Near-Collisions on the Modified Reduced-Round Compression Functions of Skein and BLAKE

Bozhan Su, Wenling Wu, Shuang Wu, Le Dong

State Key Laboratory of Information Security, Institute of Software, Chinese Academy of Sciences, Beijing 100190, P. R. China {subozhan, wwl, wushuang, dongle}@is.iscas.ac.cn

Abstract. The SHA-3 competition organized by NIST [1] aims to find a new hash standard as a replacement of SHA-2. Till now, 14 submissions have been selected as the second round candidates, including Skein and BLAKE, both of which have components based on modular addition, rotation and bitwise XOR (ARX). In this paper, we propose improved near-collision attacks on a modified reduced-round compression function of Skein and BLAKE. The attacks are based on linear differentials of the modular additions. The computational complexity of near-collision attacks on a modified 4-round compression function of BLAKE-32, modified 4-round and 5-round compression functions of BLAKE-64 are 2^7 , 2^7 and 2^{162} respectively, and the attacks on a modified 24-round compression functions of Skein-256, Skein-512 and Skein-1024 have a complexity of 2^{60} , 2^{230} and 2^{395} respectively.

Key words: Hash function, Near-collision, SHA-3 candidates, Skein, BLAKE

1 Introduction

Hash function, a very important component in cryptology, is a function of creating a short digest for a message of arbitrary length. The classical security requirements for such a function are preimage resistance, second-preimage resistance and collision resistance. In other words, it should be impossible to find a collision in less hash computations than birthday attack, or a (second)-preimage in less hash computations than brute force attack.

In recent years, the popular hash functions (MD4, MD5, RIPEMD, SHA-0 and SHA-1) have been seriously attacked [2–5]. As a response to advances in the cryptanalysis of hash functions, NIST launched a public competition to develop a new hash function called SHA-3. Till now, 14 submissions have been selected as the second round candidates.

Skein and BLAKE are two of the second round candidates of SHA-3. Skein uses the UBI chaining mode, while BLAKE uses HAIFA approach. Both of them are of the ARX (Addition-Rotate-XOR) type. More specifically, their design primitives use only addition, rotation and XOR. Previous works studied the linear differential trails of non-linear operations such as boolean functions and modular additions. Linear differential trails can be constructed to find near-collisions of these hash functions [7, 9, 10, 13]. Recently, linear differential attacks have been applied to many SHA-3 candidates, such as EnRUPT, CubeHash, MD6, and BLAKE [8–10].

In this paper, we further study the linear differential techniques and propose near-collision attacks on the modified reduced-round compression functions of Skein and BLAKE. Our strategy to find optimal linear differential trails can be described in three steps. First, linear approximations of modified reduced-round compression functions of Skein and BLAKE is constructed. In this step, all the addition modulo 2^{64} components of Skein and BLAKE are approximated by bitwise XOR of the inputs. Second, a difference with low hamming weight in some intermediate state as a starting point is placed. Third, the difference above propagates in both forward and backward directions until the probability becomes too little to obtain near collisions. Table 1 summarizes our attack along with the previously known ones on the modified reduced-round compression functions of Skein and BLAKE.

 Table 1. Comparison of results on the modified reduced-round compression functions of Skein and BLAKE

Target	Rounds	Time	Memory	Type	Authors
Skein-512	17	2^{24}	-	434-bit near-collision	[12]
Skein-256	24	2^{60}	-	236-bit near-collision	\checkmark
Skein-512	24	2^{230}	-	374-bit near-collision	\checkmark
Skein- 1024	24	2^{395}	-	740-bit near-collision	\checkmark
BLAKE-32	4	2^{42}	-	216-bit near-collision	[13]
BLAKE-32	4	2^7	-	167-bit near-collision	\checkmark
BLAKE-64	4	2^7	-	400-bit near-collision	\checkmark
BLAKE-64	5	2^{162}	-	336-bit near-collision	\checkmark

The paper is organized as follows. In Section 2, we describe Skein and BLAKE hash functions. In Section 3, we apply the linear differential technique to Skein and present near-collisions for Skein's compression function with reduced-round Threefish-256, Threefish-512 and Threefish-1024. In Section 4, we apply the linear differential technique to BLAKE and obtain near-collisions for the modified reduced-round compression functions of BLAKE. Finally, Section 5 summarizes this paper.

2 Description of Skein and BLAKE

2.1 Skein

Skein is a family of hash functions based on the tweakable block cipher Threefish, which has equal block and key size of either 256, 512, or 1,024 bits. The MMO

(Matyas-Meyer-Oseas) mode is used to construct the Skein compression function from Threefish. The format specification of the tweak and a padding scheme defines the so-called Unique Block Iteration (UBI) chaining mode. UBI is used for IV generation, message compression, and as output transformation.

Let N_w denote the number of words in the key and the plaintext block, N_r be the number of rounds. For Threefish-256, $N_w = 4$ and $N_r = 72$. Let $v_{d,i}$ be the value of the *i*th word of the encryption state after *d* rounds. The procedure of Threefish-256 encryption is:

1. $(v_{0,0}, v_{0,1}, \cdots, v_{0,N_w-1}) := (p_0, p_1, \cdots, p_{N_w-1})$, where (p_0, p_1, p_2, p_3) is the 256-bit plaintext.

2. For each round, we have

$$e_{d,i} := \begin{cases} (v_{d,i} + k_{d/4,i}) \mod 2^{64} & \text{if } d \mod 4=0, \\ v_{d,i} & \text{otherwise.} \end{cases}$$

Where $k_{d/4,i}$ is the *i*-th word of the subkey added to the *d*-th round. For $i = 0, 1, \dots, N_w - 1, d = 0, 1, \dots, N_r - 1$.

3. Mixing and word permutations followed:

$$(f_{d,2j}, f_{d,2j+1}) := \text{MIX}_{d,j}(e_{d,2j}, e_{d,2j+1}), \qquad j = 0, \cdots, N_w/2 - 1, \\ v_{d+1,i} := f_{d,\pi(i)}, \qquad i = 0, \cdots, N_w - 1,$$

where the MIX operation depicted in Figure 1 transforms two of these 64-bit words and is common to all Threefish variants, with $R_{d,i}$ rotation constant depending on the Threefish block size, the round index d and the position of the two 64-bit words i in the Threefish state. The permutation $\pi(.)$ and the rotation constant $R_{d,i}$ can be referred to [14].

Fig. 1. The MIX function

After N_r rounds, the ciphertext $C = (c_0, c_1, \cdots, c_{N_w-1})$ is given as follows:

$$c_i := (v_{N_r,i} + k_{N_r/4,i}) \mod 2^{64}$$
 for $i = 0, 1, \cdots, N_w - 1$

The s-th keying (d = 4s) uses subkeys $k_{s,0}, \dots, k_{s,N_w-1}$. These are derived from the key k_0, \dots, k_{N_w-1} and from the tweak t_0, t_1 as follows:

$k_{s,i} := k_{(s+i) \mod (N_w+1)}$	for $i = 0, \dots, N_w - 4$
$k_{s,i} := k_{(s+i) \mod (N_w+1)} + t_{s \mod 3}$	for $i = N_w - 3$
$k_{s,i} := k_{(s+i) \mod (N_w+1)} + t_{(s+1) \mod 3}$	for $i = N_w - 2$
$k_{s,i} := k_{(s+i) \mod (N_w+1)} + s$	for $i = N_w - 1$

where $k_{N_w} := \lfloor 2^{64}/3 \rfloor \oplus \bigoplus_{i=0}^{N_w - 1} k_i$ and $t_2 := t_0 \oplus t_1$.

2.2 BLAKE

The BLAKE family of hash functions has been designed by Aumasson et al. [11] and follows HAIFA structure [6] with internal wide-pipe design strategy. Two versions of BLAKE are available: a 32-bit version (BLAKE-32) for message digests of 224 bits and 256 bits operates on 32-bit words, and a 64-bit version (BLAKE-64) for message digests of 384 bits and 512 bits operates on 64-bit words.

BLAKE operates on a large inner state v which is represented as a 4×4 matrix of words. The compression function consists of three steps: Initialization, 14 iterations of Rounds and Finalization as illustrated in Figure 2.

Fig. 2. Overall Structure of Compression Function of BLAKE

During the First step, the inner state v is initialized from 8 words of the chaining value $h = h_0, \dots, h_7, 4$ words of the salt S and 2 words of block index (t_0, t_1) as follows:

$$\begin{pmatrix} v_0 & v_1 & v_2 & v_3 \\ v_4 & v_5 & v_6 & v_7 \\ v_8 & v_9 & v_{10} & v_{11} \\ v_{12} & v_{13} & v_{14} & v_{15} \end{pmatrix} \longleftarrow \begin{pmatrix} h_0 & h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 & h_7 \\ s_0 \oplus c_0 & s_1 \oplus c_1 & s_2 \oplus c_2 & s_3 \oplus c_3 \\ t_0 \oplus c_4 & t_0 \oplus c_5 & t_1 \oplus c_6 & t_1 \oplus c_7 \end{pmatrix}$$

Then, a series of 14 rounds is performed. Each of these rounds is based on the stream cipher ChaCha [15] and consists of the eight round-dependent transformations G_0, \dots, G_7 . Figure 3 and Figure 4 show the G function of BLAKE-32 and BLAKE-64 for index i respectively, where σ_r is a fixed permutation used in round r, M_{σ_r} are message blocks and C_{σ_r} are round-dependent constants. The $G_i(0 \leq i \leq 7)$ function takes 4 registers and 2 message words as input and outputs the updated 4 registers. A column step and diagonal step update the four columns and the four diagonals of matrix v respectively as follows:

 $\begin{array}{lll} G_0(v_0,v_4,v_8,v_{12}) & G_1(v_1,v_5,v_9,v_{13}) & G_2(v_2,v_6,v_{10},v_{14}) & G_3(v_3,v_7,v_{11},v_{15}) \\ G_4(v_0,v_5,v_{10},v_{15}) & G_5(v_1,v_6,v_{11},v_{12}) & G_6(v_2,v_7,v_8,v_{13}) & G_7(v_3,v_4,v_9,v_{14}) \end{array}$

Fig. 3. The G function of BLAKE-32 for index i

Fig. 4. The G function of BLAKE-64 for index i

In the last step, the new chaining value $h' = h'_0, \dots, h'_7$ is computed from the internal state v and the previous chain value h (Finalization step):

$h_0' \leftarrow h_0 \oplus s_0 \oplus v_0 \oplus v_8$	$h'_4 \leftarrow h_4 \oplus s_4 \oplus v_4 \oplus v_{12}$
$h_1' \leftarrow h_1 \oplus s_1 \oplus v_1 \oplus v_9$	$h_5' \leftarrow h_5 \oplus s_5 \oplus v_5 \oplus v_{13}$
$h_2' \leftarrow h_2 \oplus s_2 \oplus v_2 \oplus v_{10}$	$h_6' \leftarrow h_6 \oplus s_6 \oplus v_6 \oplus v_{14}$
$h'_3 \leftarrow h_3 \oplus s_3 \oplus v_3 \oplus v_{11}$	$h'_7 \leftarrow h_7 \oplus s_7 \oplus v_7 \oplus v_{15}$

3 Near-Collisions for the Modified Reduced-Round Compression Function of Skein

Skein is based on the UBI (Unique Block Iteration) chaining mode that uses Threefish to build a compression function. The compression function outputs $E_k(t,m) \oplus m$, where E is Threefish.

Since the MIX function is the only non-linear component in the Threefish block cipher, the first step is to linearize the MIX function to obtain linear approximations of the Compression Function of Skein. To Linearize the MIX function, We replace the modular addition with XOR. The linearized MIX function is illustrated in Figure 5.

Fig. 5. linearized MIX function in Threefish

3.1 Near Collisions for the Modified 24-Round Compression Function of Skein-256

After linearizing the Compression Function of Skein-256, we need to choose the starting point. Since Skein-256 has 72 rounds, there are $72 \approx 2^6$ possible choices. Then we place one or two bits of differences in the message blocks and certain round of the intermediate state at the starting point. Since compression function of Skein-256 uses 256-bit message and 256-bit state, there are $\binom{512}{1} + \binom{512}{2} \approx 2^{17}$ choices of positions for the one or two bits above. Therefore, the search space is less than 2^{23} , which can be searched exhaustively.

Our aim is to find one path with the highest probability in the search space. As introduced in [9], we can calculate probability of one differential trail by counting hamming weight in the differences. We search for 24-round differential trail and the results are introduced as follows. The difference Δ in k_2 , k_3 , t_0 and t_1 gives a difference $(0, 0, 0, \Delta)$ at the third subkey, and (0, 0, 0, 0) after the fourth. And the difference in the state of round 20 is canceled out at the third subkey which is then turned into an eight-round local collision from round 21 to round 28. After 24 rounds, the hamming weight of the difference becomes too large to obtain near collisions. In the 35-th round, after adding the final subkey and feedforward value, one obtains a collision on 256 - 20 = 236 bits. Table 2 shows the corresponding differential trail of the key and the tweak from the 12-th round to the 35-th round. And Table 3 presents the corresponding trail from the 12-th round to the 35-th round. In the table, the probability for all rounds are given, except for the first round, which are indicated with M as we will use message modification techniques to make sure the first round of the trail fulfills.

Table 2. Details of the subkeys and of their differences of Skein-256, given a difference in k_2 , k_3 , t_0 and t_1 .

Rd	d	$k_{s,0}$	$k_{s,1}$	$k_{s,2}$	$k_{s,3}$
3	12	k_3	$k_4 + t_2$	$k_0 + t_0$	k_1
		Δ	Δ	Δ	0
4	16	k_4	$k_0 + t_0$	$k_1 + t_1$	k_2
		0	Δ	0	Δ
5	20	k_0	$k_1 + t_1$	$k_2 + t_2$	k_3
		0	0	0	Δ
6	24	k_1	$k_2 + t_2$	$k_3 + t_0$	k_4
		0	0	0	0
7	28	k_2	$k_3 + t_0$	$k_4 + t_1$	k_0
		Δ	0	0	0
8	32	k_3	$k_4 + t_1$	$k_0 + t_2$	k_1
		Δ	0	Δ	0
9	36	k_4	$k_0 + t_2$	$k_1 + t_0$	k_2
		0	Δ	Δ	Δ
9	36	$\begin{array}{c} k_4 \\ 0 \end{array}$	$\frac{k_0 + t_2}{\Delta}$	$\frac{k_1 + t_0}{\Delta}$	1

The message modification are applied to the most expensive part in our trail, namely the first round. Freedom degrees in chaining value and the message can be used to fulfill the first round of the trail. We use techniques introduced in [9] to derive sufficient conditions for each modular addition of the first round of the trail. Then the message block and the chaining value are chosen according to the conditions.

Table 3. Differential trail used for near collision of modified 24-round compression function of Skein-256, with probability of 2^{-60} .

Rd	Difference	Pr
12	2a0344037023028a 60c217767a8a8080 ee8002206ae20266 7e23020a22014e01	-
13	$c0a3442714a300aa\ 4ac153750aa9820a\ 4ea102204ac10264\ 10a3002a48e34c67$	Μ
14	8a2246035a02028a 8a6217521e0a82a0 1e02020a0a620642 5e02020a02224e03	Μ
15	$8040414144008002 \ 004051514408802a \ 400000000404041 \ 400000008404841$	Μ
16	000000000080028 8000101000080028 0010104008002800 000000008000800	Μ
17	0000101000000020 000010100000000 001010400000000 8010104000002000	2^{-27}
18	000000000000000000000000000000000000000	2^{-7}
19	00000000000000 000000000000 000004000000	2^{-3}
20	00000000000000 000000000000 00000000000	2^{-1}
	no differences in round 21 - 28	1
29	00000000000000 800000000000 80000008000000	1
30	00000000000000 800000000000 80000000000	2^{-1}
31	00000000000000 800000000000 80000000000	2^{-1}
32	80000000000000 800000000000 80000000000	2^{-1}
33	80000008000000 8000000000000 8000000000	2^{-2}
34	000000080002000 0000008000000 0000800080	2^{-2}
35	2000a00020008000 00000000002000 000080002000 0000800000008000	2^{-5}
36	200008002800a000 2000a0002000a000 80008000a0008000 00000002000a000	2^{-10}

3.2 Near Collisions for the Modified 24-Round Compression Functions of Skein-512 and Skein-1024

Ideas for near collision attacks on the modified reduced-round compression functions of Skein-512 and Skein-1024 are similar to the one of Skein-256. So we skip explanations here. In Table 4 and Table 5, we propose difference in the key schedule of Skein-512 and Skein-1024. The differential trails for them are illustrated in Table 6 and Table 7 in the appendix.

4 Near Collisions for the Modified Reduced-Round Compression Function of BLAKE

4.1 Linearizing G function of BLAKE-32 and BLAKE-64

In order to linearize the G function, modular additions are replaced with XORs. Near collision attack for a modified 4-round compression function of BLAKE-32 in [13] also uses the linearization technique. The cyclic rotation constants in BLAKE-32 are 16,12,8,7. Notice that three of the constants 16,12 and 8 have a greatest common divisor 4, so difference 0xAAAAAAAA is cyclic invariant with these rotation constants, where A is a 4-bit value. In the linearized BLAKE-32, if all differences in registers are restricted to this pattern, cyclic rotations difference >>> 16, >>> 12 and >>> 8 can be removed. If zero differences pass through

Rd	d	$k_{s,0}$	$k_{s,1}$	$k_{s,2}$	$k_{s,3}$	$k_{s,4}$	$k_{s,5}$	$k_{s,6}$	$k_{s,7}$
5	20	k_5	k_6	k_7	k_8	k_0	$k_1 + t_2$	$k_2 + t_0$	$k_3 + 5$
		Δ	0	0	0	0	Δ	Δ	0
6	24	k_6	k_7	k_8	k_0	k_1	$k_2 + t_0$	$k_3 + t_1$	$k_4 + 6$
		0	0	0	0	0	Δ	0	Δ
7	28	k_7	k_8	k_0	k_1	k_2	$k_3 + t_1$	$k_4 + t_2$	$k_{5} + 7$
		0	0	0	0	0	0	0	Δ
8	32	k_8	k_0	k_1	k_2	k_3	$k_4 + t_2$	$k_5 + t_0$	$k_6 + 8$
		0	0	0	0	0	0	0	0
9	36	k_0	k_1	k_2	k_3	k_4	$k_5 + t_0$	$k_6 + t_1$	$k_7 + 9$
		0	0	0	0	Δ	0	0	0
10	40	k_1	k_2	k_3	k_4	k_5	$k_6 + t_1$	$k_7 + t_2$	$k_8 + 10$
		0	0	0	Δ	Δ	0	Δ	0

Table 4. Details of the subkeys and of their differences of Skein-512, given a difference in k_4 , k_5 and t_0 (leading to a differences in t_2).

Table 5. Details of the subkeys and of their differences of Skein-1024, given a difference in k_0 , k_2 and t_1 (leading to a differences in t_2).

DJ	4	1.	1.	l.	1.	1.	1.	1.	1.	1.	I.	1.	1.	1.	1.	1.	1.
ка	a	$\kappa_{s,0}$	$\kappa_{s,1}$	$\kappa_{s,2}$	$\kappa_{s,3}$	$\kappa_{s,4}$	$\kappa_{s,5}$	$\kappa_{s,6}$	$\kappa_{s,7}$	$\kappa_{s,8}$	$\kappa_{s,9}$	$\kappa_{s,10}$	$\kappa_{s,11}$	$\kappa_{s,12}$	$\kappa_{s,13}$	$\kappa_{s,14}$	$\kappa_{s,15}$
0	0	k_0	k_1	k_2	k_3	k_4	k_5	k_6	k_7	k_8	k_9	k_{10}	k_{11}	k_{12}	$k_{13} + t_0$	$k_{14} + t_1$	k_{15}
		Δ	0	Δ	0	0	0	0	0	0	0	0	0	0	0	0	0
1	4	k_1	k_2	k_3	k_4	k_5	k_6	k_7	k_8	k_9	k_{10}	k_{11}	k_{12}	k_{13}	$k_{14} + t_1$	$k_{15} + t_2$	k_0
		0	Δ	0	0	0	0	0	0	0	0	0	0	0	Δ	Δ	0
2	8	k_2	k_3	k_4	k_5	k_6	k_7	k_8	k_9	k_{10}	k_{11}	k_{12}	k_{13}	k_{14}	$k_{15} + t_2$	$k_0 + t_0$	k_1
		Δ	0	0	0	0	0	0	0	0	0	0	0	0	Δ	0	Δ
3	12	k_3	k_4	k_5	k_6	k_7	k_8	k_9	k_{10}	k_{11}	k_{12}	k_{13}	k_{14}	k_{15}	$k_0 + t_0$	$k_1 + t_1$	k_2
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	16	k_4	k_5	k_6	k_7	k_8	k_9	k_{10}	k_{11}	k_{12}	k_{13}	k_{14}	k_{15}	k_0	$k_1 + t_1$	$k_2 + t_2$	k_3
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	Δ	Δ
5	20	k_5	k_6	k_7	k_8	k_9	k_{10}	k_{11}	k_{12}	k_{13}	k_{14}	k_{15}	k_0	k_1	$k_2 + t_2$	$k_3 + t_0$	k_4
		0	0	0	0	0	0	0	0	0	0	0	0	Δ	Δ	Δ	0

>>> 7, the only possible difference pattern in registers is either 0xAAAAAAAA or zero which can be indicated as 1-bit value. So the linear differential trails with this difference pattern form a small space of size 2^{32} , which can be searched by brute force. The linear differential trail in [13] is the best one in this space. But this attack doesn't work on BLAKE-64, because the cyclic rotation constants are different. BLAKE-64 uses the number of rotations 32, 25, 16 and 11. Two of them are not multiples of 4, which implies more restrictions of the differential trail.

To obtain near collisions for a modified reduced-round compression function of BLAKE-64 and improve the previous near-collision attack on a modified reduced-round compression function of BLAKE-32 in [13], we have to release the restrictions. This can be done in two ways: either by using non-linear differential trail instead of linear one, or still by using linear differential trail but releasing restrictions on the differential pattern. In this paper, we use linear differential trail and try to release restrictions on the differential pattern. Instead of using cyclic invariant differences, we use a random difference of hamming weight less than or equal to two in the intermediate states.

Since we intend to release restrictions on the differential pattern, the cyclic invariant differential pattern in previous works is not used. So the cyclic rotations can not be removed.

Figure 6 and Figure 7 show the linearized G function of BLAKE-32 and BLAKE-64 respectively.

Fig. 6. linearized G function in BLAKE-32

4.2 Searching for Differential Trails with High Probability

we need to choose the starting point after linearizing G function. Since BLAKE-32 has 10 rounds and BLAKE-64 has 14 rounds, there are less than 2⁴ possible choices. Then we place one or two bits of differences in the message blocks and certain round of the intermediate state at the starting point. Because compression function of BLAKE-32 uses 512-bit message and 512-bit state and compression function of BLAKE-64 uses 1024-bit message and 1024-bit state, there are

Fig. 7. linearized G function in BLAKE-64

 $\binom{1024}{1} + \binom{1024}{2} \approx 2^{19}$ and $\binom{2048}{1} + \binom{2048}{2} \approx 2^{21}$ choices of positions for the pair of bits on BLAKE-32 and BLAKE-64 respectively. Therefore, the search spaces for BLAKE-32 and BLAKE-64 are less than 2^{23} and 2^{25} respectively, which can be explored exhaustively.

Our aim is to find one path with the highest probability in the search space. Furthermore, following Section 3.1, we calculate probability of one differential trail by counting hamming weight in the differences. We search for differential trails of modified 4-round compression function of BLAKE-32, 4-round and 5round compression functions of BLAKE-64. And the results are introduced in the following sections.

4.3 Near Collision for the Modified 4-Round Compression Function of BLAKE-32

We search with the configuration where differences are in M[4] = 0x8000000000000000 and V[0,1,2,3,4,7,8,9,11,12,13,15] and find that a starting point at round 0 leads to a linear differential trail whose total hamming weight is equal to 7 only. We don't need to count for the last round, since it can be fulfilled by message modifications with similar techniques used in attacks on Skein.

So, This trail can be fulfilled with probability of 2^{-7} . Complexity of this attack is 2^7 with no memory requirements. With assumption that no differences in the salt value, this configuration has a final collision on 256 - 89 = 167 bits after the finalization. Table 8 in the appendix demonstrates how differences propagate in intermediate chaining values from round 0 to 3.

4.4 Near Collision for the Modified 4-Round Compression Function of BLAKE-64

We search with the configuration where differences are in M[14] = 0x8000000000000000 and V[0,3,4,7,8,9,11,12,13,15] and find that a starting point at round 7 leads to a linear differential trail whose total hamming weight is equal to 7 only. We don't need to count for the last round, since it can be fulfilled by message modifications with similar techniques used in attacks on Skein. So, This trail can be fulfilled with probability of 2^{-7} . Complexity of this attack is 2^7 with no memory requirements. With assumption that no differences in the salt value, this configuration has a final collision on 512 - 112 = 400 bits after the finalization. Table 9 in the appendix demonstrates how differences propagate in intermediate chaining values from round 7 to 10.

4.5 Near Collision for the Modified 5-Round Compression Function of BLAKE-64

Then we search for 5-round differential trails, with the configuration where differences are placed in M[11] = 0x8000000000000000 and $V[0 \sim 15]$. We find that a starting point at round 6 leads to a linear differential trail whose total hamming weight is 162. This trail with probability of 2^{-162} is illustrated in Table ?? of the appendix, which leads to a 512 - 176 = 336-bit collision after feedforward. The message modifications are also applied to the last round.

5 Conclusion

In this paper, we revisited the linear differential techniques and applied it to two ARX-based hash functions: Skein and BLAKE. Our attacks include nearcollision attacks on modified 24-round compression functions of Skein-256, Skein-512 and Skein-1024, the modified 4-round compression function of BLAKE-32, and the modified 4-round and 5-round compression functions of BLAKE-64. Future works might apply some non-linear differentials for integer addition besides XOR differences to improve our results.

Acknowledgment

We would like to thank anonymous referees for their helpful comments and suggestions. The research presented in this paper is supported by the National Natural Science Foundation of China (No.60873259); the National Natural Science Foundation of China (No.60903212).

References

- National Institute of Standards and Technology: Announcing Request for Candidate Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA-3) Family. Federal Register, 27(212):62212-62220(Nov. 2007) Available: http:// csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf(2008/10/17)
- Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, Xiuyuan Yu: Cryptanalysis of the Hash Functions MD4 and RIPEMD. EUROCRYPT 2005, LNCS 3494, pp. 1-18, Springer Verlag, 2005
- Xiaoyun Wang, Hongbo Yu: How to Break MD5 and Other Hash Functions. EU-ROCRYPT 2005, LNCS 3494, pp. 19-35, Springer Verlag, 2005

- Xiaoyun Wang, Hongbo Yu, Yiqun Lisa Yin: Efficient Collision Search Attacks on SHA-0. CRYPTO 2005, LNCS 3621, pp. 1-16, Springer Verlag, 2005
- Xiaoyun Wang, Yiqun Lisa Yin, Hongbo Yu: Finding Collisions in the Full SHA-1. CRYPTO 2005, LNCS 3621, pp. 17-36, Springer Verlag, 2005
- E. Biham and O. Dunkelman. A Framework for Iterative Hash Functions HAIFA. In Second NIST Cryptographic Hash Workshop, Santa Barbara, California, USA, August 24-25, 2006, August 2006
- Florent Chabaud, Antoine Joux, Differential Collisions in SHA-0, Advanced in Cryptology, proceedings of CRYPTO 1998, LNCS 1462, pp. 56-71, Springer Verlag, 1998
- Sebastiaan Indesteege, Bart Preneel, Practical Collisions for EnRUPT, FSE 2009, LNCS 5665, pp. 122-138, Springer Verlag, 2009
- Eric Brier, Shahram Khazaei, Willi Meier, Thomas Peyrin, Linearization Framework for Collision Attacks: Application to Cubehash and MD6, Advanced in Cryptology, proceedings of ASIACRYPT 2009, LNCS 5912, pp. 560-577, Springer Verlag, 2009
- Vincent Rijmen, Elisabeth Oswald, Update on SHA-1, Topics in Cryptology, proceedings of CT-RSA 2005, LNCS 3376, pp. 58-71, Springer Verlag, 2005
- Jean-Philippe Aumasson, L. Henzen, W. Meier, and R. C.-W. Phan. SHA-3 proposal BLAKE, version 1.3. Available online at http://131002.net/blake/blake.pdf, 2008
- Jean-Philippe Aumasson, Çagdas Çalik, Willi Meier, Onur Özen, Raphael C.-W. Phan, Kerem Varici: Improved Cryptanalysis of Skein. ASIACRYPT 2009, LNCS 5912, pp. 542-559, Springer Verlag, 2009
- Jean-Philippe Aumasson, Jian Guo, Simon Knellwolf, Krystian Matusiewicz, and Willi Meier, Differential and Invertibility Properties of BLAKE, FSE 2010, to appear in LNCS, Springer 2010
- Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas, J., Walker, J.: The Skein Hash Function Family. Submission to NIST (2008)
- D. J. Bernstein. ChaCha, a variant of Salsa20. Available online at http://cr.yp. to/chacha/chacha-20080128.pdf, January 2008.

A Differential Trails of Reduced-Round Skein and BLAKE

Table 6.	Differential	trail used f	or near o	collision	of 24-round	Skein-512,	with p	orobabilit	y
of 2^{-230} .									

Rd					
nu		Diffe	rence		Pr
20	177363f900ab3668 3	36ed5b708e227114	55bc1c3e7881275c	4e65052 fe03 ee6b3	_
	8ca8e770541856b3 3	36a6043068ef74e1	821 a daa 76647 a c f 8	$\rm d0857e4c77f10cb0$	_
21	1bd9191198bfc1ef (0af0294dc0abc1a1	3a0ee3403cf72252	2e074b0908d70142	м
	d29fa4eb11b6a048 a	a21e22e38124a488	a 19 e 38898 e 89477 c	811420858c004114	101
22	1409a84934202310 1	400884920202110	$70818608909204 {\rm c}0$	6181000c80a00440	м
	208a180c02890668 0	080a080c02002648	1129305c5814004e	$110110541804004 \mathrm{c}$	101
23	1100860410320080 1	100040410220080	288010000892020	2080100040882200	м
	0028200840100002 0	00a0200800100000	0009200014000200	0001000010000200	IVI
24	0800000040010220 0	0080000440000220	0088000040000002	000800000000002	м
	0008200004000000 8	8008200000000000	0000820000100000	8000820000000000	IVI
25	0080000040000000 0	000000040000000	000000004000000	000000004000000	2^{-43}
	000000000100000 0	000000000100000	0880000400010000	008000000010000	2
26	000000000000000 0	000000000000000000000000000000000000000	00000000000000000	0000000000000000	2-8
	080000040000000 0	800000000000000000000000000000000000000	0080000000000000	0080000000000000	2
27	000000000000000 0	000000000000000000000000000000000000000	00000040000000	000000400000000	2-3
	000000000000000 0	000000000000000000000000000000000000000	00000000000000000	0000000000000000	2
28	000000000000000 0	000000000000000000000000000000000000000	00000000000000000	0000000000000000	2^{-1}
	000000000000000 0	000000000000000000000000000000000000000	0000000000000000	8000000000000000	2
					Į
		no differences in	n round 29 - 36		1
37	000000000000000000000000000000000000000	no differences in	n round 29 - 36	000000000000000000000000000000000000000	1
37	00000000000000000000000000000000000000	no differences in 000000000000000000000000000000000000	n round 29 - 36 8000000000000000000000000000000000000	000000000000000000000000000000000000000	1
37	0000000000000000000000 000000000000000	no differences in 00000000000000000 8000000000000000000	n round 29 - 36 8000000000000000 0000000000000000 8000000	0000000000000000 000000000000000000000	1
37	00000000000000000000000000000000000000	no differences in 00000000000000000 8000000000000000000	n round 29 - 36 8000000000000000 000000000000000 8000000	000000000000000 000000000000000 0000000	1
37 38 39	00000000000000000000000000000000000000	no differences in 0000000000000000 0000000000000000000	n round 29 - 36 8000000000000000 000000000000000 8000000	000000000000000 000000000000000 0000000	1 1 1 2 ⁻¹
37 38 39	00000000000000000000000000000000000000	no differences in 0000000000000000 00000000000000000 0000	n round 29 - 36 8000000000000000 000000000000000 8000000	000000000000000 00000000000000 00000000	1 1 2^{-1}
37 38 39 40	00000000000000000000000000000000000000	no differences in 0000000000000000 0000000000000000 00000	n round 29 - 36 8000000000000000 0000000000000000 8000000	000000000000000 000000000000000 80000000	1 1 2^{-1} 2^{-3}
37 38 39 40	00000000000000000000000000000000000000	no differences in 000000000000000000000000000000000000	n round 29 - 36 8000000000000000 0000000000000000 8000000	0000000000000000 0000000000000000 8000000	$ 1 1 2^{-1} 2^{-3} $
37 38 39 40 41	00000000000000000000000000000000000000	no differences in 000000000000000000000000000000000000	n round 29 - 36 8000000000000000 0000000000000000 8000000	0000000000000000 0000000000000000 8000000	$ \begin{array}{c} 1 \\ 1 \\ 2^{-1} \\ 2^{-3} \\ 2^{-24} \end{array} $
37 38 39 40 41	00000000000000000000000000000000000000	no differences in 000000000000000000000000000000000000	n round 29 - 36 8000000000000000 8000000000000000 8000000	00000000000000000000000000000000000000	$ \begin{array}{c} 1 \\ 1 \\ 2^{-1} \\ 2^{-3} \\ 2^{-24} \end{array} $
$\overline{37}$ $\overline{38}$ $\overline{39}$ $\overline{40}$ $\overline{41}$ $\overline{42}$	00000000000000000000000000000000000000	no differences in 000000000000000000000000000000000000	n round 29 - 36 8000000000000000 8000000000000000 8000000	0000000000000000 000000000000000000000	$ \begin{array}{c} 1 \\ 1 \\ 2^{-1} \\ 2^{-3} \\ 2^{-24} \\ 2^{-26} \end{array} $
$\overline{37}$ $\overline{38}$ $\overline{39}$ $\overline{40}$ $\overline{41}$ $\overline{42}$ $\overline{42}$	00000000000000000000000000000000000000	no differences in 000000000000000000000000000000000000	n round 29 - 36 8000000000000000 8000000000000000 8000000	00000000000000000 00000000000000000000	$ \begin{array}{c} 1 \\ 1 \\ 2^{-1} \\ 2^{-3} \\ 2^{-24} \\ 2^{-26} \end{array} $
$\overline{37}$ $\overline{38}$ $\overline{39}$ $\overline{40}$ $\overline{41}$ $\overline{42}$ $\overline{43}$	00000000000000000000000000000000000000	no differences in 000000000000000000000000000000000000	n round 29 - 36 8000000000000000 8000000000000000 8000000	00000000000000000 00000000000000000000	$ \begin{array}{c} 1 \\ 1 \\ 2^{-1} \\ 2^{-3} \\ 2^{-24} \\ 2^{-26} \\ 2^{-47} \end{array} $
37 38 39 40 41 42 43	00000000000000000000000000000000000000	no differences in 000000000000000000000000000000000000	n round 29 - 36 8000000000000000 8000000000000000 8000000	00000000000000000 00000000000000000000	$ \begin{array}{c} 1\\ 1\\ 2^{-1}\\ 2^{-3}\\ 2^{-24}\\ 2^{-26}\\ 2^{-47} \end{array} $
37 38 39 40 41 42 43 44	00000000000000000000000000000000000000	no differences in 000000000000000000000000000000000000	n round 29 - 36 8000000000000000 800000000000000 8000000	0000000000000000 000000000000000000000	$ \begin{array}{c} 1\\ 1\\ 2^{-1}\\ 2^{-3}\\ 2^{-24}\\ 2^{-26}\\ 2^{-47}\\ 2^{-74} \end{array} $

Table 7. Differential trail used for near collision of Skein-1024, of probability 2^{-395} .

R.d.		Diffo	20200		D _n
0	19784dd0abac34ae	195468f0130f00ce	1866a2c424af0b54	fc2f300ca644975c	FT
	724160f9fbe7774d	354b6cea52cf6b59	b7e8d028e7ee826b	c80d060ce08aa6aa	
	9e01dc1568d478f3	6c62c73d18ea1df5	9c52d04d61b020b8	90f0436baf866419	-
	c56a33799988135a	4620157 d0 e931057	fc472494ac63eae4	$7839420 {\rm c} 8263 {\rm b} 374$	
1	802c2520b8a33460	90a426309a23906a	644992c882eb9c08	$\rm dc0982c082ca8b08$	
	7 fe 5 d 6 2 4 0 7 6 4 2 4 c 1	8a75cc2a06056541	470a0c13a9281c14	4808081729281800	м
	0ca29326ce3644a1	2cb0b22284625484	834a2604971b030d	824806001000038d	
	047e66982e005990	0c66e64166434521	f2631b28703e6506	703f2a2076ba6008	
2	108803102280a40a	90a0038028009409	6840100800211700	9841100800000508	
	0102040480000414	03022000480000410	081880d948431cb1	8818005151400c81	Μ
	825c31080684050e	805c30080404000a	201221044a541025	201220804810002c	
3	802800900a803003	0020008008801003	2001000000211208	0001000000201208	
0	a0802a0800000080	80a2220800000000	02000400000000004	0200040000000000000	
	8000808819031030	0000008018030030	0200010002800504	0200000000800100	м
	0000018402441009	0000008000041009	0200000403109000	0000000403109000	
4	8008001002002000	8000001002002000	2000000000010000	200000000000000000000000000000000000000	
	0000000000000004	0000000000000004	202208000000080	6012000000000080	м
	0000010002000404	0000010002000004	0000010402400000	0000000402400000	
	020000000000000000000000000000000000000	820000000000000000000000000000000000000	8000800801001000	0000800001000000	
5	800800000000000000000000000000000000000	0008000002000000	0000000000010000	0000000000010000	
	40300800000000000	0010080000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	2^{-71}
	0000010000000000	0000010000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	
6	8000000800001000	000000000000000000000000000000000000000	000000000000400	000000000000400	
0	000000002000000	000000002000000	402000000000000000000000000000000000000	400000000000000000000000000000000000000	
	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000008000000000	0000000800000000	2^{-11}
	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	
7	8000000000000000000	000000000000000000	000000000000000000	000000000000000000	
	002000000000000000	002000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	a - 4
	000000000000000000000000000000000000000	000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	2 -
	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	
8	8000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	
	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	2^{-1}
	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	
		no differences	in round 9 - 16		1
17	000000000000000000	000000000000000000	000000000000000000	000000000000000000000000000000000000000	
	000000000000000000000000000000000000000	000000000000000000	000000000000000000000000000000000000000	0000000020000000	1
	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	1
	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	
18	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	
	0000000020000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	2^{-1}
	000000000000000000000000000000000000000	100000020000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	
19	000000000000000000000000000000000000000	100002002000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	
13	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	
	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	2^{-3}
	000000000000000000	000000020000000	100000020000000	00000000000000000	
20	1000020020000100	000000000000000000	000000000000000000000000000000000000000	000000020000200	
	0000000020000000	000000000000000000000000000000000000000	000000000000000000	100000020000000	8
	000000000000000000000000000000000000000	000000020000000	000000020000000	000000000000000000000000000000000000000	2^{-0}
	1000000020000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	1002022020040140	
21	1000020020000100	0000000220000000	0000000020000200	1000020020000000	
	100000020000000	0000000020000000	000000020000000	9800820024004100	2 - 42
	0000000020000000	1000800020010000	100000020000000	8000080020000200	2
	9002022020040140	0000000020000000	000000020000000	1000020020000100	
22	1000020200000100	1008800200110001	1000020000000200	90020220000401c0	
	9800820004004100	au10080100040200	100000000000000000000000000000000000000	1002022000040140	2^{-39}
	10000200000000200	3004420414016102	100080000010000	9000020040000a00 1002220200000100	
22	0008820000110101	00406-4554177225	80020020000402-0	8000024000200100	
20	0002022000040140	40100020000c0b41	48108a0104044300	0000a22204450500	
	0002002040040540	0a02823011040160	0000020000200100	80120722400c0b40	2^{-74}
	0002a20200010100	48c09a0905044702	00044a0414016302	800a821100101109	
24	0048e8455406722a	aa28a11141401c20	00020260002402c0	59de3128076d6216	
	4810282300414600	e8020762a4640bc1	$4012020000080 \mathrm{a}01$	a02cdb150115500b	-141
	$\frac{4810282300414600}{80120522402c0a40}$	$\substack{e8020762a4640bc1\\6010282611516428}$	$\begin{array}{c} 4012020000080a01 \\ 48c2380b05054602 \end{array}$	$\substack{a02cdb150115500b\\0082066200240bc0}$	2^{-141}

Rd	Difference		\mathbf{Pr}
0	80008000 8000000 8000000	00000800	
	80008000 0000000 0000000	80000800	
	80808080 8000000 00000000	8000000	-
	00800080 80008000 00000000	8000000	
1	00000000 80000000 00000000	00000000	
	0000000 0000000 0000000	00000000	0-6
	0000000 0000000 0000000	00000000	2
	0000000 0000000 0000000	00000000	
2	0000000 0000000 0000000	00000000	
	0000000 0000000 0000000	00000000	1
	0000000 0000000 0000000	00000000	1
	0000000 0000000 0000000	00000000	
3	0000000 0000000 0000000	80000000	
	00010000 0000000 0000000	00000000	n^{-1}
	0000000 00800000 0000000	00000000	2
	0000000 0000000 00800000	00000000	
4	90190891 08001119 19010089	822208aa	
	11001005 22022313 12032131	00120300	м
	88118188 a0082a08 81188100	08809191	11/1
	09010101 98180898 80a2082a	01909910	

Table 8. Differential trail used for near collision of 4-round BLAKE-32, with probability of 2^{-7} .

Table 9. Differential trail used for near collision of 4-round BLAKE-64, with probability of 2^{-7} .

DJ	D'C.	D
Ra	Difference	Pr
7	80000008000000 0000000000000 0000000000	1
	80000008000000 0000000000000 0000000000	
	8000800080008000 8000000000000 00000000	-
	000080000008000 00000008000000 00000000	
8	00000000000000 800000000000 00000000000	
	00000000000000 000000000000 00000000000	n^{-6}
	00000000000000 000000000000 00000000000	2
	00000000000000 000000000000 00000000000	
9	00000000000000 000000000000 00000000000	
	00000000000000 000000000000 00000000000	1
	00000000000000 000000000000 00000000000	1
	00000000000000 000000000000 00000000000	
10	00000000000000 800000000000 00000000000	
	00000000000000 000000000000 000001000000	n^{-1}
	00000000000000 000000000000 00000000000	2
	00008000000000 0000000000000 0000000000	
11	$2844001000142010\ 8201020000412240\ 2800084400402804\ 8054000008040810$	
	$0080088102810a80 \ 0a80008400800284 \ 0804000008004004 \ 0080009500900885$	м
	2004a84080040000 0000001408100804 2000280400100054 2000004102400041	111
	$2001820000410240 \ a004280088440800 \ 0010800400108004 \ 2800285400400854$	

Table 10. Differential trail used for near collision of 5-round BLAKE-64, with probability of 2^{-162} .

Rd	Difference	Pr
6	9500550115001500 1000408080004480 8002800881008400 0508050005080500	
	9108910191089180 9000008800000080 0002000881000400 9008040800080400	
	$0000840880008408 \ 000000080008000 \ 8008000884008400 \ 9400840084000000$	-
	$0408 {\rm c} 00804088088 \ 0000 {\rm c} 00800004400 \ 850000080088000 \ 1000050810008100$	
7	800000001000000 80000008000000 800000000	
	800000001000000 80000008000000 000000000	0-155
	80000000000000 800080008000 80000000000	2
	00000000000000 00008000000000 80000008000000	
8	00000000000000 000000000000 80000000000	
	00000000000000 000000000000 00000000000	2-6
	00000000000000 000000000000 00000000000	2
	00000000000000 000000000000 00000000000	
9	00000000000000 000000000000 00000000000	
	00000000000000 000000000000 00000000000	1
	00000000000000 000000000000 00000000000	1
	00000000000000 000000000000 00000000000	
10	80000000000000 000000000000 00000000000	
	00000000000000 0000010000000 0000000000	2-1
	00000000000000 000000000000 000080000000	-
	00000000000000 000000000000 00000000000	
11	$8201020000412240\ a800084400402804\ 0054000008040850\ 2844001000142010$	
	$0a80008400800284 \ 0804000008004004 \ 0080008500900885 \ 0880009102910a90$	м
	$0040801488108804 \ 2000280400100054 \ 2000004102400041 \ 2004284080040000$	101
	$a004a80088440800 \ 0050000400100004 \ 2800285400400854 \ 2001820000410240$	