equal 0 modulo p2 (γx = 0 with only negligible probability), this means that any value of δx
can be explained by zρ(x) taking on a particular value. Since zρ(x) is uniformly random, this
means that no information about the value of a is revealed. Hence, the value being shared is
information-theoretically hidden, and the shares δx (and similarly σx) are properly distributed
in the adversary’s view.

Thus, when T ∈ Gp1 , B properly simulates GameReal′ . When T ∈ G, B properly simulates
Game0 with probability negligibly close to 1. Hence, B can use A to obtain advantage negligibly
close to ε in breaking Assumption 1.

Lemma 9. Suppose there exists a polynomial time algorithm A such that Gamej−1,2AdvA −
Gamej,1AdvA = ε. Then we can construct a polynomial time algorithm B with advantage
negligibly close to ε in breaking Assumption 2.

Proof. B receives g1, g3, X1X2, T . B will simulate either Gamej−1,2 or Gamej,1 with A, de-
pending on the value of T . B outputs g1 as the public generator of Gp1 and N as the group
order. A specifies a set S′ ⊆ S of corrupt authorities, where S is the the set of all authorities
in the system. For each attribute i belonging to a good authority, B chooses random exponents
αi, yi ∈ ZN and gives A the public parameters e(g1, g1)αi , gyi1 .

We let GIDk denote the kth identity queried byA. WhenA first queries the random oracle for
H(GIDk), if k > j, then B chooses a random exponent hGIDk ∈ ZN and sets H(GIDk) = g

hGIDk
1 .

If k < j, then B chooses a random exponent hGIDk ∈ ZN and sets H(GIDk) = (g1g3)hGIDk

(we note that this is a random element of Gp1p3 since the values of hGIDk modulo p1 and
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modulo p3 are uncorrelated). When k = j, B chooses a random exponent hGIDj ∈ ZN and
sets H(GIDj) = T

hGIDj . In all cases, it stores this value so that it can respond consistently if
H(GIDk) is queried again.

When A makes a key query (i,GIDk), B responds as follows. If H(GIDk) has already been
fixed, then B retrieves the stored value. Otherwise, B creates H(GIDk) according to k as above.
B forms the key as:

Ki,GIDk = gαi1 H(GIDk)yi .

Notice that for k < j, B forms properly distributed semi-functional keys of Type 2, where ti is
congruent to yi modulo p3 (these are uncorrelated from the values of yi modulo p1 which appear
in the public parameters). Also recall that the values ti are fixed per attribute, and do not vary
across different keys. For k > j, B forms properly distributed normal keys. For k = j, B forms
a normal key if T ∈ Gp1 and a semi-functional key of Type 1 if T ∈ Gp1p2 .

At some point, A gives B two messages, M0,M1, and an access matrix (A, ρ). B flips a
random coin β ∈ {0, 1}, and encrypts Mβ as follows. (We note that B will produce a nominally
semi-functional ciphertext, but this will be hidden from A’s view.) First, B chooses a random
s ∈ ZN and sets C0 = Me(g1, g1)s. B also chooses three vectors, v = (s, v2, . . . , v`), w =
(0, w2, . . . , w`), u = (u1, . . . , u`), where v2, . . . , v`, w2, . . . , w`, u1, . . . , u` are chosen randomly
from ZN . We let λx = Ax · v, ωx = Ax · w, and σx = Ax · u.
A additionally supplies B with public parameters gyi , e(g1, g1)αi for attributes i belonging to

corrupt authorities which are included in the access matrix (A, ρ). We let B denote the subset
of rows of A whose corresponding attributes belong to corrupted authorities. We let B be the
subset of rows of A whose corresponding attributes belong to good authorities. For each row
Ax in B, B chooses a random value rx ∈ ZN . For each row Ax ∈ B, B chooses random values
ψx, r

′
x ∈ ZN , and will implicitly set rx = rr′x, where gr1 is X1.

For each row Ax ∈ B, the ciphertext is formed as:

C1,x = e(g1, g1)λx (e(g1, g1)αρ(x))rx ,

C2,x = grx1 , C3,x =
(
g
yρ(x)
1

)rx
(X1X2)ωxgσx3 .

For each row Ax ∈ B, the ciphertext is formed as:

C1,x = e(g1, g1)λxe(g1, X1X2)αρ(x)r
′
x ,

C2,x = (X1X2)r
′
xgψx3 , C3,x = (X1X2)yρ(x)r

′
xg
yρ(x)ψx
3 (X1X2)ωxgσx3 .

We note that the Xωx
1 is gAx·rw1 , and rw is a random vector with first coordinate equal to

0. This is a semi-functional ciphertext with parameters δx = Ax · cw modulo p2 where gc2 is X2,
gγx2 equals Xr′x

2 , zρ(x) = yρ(x) modulo p2, and tρ(x) = yρ(x) modulo p3.
To see that this is properly distributed, we note that since r′x, yρ(x) are chosen randomly in

ZN , their values modulo p1 and modulo p2 are uncorrelated. This means that our γx, ψx, zρ(x), tρ(x)
parameters are randomly distributed. It is clear that σx is properly distributed, since it is a
share of a random vector. The entries w2, . . . , w` of w are also randomly distributed modulo
p2, however the δx’s are shares of 0 from the simulator’s perspective. We must argue that these
appear to be shares of a random exponent in A’s view.

We let the space R denote the span of the rows of A whose attributes are in B and the
rows whose attributes ρ(x) are queried by the attacker with identity GIDj . This space cannot
include the vector (1, 0, . . . , 0), so there is some vector u′ which is orthogonal to R modulo p2

and not orthogonal to (1, 0, . . . , 0). We can then write cw = w′ + au′ for some a modulo p2

and w′ in the span of the other basis vectors. We note that w′ is uniformly distributed in this
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space, and reveals no information about a. The value of the first coordinate of cw modulo p2

depends on the value of a, but the shares δx for Ax ∈ B contain no information about a. The
only information A receives about the value of a appears in exponents of the form δx + γxzρ(x),
where the zρ(x) is a new random value each time that appears nowhere else (recall that ρ is
constrained to be injective). (We note that these zρ(x) values modulo p2 do not occur in any
keys for identities not equal to GIDj , since these keys are either normal or semi-functional of
type 2, and hence do not have components in Gp2 .) As long as γx does not equal 0 (γx = 0 with
only negligible probability), this means that any value of δx can be explained by zρ(x) taking
on a particular value. Since zρ(x) is uniformly random, this means that no information about
the value of a modulo p2 is revealed. Hence, the value being shared is information-theoretically
hidden, and the δx’s are properly distributed in the adversary’s view.

Though it is hidden from A, the fact that we can only make δx shares of 0 is crucial here
(i.e. the simulator can only make a nominally semi-functional ciphertext). If B tried to test
the semi-functionality of the jth key for itself by making a challenge ciphertext the key could
decrypt, decryption would succeed regardless of the presence of Gp2 components, since the
δx’s are shares of 0. Hence the simulator would not be able to tell whether the jth key was
semi-functional of Type 1 or normal.

In summary, when T ∈ Gp1 , B properly simulates Gamej−1,2. When T ∈ Gp1p2 , B properly
simulates Gamej,1 with probability negligibly close to 1. Hence, B can use A to obtain advantage
negligibly close to ε in breaking Assumption 2.

Lemma 10. Suppose there exists a polynomial time algorithm A such that Gamej,1AdvA −
Gamej,2AdvA = ε. Then we can construct a polynomial time algorithm B with advantage ε in
breaking Assumption 3.

Proof. B receives N, g1, X1X3, Y2Y3, T . B will simulate either Gamej,1 or Gamej,2 with A,
depending on the value of T . B outputs g1 as the public generator of Gp1 and N as the group
order. A specifies a set S′ ⊆ S of corrupt authorities, where S is the the set of all authorities
in the system. For each attribute i belonging to a good authority, B chooses random exponents
αi, yi ∈ ZN and gives A the public parameters e(g1, g1)αi , gyi1 .

We let GIDk denote the kth identity queried byA. WhenA first queries the random oracle for
H(GIDk), if k > j, then B chooses a random exponent hGIDk ∈ ZN and sets H(GIDk) = g

hGIDk
1 .

If k < j, then B chooses a random exponent hGIDk ∈ ZN and sets H(GIDk) = (X1X3)hGIDk

(we note that this is a random element of Gp1p3 since the values of hGIDk modulo p1 and
modulo p3 are uncorrelated). When k = j, B chooses a random exponent hGIDj ∈ ZN and
sets H(GIDj) = T

hGIDj . In all cases, it stores this value so that it can respond consistently if
H(GIDk) is queried again.

When A makes a key query (i,GIDk), B responds as follows. If H(GIDk) has already been
fixed, then B retrieves the stored value. Otherwise, B creates H(GIDk) according to k as above.
B forms the key as:

Ki,GIDk = gαi1 H(GIDk)yi .

Notice that for k < j, B forms properly distributed semi-functional keys of Type 2, where ti is
congruent to yi modulo p3 (these are uncorrelated from the values of yi modulo p1 which appear
in the public parameters). For k > j, B forms properly distributed normal keys. For k = j, B
forms a properly distributed semi-functional key of Type 1 if T ∈ Gp1p2 and a semi-functional
key of Type 2 if T ∈ Gp1p3 .

At some point, A gives B two messages, M0,M1, and an access matrix (A, ρ). B flips a
random coin β ∈ {0, 1}, and encrypts Mβ as follows. First, B chooses a random s ∈ ZN and
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sets C0 = Me(g1, g1)s. B also chooses three vectors, v = (s, v2, . . . , v`), w = (0, w2, . . . , w`), u =
(u1, . . . , u`), where v2, . . . , v`, w2, . . . , w`, u1, . . . , u` are chosen randomly from ZN . We let λx =
Ax · v, ωx = Ax · w, and δx = Ax · u.
A additionally supplies B with public parameters gyi , e(g1, g1)αi for attributes i belonging to

corrupt authorities which are included in the access matrix (A, ρ). We let B denote the subset
of rows of A whose corresponding attributes belong to corrupted authorities. We let B be the
subset of rows of A whose corresponding attributes belong to good authorities. For each row
Ax, B chooses a random value rx ∈ ZN .

For each row Ax ∈ B, the ciphertext is computed as:

C1,x = e(g1, g1)λx (e(g1, g1)αρ(x))rx ,

C2,x = grx1 , C3,x =
(
g
yρ(x)
1

)rx
gωx1 (Y2Y3)δx .

For each row Ax ∈ B, the ciphertext is computed as:

C1,x = e(g1, g1)λxe(g1, g1)αρ(x)rx ,

C2,x = grx1 (Y2Y3)rx , C3,x = g
yρ(x)rx
1 gωx1 (Y2Y3)yρ(x)rx(Y2Y3)δx .

We note that this implicitly sets zρ(x) ≡ yρ(x) modulo p2 and tρ(x) ≡ yρ(x) modulo p3. We note
that these values are uncorrelated. We note that the sharing vector u is random modulo p2 and
p3, so this is a properly distributed semi-functional ciphertext.

Thus, when T ∈ Gp1p2 , B properly simulates Gamej,1. When T ∈ Gp1p3 , B properly simu-
lates Gamej,2. Hence, B can use A to obtain advantage ε in breaking Assumption 3.

Lemma 11. Suppose there exists a polynomial time algorithm A such that Gameq,2AdvA −
GameFinalAdvA = ε. Then we can construct a polynomial time algorithm B with advantage ε
in breaking Assumption 4.

Proof. B first receives g1, g2, g3, ga1 , g
b
1g
b
3, g

c
1, g

ac
1 g

d
3 , T . B will simulate either Gameq,2 or GameFinal

with A, depending on the value of T . B outputs g1 as the public generator of Gp1 and N as
the group order. A specifies a set S′ ⊆ S of corrupt authorities, where S is the the set of all
authorities in the system. For each attribute i belonging to a good authority, B chooses random
exponents α′i, y

′
i ∈ ZN and gives A the public parameters

e(g1, g1)αi = e(ga1 , g
b
1g
b
3)e(g1, g1)α

′
i , gyi1 = ga1g

y′i
1 .

We note that this sets αi = ab+ α′i and yi = a+ y′i.
When A queries the random oracle for H(GID), B chooses random exponents f, h ∈ ZN

and sets
H(GID) = (gb1g

b
3)−1gf1 g

h
3 .

It stores this value.
When A makes a key query (i,GID), B responds as follows. If H(GID) has already been

fixed, then B retrieves the stored value. Otherwise, B creates H(GID) as above. If we consider
only the subgroup 1 parts, B needs to compute:

Ki,GID = gαi1 (g−b+f1 )yi = g
ab+α′i
1 g

−ba+fa−by′i+fy′i
1 = g

α′i+fy
′
i

1 (ga1)fg−by
′
i

1 .
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Notice that the gab1 and g−ab1 terms cancel. Only the last term, g−by
′
i

1 is unknown to B, the rest
can be easily computed. To form the term g

−by′i
1 , B will raise gb1g

b
3 to the power −y′i. The full

key can be formed as:
g
α′i+fy

′
i

1 (ga1)f (gb1g
b
3)−y

′
ig
hy′i
3 .

We note that this sets ti equal to y′i modulo p3, and that this value is not correlated with the
value of y′i modulo p1.

At some point, A gives B two messages, M0,M1, and an access matrix (A, ρ). A additionally
supplies B with public parameters gyi , e(g1, g1)αi for attributes i belonging to corrupt authorities
which are included in the access matrix (A, ρ). We let B denote the subset of rows of A whose
corresponding attributes belong to corrupted authorities. We let B be the subset of rows of A
whose corresponding attributes belong to good authorities.
B flips a random coin β ∈ {0, 1}, and encrypts Mβ as follows. B sets:

C0 = MβT.

We think of this as setting s = abc. If T = e(g1, g1)abc, then this will be an encryption of Mβ.
If T is random, this is will an encryption of a random message.
B chooses a random vector u1 with entries in ZN , subject to the constraints that the first

entry is 1 and u1 is orthogonal to all the rows in B (such a vector must exist, since otherwise
the access matrix is illegal - see [30]). We additionally choose a random vector u2 with entries
in ZN such that the first entry is 0 and the rest are randomly chosen. We define the vector
v = abcu1 + u2 (we note that this vector is uniformly random from A’s perspective). We let
λx := Ax · v = abcAx · u1 +Ax · u2.

Since B cannot form the terms e(g1, g1)abcAx·u1 for rows Ax ∈ B, it sets rx = −cAx ·u1 + r′x,
where r′x is randomly chosen from ZN . Then we have:

λx + αρ(x)rx = abcAx · u1 +Ax · u2 + (ab+ α′ρ(x))(−cAx · u1 + r′x)

= Ax · u2 − cα′ρ(x)Ax · u1 + abr′x + α′ρ(x)r
′
x.

This allows B to form C1,x for Ax ∈ B as:

C1,x = e(g1, gc1)−α
′
ρ(x)

Ax·u1e(ga1 , g
b
1g
b
3)r
′
xe(g1, g1)Ax·u2+α′

ρ(x)
r′x .

For rows Ax ∈ B corresponding to corrupt authorities, B chooses rx ∈ ZN randomly and sets:

C1,x = e(g1, g1)Ax·u2 (e(g1, g1)αρ(x))rx .

We note that λx = Ax · u2 for these rows because u1 is orthogonal to Ax.
For rows Ax ∈ B, B can form C2,x by choosing a random value γx ∈ ZN and setting:

C2,x = (gc1)−Ax·u1+r′x(g2g3)γx .

We note that the values of γx modulo p2 and p3 are uncorrelated, so this is properly distributed.
For rows Ax ∈ B, B can simply compute C2,x = grx1 .
B now chooses a random vector w with first entry equal to 0 and other entries randomly

chosen from ZN , and a random vector u3 whose entries are all randomly chosen from ZN . We
let ωx = Ax · w and δx = Ax · u3. For rows Ax ∈ B, we note that

yρ(x)rx = (a+ y′ρ(x))(−cAx · u1 + r′x) = −acAx · u1 − cy′ρ(x)Ax · u1 + r′xa+ y′ρ(x)r
′
x,
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so B can form C3,x as:

C3,x = gωx1 (gc1)−y
′
ρ(x)

Ax·u1(ga1)r
′
xg
y′
ρ(x)

r′x
1 (gac1 g

d
3)−Ax·u1(g2g3)δx+γxy

′
ρ(x) .

(This is consistent with tρ(x) being congruent to y′ρ(x) modulo p3 in the keys.) We note that the
sharing vector in subgroups Gp2 and Gp3 is −du1 +u3, which is random modulo p2 and modulo
p3.

For rows Ax ∈ B, B sets:

C3,x = (g
yρ(x)
1 )rxgωx1 (g2g3)Ax·u3 .

The sharing vector is consistent here because u1 is orthogonal to all of these rows Ax. This
is a properly distributed semi-functional ciphertext with s = abc. If T = e(g1, g1)abc, this is a
semi-functional encryption of Mβ, and B has simulated Gameq,2. If T is random, then this is a
semi-functional encryption of a random message, so B has simulated GameFinal. Hence, B can
use A to obtain advantage ε in breaking Assumption 4.

D Construction in Prime Order Groups

Our multi-authority CP-ABE system in prime order groups is almost identical to our construc-
tion in composite order groups, with the prime order group G now playing the role of the
subgroup Gp1 in the composite order group construction.

Global Setup(λ) → GP In the global setup, a bilinear group G of prime order p is chosen.
The global public parameters, GP, are p and a generator g of G. A random oracle H maps
global identities GID to elements of G.

Authority Setup(GP) → PK, SK For each attribute i belonging to the authority, the au-
thority chooses two random exponents αi, yi ∈ Zp and publishes PKj = {e(g, g)αi , gyi∀i} as its
public key. It keeps SK = {αi, yi∀i} as its secret key.

Encrypt(M, (A, ρ),GP, {PK}) → CT The encryption algorithm takes in a message M , an
n × ` access matrix A with ρ mapping its rows to attributes, the global parameters, and the
public keys of the relevant authorities. It chooses a random s ∈ Zp and a random vector v ∈ Z`p
with s as its first entry. We let λx denote Ax · v, where Ax is row x of A. It also chooses a
random vector w ∈ Z`p with 0 as its first entry. We let ωx denote Ax ·w. For each row Ax of A,
it chooses a random rx ∈ Zp. The ciphertext is computed as:

C0 = Me(g, g)s, C1,x = e(g, g)λxe(g, g)αρ(x)rx , C2,x = grx , C3,x = gyρ(x)rxgωx ∀x.

KeyGen(GID, i,SK,GP) → Ki,GID To create a key for GID for attribute i belonging to an
authority, the authority computes:

Ki,GID = gαiH(GID)yi .
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Decrypt(CT, {Ki,GID},GP) → M We assume the ciphertext is encrypted under an access
matrix (A, ρ). To decrypt, the decryptor first obtains H(GID) from the random oracle. If the
decryptor has the secret keys {Kρ(x),GID} for a subset of rows Ax of A such that (1, 0, . . . , 0) is in
the span of these rows, then the decryptor proceeds as follows. For each such x, the decryptor
computes:

C1,x · e(H(GID), C3,x)/e(Kρ(x),GID, C2,x) = e(g, g)λxe(H(GID), g)ωx .

The decryptor then chooses constants cx ∈ Zp such that
∑

x cxAx = (1, 0, . . . , 0) and com-
putes: ∏

x

(
e(g, g)λxe(H(GID), g)ωx

)cx
= e(g, g)s.

(We recall that λx = Ax · v and ωx = Ax ·w, where v · (1, 0, . . . , 0) = s and w · (1, 0, . . . , 0) = 0.)
The message can then be obtained as:

M = C0/e(g, g)s.

E Proof of Security in the Generic Group and Random Oracles
Models

We will now prove our prime order group scheme is secure in the generic bilinear group model
previously used in [11, 49, 8], modeling H as a random oracle. Security in this model assures us
that an adversary cannot break our scheme with only black-box access to the group operations
and H.

We describe the generic bilinear model as in [11]. We let ψ0 and ψ1 be two random encodings
of the additive group Zp. More specifically, each of ψ0, ψ1 is an injective map from Zp to {0, 1}m,
for m > 3 log(p). We define the groups G0 = {ψ0(x) : x ∈ Zp} and G1 = {ψ1(x) : x ∈ Zp}. We
assume we have access to oracles which compute the induced group operations in G0 and G1

and an oracle which computes a non-degenerate bilinear map e : G0 × G0 → G1. We refer to
G0 as a generic bilinear group.

In our security game, the attacker must distinguish between C0 = M0e(g, g)s and C0 =
M1e(g, g)s. We can alternatively consider a modified game, where the attacker must distinguish
between C0 = e(g, g)s or C0 = e(g, g)t, for t chosen uniformly randomly from Zp. This is the
same modification employed in [8], and it is justified by a simple hybrid argument.

We will simplify our notation as follows. We let g denote ψ0(1), and gx denote ψ0(x). We
let e(g, g) denote ψ1(1), and e(g, g)y denote ψ1(y).

We now simulate the modified security game in the generic bilinear group model where C0

is set to be e(g, g)t. We let S denote the set of all authorities, and U denote the universe of
attributes. The simulator runs the global setup algorithm, and gives g to the attacker. The
attacker chooses a set S′ ⊂ S of corrupted authorities, and reveals these to the simulator. The
simulator randomly chooses values αi, yi ∈ Zp for the attributes i ∈ U controlled by uncorrupted
authorities, and it queries the group oracles for each gyi , e(g, g)αi and gives these to the attacker.

When the attacker requests H(GID) for some GID for the first time, the simulator chooses a
random value hGID ∈ Zp, queries the group oracle for ghGID , and gives this value to the attacker
as H(GID). It stores this value so that it can reply consistently to any subsequent requests for
H(GID).

When the attacker requests a key Ki,GID for some attribute i and identity GID, the simulator
computes gαiH(GID)yi using the group oracle and supplies this to the attacker. If H(GID) has
not been requested before, it is determined as above.
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At some point, the attacker specifies an access matrix (A, ρ) for the challenge ciphertext and
additionally supplies the simulator with the gyi , e(g, g)αi values for any attributes i controlled
by corrupt authorities that appear in the image of ρ on the rows of A. The simulator then
checks that these are valid group elements by querying the group oracles.

The simulator must now produce the challenge ciphertext. To do so, the simulator chooses
random values s, v2, . . . , v` ∈ Zp and sets the sharing vector v = (s, v2, . . . , v`). It then computes
the shares λx = Ax · v. The simulator then chooses a random vector w = (0, w2, . . . , w`), where
each wj is chosen randomly from Zp. It sets ωx = Ax · w. The simulator also chooses random
values rx ∈ Zp for each row Ax of A, and a random value t from Zp. Using the group oracles,
the simulator can now compute:

C0 = e(g, g)t, C1,x = e(g, g)λxe(g, g)αρ(x)rx , C2,x = grx , C3,x = gyρ(x)rxgωx∀x.

The challenge ciphertext is given to the attacker.
We will argue that will all but negligible probability, the attacker’s view in the simulation is

identically distributed to what it’s view would have been if C0 had been set to e(g, g)s instead of
e(g, g)t. This shows that the attacker cannot attain a non-negligible advantage in the modified
security game, and hence cannot attain a non-negligible advantage in the real security game.

We condition on the event that each of the attacker’s queries to the group oracles have input
values that were given to the attacker during the simulation or were received from the oracles
in response to previous queries. This event occurs with high probability. Since each ψ0, ψ1 is
a random injective map from Zp into a set of > p3 elements, the probability of the attacker
being able to guess an element in the image of ψ0, ψ1 which it has not previously obtained is
negligible.

Under this condition, we can think of each of the attacker’s queries as a multi-variate poly-
nomial in the variables t, yi, αi, γx, rx, ωx, hGID, where i ranges over the attributes controlled by
uncorrupted authorities, x ranges over the rows of the challenge access matrix, and GID ranges
over the allowed identities. (We can also think of γx, ωx as linear combinations of the variables
s, v2, . . . , v`, w2, . . . , w`.)

We now further condition on the event that for each pair of queries the attacker makes cor-
responding to different polynomials, the attacker receives different answers. In other words, we
are conditioning on the event that our random assignment of values to the variables t, yi, αi, s,
v2, . . . , v`, rx, w2, . . . , w`, hGID does not happen to be a zero of the difference of two query poly-
nomials. (Here, we are treating γx as a linear combination of the variables s, v2, . . . , v` and ωx
as a linear combination of the variables w2, . . . , w`.) This event occurs with high probability,
which we can see by using the Schwartz-Zippel lemma and a union bound, since our polynomials
have degree at most 4 (which we will see below when we enumerate all the types of queries the
attacker can make).

Since t only appears as e(g, g)t, the only queries the attacker can make involving t are of the
form ct+ other terms, where c is a constant. The attacker’s view can only differ when t = s if
the attacker can make two queries f and f ′ into G1 where these are unequal as polynomials but
become the same when we substitute s for t. This implies f − f ′ = cs− ct for some constant c.
We may conclude that the attacker can then make the query cs.

We will now show the attacker cannot make a query of the form cs, and therefore arrive
at a contradiction. By examining the values given to the attacker during the simulation, we
see that the attacker can only form queries which are linear combinations of 1, t, and the terms
appearing in Table 1.

We note that the attacker additionally knows the values of αi, yi for attributes i which are
controlled by corrupt authorities, so these are known constants which can appear in coefficients
of the terms in Table 1 in a linear combination.
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Table 1: Possible query terms

αi yihGID yiyj
yi αiyj + hGIDyiyj hGIDhGID′

hGID yirx rxrx′

αi + hGIDyi yiyρ(x)rx + yiωx (αi + hGIDyi)(yρ(x)rx + ωx)
λx + αρ(x)rx hGIDαi + hGIDhGID′yi rxyρ(x′)rx′ + rxωx′

rx hGIDrx (αi + hGIDyi)(αj + hGID′yj)
yρ(x)rx + ωx hGIDyρ(x)rx + hGIDωx (yρ(x)rx + ωx)(yρ(x′)rx′ + ωx′)

rxαi + rxhGIDyi

We recall that λx = Ax · v, where v = (s, v2, . . . , v`). Since these are the only appearances
of s in the above table, in order to form a query cs the attacker must choose constants βx such
that

∑
x λx = cs and form: ∑

x

βx(λx + αρ(x)rx).

For any terms βxαρ(x)rx where ρ(x) is an attribute controlled by a corrupt authority, the attacker
knows the value αρ(x), and so can form the term −βxαρ(x)rx in order to cancel this from the
above polynomial. For terms βxαρ(x)rx where ρ(x) is an attributed controlled by an uncorrupted
authority, the attacker must cancel this term by using:

−βx(rxαρ(x) + rxhGIDyρ(x)),

which leaves an additional term of −βxrxhGIDyρ(x) to be canceled. We also note that the
attacker only has access to a term rxαρ(x) + rxhGIDyρ(x) if it requested a key for the attribute,
identity pair (ρ(x),GID).

The extra term −βxrxhGIDyρ(x) can only be canceled by using:

βx(hGIDyρ(x)rx + hGIDωx),

which leaves behind the term βxhGIDωx. The collection of these terms for each identity GID
will only cancel if the length ` vector (1, 0, . . . , 0) is in the span of the rows Ax of A belonging
to corrupt authorities or for which the attacker obtained keys for (ρ(x),GID). If this condition
is satisfied for some GID, then the attacker has broken the rules of the security game and
requested a collection of keys for a single identity that is capable of decrypting the challenge
ciphertext.

Hence, we have shown that the attacker cannot construct a query of the form cs for a constant
c. Therefore, under conditions that hold with all but negligible probability, the attacker’s view
when t is random is the same as the attacker’s view when t = s. This proves that the attacker
cannot attain non-negligible advantage in the security game.

F Generic Security of Our Assumptions

We now prove our four complexity assumptions hold in the generic bilinear group model, assum-
ing it is hard to find a nontrivial factor of the group order, N . We use the notation of [36] to
express our assumptions. If we fix generators gp1 , gp2 , gp3 of the subgroups Gp1 , Gp2 , Gp3 respec-
tively, every element of G can then be expressed as ga1

p1 g
a2
p2 g

a3
p3 for some values of a1, a2, a3. We

denote an element of G by (a1, a2, a3). The element e(gp1 , gp1)a1e(gp2 , gp2)a2e(gp3 , gp3)a3 in GT

28



will be denoted by [a1, a2, a3]. We use capital letters to denote random variables, and we reuse
random variables to denote relationships between elements. For example, X = (X1, Y1, Z1) is
a random element of G, and Y = (X1, Y2, Z2) is another random element that shares the same
component in the Gp1 subgroup.

Given random variables X, {Ai} expressed in this form, we say that X is dependent on {Ai}
if there exist values λi ∈ Zn such that X =

∑
i λiAi as formal random variables. Otherwise, we

say that X is independent of {Ai}. We note the following two theorems from [36]:

Theorem 14. (Theorem A.1 of [36]) Let N =
∏m
i=1 pi be a product of distinct primes, each

greater than 2λ. Let {Ai} be random variables over G, and let {Bi}, T0, T1 be random variables
over GT , where all random variables have degree at most t. Consider the following experiment
in the generic group model:

An algorithm is given N, {Ai}, and {Bi}. A random bit b is chosen, and the adversary is
given Tb. The algorithm outputs a bits b′, and succeeds if b′ = b. The algorithm’s advantage is
the absolute value of the difference between its success probability and 1

2 .
Say each of T0 and T1 is independent of {Bi} ∪ {e(Ai, Aj)}. Then given any algorithm A

issuing at most q instructions and having advantage δ in the above experiment, A can be used
to find a nontrivial factor of N (in time polynomial in λ and the running time of A) with
probability at least δ −O(q2t/2λ).

Theorem 15. (Theorem A.2 of [36]) Let N =
∏m
i=1 pi be a product of distinct primes, each

greater than 2λ. Let {Ai}, T0, T1 be random variables over G, and let {Bi} be random variables
over GT , where all random variables have degree at most t. Consider the same experiment as
in the theorem above.

Let S := {i|e(T0, Ai) 6= e(T1, Ai)} (where inequality refers to inequality as formal polyno-
mials). Say each of T0 and T1 is independent of {Ai}, and furthermore that for all k ∈ S
it holds that e(T0, Ak) is independent of {Bi} ∪ {e(Ai, Aj)} ∪ {e(T0, Ai)}i 6=k, and e(T1, Ak) is
independent of {Bi}∪{e(Ai, Aj)}∪{e(T1, Ai)}i 6=k. Then given any algorithm A issuing at most
q instructions and having advantage δ, the algorithm can be used to find a nontrivial factor of
N (in time polynomial in λ and the running time of A) with probability at least δ−O(q2t/2λ).

We apply these theorems to prove the security of our assumptions in the generic group
model.

Assumption 1 We apply Theorem 15. We can write this assumption as:

A1 = (1, 0, 0)

T1 = (X1, X2, X3), T2 = (X1, 0, 0).

We note that S = ∅ here. Both of T1, T2 are independent of A1 because X1 does not appear in
A1, so Assumption 1 is generically secure, assuming it is hard to find a nontrivial factor of N .

Assumption 2 We apply Theorem 15. We can write this assumption as:

A1 = (1, 0, 0), A2 = (0, 0, 1), A3 = (X1, 1, 0)

T1 = (Y1, 0, 0), T2 = (Y1, Y2, 0).

We note that S = {3}. We have that T1, T2 are both independent of {Ai}, because Y1 does
not appear in any of the Ai’s. We also have that e(T1, A3) is independent of {e(Ai, Aj)} ∪
{e(T1, Ai)}i 6=3 because it is impossible to have X1Y1 as the first coordinate of a linear com-
bination of these elements. For the same reason, e(T2, A3) is independent of {e(Ai, Aj)} ∪
{e(T2, Ai)}i 6=3, so Assumption 2 is generically secure, assuming it is hard to find a nontrivial
factor of N .
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Assumption 3 We apply Theorem 15. We can write this assumption as:

A1 = (1, 0, 0), A2 = (X1, 0, X3), A3 = (0, Y2, Y3)

T1 = (Z1, Z2, 0), T2 = (Z1, 0, Z3).

In this case, S = {2, 3}. We have that T1, T2 are independent of {Ai} because Z1 does not
appear in the Ai’s. We also have that e(T1, A2) is independent of {e(Ai, Aj)} ∪ {e(T1, Ai)}i 6=2

because no linear combination of these elements will have Z1X1 as a first coordinate. For the
same reason, e(T2, A2) is independent of {e(Ai, Aj)} ∪ {e(T2, Ai)}i 6=2. Similarly, e(T1, A3) is
independent of {e(Ai, Aj)} ∪ {e(T1, Ai)}i 6=3 because no linear combination of these terms will
have Z2Y2 as a second coordinate. Also e(T2, A3) is independent of {e(Ai, Aj)}∪ {e(T2, Ai)}i 6=3

because no linear combination of these terms will have Z3Y3 as its third coordinate. Thus,
Assumption 3 is generically secure, assuming it is hard to find a nontrivial factor of N .

Assumption 4 We apply Theorem 14. We can write this assumption as:

A1 = (1, 0, 0), A2 = (0, 1, 0), A3 = (0, 0, 1), A4 = (A, 0, 0),

A5 = (B, 0, B), A6 = (C, 0, 0), A7 = (AC, 0, D)

T1 = [ABC, 0, 0], T2 = [X1, X2, X3].

We note that T2 is independent of {e(Ai, Aj)} because X1, X2, X3 do not appear in the Ai’s. T1

is also independent of {e(Ai, Aj)} because the only way to obtain ABC is the first coordinate
is to take e(A5, A7), which leaves BD in the third coordinate, and this cannot be canceled out.
Hence, Assumption 4 is generically secure, assuming it is hard to find a nontrivial factor of N .

G Converting from Boolean Formulas to LSSS Matrices

We now describe a general algorithm for converting a boolean formula into an equivalent LSSS
matrix. We consider the boolean formula as an access tree, where interior nodes are AND and
OR gates and the leaf nodes correspond to attributes. We will use (1, 0, . . . , 0) as the sharing
vector for the LSSS matrix. We begin by labeling the root node of the tree with the vector (1)
(a vector of length 1). We then go down the levels of the tree, labeling each node with a vector
determined by the vector assigned to its parent node. We maintain a global counter variable c
which is initialized to 1.

If the parent node is an OR gate labeled by the vector v, then we also label its children by
v (and the value of c stays the same). If the parent node is an AND gate labeled by the vector
v, we pad v with 0’s at the end (if necessary) to make it of length c. Then we label one of
its children with the vector v|1 (where | denotes concatenation) and the other with the vector
(0, . . . , 0)| − 1, where (0, . . . , 0) denotes the zero vector of length c. Note that these two vectors
sum to v|0. We now increment the value of c by 1. Once we have finished labeling the entire
tree, the vectors labeling the leaf nodes form the rows of the LSSS matrix. If these vectors have
different lengths, we pad the shorter ones with 0’s at the end to arrive at vectors of the same
length.

For example, we consider the formula A AND (D OR (B AND C)). The root AND node
of this tree is labeled (1). Its left child, the leaf node corresponding to A, is labeled (1, 1). Its
right child, the OR node, is labeled (0,−1). The left child of the OR node corresponds to D
and is labeled (0,−1). Its right child is an AND node and is labeled (0,−1). The left child of
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the AND node, which corresponds to B, is labeled (0,−1, 1), and the right child, corresponding
to C, is labeled (0, 0,−1). The resulting LSSS matrix is:

1 1 0
0 −1 1
0 0 −1
0 −1 0


(where the rows correspond to A,B,C, and D respectively). We note that each subset of the
rows of this matrix includes (1, 0, 0) in its span if and only if the corresponding attributes satisfy
the formula A AND (D OR (B AND C)).
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