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Abstract. This paper describes the design of a fast software library for
the computation of the optimal ate pairing on a Barreto–Naehrig elliptic
curve. Our library is able to compute the optimal ate pairing over a
254-bit prime field Fp, in just 2.49 million of clock cycles on a single
core of an Intel Core i7 2.8GHz processor, which implies that the pairing
computation takes 0.89msec. We are able to achieve this performance by
a careful implementation of the base field arithmetic through the usage of
the customary Montgomery multiplier for prime fields. The prime field is
constructed via the Barreto–Naehrig polynomial parametrization of the
prime p given as, p = 36t4 +36t3 +24t2 +6t+1, with t = 262−254 +244.
This selection of t allows us to obtain important savings for both the
Miller loop as well as the final exponentiation steps of the optimal ate
pairing.
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1 Introduction

The protocol solutions provided by pairing-based cryptography can only be made
practical if one can efficiently compute bilinear pairings at high levels of security.
Back in 1986, Victor Miller proposed in [26, 27] an iterative algorithm that can
evaluate rational functions from scalar multiplications of divisors, thus allowing
to compute bilinear pairings at a linear complexity cost with respect to the
size of the input. Since then, several authors have found further algorithmic
improvements to decrease the complexity of the Miller’s Algorithm by reducing
its loop length [3, 4, 12, 20, 21, 38], and by constructing pairing-friendly elliptic
curves [5, 14,29] and pairing-friendly tower extensions of finite fields [6, 24].



2 J.-L. Beuchat et al.

Roughly speaking, an asymmetric bilinear pairing can be defined as the non-
degenerate bilinear mapping, ê : G1 × G2 → G3, where both G1, G2 are finite
cyclic additive groups with prime order r, whereas G3 is a multiplicative cyclic
group whose order is also r. Additionally, as it was mentioned above, for cryp-
tographic applications it is desirable that pairings can be computed efficiently.
When G1 = G2, we say that the pairing is symmetric, otherwise, if G1 6= G2,
the pairing is asymmetric [15].

Arguably the ηT pairing [3] is the most efficient algorithm for symmetric pair-
ings that are always defined over supersingular curves. In the case of asymmetric
pairings, recent breakthroughs include the ate pairing [21], the R-ate pairing [25],
and the optimal ate pairing [38].

Several authors have presented software implementations of bilinear pairings
targeting the 128-bit security level [1,8,10,16,18,23,31,32]. By taking advantage
of the eight cores of a dual quad-core Intel Xeon 45nm, the software library
presented in [1] takes 3.02 millions of cycles to compute the ηT pairing on a
supersingular curve defined over F21223 . Authors in [8] report 5.42 millions of
cycles to compute the ηT pairing on a supersingular curve defined over F3509 on
an Intel Core i7 45nm processor using eight cores. The software library presented
in [32] takes 4.470 millions of cycles to compute the optimal ate pairing on a
257-bit BN curve using only one core of an Intel Core 2 Quad Q6600 processor.

This paper addresses the efficient software implementation of asymmetric
bilinear pairings at high security levels. We present a library 1 that performs
the optimal ate pairing over a 254-bit Barreto–Naehrig (BN) curve in just 2.49
million of clock cycles on a single core of an Intel i7 2.8GHz processor, which
implies that the optimal ate pairing is computed in 0.89msec. To the best of our
knowledge, this is the first time that a software or a hardware accelerator reports
a high security level pairing computation either symmetric or asymmetric, either
on one core or on a multi-core platform, in less than one millisecond. After a
careful selection of a pairing-friendly elliptic curve and the tower field (Sections 2
and 3), we describe the computational complexity associated to the execution of
the optimal ate pairing (Section 4). Then, we describe our approach to implement
arithmetic over the underlying field Fp and to perform tower field arithmetic
(Section 5), and we give benchmarking results of our software library (Section 6).

2 Optimal Ate Pairing over Barreto–Naehrig Curves

Barreto and Naehrig [5] described a method to construct pairing-friendly ordi-
nary elliptic curves over a prime field Fp. Barreto–Naehrig curves (or BN curves)
are defined by the equation E : y2 = x3+b, where b 6= 0. Their embedding degree
k is equal to 12. Furthermore, the number of Fp-rational points of E, denoted
by r in the following, is a prime. The characteristic p of the prime field, the
group order r, and the trace of Frobenius tr of the curve are parametrized as

1 An open source code for benchmarking our software library is available at
http://homepage1.nifty.com/herumi/crypt/ate-pairing.html
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follows [5]:

p(t) = 36t4 + 36t3 + 24t2 + 6t+ 1,
r(t) = 36t4 + 36t3 + 18t2 + 6t+ 1, (1)
tr(t) = 6t2 + 1,

where t ∈ Z is an arbitrary integer such that p = p(t) and r = r(t) are both
prime numbers. Additionally, t must be large enough to guarantee an adequate
security level. For a security level equivalent to AES-128, we should select t such
that log2(r(t)) ≥ 256 and 3000 ≤ k ·log2(p(t)) ≤ 5000 [14]. For this to be possible
t should have roughly 64 bits.

Let E[r] denote the r-torsion subgroup of E and πp be the Frobenius en-
domorphism πp : E → E given by πp(x, y) = (xp, yp). We define G1 = E[r] ∩
Ker(πp − [1]) = E(Fp)[r], G2 = E[r] ∩ Ker(πp − [p]) ⊆ E(Fp12)[r], and G3 =
µr ⊂ F∗p12 (i.e. the group of r-th roots of unity). Since we work with a BN curve,
every point on E(Fp) has order r and G1 = E(Fp)[r] = E(Fp). The optimal ate
pairing on the BN curve E is a non-degenerate and bilinear pairing given by the
map [30,32,38]:

aopt : G2 ×G1 −→ G3

(Q,P ) 7−→
(
f6t+2,Q(P ) · l[6t+2]Q,πp(Q)(P ) ·

l[6t+2]Q+πp(Q),−π2
p(Q)(P )

) p12−1
r ,

where

– fs,Q, for s ∈ N and Q ∈ G2, is a family of normalized Fp12 -rational functions
with divisor (fs,Q) = s(Q)− ([s]Q)− (s− 1)(O), where O denotes the point
at infinity.

– lQ1,Q2 is the equation of the line corresponding to the addition of Q1 ∈ G2

with Q2 ∈ G2.

Algorithm 1 shows how we compute the optimal ate pairing in this work.
Our approach can be seen as a signed-digit version of the algorithm uti-
lized in [32], where both point additions and subtractions are allowed. The
Miller loop (lines 3–10) calculates the value of the rational function f6t+2,Q

at point P . In lines 11–13 the product of the line functions l[6t+2]Q,πp(Q)(P ) ·
l[6t+2]Q+πp(Q),−π2

p(Q)(P ) is multiplied by f6t+2,Q(P ). The so-called final expo-
nentiation is computed in line 14. A detailed summary of the computational
costs associated to Algorithm 1 can be found in Section 4.

The BN curves admit a sextic twist E ′/Fp2 : y2 = x3 + b/ξ defined over Fp2 ,
where ξ ∈ Fp2 is an element that is neither a square nor a cube in Fp2 , and that
has to be carefully selected such that r|#E′(Fp2) holds. This means that pairing
computations can be restricted to points P and Q′ that belong to E(Fp) and
E′(Fp2), respectively [5, 21,38].
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Algorithm 1 Optimal ate pairing over Barreto–Naehrig curves.
Input: P ∈ G1 and Q ∈ G2.
Output: aopt(Q,P ).
1. Write s = 6t+ 2 as s =

PL−1
i=0 si2

i, where si ∈ {−1, 0, 1};
2. T ← Q, f ← 1;
3. for i = L− 2 to 0 do
4. f ← f2 · lT,T (P ); T ← 2T ;
5. if si = −1 then
6. f ← f · lT,−Q(P ); T ← T −Q;
7. else if si = 1 then
8. f ← f · lT,Q(P ); T ← T +Q;
9. end if

10. end for
11. Q1 ← πp(Q); Q2 ← πp2(Q);
12. f ← f · lT,Q1(P ); T ← T +Q1;
13. f ← f · lT,−Q2(P ); T ← T −Q2;

14. f ← f (p12−1)/r;
15. return f ;

3 Tower Extension Field Arithmetic

Since k = 12 = 22 · 3, the tower extensions can be created using irreducible
binomials only. This is because xk−β is irreducible over Fp provided that β ∈ Fp
is neither a square nor a cube in Fp [24]. Hence, the tower extension can be
constructed by simply adjoining a cube or square root of such element β and
then the cube or square root of the previous root. This process should be repeated
until the desired extension of the tower has been reached.

Accordingly, we decided to represent Fp12 using the same tower extension
of [18], namely, we first construct a quadratic extension, which is followed by
a cubic extension and then by a quadratic one, using the following irreducible
binomials:

Fp2 = Fp[u]/(u2 − β), where β = −5,
Fp6 = Fp2 [v]/(v3 − ξ), where ξ = u+ 12, (2)

Fp12 = Fp6 [w]/(w2 − γ).

We adopted the tower extension of Equation (2), mainly because field elements
f ∈ Fp12 can be seen as a quadratic extension of Fp6 , and hence they can be
represented as f = g+hw, with g, h ∈ Fp6 . This towering will help us to exploit
the fact that in the hard part of the final exponentiation we will deal with
field elements f ∈ Fp12 that become unitary [35, 36], i.e., elements that belong
to the cyclotomic subgroup GΦ6(Fp2) as defined in [17]. Such elements satisfy,
fp

6+1 = 1, which means that f−1 = fp
6

= g − hw. In other words, inversion
of such elements can be accomplished by simple conjugation. This nice feature
opens the door for using addition-subtraction chains in the final exponentiation
step, which is especially valuable for our binary signed choice of the parameter t.
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Table 1. Computational costs of the tower extension field arithmetic.

Field Add./Sub. Mult. Squaring Inversion

Fp2 ã = 2a m̃ = 3m+ 3a+mβ s̃ = 2m+ 3a+mβ
ĩ = 4m+mβ

+2a+ i

Fp6 3ã 6m̃+ 2mξ + 15ã 2m̃+ 3s̃+ 2mξ + 8ã
9m̃+ 3s̃+ 4mξ

+4ã+ ĩ

Fp12 6ã 18m̃+ 6mξ + 60ã 12m̃+ 4mξ + 45ã
25m̃+ 9s̃+ 12mξ

+61ã+ ĩ

GΦ6(Fp2) 6ã 18m̃+ 6mξ + 60ã
9s̃+ 4mξ

Conjugation
+30ã

3.1 Computational Costs of the Tower Extension Field Arithmetic

The tower extension arithmetic algorithms used in this work were directly
adopted from [18]. Let (a,m, s, i), (ã, m̃, s̃, ĩ), and (A,M,S, I) denote the cost
of field addition, multiplication, squaring, and inversion in Fp, Fp2 , and Fp6 ,
respectively. From our implementation (see Section 5), we observed experimen-
tally that m = s = 8a and i = 48.3m. We summarize the towering arithmetic
costs as follows:

– In the field Fp2 , we used Karatsuba multiplication and the complex method
for squaring, at a cost of 3 and 2 field multiplications in Fp, respectively.
Inversion of an element A = a0 + a1u ∈ Fp2 , can be found from the iden-
tity, (a0 + a1u)−1 = (a0 − a1u)/(a2

0 − βa2
1). Using once again the Karatsuba

method, field multiplication in Fp6 can be computed at a cost of 6m̃ plus
several addition operations. All these three operations require the multipli-
cation in the base field by the constant coefficient β ∈ Fp of the irreducible
binomial u2 − β. Additionally, we sometimes need to compute the multipli-
cation of an arbitrary element in Fp2 times the constant ξ ∈ Fp2 at a cost of
two field multiplications and two field additions in Fp plus one multiplication
by the constant β. We refer to this operation as mξ.

– Squaring in Fp6 can be computed via the formula derived in [9] at a cost of
2m̃+ 3s̃ plus some addition operations. Inversion in the sextic extension can
be computed at a cost of 9m̃+ 3s̃+ 4mξ + 5ã+ ĩ [34].

– Since our field towering constructed Fp12 as a quadratic extension of Fp6 ,
the arithmetic costs of the quadratic extension apply. Hence, a field mul-
tiplication, squaring and inversion costs in Fp12 are, 3M + 5A, 2M + 5A
and 2M + 2S + 2A + I, respectively. However, if f ∈ Fp12 , belongs to the
cyclotomic subgroup GΦ6(Fp2), its field squaring f2 can be reduced to three
squarings in Fp4 [17].

Table 1 lists the computational costs of the tower extension field arithmetic in
terms of the Fp2 field arithmetic operations, namely, (ã, m̃, s̃, ĩ).
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3.2 Frobenius Operator

Raising an element f ∈ Fp12 = Fp6 [w]/(w2 − γ) to the p-power, is an arithmetic
operation needed in the final exponentiation (line 14) of the optimal ate pairing
(Algorithm 1). We briefly describe in the following how to compute fp efficiently.

We first remark that the field extension Fp12 can be also represented as a
sextic extension of the quadratic field, i.e., Fp12 = Fp2 [W ]/(W 6 − ξ). Hence, we
can write f = g + hw ∈ Fp12 , with g, h ∈ Fp6 such that, g = g0 + g1v + g2v

2,
h = h0 +h1v+h2v

2, where gi, hi ∈ Fp2 , for i = 1, 2, 3. This means that f can be
equivalently written as, f = g+hw = g0 +h0W +g1W 2 +h1W

3 +g2W 4 +h2W
5.

We note that the p-power of an arbitrary element in the quadratic extension
field Fp2 can be computed essentially free of cost as follows. Let b ∈ Fp2 be an

arbitrary element that can be represented as b = b0 + b1u. Then, (b)p
2i

= b and
(b)p

2i−1

= b̄, with b̄ = b0 − b1u, for i ∈ N.
Let ḡi, h̄i, denote the conjugates of gi, hi, for i = 1, 2, 3 respectively. Then,

using the identity W p = ξ(p−1)/6W , we can write, (W i)p = γ1,iW
i, with

γ1,i = ξi(p−1)/6, for i = 1, . . . , 5. From the definitions given above, we can
compute fp as,

fp =
(
g0 + h0W + g1W

2 + h1W
3 + g2W

4 + h2W
5
)p

= ḡ0 + h̄0W
p + ḡ1W

2p + h̄1W
3p + ḡ2W

4p + h̄2W
5p

= ḡ0 + h̄0γ1,1W + ḡ1γ1,2W
2 + h̄1γ1,3W

3 + ḡ2γ1,4W
4 + h̄2γ1,5W

5.

The equation above has a computational cost of 5 multiplications and 5 conjuga-
tions in Fp2 . We can follow a similar procedure for computing fp

2
and fp

3
, which

are arithmetic operations required in the hard part of the final exponentiation
of Algorithm 1. For that, we must pre-compute and store the per-field constants
γ1,i = ξi·(p−1)/6, γ2,i = γ1,i · γ̄1,i, and γ3,i = γ1,i · γ2,i for i = 1, . . . , 5.

4 Computational Cost of the Optimal Ate Pairing

In this work we considered several choices of the parameter t, required for defin-
ing p(t), r(t), and tr(t) of Equation (1). We found 64-bit values of t with Ham-
ming weight as low as 2 that yield the desired properties for p, r, and tr. For
example, the binomial t = 263 − 249 guarantees that p and r as defined in
Equation (1) are both 258-bit prime numbers. However, due to the superior ef-
ficiency on its associated base field arithmetic, we decided to use the trinomial
t = 262 − 254 + 244, which guarantees that p and r as defined in Equation (1)
are 254-bit prime numbers. Since the automorphism group Aut(E) is a cyclic
group of order 6 [30], it is possible to slightly improve Pollard’s rho attack and
get a speedup of

√
6 [11]. Therefore, we achieve a 126-bit security level with our

choice of parameters. The curve equation is E : Y 2 = X3 +5 and we followed the
procedure outlined in [6,36] in order to find a generator P = (xP , yP ) = (1,

√
6)

for the group E(Fp), and one generator Q′ = (xQ′ , yQ′) for the group E′(Fp2)[r],



Software Implementation of the Optimal Ate Pairing over BN curves 7

given as,

xQ′ = 0x36001F582F9BE628EDCFD1495FE76689BDAFD14F800526264EA53CF043BD77D

+ 0x1E4BF03BBE5417225A0EEE243D770EAC9F81ABCD16355D6C951C821EF34D0B0Eu,

yQ′ = 0x2027EDEF9C1B7A57A792651A1C160FFAADC90515D886E50BFF342F3152803676

+ 0x16404CAA399BA45BC43BC20A0A9C00E5E7B08584EC62CC3306CE0A65BA0B8541u.

In this Section, we show that our selection of t yields important savings in the
Miller loop and the hard part of the final exponentiation step of Algorithm 1.

4.1 Miller Loop

We remark that the parameter 6t + 2 of Algorithm 1 has a bitlength L = 65,
with a Hamming weight of 7. This implies that the execution of the Miller loop
requires 64 doubling step computations in line 4, and 6 addition/subtraction
steps in lines 6 and 8.

It is noted that the equation of the tangent line at T ∈ G2 evaluated at P
defines a sparse element in Fp12 (half of the coefficients are equal to zero). The
same observation holds for the equation of the line through the points T and
±Q evaluated at P . This sparsity allows us to reduce the number of operations
on the underlying field when performing accumulation steps (lines 4, 6, 8, 12,
and 13 of Algorithm 1).

We perform an interleaved computation of the tangent line at point T (respec-
tively, the line through the points T and Q) with a point doubling (respectively,
point addition) using the formulae given in [2] as explained next.

Doubling step (line 4). We represent the point T ∈ E′(Fp2) in Jacobian co-
ordinates as T = (XT , YT , ZT ). The formulae for doubling T , i.e., the equations
that define the point R = 2T = (XR, YR, ZR) are,

XR = 9X4
T − 8XTY

2
T , YR = 3X2

T (4XTY
2
T −XR)− 8Y 4

T , ZR = 2YTZT .

Let the point P ∈ E(Fp) be represented in affine coordinates as P = (xP , yP ).
Then, the tangent line at T evaluated at P can be calculated as,

l = 2ZRZ2
T yP − (6X2

TZ
2
TxP )W + (6X3

T − 4Y 2
T )W 2 ∈ Fp12 .

Hence, the computational cost of the interleaving computation of the tangent
line and the doubling of the point T is, 3m̃ + 8s̃ + 16ã + 4m. Other operations
included in line 4 are f2 and the product f2 · lT,T (P ), which can be computed
at a cost of, 12m̃+ 45ã+ 4mξ and 13m̃+ 39ã+ 2mξ, respectively. In summary,
the computational cost associated to line 4 of Algorithm 1 is given as, 28m̃ +
8s̃+ 100ã+ 4m+ 6mξ.
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Addition step (lines 6 and 8). Let Q = (XQ, YQ, ZQ) and T = (XT , YT , ZT )
represent the points Q and T ∈ E′(Fp2) in Jacobian coordinates. Then the point
R = T +Q = (XR, YR, ZR), can be computed as,

XR = (2YQZ3
T − 2YT )2 − 4(XQZ

2
T −XT )3 − 8(XQZ

2
T −XT )2XT ,

YR = (2YQZ3
T − 2YT )(4(XQZ

2
T −XT )2XT −XR)− 8YT (XQZ

2
T −XT )3,

ZR = 2ZT (XQZ
2
T −XT ).

Once again, let the point P ∈ E(Fp) be represented in affine coordinates as
P = (xP , yP ). Then, the line through T and Q is given as,

l = 2ZRyP − 4xP (YQZ3
T +YT )W + (4XQ(YQZ3

TXQ−YT )−2YQZR)W 2 ∈ Fp12 .

The combined cost of computing the line through T and Q and the point addition
R = T + Q is, 7m̃ + 7s̃ + 25ã + 4m. Finally we must accumulate the value of l
by performing the product f · l at a cost of, 13m̃+ 39ã+ 2mξ.

Therefore, the computational cost associated to line 6 of Algorithm 1 is given
as, 20m̃+ 7s̃+ 64ã+ 4m+ 2mξ. This is the same cost of line 8.

Frobenius application and final addition step (lines 11–13). In this
step we add to the value accumulated in f = f6t+2,Q(P ), the product of
the lines through the points Q1,−Q2 ∈ E′(Fp2), namely, l[6t+2]Q,Q1(P ) ·
l[6t+2]Q+Q1,−Q2(P ).

The points Q1, Q2 can be found by applying the Frobenius operator as, Q1 =
πp(Q), Q2 = π2

p(Q). The total cost of computing lines 11–13 is given as, 42m̃+
14s̃+ 128ã+ 4mξ.

Let us recall that from our selection of t, 6t + 2 is a 65-bit number with
a low Hamming weight of 7.2 This implies that the Miller loop of the optimal
ate pairing can be computed using only 64 point doubling steps and 6 point
addition/subtraction steps. Therefore, the total cost of the Miller loop portion
of Algorithm 1 is approximately given as,

Cost of Miller loop = 64 · (28m̃+ 8s̃+ 100ã+ 4m+ 6mξ) +
6 · (20m̃+ 7s̃+ 64ã+ 4m+ 2mξ) +
42m̃+ 14s̃+ 128ã+ 10m+ 4mξ

= 1954m̃+ 568s̃+ 6912ã+ 290m+ 400mξ.

4.2 Final Exponentiation

Line 14 of Algorithm 1 performs the final exponentiation step, by raising f ∈ Fp12
to the power e = (p12−1)/r. We computed the final exponentiation by following

2 We note that in the binary signed representation with digit set {−1, 0, 1}, the integers
t = 262 − 254 + 244 and 6t+ 2 = 264 + 263 − 256 − 255 + 246 + 245 + 2 have a signed
bitlength of 63 and 65, respectively.
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the procedure described by Scott et al. in [36], where the exponent e is split into
three coefficients as,

e =
p12 − 1
r

= (p6 − 1) · (p2 + 1) · p
4 − p2 + 1

r
. (3)

As it was discussed in Section 3, we can take advantage of the fact that raising
f to the power p6 is equivalent to one conjugation. Hence, one can compute
f (p6−1) = f̄ · f−1, which costs one field inversion and one field multiplication
in Fp12 . Moreover, after raising to the power p6 − 1, the resulting field element
becomes a member of the cyclotomic subgroup GΦ6(Fp2), which implies that
inversion of such elements can be computed by simply conjugation (see Table 1).
Furthermore, from the discussion in Section 3.2 raising to the power p2 + 1,
can be done with five field multiplications in the base field Fp, plus one field
multiplication in Fp12 . The processing of the third coefficient in Equation (3) is
referred as the hard part of the final exponentiation, i.e, the task of computing
m(p4−p2+1)/r, with m ∈ Fp12 . In order to accomplish that, Scott et al. described
in [36] a clever procedure that requires the calculation of ten temporary values,
namely,

mt, mt2 , mt3 , mp, mp2 , mp3 , m(tp), m(t2p), m(t3p), m(t2p2),

which are the building blocks required for constructing a vectorial addition
chain whose evaluation yields the final exponentiation fe, by performing 13
and 4 field multiplication and squaring operations over Fp12 , respectively.3 Tak-
ing advantage of the Frobenius operator efficiency, the temporary values mp,
mp2 , mp3 , m(tp), m(t2p), m(t3p), and m(t2p2) can be computed at a cost of just
35 field multiplications over Fp (see Section 3.2). Therefore, the most costly
computation of the hard part of the final exponentiation is the calculation of
mt,mt2 = (mt)t,mt3 = (mt2)t. From our choice, t = 262 − 254 + 244, we can
compute these three temporary values at a combined cost of 62 · 3 = 186 cy-
clotomic squarings plus 2 · 3 = 6 field multiplications over Fp12 . This is cheaper
than the t selection used in [32] that requires 4 ·3 = 12 more field multiplications
over Fp12 .

Consulting Table 1, we can approximately estimate the total computational
cost associated to the final exponentiation as,

F. Exp. cost = (25m̃+ 9s̃+ 12mξ + 61ã+ ĩ) + (18m̃+ 6mξ + 60ã) +
5m̃+ (18m̃+ 6mξ + 60ã) +
35m̃+ 13 · (18m̃+ 6mξ + 60ã) + 4 · (9s̃+ 4mξ + 30ã) +
186 · (9s̃+ 4mξ + 30ã) + 6 · (18m̃+ 6mξ + 60ã)

= 443m̃+ 1719s̃+ 7021ã+ 898mξ + ĩ.

3 We remark that the cost of the field squaring operations is that of the elements in
the cyclotomic subgroup GΦ6(Fp2) listed in the last row of Table 1.
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Table 2. A Comparison of arithmetic operations required by the computation of the
ate pairing variants.

m̃ s̃ ã ĩ mξ

Hankerson et al. [18]
Miller Loop 2277 356 6712 1 412

R-ate pairing
Final Exp. 1616 1197 8977 1 1062

Total 3893 1553 15689 2 1474

Naehrig et al. [32]
Miller Loop 2022 590 7140 410

Optimal ate pairing
Final Exp. 678 1719 7921 1 988

Total 2700 2309 15061 1 1398

This work
Miller Loop 1954 568 6912 400

Optimal ate pairing
Final Exp. 443 1719 7021 1 898

Total 2397 2287 13933 1 1298

Table 2 presents a comparison of Fp2 arithmetic operations of our work
against the reference pairing software libraries [18, 32]. From Table 2, we ob-
serve that our approach saves about 39.5% and 12% Fp2 multiplications when
compared against [18] and [32], respectively.

5 Software Implementation of Field Arithmetic

In this work, we target the x86 64 instruction set [22]. Our software library is
written in C++ and can be used on several platforms: 64-bit Windows 7 with
Visual Studio 2008 Professional, 64-bit Linux 2.6 and Mac OS X 10.5 with gcc
4.4.1 or later, etc. In order to improve the runtime performance of our pairing
library, we made an extensive use of Xbyak [28], a x86/x64 just-in-time assembler
for the C++ language.

5.1 Implementation of Prime Field Arithmetic

The x86 64 instruction set has a mul operation which multiplies two 64-bit
unsigned integers and returns a 128-bit unsigned integer. The execution of this
operation takes about 3 cycles on Intel Core i7 and AMD Opteron processors.
Compared to previous architectures, the gap between multiplication and addi-
tion/subtraction in terms of cycles is much smaller. This means that we have
to be careful when selecting algorithms to perform prime field arithmetic: the
schoolbook method is for instance faster than Karatsuba multiplication in the
case of 256-bit operands.

An element x ∈ Fp is represented as x = (x3, x2, x1, x0), where xi, 0 ≤ i ≤ 3,
are 64-bit integers. The addition and the subtraction over Fp are performed in a
straightforward manner, i.e., we add/subtract the operands followed by reduc-
tion into Fp. Multiplication and inversion over Fp are accomplished according
to the well-known Montgomery multiplication and Montgomery inversion algo-
rithms, respectively [19].
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5.2 Implementation of Quadratic Extension Field Arithmetic

This section describes our optimizations for some operations over Fp2 defined in
Equation (2).

Multiplication. We implemented the multiplication over the quadratic exten-
sion field Fp2 using a Montgomery multiplication scheme split into two steps:

1. The straightforward multiplication of two 256-bit integers (producing a 512-
bit integer), denoted as, mul256.

2. The Montgomery reduction from a 512-bit integer to a 256-bit integer. This
operation is denoted by mod512.

According to our implementation, mul256 (resp. mod512) contains 16 (resp.
20) mul operations and its execution takes about 55 (resp. 100) cycles.

Let P (u) = u2 + 5 be the irreducible binomial defining the quadratic exten-
sion Fp2 . Let A,B,C ∈ Fp2 such that, A = a0 + a1u, B = b0 + b1u, and C =
c0+c1u = A·B. Then, c0 = a0b0−5a1b1 and c1 = (a0+a1)(b0+b1)−a0b0−a1b1.
Hence, in order to obtain the field multiplication over the quadratic extension
field, we must compute three multiplications over Fp, and it may seem that
three mod512 operations are necessary. However, we can keep the results of
the products mul256(a0, b0), mul256(a1, b1), and mul256(a0 + a1, b0 + b1) in
three temporary 512-bit integer values. Then, we can add or subtract them with-
out reduction, followed by a final call to mod512 in order to get c0, c1 ∈ Fp.
This approach yields the saving of one mod512 operation as shown in Algo-
rithm 2. We stress that the addNC/subNC functions in lines 1, 2, 6, and 7
of Algorithm 2, stand for addition/subtraction between 256-bit or 512-bit inte-
gers without checking the output carry. We explain next the rationale for using
addition/subtraction without output carry check.

The addition x+ y, and subtraction x− y, of two elements x, y ∈ Fp include
an unpredictable branch check to figure out whether x + y ≥ p or x < y. This
is a costly check that is convenient to avoid as much as possible. Fortunately,
our selected prime p satisfies 7p < N , with N = 2256, and the function mod512
can reduce operands x, whenever, x < pN . This implies that we can add up
to seven times without performing an output carry check. In line 8, d0 is equal
to (a0 + a1)(b0 + b1) − a0b0 − a1b1 = a0b1 + a1b0 < 2p2 < pN . Hence, we can
use addNC/subNC for step 1, 2, 6, and 7. In line 9, we multiply d2 by the
constant value 5, which can be computed with no carry operation. By applying
these modifications, we manage to reduce the cost of the field multiplication over
Fp2 from about 640 cycles (required by a non-optimized procedure) to just 440
cycles.

In line 10, d1 = a0b0 − 5a1b1. We perform this operation as a 512-bit integer
subtraction with carry operation followed by a mod512 reduction. Let x be a
512-bit integer such that x = a0b0 − 5a1b1 and let t be a 256-bit integer. The
aforementioned carry operation can be accomplished as follows: if x < 0, then
t ← p, otherwise t ← 0, then d1 ← x + tN , where this addition operation only
uses the 256 most significant bits of x.
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Algorithm 2 Optimized multiplication over Fp2 .
Input: A and B ∈ Fp2 such that A = a0 + a1u and B = b0 + b1u.
Output: C = A ·B ∈ Fp2 .
1. s← addNC(a0, a1);
2. t← addNC(b0, b1);
3. d0 ←mul256(s, t);
4. d1 ←mul256(a0, b0);
5. d2 ←mul256(a1, b1);
6. d0 ← subNC(d0, d1);
7. d0 ← subNC(d0, d2);
8. c1 ←mod512(d0);
9. d2 ← 5d2;

10. d1 ← d1 − d2;
11. c0 ←mod512(d1);
12. return C ← c0 + c1u;

Squaring. Algorithm 3 performs field squaring where some carry operations
have been reduced, as explained next. Let A = a0+a1u ∈ Fp2 , C = A2 = c0+c1u,
and let x = (a0 + p − a1)(a0 + 5a1). Then c0 = x mod p. However, we observe
that x ≤ 2p · 6p = 12p2 < N2 where N = 2256. Also we have that,

x− 4a0a1 ≥ a0(a0 + 5a1)− 4a0a1 = a0(a0 + a1) ≥ 0,

which implies,

max(x− 4a0a1) = max(a0(a0 + p) + 5a1(p− a1))
< p · 2p+ 5(p/2)(p− p/2) < pN.

We conclude that we can safely add/subtract the operands in Algorithm 3 with-
out carry check.

Multiplication by ξ. Algorithm 4 shows the procedure that we followed for
computing the field multiplication of an arbitrary element A ∈ Fp2 by the field
constant ξ = 12 + u ∈ Fp2 .

We first remark that Algorithm 4 requires the calculation of field multiplica-
tions by the constant values 5 and 12. Computing these operations using shift-
and-add expressions such as 5n = n+ (n� 2) and 12n = (n� 3) + (n� 2) for
n ∈ Fp may be tempting as a means to avoid full multiplication calculations. Nev-
ertheless, in our implementation we preferred to compute those multiplication-
by-constant operations using the x86 64 mul instruction, since the cost in clock
cycles of mul is almost the same or even a little cheaper than the one associated
to the shift-and-add method.

Our multiplication by ξ algorithm requires the reduction modulo p of an
integer x smaller than 13p (lines 4 and 7). Note that we need five 64-bit registers
to store x = (x4, x3, x2, x1, x0). However, one can easily see that x4 = 0 or
x4 = 1, and then one can prove that x div 2253 = (x4 � 3)|(x3 � 61). Division
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Algorithm 3 Optimized squaring over Fp2 .
Input: A ∈ Fp2 such that A = a0 + a1u.
Output: C = A2 ∈ Fp2 .
1. t← addNC(a1, a1);
2. d1 ←mul256(t, a0);
3. t← addNC(a0, p);
4. t← subNC(t, a1);
5. c1 ← 5a1;
6. c1 ← addNC(c1, a0);
7. d0 ←mul256(t, c1);
8. c1 ←mod512(d1);
9. d1 ← addNC(d1, d1);

10. d0 ← subNC(d0, d1);
11. c0 ←mod512(d0);
12. return C ← c0 + c1u;

Algorithm 4 Multiplication by ξ.
Input: A ∈ Fp2 such that A = a0 + a1u. Let ξ ∈ Fp2 which is defined in Equation (2).
Output: C = A · ξ ∈ Fp2 .
1. t0 ← 12a0;
2. t1 ← 5a1;
3. t0 ← t0 − t1;
4. c0 ← t0 mod p; (use Algorithm 5)
5. t0 ← 12a1;
6. t0 ← addNC(a0, t0);
7. c1 ← t0 mod p; (use Algorithm 5)
8. return C ← c0 + c1u;

by 2253 involves only three logical operations and is efficiently performed on our
target processor. Furthermore, the prime p we selected has the following nice
property:

(ip) div 2253 =

{
i if 0 ≤ i ≤ 9,
i+ 1 if 10 ≤ i ≤ 14.

We build a small look-up table p-Tbl defined as follows:

p-Tbl[i] =

{
ip if 0 ≤ i ≤ 9,
(i− 1)p if 10 ≤ i ≤ 14.

(4)

We then get |x − p-Tbl[x � 253]| < p. Algorithm 5 summarizes how we apply
this strategy to perform a modulo p reduction.

6 Implementation Results

We list in Table 3 the timings that we achieved on different architectures. Our
library is able to evaluate the optimal ate pairing over a 254-bit prime field Fp,
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Algorithm 5 Fast reduction x mod p.
Input: x ∈ Z such that 0 ≤ x < 13p and represented as x = (x4, x3, x2, x1, x0), where

xi, 0 ≤ i ≤ 4, are 64-bit integers. Let p-Tbl be the precomputed look-up table
defined in Equation (4).

Output: z = x mod p.
1. q ← (x4 � 3)|(x3 � 61); (q ← bx/2253c)
2. z ← x− p-Tbl[q];
3. if z < 0 then
4. z ← z + p;
5. end if
6. return z;

in just 2.49 million of clock cycles on a single core of an Intel Core i7 2.8GHz
processor, which implies that the pairing computation takes 0.89msec. To our
best knowledge, we are the first to compute a cryptographic pairing in less than
one millisecond at this level of security on a desktop computer.

According to the second column of Table 3, the costs (in clock cycles) that
were measured for the Fp2 arithmetic when implemented in the Core i7 processor
are m̃ = 435 and s̃ = 342. Additionally, we measured ã = 40, mξ = 94, and
ĩ = 7504. Now, from Table 2, one can see that the predicted computational cost
of the optimal ate pairing is given as,

Opt. ate pairing cost = 2357m̃+ 2287s̃+ 13802ã+ 1298mξ + ĩ

= 2357 · 435 + 2287 · 342 + 13802 · 40 + 1298 · 94 + 7504
= 2,489,045.

We observe that the experimental results presented in Table 3 have a reasonable
match with the computational cost prediction given in Section 4.

For comparison purpose, we also report the performance of the software li-
brary for BN curves developed by Naehrig et al. [32], which is the best software
implementation that we know of.4 Naehrig et al. combined several state-of-the
art optimization techniques to write a software that is more than twice as fast
as the previous reference implementation by Hankerson et al. [18]. The most
original contribution is the implementation of arithmetic over Fp. Working in
the case of hardware realizations of pairings, Fan et al. [13] suggested to take
advantage of the polynomial form of p(t) and introduced a new hybrid modular
multiplication algorithm. The operands a and b ∈ Fp are converted to degree-4
polynomials a(t) and b(t), and multiplied according to Montgomery’s algorithm
in the polynomial ring. Coefficients of the results must be reduced modulo t.
Fan et al noticed that, if t = 2m + s, where s is a small constant, this step con-
sists of a multiplication by s instead of a division by t. Naehrig et al. adapted
this technique to design a software-oriented modular multiplication algorithm
implemented by means of double-precision floating-point SIMD instructions.
4 The results on the Core 2 Quad processor are reprinted from [32]. We downloaded

the library [33] and made our own experiments on an Opteron platform.
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Table 3. Cycle counts of multiplication over Fp2 , squaring over Fp2 , and optimal ate
pairing on different machines.

Our results

Core i7a Opteronb Core 2 Duoc Athlon 64 X2d

Multiplication over Fp2 435 443 558 473

Squaring over Fp2 342 355 445 376

Miller loop 1,400,000 1,400,000 1,710,000 1,480,000

Final exponentiation 1,090,000 1,090,000 1,430,000 1,150,000

Optimal ate pairing 2,490,000 2,490,000 3,140,000 2,630,000

dclxvi [32,33]

Core i7 Opteronb Core 2 Quade Athlon 64 X2d

Multiplication over Fp2 – 695 693 424

Squaring over Fp2 – 614 558 339

Miller loop – 2,480,000 2,260,000 2,360,000

Final exponentiation – 2,520,000 2,210,000 2,275,000

Optimal ate pairing – 5,000,000 4,470,000 4,635,000
a Intel Core i7 860 (2.8GHz), Windows 7, Visual Studio 2008 Professional
b Quad-Core AMD Opteron 2376 (2.3GHz), Linux 2.6.18, gcc 4.4.1
c Intel Core 2 Duo T7100 (1.8GHz), Windows 7, Visual Studio 2008 Professional
d Athlon 64 X2 Dual Core 6000+(3GHz), Linux 2.6.23, gcc 4.1.2
e Intel Core 2 Quad Q6600 (2394MHz), Linux 2.6.28, gcc 4.3.3

Table 4 summarizes the best results published in the open literature since
2007. All the works featured in Table 4, targeted a level of security equivalent to
that of AES-128. Aranha et al. [1] and Beuchat et al. [8] considered supersingular
elliptic curves in characteristic 2 and 3, respectively. All other authors worked
with ordinary curves.

Several authors studied multi-core implementations of a cryptographic pair-
ing [1, 8, 16]. In the light of the results reported in Table 4, it seems that the
acceleration achieved by an n-core implementation is always less than the ideal
n× speedup. This is related to the extra arithmetic operations needed to com-
bine the partial results generated by each core, and the dependencies between
the different operations involved in the final exponentiation. The question that
arises is therefore: how many cores should be utilized to compute a cryptographic
pairing? We believe that the best answer is the one provided by Grabher et al.:
“if the requirement is for two pairing evaluations, the slightly moronic conclusion
is that one can perform one pairing on each core [. . . ], doubling the performance
versus two sequential invocations of any other method that does not already use
multi-core parallelism internally” [16].
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Table 4. A comparison of cycles and timings required by the computation of the ate
pairing variants. The frequency is given in GHz and the timings are in milliseconds.

Algo. Architecture Cycles Freq.
Calc.
time

Devegili et al. [10] ate Intel Pentium IV 69,600,000 3.0 23.20

Naehrig et al. [31] ate Intel Core 2 Duo 29,650,000 2.2 13.50

Grabher et al. [16] ate
Intel Core 2 Duo (1 core) 23,319,673

2.4
9.72

Intel Core 2 Duo (2 cores) 14,429,439 6.01

Aranha et al. [1] ηT
Intel Xeon 45nm (1 core) 17,400,000

2.0
8.70

Intel Xeon 45nm (8 cores) 3,020,000 1.51

Beuchat et al. [8] ηT
Intel Core i7 (1 core) 15,138,000

2.9
5.22

Intel Core i7 (8 cores) 5,423,000 1.87

Hankerson et al. [18] R-ate Intel Core 2 10,000,000 2.4 4.10

Naehrig et al. [32] aopt Intel Core 2 Quad Q6600 4,470,000 2.4 1.80

This work aopt Intel Core i7 2,490,000 2.8 0.89

7 Conclusion

In this paper we have presented a software library that implements the optimal
ate pairing over a Barreto–Naehrig curve at the 126-bit security level. To the
best of our knowledge, we are the first to have reported the computation of a
bilinear pairing at a level of security roughly equivalent to that of AES-128 in
less than one millisecond on a single core of an Intel Core i7 2.8GHz processor.
The speedup achieved in this work is a combination of two main factors:

– A careful programming of the underlying field arithmetic based on Mont-
gomery multiplication that allowed us to perform a field multiplication over
Fp and Fp2 in just 160 and 435 cycles, respectively, when working in an
Opteron-based machine. We remark that in contrast with [32], we did not
make use of the 128-bit multimedia arithmetic instructions.

– A binary signed selection of the parameter t that allowed us to obtain sig-
nificant savings in both the Miller loop and the final exponentiation of the
optimal ate pairing.

Our selection of t yields a prime p = p(t) that has a bitlength of just 254 bits.
This size is slightly below than what Freeman et al. [14] recommend for achieving
a high security level. If for certain scenarios, it becomes strictly necessary to meet
or exceed the 128-bit level of security, we recommend to select t = 263−249 that
produces a prime p = p(t) with a bitlength of 258 bits. However, we warn the
reader that since a 258-bit prime implies that more than four 64-bit register will
be required to store field elements, the performance of the arithmetic library will
deteriorate.

Consulting the cycle count costs listed in Table 3, one can see that for our
implementation the cost of the Miller loop is slightly but consistently higher
than that of the final exponentiation step.
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Authors in [13,32] proposed to exploit the polynomial parametrization of the
prime p as a means to speed up the underlying field arithmetic. We performed
extensive experiments trying to apply this idea to our particular selection of t
with no success. Instead, the customary Montgomery multiplier algorithm ap-
pears to achieve a performance that is very hard to beat by other multiplication
schemes, whether integer-based or polynomial-based multipliers.

The software library presented in this work computes a bilinear pairing at a
high security level at a speed that is faster than the best hardware accelerators
published in the open literature (see for instance [7,13,23,37]). We believe that
this situation is unrealistic and therefore we will try to design a hardware ar-
chitecture that can compute 128-bit security bilinear pairing in shorter timings.
Our future work will also include a study of the parallelization possibilities on
pairing-based protocols that specify the computation of many bilinear pairing
during their execution.
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A Algorithms

A.1 Arithmetic over Fp2

Algorithm 6 Addition in Fp2 = Fp[u]/(u2 − β).
Input: A = a0 + a1u ∈ Fp2 and B = b0 + b1u ∈ Fp2 .
Output: C = c0 + c1u = A+B ∈ Fp2 .
1. c0 ← a0 + b0;
2. c1 ← a1 + b1;
3. return C = c0 + c1u;

Algorithm 7 Subtraction in Fp2 = Fp[u]/(u2 − β).
Input: A = a0 + a1u ∈ Fp2 and B = b0 + b1u ∈ Fp2 .
Output: C = c0 + c1u = A−B ∈ Fp2 .
1. c0 ← a0 − b0;
2. c1 ← a1 − b1;
3. return C = c0 + c1u;

Algorithm 8 Multiplication by b0 ∈ Fp.
Input: A = a0 + a1u ∈ Fp2 and b0 ∈ Fp.
Output: C = c0 + c1u = A · b0 ∈ Fp2 .
1. c0 ← a0 · b0;
2. c1 ← a1 · b0;
3. return C = c0 + c1u;

Algorithm 9 Inverse in Fp2 = Fp[u]/(u2 − β).
Input: A = a0 + a1u ∈ Fp2 .
Output: C = c0 + c1u = A−1 ∈ Fp2 .
1. t0 ← a2

0;
2. t1 ← a2

1;
3. t0 ← t0 − β · t1;
4. t1 ← t−1

0 ;
5. c0 ← a0 · t1;
6. c1 ← −1 · a1 · t1;
7. return C = c0 + c1u;
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A.2 Arithmetic over Fp4

Algorithm 10 Squaring in Fp4 = Fp2 [V ]/(V 2 − ξ).
Input: A = a0 + a1V ∈ Fp4 .
Output: C = c0 + c1V = A2 ∈ Fp2 .
1. t0 ← a2

0;
2. t1 ← a2

1;
3. c0 ← t1 · ξ;
4. c0 ← c0 + t0;
5. c1 ← a0 + a1;
6. c1 ← c21 − t0 − t1;
7. return C = c0 + c1V ;

A.3 Arithmetic over Fp6

Algorithm 11 Addition in Fp6 = Fp2 [v]/(v3 − ξ).
Input: A = a0 + a1v + a2v

2 ∈ Fp6 and B = b0 + b1v + b2v
2 ∈ Fp6 .

Output: C = c0 + c1v + c2v
2 = A+B ∈ Fp6 .

1. c0 ← a0 + b0;
2. c1 ← a1 + b1;
3. c2 ← a2 + b2;
4. return C = c0 + c1v + c2v

2;

Algorithm 12 Subtraction in Fp6 = Fp2 [v]/(v3 − ξ).
Input: A = a0 + a1v + a2v

2 ∈ Fp6 and B = b0 + b1v + b2v
2 ∈ Fp6 .

Output: C = c0 + c1v + c2v
2 = A−B ∈ Fp6 .

1. c0 ← a0 − b0;
2. c1 ← a1 − b1;
3. c2 ← a2 − b2;
4. return C = c0 + c1v + c2v

2;

Algorithm 13 Multiplication by γ
Input: A ∈ Fp6 , where A = a0 + a1v + a2v

2; ai ∈ Fp6 .
Output: C = A · γ,C ∈ Fp6 , where C = c0 + c1v + c2v

2; ci ∈ Fp2 .
1. c0 ← a2 · ξ;
2. return C ← c0 + a0v + a1v

2;
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Algorithm 14 Multiplication in Fp6 = Fp2 [v]/(v3 − ξ).
Input: A = a0 + a1v + a2v

2 ∈ Fp6 and B = b0 + b1v + b2v
2 ∈ Fp6 .

Output: C = c0 + c1v + c2v
2 = A ·B ∈ Fp6 .

1. t0 ← a0 · b0;
2. t1 ← a1 · b1;
3. t2 ← a2 · b2;
4. c0 ← [(a1 + a2) · (b1 + b2)− t1 − t2] · ξ + t0;
5. c1 ← (a0 + a1) · (b0 + b1)− t0 − t1 + ξ · t2;
6. c2 ← (a0 + a2) · (b0 + b2)− t0 − t2 + t1;
7. return C = c0 + c1v + c2v

2;

Algorithm 16 computes the product of A ∈ Fp6 by a constant b ∈ Fp2 .
However, it can be also used to compute the product of A by a constant b′ ∈ Fp
using Algorithm 8, instead of the general multiplication in Fp2 .

Algorithm 15 Multiplication by b0 ∈ Fp2 .
Input: A = a0 + a1v + a2v

2 ∈ Fp6 and b0 ∈ Fp2 .
Output: C = c0 + c1v + c2v

2 = A · b0 ∈ Fp6 .
1. c0 ← a0 · b0;
2. c1 ← a1 · b0;
3. c2 ← a2 · b0;
4. return C = c0 + c1v + c2v

2;

Algorithm 16 Multiplication by b0 + b1v.
Input: A = a0 + a1v + a2v

2 ∈ Fp6 and b0, b1 ∈ Fp2
Output: C = c0 + c1v + c2v

2 = A · (b0 + b1v) ∈ Fp6 .
1. t0 ← a0 · b0;
2. t1 ← a1 · b1;
3. c0 ← ((a1 + a2) · (b1)− t1) · ξ + t0;
4. c1 ← (a0 + a1) · (b0 + b1)− t0 − t1;
5. c2 ← a2 · b0 + t1;
6. return C = c0 + c1v + c2v

2;
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Algorithm 17 Squaring in Fp6 = Fp2 [v]/(v3 − ξ).
Input: A = a0 + a1v + a2v

2 ∈ Fp6 .
Output: C = c0 + c1v + c2v

2 = A2 ∈ Fp6 .
1. c4 ← 2(a0 · a1);
2. c5 ← a2

2;
3. c1 ← c5 · ξ + c4;
4. c2 ← c4 − c5;
5. c3 ← a2

0;
6. c4 ← a0 − a1 + a2;
7. c5 ← 2(a1 · a2);
8. c4 ← c24;
9. c0 ← c5 · ξ + c3;

10. c2 ← c2 + c4 + c5 − c3;
11. return C = c0 + c1v + c2v

2;

Algorithm 18 Inverse in Fp6 = Fp2 [v]/(v3 − ξ).
Input: A = a0 + a1v + a2v

2 ∈ Fp6 .
Output: C = c0 + c1v + c2v

2 = A−1 ∈ Fp6 .
1. t0 ← a2

0;
2. t1 ← a2

1;
3. t2 ← a2

2;
4. t3 ← a0 · a1;
5. t4 ← a0 · a2;
6. t5 ← a1 · a2;
7. c0 ← t0 − ξ · t5;
8. c1 ← ξ · t2 − t3;
9. c2 ← t1 − t4;

10. t6 ← a0 · c0;
11. t6 ← t6 + ξ · a2 · c1;
12. t6 ← t6 + ξ · a1 · c2;
13. t6 ← t−1

6 ;
14. c0 ← c0 · t6;
15. c1 ← c1 · t6;
16. c2 ← c2 · t6;
17. return C = c0 + c1v + c2v

2;
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A.4 Arithmetic over Fp12

Algorithm 19 Addition in Fp12 = Fp6 [w]/(w2 − γ).
Input: A = a0 + a1w ∈ Fp12 and B = b0 + b1w ∈ Fp12 .
Output: C = c0 + c1w = A+B ∈ Fp12 .
1. c0 ← a0 + b0;
2. c1 ← a1 + b1;
3. return C = c0 + c1w;

Algorithm 20 Subtraction in Fp12 = Fp6 [w]/(w2 − γ).
Input: A = a0 + a1w ∈ Fp12 and B = b0 + b1w ∈ Fp12 .
Output: C = c0 + c1w = A−B ∈ Fp12 .
1. c0 ← a0 − b0;
2. c1 ← a1 − b1;
3. return C = c0 + c1w;

Algorithm 21 Multiplication in Fp12 = Fp6 [w]/(w2 − γ).
Input: A = a0 + a1w ∈ Fp12 and B = b0 + b1w ∈ Fp12 .
Output: C = c0 + c1w = A ·B ∈ Fp12 .
1. t0 ← a0 · b0;
2. t1 ← a1 · b1;
3. c0 ← t0 + t1 · γ;
4. c1 ← (a0 + a1) · (b0 + b1)− t0 − t1;
5. return C = c0 + c1w;

The next algorithm will be required during the execution of the optimal ate
pairing computation (instead of Algorithm 21), avoiding unnecessary multipli-
cations by zero.
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Algorithm 22 Multiplication by B = b0 + b1w, where b0 ∈ Fp2 and b1 =
b10 + b11v + 0v2

Input: A = a0 + a1w ∈ Fp12 and B = b0 + b1w ∈ Fp12 , with b0 = b00 + 0v + 0v2 and
b1 = b10 + b11v + 0v2.

Output: C = c0 + c1w = A ·B ∈ Fp12 .
1. t0 ← a0 · b0; (Algorithm 15)
2. t1 ← a1 · b1; (Algorithm 16)
3. c0 ← t0 + t1 · γ;
4. t2 ← (b0 + b10)v + b11v + 0v2;
5. c1 ← (a0 + a1) · t2; (Algorithm 16)
6. c1 ← c1 − t0 − t1;
7. return C = c0 + c1w;

Algorithm 23 Squaring in Fp12 = Fp6 [w]/(w2 − γ).
Input: A = a0 + a1w ∈ Fp12 .
Output: C = c0 + c1w = A2 ∈ Fp12 .
1. c0 ← a0 − a1;
2. c3 ← a0 − γ · a1;
3. c2 ← a0 · a1;
4. c0 ← c0 · c3 + c2;
5. c1 ← 2c2;
6. c2 ← γ · c2;
7. c0 ← c0 + c2;
8. return C = c0 + c1w;

Algorithm 24 Inverse in Fp12 = Fp6 [w]/(w2 − γ).
Input: A = a0 + a1w ∈ Fp12 .
Output: C = c0 + c1w = A−1 ∈ Fp12 .
1. t0 ← a2

0;
2. t1 ← a2

1;
3. t0 ← t0 − γ · t1;
4. t1 ← t−1

0 ;
5. c0 ← a0 · t1;
6. c1 ← −1 · a1 · t1;
7. return C = c0 + c1w;
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We stress that Algorithms 25 and 26 for computing field squaring and ex-
ponentiation over Fp12 , respectively, can be only used when X ∈ Fp12 satis-
fies Xp6+1 = 1. Algorithm 25 is based on the work presented in [17]. Let
f = g + hw ∈ Fp12 be an element in the representation Fp12 = Fp6 [w]/(w2 − γ).
Then, in order to reduce the required number of field multiplications, we can
write f using the towering Fp12 = Fp4 [X]/(X3−γ), where Fp4 = Fp2 [V ]/(V 2−ξ).
In that representation, f can be equivalently written as f = g + hw = (g0 +
h1V ) + (h0 + g2V )X + (g1 + h2V )X2. We note that the first three squarings of
Lines 1, 2 and 3, must be performed using Algorithm 10.

Algorithm 25 Squaring in Fp12 = Fp6 [w]/(w2 − γ).
Input: f = g + hw ∈ Fp12 , with g = g0 + g1v + g2v

2 and h = h0 + h1v + h2v
2.

Output: C = c0 + c1w = f2 ∈ Fp12 .
1. t0,0, t1,1 ← (g0 + h1V )2;
2. t1,2, t0,1 ← (h0 + g2V )2;
3. t0,2, aux← (g1 + h2V )2;
4. t1,0 ← aux · ξ;
5. c0,0 ← −2g0 + 3t0,0;
6. c0,1 ← −2g1 + 3t0,1;
7. c0,2 ← −2g2 + 3t0,2;
8. c1,0 ← 2h0 + 3t1,0;
9. c1,1 ← 2h1 + 3t1,1;

10. c1,2 ← 2h2 + 3t1,2;
11. c0, c1 ∈ Fp6 ;
12. c0 ← c0,0 + c0,1v + c1,2v

2;
13. c1 ← c1,0 + c1,1v + c1,2v

2;
14. return C = c0 + c1w;

In the exponentiation Algorithm 26, it is assumed that the exponent e is
given as, e = (eL−1, . . . , e1, e0), where ei ∈ {−1, 0, 1} for i = 0, . . . , L − 1 and
where eL−1 = 1.
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Algorithm 26 Exponentiation in Fp12 = Fp6 [w]/(w2 − γ).

Input: A ∈ Fp12 and e =
PL−1
i=0 ei2

i.
Output: C = Ae ∈ Fp12 .
1. C ← A;
2. for i← L− 2 downto 0 do
3. C ← C2; (Algorithm 25)
4. if ei 6= 0 then
5. if ei > 0 then
6. C ← C ·A;
7. else
8. C ← C · Ā;
9. end if

10. end if
11. end for
12. return C;

A.5 Line Evaluation

For the line operations, we need to work with the points on the twist as a jacobian
points, i.e. (X,Y, Z) ∈ E′(Fp2). But it is also a good idea to keep some extra
values, for instance Z2, which is required several times in Algorithms 27 and 28.
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Algorithm 27 Point doubling and line evaluation
Input: Q ∈ E(Fp2) and P ∈ E(Fp), where Q = (XQ, YQ, ZQ) and P = (xP , yP ).
Output: T = 2Q and lQ,Q(P ) ∈ Fp12 , where T = (XT , YT , ZT ) and l = l0 + l1w;

li ∈ Fp6 .
1. tmp0 ← X2

Q;
2. tmp1 ← Y 2

Q;
3. tmp2 ← tmp2

1;
4. tmp3 ← (tmp1 +XQ)2 − tmp0 − tmp2;
5. tmp3 ← 2tmp3;
6. tmp4 ← 3tmp0;
7. tmp6 ← XQ + tmp4;
8. tmp5 ← tmp2

4;
9. XT ← tmp5 − 2tmp3;

10. ZT ← (YQ + ZQ)2 − tmp1 − Z2
Q;

11. YT ← (tmp3 −XT ) · tmp4 − 8tmp2;
12. tmp3 ← −2(tmp4 · Z2

Q);
13. tmp3 ← tmp3 · xP ; (Algorithm 8)
14. tmp6 ← tmp2

6 − tmp0 − tmp5 − 4tmp1;
15. tmp0 ← 2(ZT · Z2

Q);
16. tmp0 ← tmp0 · yP ; (Algorithm 8)
17. a0, a1 ∈ Fp6 ;
18. a0 ← tmp0 + 0v + 0v2;
19. a1 ← tmp3 + tmp6v + 0v2;
20. T ← (XT , YT , ZT );
21. l← a0 + a1w;
22. return l, T ;
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Algorithm 28 Point addition and line evaluation
Input: Q,R ∈ E(Fp2) and P ∈ E(Fp), where Q = (XQ, YQ, ZQ), R = (XR, YR, ZR)

and P = (xP , yP ).
Output: T = Q + R and lR,Q(P ) ∈ Fp12 , where T = (XT , YT , ZT ) and l = l0 + l1w;

li ∈ Fp6 .
1. t0 ← XQ · Z2

R;
2. t1 ← (YQ + ZR)2 − Y 2

Q − Z2
R;

3. t1 ← t1 · Z2
R;

4. t2 ← t0 −XR;
5. t3 ← t22;
6. t4 ← 4t3;
7. t5 ← t4 · t2;
8. t6 ← t1 − 2YR;
9. t9 ← t6 ·XQ;

10. t7 ← XR · t4;
11. XT ← t26 − t5 − 2t7;
12. ZT ← (ZR + t2)2 − Z2

R − t3;
13. t10 ← YQ + ZT ;
14. t8 ← (t7 −XT ) · t6;
15. t0 ← 2(YR · t5);
16. YT ← t8 − t0;
17. t10 ← t210 − Y 2

Q − Z2
T ;

18. t9 ← 2t9 − t10;
19. t10 ← 2(ZT · yP ); (Algorithm 8)
20. t6 ← −t6;
21. t1 ← 2(t6 · xP ); (Algorithm 8)
22. l0, l1 ∈ Fp6 ;
23. l0 ← t10 + 0v + 0v2;
24. l1 ← t1 + t9v + 0v2;
25. T ← (XT , YT , ZT );
26. l← l0 + l1w;
27. return l, T ;

Some multiplications between elements from different field extensions are
required, we need to consider those operations as particular cases instead of
performing unnecessary products by zero.

A.6 Final Exponentiation

To perform the final exponentiation, we need to raise f ∈ Fp12 to the p-power,
as described in Section 3.2. Algorithms 29-31, compute fp, fp

2
and fp

3
, respec-

tively, where f is a field element in Fp12 = Fp2 [W ]/(W 6 − ξ).
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Algorithm 29 Frobenius raised to p of f ∈ Fp12 = Fp6 [w]/(w2 − γ).
Input: f ∈ Fp12 , where f = g + hw; fi ∈ Fp6 . And g = g0 + g1v + g2v

2; h =
h0 + h1v + h2v

2

Output: fp ∈ Fp12 .
1. t1 ← ḡ0; (First we need to rearrange the elements and conjugate them)
2. t2 ← h̄0;
3. t3 ← ḡ1;
4. t4 ← h̄1;
5. t5 ← ḡ2;
6. t6 ← h̄2;
7. for i = 1 to 5 do
8. γ1,i = ξi·(p−1)/6;
9. end for

10. t2 ← t2 · γ1,1;
11. t3 ← t3 · γ1,2;
12. t4 ← t4 · γ1,3;
13. t5 ← t5 · γ1,4;
14. t6 ← t6 · γ1,5;
15. c0 ← t1 + t3v + t5v

2;
16. c1 ← t2 + t4v + t6v

2;
17. return C ← c0 + c1w;

Algorithm 30 Frobenius raised to p2 of f ∈ Fp12 = Fp6 [w]/(w2 − γ).
Input: f ∈ Fp12 , where f = g + hw; fi ∈ Fp6 . And g = g0 + g1v + g2v

2; h =
h0 + h1v + h2v

2

Output: fp
2
∈ Fp12 .

1. for i = 1 to 5 do
2. γ2,i = γ1,i · γpi ;
3. end for
4. t1 ← g0;
5. t2 ← h0 · γ2,1;
6. t3 ← g1 · γ2,2;
7. t4 ← h1 · γ2,3;
8. t5 ← g2 · γ2,4;
9. t6 ← h2 · γ2,5;

10. c0 ← t1 + t3v + t5v
2;

11. c1 ← t2 + t4v + t6v
2;

12. return C ← c0 + c1w;



Software Implementation of the Optimal Ate Pairing over BN curves 31

Algorithm 31 Frobenius raised to p3 of f ∈ Fp12 = Fp6 [w]/(w2 − γ).
Input: f ∈ Fp12 , where f = g + hw; fi ∈ Fp6 . And g = g0 + g1v + g2v

2; h =
h0 + h1v + h2v

2

Output: fp
3
∈ Fp12 .

1. t1 ← ḡ0; (First we need to rearrange the elements and conjugate them)
2. t2 ← h̄0;
3. t3 ← ḡ1;
4. t4 ← h̄1;
5. t5 ← ḡ2;
6. t6 ← h̄2;
7. for i = 1 to 5 do
8. γ3,i = γ1,i · γ2,i;
9. end for

10. t2 ← t2 · γ3,1;
11. t3 ← t3 · γ3,2;
12. t4 ← t4 · γ3,3;
13. t5 ← t5 · γ3,4;
14. t6 ← t6 · γ3,5;
15. c0 ← t1 + t3v + t5v

2;
16. c1 ← t2 + t4v + t6v

2;
17. return C ← c0 + c1w;
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Algorithm 32 Final Exponentiation
Input: f ∈ Fp12 = Fp6 [w]/(w2 − γ), where f = g + hw.

Output: f (p12−1)/r ∈ Fp12 .
1. f1 ← f̄ ;
2. f2 ← f−1;
3. f ← f1 · f2;

4. f ← fp
2
· f ; (Algorithm 30)

5. ft1 ← f t; (Algorithm 26)

6. ft2 ← f t
2
;

7. ft3 ← f t
3
;

8. fp1 ← fp; (Algorithm 29)

9. fp2 ← fp
2
; (Algorithm 30)

10. fp3 ← fp
3
; (Algorithm 31)

11. y0 ← fp1 · fp2 · fp3;
12. y1 ← f1;

13. y2 ← (ft2)p
2
; (Algorithm 30)

14. y3 ← (ft1)p; (Algorithm 29)
15. y3 ← ȳ3;
16. y4 ← (ft2)p · ft1; (Algorithm 29)
17. y4 ← ȳ4;
18. y5 ← ¯ft2;
19. y6 ← (ft3)p · ft3; (Algorithm 29)
20. y6 ← ȳ6;
21. t0 ← y2

6 · y4 · y5; (Algorithm 25 for squaring)
22. t1 ← y3 · y5 · t0;
23. t0 ← t0 · y2;
24. t1 ← (t21 · t0)2; (Algorithm 25 for squaring)
25. t0 ← t1 · y1;
26. t1 ← t1 · y0;
27. t0 ← t20; (Algorithm 25)
28. f ← t1 · t0;
29. return f ;


