
CCA-Secure PRE Scheme without Public Verifiability

Jun Shao,1? Peng Liu2 and Jian Weng3

1 College of Computer and Information Engineering,
Zhejiang Gongshang University

2 College of Information Sciences and Technology
Pennsylvania State University

3 Department of Computer Science
Jinan University

chn.junshao@gmail.com, pliu@ist.psu.edu, cryptjweng@gmail.com

Abstract. In a proxy re-encryption (PRE) scheme, a semi-trusted proxy can transform a ciphertext
under Alice’s public key into another ciphertext that Bob can decrypt. However, the proxy cannot
access the plaintext. Due to its transformation property, PRE can be used in many applications, such
as encrypted email forwarding. All the existing CCA-secure PRE schemes have a crucial property:
the public verifiability of the original ciphertext, i.e., everyone can check the validity of the original
ciphertext. In this paper, we propose a novel CCA-secure PRE scheme without public verifiability. This
proposal is proven-secure based on the DDH assumption in the standard model. To the best of our
knowledge, our proposal is the first CCA-secure unidirectional PRE scheme without pairings in the
standard model, which answers an open problem in the PRE field.

Keywords: CCA Security, Without Pairings, Without Public Verifiability, PRE

1 Introduction

Proxy re-encryption (PRE), introduced by Blaze, Bleumer and Strauss at EUROCRYPT 1998
[4], allows a semi-trusted proxy, with some additional information (a.k.a., re-encryption key), to
transform a ciphertext under Alice’s public key into a new ciphertext under Bob’s public key on
the same message. However, the proxy cannot learn any information about the messages encrypted
under the public key of either Alice or Bob.

Generally speaking, there are two main methods to classify PRE schemes. One method is
according to the direction of transformation. If the re-encryption key allows the proxy to transform
from Alice to Bob, and vice versa, the PRE scheme is bidirectional ; otherwise, it is unidirectional.
The other method is according to the times of transformation. If the ciphertext can be transformed
from Alice to Bob, and then from Bob to Charlie, and so on, the PRE scheme is multi-use; otherwise,
it is single-use.

Due to its specific transformation property, PRE can be used in many applications, including
simplification of key distribution [4], distributed file systems [2,3], security in publish/subscribe
systems [18], multicast [8], secure certified email mailing lists [19,17], interoperable architecture of
DRM [27], access control [28], and privacy for public transportation [16]. We refer the reader to [1]
for the full list.

Since the concept of PRE was proposed, many PRE schemes have been presented. The first
(bidirectional) PRE scheme was proposed by Blaze et al. [4] based on ElGamal public key encryp-
tion [13]. However, their scheme suffers from collusion attacks, i.e., Alice (Bob) can collude with
? Part of this work was finished when Jun Shao was with Pennsylvania State University.

the proxy to reveal Bob’s (Alice’s) secret key. To resist the collusion attack, Ateniese et al. [2,3]
proposed several unidirectional PRE schemes by using pairings. Recently, Gentry [14] proposed a
novel unidirectional PRE scheme based on homomorphic encryption.

Nevertheless, the above PRE schemes are only CPA-secure, while many PRE applications re-
quires CCA-secure PRE [7]. There are two kinds of CCA-secure PRE schemes: with pairings and
without pairings.

By using pairings and the CHK paradigm [6], Canetti and Hohenberger [7] proposed the first
CCA-secure (bidirectional) PRE scheme in the standard model. However, their scheme suffers from
collusion attacks. Furthermore, they didn’t propose any CCA-secure unidirectional PRE scheme,
but left it as an open problem. Note that a bidirectional scheme can always be implemented by a uni-
directional one with two directions, while the converse is unknown. Based on Canetti-Hohenberger
technique, Libert and Vergnaud [22] proposed a new unidirectional PRE scheme which is replayable
chosen ciphertext attack (RCCA) secure and collusion resistant in the standard model. Note that
RCCA security is weaker than CCA security, since it disallows the adversary to query the decryp-
tion oracle with the ciphertext whose corresponding message is one of the challenge messages in the
RCCA security model [22], while only the derivatives1 of the challenge ciphertext are disallowed
in the CCA security model [7]. See the details in Remark 2 (Section 3). Recently, Weng et al. [29]
and Shao et al. [25] proposed CCA-secure and collusion-resistant unidirectional PRE schemes by
improving Libert and Vergnaud’s construction.

Due to the heavy cost of pairing computation, it is desired to design CCA-secure PRE schemes
without pairings. Shao and Cao [24], and Chow et al. [9] proposed CCA-secure and collusion-
resistant unidirectional PRE schemes without pairings. However, their schemes are only proven-
secure in the random oracle model. Most recently, Matsuda et al. [23] proposed a new CCA-secure
(bidirectional) PRE scheme, which is proven-secure in the standard model but without pairings.
However, it suffers from the collusion attack. Furthermore, Weng and Zhao [30] pointed out that
Matsuda et al.’s scheme is not CCA-secure, but did not give any improvement.

Although the concept of PRE was proposed in 1998, designing a unidirectional PRE scheme
without pairings but proven-secure in the standard model is still an open problem in the PRE field.

All the above CCA-secure PRE schemes have a crucial property: public verifiability of the
original ciphertext, which prevents the proxy from acting as an oracle. However, this property is
the obstacle to obtain PRE without pairings but proven-secure in the standard model. In this
paper, we propose the first such PRE scheme by removing the public verifiability. Note that we
only focus on the single-use, unidirectional PRE in this paper.

We put the previous CCA-secure PRE schemes in chronological order in Table 1.

Table 1. Comparison between CCA-secure PRE schemes.

CH07[7] SC09[24] WCY+10[29] CWY+10[9] SCL10[25] MNT10[23] Ours

Unidirectional % ! ! ! ! % !

Standard Model ! % ! % ! ! !

Without Pairings % ! % ! % ! !

Without Public Verifiability % % % % % % !

1 See the definition in Section 3.1.

2

2 Organization

In the rest of this paper, we first review the definitions for single-use unidirectional PRE. After
that, we present our proposal and give its security proof in the standard model. In what follows,
we give the comparison between our proposal and the scheme in [29]2 in terms of computational
cost and ciphertext length. Finally, the conclusion is given.

3 Preliminaries

In this section, we review some basic knowledge of PRE.

3.1 Definitions for Single-Use Unidirectional PRE

The similar definitions can be found in [2,3,15,7,24].

Definition 1 (Single-Use Unidirectional PRE). A single-use unidirectional proxy re-encryption
scheme SUPRE is a tuple of PPT algorithms (KeyGen, ReKeyGen, Enc, ReEnc, Dec):

– KeyGen(1k)→ (pk, sk). On input the security parameter 1k, the key generation algorithm KeyGen

outputs a public key pk and a secret key sk.
– ReKeyGen(sk1, pk2) → rk1,2. On input a secret key sk1 and a public key pk2, the re-encryption

key generation algorithm ReKeyGen outputs a unidirectional re-encryption key rk1,2.3

– Enc(pk, m)→ C. On input a public key pk and a message m in the message space, the encryption
algorithm Enc outputs a ciphertext C.

– ReEnc(rk1,2, C1)→ C2. On input a re-encryption key rk1,2 and a ciphertext C1, the re-encryption
algorithm ReEnc outputs a re-encrypted ciphertext C2 or a special symbol reject.

– Dec(sk, C) → m. On input a secret key sk and a ciphertext C, the decryption algorithm Dec

outputs a message m in the message space or a special symbol reject.

Correctness. The correctness property has two requirements. For any message m in the message
space and any key pairs (pk, sk), (pk′, sk′)← KeyGen(1k). Then the following two conditions must
hold:

Dec(sk, Enc(pk, m)) = m,
Dec(sk′, ReEnc(ReKeyGen(sk, pk′), C)) = m,

where C is the ciphertext for message m under pk from algorithm Enc.

Remark 1 (Two types of ciphertexts). In almost all the existing unidirectional proxy re-encryption
schemes4, there are two types of ciphertexts. One is the first-level ciphertext, which could be
generated from ReEnc (or Enc)5; the other is the second-level ciphertext, which is generated only
from Enc. In this paper, we call the first-level ciphertext and second-level ciphertext as the re-
encrypted ciphertext and original ciphertext, respectively.
2 The scheme in [29] is more efficient than the scheme in [25].
3 There are two kinds of ReKeyGen. If the delegatee is involved in ReKeyGen, then it is interactive; otherwise, it is

non-interactive. In this paper, we only consider the non-interactive ReKeyGen.
4 The except one is the scheme proposed by Gentry [14].
5 The first-level ciphertext is computed only from ReEnc in some PRE schemes, such as [22], while it can also be

computed from Enc in other PRE schemes, such as [24].

3

3.2 Security Notions for SUPRE

Chosen Ciphertext Security for the Original Ciphertext of SUPRE. The CCA security
for the original ciphertext of SUPRE is defined by the following CCA-O game played between a
challenger C and an adversary A. Note that we work in the static corruption model, where the
adversary must decide the corrupted users before the game starts. Furthermore, we assume that
the public keys input into the oracles by the adversary are all from Opk.

Setup: The challenger sets up the system parameters.
Phase 1: The adversary A issues queries q1, · · · , qn1 adaptively, where query qi is one of:

– Public key generation oracle Opk: On input an index i,6 the challenger takes a security
parameter k, and responds by running algorithm KeyGen(1k) to generate a key pair (pki, ski),
gives pki to A and records (pki, ski) in the table TK .

– Secret key generation oracle Osk: On input pki by A, where pki is from Opk, if pki is cor-
rupted, the challenger searches pki in the table TK and returns ski; otherwise, the challenger
returns reject.

– Re-encryption key generation oracle Ork: On input (pki, pkj) by A, where pki, pkj are from
Opk, the challenger returns the re-encryption key rki,j = ReKeyGen(ski, pkj), where ski is
the secret key corresponding to pki. Note that pki should be uncorrupted. For the case that
pki is corrupted, the adversary can compute the re-encryption key by itself.

– Re-encryption oracle Ore: On input (pki, pkj , C) by A, where pki, pkj are from Opk, the
challenger returns the re-encrypted ciphertext C ′ = ReEnc(ReKeyGen(ski, pkj), C), where
ski is the secret key corresponding to pki. Note that pki should be uncorrupted. For the case
that pki is corrupted, the adversary can compute the re-encrypted ciphertext by itself.

– Decryption oracle Odec: On input (pki, Ci), where pki is from Opk, the challenger returns
Dec(ski, Ci), where ski is the secret key corresponding to pki. Note that pki should be
uncorrupted. For the case that pki is corrupted, the adversary can decrypt the ciphertext
by itself.

Challenge: Once A decides that Phase 1 is over, it outputs two equal length plaintexts m0, m1

from the message space, and a public key pk∗ on which it wishes to challenge. There are two
restrictions on the public key pk∗: (i) pk∗ is an uncorrupted public key; (ii) if (pk∗,F) did
appear in any query to Ork, then F should be uncorrupted. The challenger picks a random bit
b ∈ {0, 1} and sets C∗ = Enc(pk∗,mb). It sends C∗ as the challenge to A.

Phase 2: The adversary A issues more queries qn1+1, · · · , qn adaptively, where query qi is one of:
– Opk, Osk: The challenger responds as in Phase 1.
– Ork: On input (pki, pkj) by A, if pki = pk∗, and pkj is corrupted, the challenger outputs
reject; otherwise, the challenger responds as in Phase 1.

– Ore: On input (pki, pkj , Ci) by A, if (pki, Ci) = (pk∗, C∗) and pkj is corrupted, the challenger
outputs reject; otherwise, the challenger outputs reject.

– Odec: On input (pki, Ci), if (pki, Ci) is a derivative of (pk∗, C∗), the challenger outputs
reject; otherwise, the challenger responds as in Phase 1.

Guess: Finally, the adversary A outputs a guess b′ ∈ {0, 1} and wins the game if b = b′.

6 This index is just used to distinguish the different public keys.

4

We refer to such an adversary A as a CCA-O adversary. We define adversary A’s advantage in
attacking SUPRE as the following function of the security parameter k:

AdvCCA-O
SUPRE(k) = |Pr[b = b′]− 1/2|.

Using the CCA-O game, we can define CCA-O security of SUPRE.

Definition 2 (CCA-O Security). We say that a single-use, unidirectional proxy re-encryption
scheme SUPRE is semantically secure against an adaptive chosen ciphertext attack for the original
ciphertext if for any polynomial time CCA-O adversary A the function AdvCCA-O

SUPRE(k) is negligible.
As shorthand, we say that PRE is CCA-O-secure.

Remark 2. Derivatives of (pk∗, C∗) is adapted from that in [7]:

1. (pk∗, C∗) is a derivative of itself.
2. If A has queried Ore on input (pk, pk′, C) and obtained (pk′, C ′), then (pk′, C ′) is a derivative

of (pk, C).
3. If A has queried Ork on input (pk, pk′), and C ′ = ReEnc(Ore(pk, pk′), C), then (pk′, C ′) is a

derivative of (pk, C).

From the above, we know that if a re-encrypted ciphertext is not obtained directly by ReEnc
or Ore, then this ciphertext cannot be a derivative of any ciphertext. Hence, if C ′′ = F (C ′),
where F is a transformation function which makes C ′′ 6= C ′ and Dec(C ′′, pk) = Dec(C ′, pk), and
C ′ = Ore(pk∗, pk′, C∗), then C ′′ is not a derivative of (pk∗, C∗).

However, according to the definition of the derivative of (pk∗, C∗) for the RCCA security [22],
the above C ′′ is a derivative of (pk∗, C∗). Because the derivative of (pk∗, C∗) in [22] is defined as:
if the message of a re-encrypted ciphertext is one of the challenge messages, then this re-encrypted
ciphertext is a derivative of (pk∗, C∗).

Chosen Ciphertext Security for the Re-encrypted Ciphertext of SUPRE. The CCA-R
security of SUPRE is defined by the same method of the CCA-O security.

Phase 1, Guess: Identical to that in CCA-O game.
Challenge: Once the adversary A decides that Phase 1 is over, it outputs two equal length plain-

texts m0, m1 from the message space, and two public key pk, pk∗ on which it wishes to challenge.
The public key pk∗ should be uncorrupted. The challenger picks a random bit b ∈ {0, 1} and
sets C∗ = ReEnc(rk, Enc(pk, mb)), where rk is a re-encryption key from pk to pk∗. It sends C∗

as the challenge to A.
Phase 2: The adversary A issues more queries qn1+1, · · · , qn adaptively, where query qi is one of:

– Opk, Osk, Ork, Ore: The challenger responds as in Phase 1.
– Odec: On input (pki, Ci), if (pki, Ci) = (pk∗, C∗), the challenger outputs reject; otherwise,

the challenger responds as in Phase 1.

We refer to such an adversary A as a CCA-R adversary. We define adversary A’s advantage in
attacking SUPRE as the following function of the security parameter k:

AdvCCA-R
SUPRE(k) = |Pr[b = b′]− 1/2|.

Using the CCA-R game, we can define CCA-R security of SUPRE.

5

Definition 3 (CCA-R Security). We say that a single-use, unidirectional proxy re-encryption
scheme SUPRE is semantically secure against an adaptive chosen ciphertext attack for the re-
encrypted ciphertext if for any polynomial time CCA-R adversary A the function AdvCCA-R

SUPRE(k)
is negligible. As shorthand, we say that PRE is CCA-R-secure.

Remark 3. In [2,3], the authors proposed another security notion for single-use unidirectional PRE,
named collusion resistance. This security notion guarantees that the delegatee and the proxy cannot
collude to get the secret key of the delegator. As mentioned in [22], the security of collusion resistance
is implied by the CCA-R security. Hence, we omit the part related to collusion resistance.

4 Scheme
∏

sm in the Standard Model

4.1 Intuition Behind the Construction

The idea behind the construction of scheme
∏

sm begins with Cramer-Shoup public key encryption
[11,12], which is proven CCA-secure in the standard model. Recall Cramer-Shoup scheme. Its private
key contains two parts. One is used for ciphertexts’ validity test: (x1, x2, y1, y2), called verification
key; the other is used for decryption: z, called decryption key. The corresponding public key is
(g1, g2, c = gx1

1 gx2
2 , d = gy1

1 gy2
2 , h = gz

1), where g1, g2 are generators of the underlying group. The
ciphertext is (u1 = gr

1, u2 = gr
2, e = hrm, v = crdrα), where r is a random number, α = H(u1, u2, e),

and H is a target collision resistant hash function. Before computing m, the decryptor first checks
the equation v = ux1+y1α

1 ux2+y2α
2 . If it holds, the decryptor computes m = e/uz

1; otherwise, the
decryptor outputs reject.

Obtain CCA Security. As mentioned in [15,7], it is crucial for designing a CCA-secure PRE
scheme that 1) the malicious delegatee cannot gain any advantage by using the proxy as an oracle,
and 2) the malicious proxy cannot gain any advantage by using the delegatee as an oracle.

– Regarding the first point, all the existing CCA-secure PRE schemes [7,22,24,10,25,29] require
that the original ciphertext could be publicly verified.
However, Cramer-Shoup scheme does not have such property. Inspired by [5,26], to overcome
this obstacle, we let the malicious delegatee generate a random value if the original ciphertext
is not well-formed ; the message m otherwise. The following is a key part of our proposal.
1. The private key of the delegator is shared between the proxy and the delegatee. For example,

the proxy and the delegatee know (x̂1, x̂2, ŷ1, ŷ2, ẑ), and (x̆1, x̆2, y̆1, y̆2, z̆), respectively. These
values satisfy x̂1 + x̆1 = x1, x̂2 + x̆2 = x2, ŷ1 + y̆1 = y1, ŷ2 + y̆2 = y2, and ẑ + z̆ = z.
Furthermore, the delegator chooses two random numbers k1, k2 from Z∗

q , and computes
K1 = gk1

1 , K2 = gk2
1 , A = gk1x̆1+r2x̆2

1 , and B = gk1y̆1+r2y̆2
1 . The values of (K1,K2, A, B) are

only sent to the proxy by the delegator.
2. The proxy computes ê = e/uẑ

1 · (u
x̂1−x̂′

1+ŷ1α
1 u

x̂2−x̂′
2+ŷ2α

2 /v)r̂, û1 = K r̂′
1 · ur̂

1, û2 = K r̂′
2 · ur̂

2, and
K = (A · Bα ·K x̂′

1
1 ·K

x̂′
2

2)r̂′ , where x̂′1, x̂
′
2, r̂, r̂

′ are random numbers from Z∗
q . The values of

(ê, û1, û2,K, x̂′1, x̂
′
2) are included in the resulting re-encrypted ciphertext;

3. The delegatee gets m from m = ê/uz̆
1 · (û

x̆1+x̂′
1+y̆1α

1 û
x̆2+x̂′

2+y̆2α
2)/K. The correctness could be

found in Section 4.2.

6

Note that K r̂′
i (i = 1, 2) are used to hide the value of Rr̂, where R is the value that could

be computed by the malicious delegatee before receiving the re-encrypted ciphertext. Some
examples of R are u1, u2 and ux̆1+y̆1α

1 ux̆2+y̆2α
2 . If the malicious delegatee can generate such an R,

then he/she can change the challenge ciphertext (u∗1, u
∗
2, e

∗, v∗) to (u′1, u
′
2, e

′, v′) = (u∗1, u
∗
2, e

∗, v∗ ·
R), and get ê∗ = ê′ ·Rr̂. At last, the malicious delegatee gets mb by using his/her secret key.
Clearly, if the original ciphertext is un-well-formed, the delegatee would get a random m (since
(ux1+y1α

1 ux2+y2α
2 /v)r̂ 6= 1); otherwise, the delegatee can get the message m.

Nevertheless, in order to let the delegatee compute α, the re-encrypted ciphertext should also
contain (u1, u2, e), which causes the above construction not CCA-R-secure. Since another del-
egatee and his/her corresponding proxy can collude to get the message m from (u1, u2, e) in
the re-encrypted ciphertext, which breaks the CCA-R security. We follow the method in [25]:
Encrypt (u1, u2, e) by using the delegatee’s public key (which is different from the public key
used for encrypting messages. If not, the delegator and proxy can still get (u1, u2, e) by using
the transformation property of PRE).

– Regarding the second point, all the existing CCA-secure PRE schemes [29,25] in the standard
model adopt the symmetric encryption (hash function) approach. In this paper, we follow this
approach but with some modification. If the delegatee receives an un-well-formed re-encrypted
ciphertext, then he/she outputs ⊥ in [29,25], while he/she outputs a random number in our
proposal.

Obtain Non-Interactivity. Unfortunately, the above construction is lack of one important prop-
erty: non-interactivity. In the above construction, the private key of the delegator is shared between
the proxy and the delegatee. This process is interactive.

To obtain the non-interactivity, we adopt the method in [15]. That is, (x̆1, x̆2, y̆1, y̆2, z̆) is not sent
to the delegatee directly, but it is encrypted by the delegatee’s public key. The resulting ciphertext
is sent to the proxy, who later forwards it to the delegatee with the re-encrypted ciphertext. It
is required that the public key used to encrypt (x̆1, x̆2, y̆1, y̆2, z̆) is different from the one used to
encrypt messages; otherwise, the delegatee’s delegatees and proxies can get (x̆1, x̆2, y̆1, y̆2, z̆) and
then the message m, which is not allowed in single-use PRE.

Reduce the Size of the Secret. It is easy to see that the delegatee and the proxy can collude to
get the decryption key z, hence the required two different public keys should be corresponding to
two different private keys. It means that the user in our PRE scheme have to maintain much more
secrets than the one in Cramer-Shoup scheme.

To solve the problem, we use the following method. For the decryption key z, we find that there
is a pseudo decryption key (z1, z2) in the security proof of Cramer-Shoup scheme, where (z1, z2)
can be used to decrypt (u1, u2, e, u) and gz

1 = gz1
1 gz2

2 . According to the security proof of Cramer-
Shoup scheme, knowing (z1, z2) won’t hurt the secrecy of z. Hence, the delegator can share (z1, z2)
instead of z between the delegatee and the proxy, while the resulting PRE scheme can still work.
On the other hand, (z1, z2) cannot be used to decrypt the ciphertext computed by another public
key (g1, ḡ2, c̄, d̄, h).

For the verification key (x1, x2, y1, y2), we let them be computed from the verification key corre-
sponding to (g1, ḡ2, c̄, d̄, h) by some hash function. Due the properties of the hash function, knowing
(x1, x2, y1, y2) do not hurt the secrecy of the verification key corresponding to (g1, ḡ2, c̄, d̄, h).

7

As a result, the secret of the user in our PRE scheme only includes (z1, z2, z) and the verification
key corresponding to (g1, ḡ2, c̄, d̄, h).

Combining the above ideas, we obtain scheme
∏

sm, which is depicted in the next subsection.
Note that in our proposal, we do not use the original Cramer-Shoup scheme, but the hashed version.

4.2 The Construction of Scheme
∏

sm

The system parameters are (q, g1, G, F, F̆ ,F, H̄,H). G is a finite cyclic group with prime order
q, g1 is a generator of G. F, F̆ ,F are cryptographically secure pseudo-random number generators
(CSPRNGs), F : {0, 1}∗ → G, F̆ : {0, 1}∗ → Z∗

q
6, F : {0, 1}∗ → G8 × Z∗

q
6 × G × Z∗

q
2, H̄, H are

target collision resistant hash functions H̄ : Z∗
q → Z∗

q , and H : {0, 1}∗ → Z∗
q . The details of our

proposal
∏

sm are as follows.

KeyGen: Select random
x1, x2, y1, y2, z1, z2, β1, β2,∈ Z∗

q ,

Next, compute
g2 = gβ1

1 , ḡ2 = gβ2
2 = gβ1β2

1 ,

c = g
H̄(x1)
1 g

H̄(x2)
2 , d = g

H̄(y1)
1 g

H̄(y2)
2 , h = gz

1 = gz1
1 gz2

2 ,
c̄ = gx1

1 ḡx2
2 , d̄ = gy1

1 ḡy2
2 .

The public key is pk = (g2, ḡ2, c, d, h, c̄, d̄), and the private key is sk = (x1, x2, y1, y2, z1, z2, z).
Note that h = gz1

1 ḡ
z2/β2

2 , and z = z1 + β1 · z2 mod q.
ReKeyGen: On input a public key pk′ = (g′2, ḡ

′
2, c

′, d′, h′, c̄′, d̄′) and a secret key sk = (x1, x2, y1, y2,
z1, z2, z), output a unidirectional re-encryption key rk = (rk(1), rk(2), rk(3)), which is computed
as follows.
– Choose random (x̂1, x̆1, x̂2, x̆2, ŷ1, y̆1, ŷ2, y̆2, ẑ1, z̆1, ẑ2, z̆2, k1, k2) from Z∗

q , such that

H̄(x1) = x̂1 + x̆1, H̄(x2) = x̂2 + x̆2,
H̄(y1) = ŷ1 + y̆1, H̄(y2) = ŷ2 + y̆2,
z1 = ẑ1 + z̆1, z2 = ẑ2 + z̆2,

K1 = gk1
1 , K2 = gk2

1 ,

A = gk1x̆1+k2x̆2
1 , B = gk1y̆1+k2y̆2

1 .

– Set rk(1) = (x̂1, x̂2, ŷ1, ŷ2, ẑ1, ẑ2,K1,K2, A, B).
– Choose random r̆ from Z∗

q .
– Set 4 = x̆1||x̆2||y̆1||y̆2||z̆1||z̆2.
– Compute

ŭ1 = gr̆
1, ŭ2 = (ḡ′2)

r̆,

ĕ = F̆ (h′r̆)⊕4, ᾰ = H(ŭ1||ŭ2||ĕ),
v̆ = c̄′r̆d̄′r̆ᾰ.

The above process is almost the same as the encryption of Cramer-Shoup scheme with public
key (g1, ḡ

′
2, c̄

′, d̄′, h′), except that ĕ is computed by F̆ (h′r̆)⊕m instead of h′r̆ ·m due to the
different message spaces.

– Set rk(2) = (ŭ1, ŭ2, ĕ, v̆).
– Set rk(3) = (S1, S2, S3, S4) = (ḡ′2, c̄

′, d̄′, h′).

8

Enc: On input pk = (g2, ḡ2, c, d, h, c̄, d̄) and a message m ∈ G, do the following steps.
– Choose random r from Z∗

q .
– Compute

u1 = gr
1, u2 = gr

2,
e = F (hr) ·m, α = H(u1||u2||e),
v = crdrα.

The above process is almost the same as the encryption of Cramer-Shoup scheme with public
key (g1, g2, c, d, h), except that e is computed by F (hr) ·m instead of hr ·m.

– Output C = (u1, u2, e, v) as the original ciphertext.
ReEnc: On input a re-encryption key rk and an original ciphertext C = (u1, u2, e, v) under key

pk = (g2, ḡ2, c, d, h, c̄, d̄), do the following steps.
– Choose random r̂, r̂′, x̂′1, x̂′2 and r from Z∗

q .
– Compute

û1 = K r̂′
1 · ur̂

1, û2 = K r̂′
2 · ur̂

2

ê =

(
u

x̂1−x̂′
1+ŷ1α

1 u
x̂2−x̂′

2+ŷ2α
2

v

)r̂

· uẑ1
1 uẑ2

2 , K = (A ·Bα ·K x̂′
1

1 ·K
x̂′
2

2)r̂′ .

– Set ∇ = u1||u2||e||û1||û2||ê||ŭ1||ŭ2||ĕ||v̆||x′1||x′2.
– Compute

u1 = gr
1, u2 = Sr

1 ,
e = F(Sr

4)⊕∇, α̂ = H(u1||u2||e),
v = Sr

2S
rα̂
3 .

The above process is almost the same as the encryption of Cramer-Shoup scheme with public
key (g1, ḡ

′
2, c̄

′, d̄′, h′), except that e is computed by F(h′r)⊕m instead of h′r ·m due to the
different message spaces.

– Output C = (u1,u2, e,v) as the re-encrypted ciphertext.
Dec: On input a private key and any ciphertext C, parse C,

Case C = (u1, u2, e, v): In this case, the private key is (x1, x2, y1, y2, z1, z2, z).
1. Compute α = H(u1||u2||e).
2. If v = u

H̄(x1)+H̄(y1)α
1 u

H̄(x2)+H̄(y2)α
2 holds, u1, u2, e belong to G, then output m = e/F (uz

1);
otherwise output reject.

Case C = (u1,u2, e,v): In this case, the private key is (x′1, x
′
2, y

′
1, y

′
2, z

′
1, z

′
2, z

′).
1. Compute α̂ = H(u1||u2||e).
2. If v = ux′

1+y′
1α̂

1 ux′
2+y′

2α̂
2 and u1,u2 belong to G, then compute ∇ = F(uz′

1)⊕e and do the
next steps; otherwise, output reject and halt.

3. Parse ∇ to u1||u2||e||û1||û2||ê||ŭ1||ŭ2||ĕ||v̆||x̂′1||x̂′2 ∈ G8 × Z∗
q
6 ×G× Z∗

q
2.

4. Compute ᾰ = H(ŭ1||ŭ2||ĕ).
5. If v̆ = ŭ

x′
1+y′

1ᾰ
1 ŭ

x′
2+y′

2ᾰ
2 and ŭ1, ŭ2 belong to G, then compute ∆ = F̆ (ŭz′

1)⊕ ĕ; otherwise,
output reject and halt.

6. Parse ∆ to x̆1||x̆2||y̆1||y̆2||z̆1||z̆2 ∈ Z∗
q
6.

7. Compute α = H(u1||u2||e).
8. Output

m =
e

F
(
ê · ûx̆1+x̂′

1+y̆1α
1 û

x̆2+x̂′
2+y̆2α

2 · uz̆1
1 uz̆2

2 /K
) (1)

9

Correctness. We only verify the correctness of Step 8 of case C = (u1,u2, e,v) in Dec. We can
get the correctness of other steps from the correctness of Cramer-Shoup scheme.

ê · ûx̆1+x̂′
1+y̆1α

1 û
x̆2+x̂′

2+y̆2α
2 · uz̆1

1 uz̆2
2 /K

=

(u
x̂1−x̂′

1+ŷ1α
1 u

x̂2−x̂′
2+ŷ2α

2

v

)r̂

· uẑ1
1 uẑ2

2

 · ((ux̆1+x̂′
1+y̆1α

1 u
x̆2+x̂′

2+y̆2α
2)r̂ · (K x̆1+x̂′

1+y̆1α
1 K

x̆2+x̂′
2+y̆2α

2)r̂′
)
·

uz̆1
1 uz̆2

2 /K

=

(
u

H̄(x1)+H̄(y1)α
1 u

H̄(x2)+H̄(y2)α
2

crdrα

)r̂

· uz1
1 uz2

2 ·

(
(gk1

1)x̆1+x̂′
1+y̆1α(gk2

1)x̆2+x̂′
2+y̆2α

)r̂′

(A ·Bα ·K x̂′
1

1 K
x̂′
2

2)r̂′

=

 u
H̄(x1)+H̄(y1)α
1 u

H̄(x2)+H̄(y2)α
2(

g
H̄(x1)
1 g

H̄(x2)
2

)r (
g

H̄(y1)
1 g

H̄(y2)
2

)rα

r̂

· uz1
1 uz2

2 ·

(
(gk1

1)x̆1+x̂′
1+y̆1α(gk2

1)x̆2+x̂′
2+y̆2α

gk1x̆1+k2x̆2
1 · (gk1y̆1+k2y̆2

1)α · (gk1
1)x̂′

1(gk2
1)x̂′

2

)r̂′

= uz
1 = hr

4.3 The Security Analysis of Scheme
∏

sm

Theorem 1. Scheme
∏

sm is CCA-O-secure in the standard model, if the DDH assumption holds
in G, H̄,H are target collision-resistant, and F, F̆ ,F are CSPRNGs. In particular

AdvCCA-O
SUPRE(k) ≤ 18 + 6qd + 4q1

q
+ 4εddh + 5εtcr

H + 9εtcr
H̄ + 3εCSPRNGF + εCSPRNG

F̆
+ εCSPRNGF ,

where εddh, εtcr
H , εtcr

H̄
, εCSPRNGF , εCSPRNG

F̆
, and εCSPRNGF are the probabilities of breaking the DDH assump-

tion, the target collision resistance of hash functions, and the security of CSPRNG, respectively.
q1, q2 are the numbers that the adversary queries the decryption oracle in Phase 1 and Phase 2,
respectively. At last, q1 + q2 = qd.

Proof. We prove the theorem by the similar method in [12,21].
Let A be an adversary who breaks scheme

∏
sm in the sense of CCA-O security. The attack

game is as described in Section 3.1. Suppose that the system parameter is (q, g1, G, F, F̆ ,F, H̄, H),
and we denote the values related to the challenge ciphertext as starred letters. For example, the
target public key is (g∗2, ḡ

∗
2, c

∗, d∗, h∗, c̄∗, d̄∗), the corresponding secret key is (x∗1, x
∗
2, y

∗
1, y

∗
2, z

∗
1 , z

∗
2 , z

∗),
and the challenge original ciphertext (u∗1, u

∗
2, e

∗, v∗).
We say that an original ciphertext or a re-encrypted ciphertext is valid, if u1 = gr

1 and u2 = gr
2

for some r; otherwise, we say that it is invalid.
Let β∗

1 = logg1
g∗2 and logg1

= log. Then

log c∗ = H̄(x∗1) + β∗
1H̄(x∗2) (2)

log d∗ = H̄(y∗1) + β∗
1H̄(y∗2) (3)

Note that we do not know the value of β∗
1 , but know the value of β∗

2 , where ḡ∗2 = (g∗2)
β∗
2 .

10

Game G0: Let G0 be the original attack game, E0 be the event that b = b′ in G0. Hence,

AdvCCA-O
SUPRE(k) = |Pr[E0]− 1/2| (4)

We shall define a sequence G1, · · · , GI of modified attack games. For any 1 ≤ i ≤ I, we let Ei

be the event that b = b′ in Gi.

Game G1: We modify decryption oracle in game G0, so that it applies the following special output
rule: If the adversary submits a re-encrypted ciphertext (pk,C) with logg1

u1 6= logḡ2
u2, where ḡ2

is associated to pk, then it outputs reject. (u1,u2, e,v) is a re-encrypted ciphertext; hence, from
Theorem 2 we have that

|Pr[E1]− Pr[E0]| ≤
4 + qd + q1

q
+ εddh + εtcr

H + εtcr
H̄ + εCSPRNGF (5)

Game G2: We modify decryption oracle in game G1, so that it applies the following special output
rule: If the adversary submits a re-encrypted ciphertext (pk,C) with logg1

ŭ1 6= logḡ2
ŭ2, where

ḡ2 is associated to pk, then it outputs reject. (ŭ1, ŭ2, ĕ, v̆) can be considered as a re-encrypted
ciphertext; hence, from Theorem 2 we have that

|Pr[E2]− Pr[E1]| ≤
4 + qd + q1

q
+ εddh + εtcr

H + εtcr
H̄ + εCSPRNG

F̆
(6)

Game G3: We modify Challenge phase in game G2, so that v∗ = (c∗)r∗(d∗)r∗α∗
and e∗ =

F (h∗r∗)·mb are replaced by v∗ = (u∗1)
H̄(x∗

1)+H̄(y∗
1)α∗

(u∗2)
H̄(x∗

2)+H̄(y∗
2)α∗

and e∗ = F ((u∗1)
z∗1 (u∗2)

z∗2)·mb,
respectively. This change is purely conceptual, hence

Pr[E3] = Pr[E2] (7)

Game G4: We modify Challenge phase in game G3, so that (u∗1, u
∗
2) is replaced by a random pair

(gr∗1
1 , (g∗2)

r∗2), where r∗1 6= r∗2. Under the DDH assumption, A will hardly notice this change. We have
the same proof as that of Lemma 6.3 in [12] for the following.

|Pr[E4]− Pr[E3]| ≤ εddh + 3/q (8)

Game G5: We modify the decryption oracle in game G4, so that it applies the following special
rejection rule: In Phase 2, if the adversary submits an original ciphertext (pk∗, C) with (u1, u2, e) 6=
(u∗1, u

∗
2, e

∗) but α = α∗, then the decryption oracle immediately outputs reject. It is easy to see
that game G4 and game G5 proceed identically until that the decryption oracle in G5 outputs
reject by using the rule while the decryption oracle in G4 does not. We have the same proof as
that of Lemma 6.5 in [12] for the following.

|Pr[E5]− Pr[E4]| ≤ εtcr
H + 1/q (9)

11

Game G6: We modify the re-encryption oracle in game G5, so that it applies the following special
output rule: In Phase 2, if the adversary submits an original ciphertext (pk∗, C) with (u1, u2, e) 6=
(u∗1, u

∗
2, e

∗) but α = α∗, then ê is replaced by a random number T from G. Similar with game G5,
we have

|Pr[E6]− Pr[E5]| ≤ εtcr
H + 1/q (10)

Game G7: We modify the decryption oracle in game G6, so that it applies the following special
output rule: In Phase 2, if the adversary submits a re-encrypted ciphertext (pk,C) with (u1, u2, e) 6=
(u∗1, u

∗
2, e

∗) but α = α∗, and the corresponding delegator is pk∗, then ê is replaced by a random
number T from G. Similar with game G5, we have

|Pr[E7]− Pr[E6]| ≤ εtcr
H + 1/q (11)

Game G8: We modify the decryption oracle in game G7, so that it rejects all invalid original
ciphertext (pk∗, C)’s in Phase 1. Let R8 be the event that (pk∗, C) is rejected in G8 that would not
have been rejected in G7. It is clear that games G8 and G7 proceed identically until the event R8

occurs. Hence, we have
|Pr[E8]− Pr[E7]| ≤ Pr[R8] (12)

Lemma 1.
Pr[R8] ≤ εtcr

H̄ + q1/q (13)

Proof of Lemma 1: FromA’s view, (H̄(x∗1), H̄(x∗2), H̄(y∗1), H̄(y∗2)) is a random point satisfying eqs.(2)
and (3), since (x∗1, x

∗
2, y

∗
1, y

∗
2) are chosen randomly and independently, and H̄ is target collision-

resistant. Note that A cannot get (H̄(x∗1), H̄(x∗2), H̄(y∗1), H̄(y∗2)) by colluding with the delegatee due
to the restrictions in the CCA-O game. Suppose A queries an invalid original ciphertext (u1, u2, e, v)
to the decryption oracle, where log u1 = r1 and log u2 = β∗

1r2 with r1 6= r2. The challenger won’t
reject (u1, u2, e, v), unless the following equation holds

log v = r1H̄(x∗1) + β∗
1r2H̄(x∗2) + αr1H̄(y∗1) + αr2β

∗
1H̄(y∗2) (14)

where α = H(u1, u2, e). However, it is clear that eqs.(2), (3) and (14) are linearly independent.
Hence, we get the lemma.

Game G9: We modify the re-encryption oracle in game G8, so that it would output a random ê
from G for all invalid original ciphertext (pk∗, C)’s in Phase 1. Similar with Game G8, we have

|Pr[E9]− Pr[E8]| ≤ εtcr
H̄ + q1/q (15)

Game G10: We modify the decryption oracle in Phase 1 in game G9, so that it would output
a random m from G for all invalid re-encrypted ciphertext (pk,C)’s with that the corresponding
delegator is pk∗. Similar with Game G8, we have

|Pr[E10]− Pr[E9]| ≤ εtcr
H̄ + q1/q (16)

12

Game G11: We modify Challenge phase in game G10, so that (u∗1, u
∗
2) = (gr∗1

1 , (g∗2)
r∗2) is randomly

chosen in such a way that an event R11 does not occur, where R11 is the event that (u∗1, u
∗
2) = (u1, u2)

for some invalid ciphertext which A queries in Phase 1. It is clear that R11 happens with q1/q at
most since r∗1, r

∗
2 are chosen independently and randomly. Hence, we have

|Pr[E11]− Pr[E10]| ≤ q1/q (17)

Game G12: We modify the decryption oracle in game G11, so that it rejects all invalid original
ciphertext (pk∗, C)’s in Phase 2. Let R12 be the event that an original ciphertext is rejected in
G12 that would not have been rejected under the rules of G11. It is clear that games G12 and G11

proceed identically until the event R12 occurs. Hence, we have

|Pr[E12]− Pr[E11]| ≤ Pr[R12] (18)

Lemma 2.
Pr[R12] ≤ εtcr

H̄ + q2/q (19)

Proof of Lemma 2: From A’s view, (H̄(x∗1), H̄(x∗2), H̄(y∗1), H̄(y∗2)) is a random point satisfying
eqs.(2), (3) and (20), since (x∗1, x

∗
2, y

∗
1, y

∗
2) are chosen randomly and independently, and H̄ is target

collision-resistant.

log v∗ = r∗1H̄(x∗1) + β∗
1r∗2H̄(x∗2) + α∗r∗1H̄(y∗1) + α∗r∗2β

∗
1H̄(y∗2) (20)

Note that A cannot get (H̄(x∗1), H̄(x∗2), H̄(y∗1), H̄(y∗2)) by colluding with the delegatee due to the
restrictions in the CCA-O game. Suppose A queries an invalid ciphertext (u1, u2, e, v) to the de-
cryption oracle, where log u1 = r1 and log u2 = β∗

1r2 with r1 6= r2. The challenger won’t reject
(u1, u2, e, v), unless eq. (14) holds. However, it is clear that eqs.(2), (3), (14) and (20) are linearly
independent. Hence, we get the lemma.

Game G13: We modify the re-encryption oracle in game G12, so that it will output a random ê
from G for all invalid original ciphertext (pk∗, C)’s in Phase 2. We have two cases of analysis for
the modification.

– If C = C∗, then the output ciphertext cannot be queried to Odec. Furthermore, from Theorem
2, the adversary cannot modify the re-encrypted ciphertext.

– If C 6= C∗, we first analyze that the adversary cannot get Rr̂∗ from (û∗1, û
∗
1,K

∗), where R is the
value that could be computed by the adversary without using (x′1, x

′
2). The result can be easily

obtained, since (û∗1, û
∗
1) are computed without using (x′1, x

′
2), while K∗ is computed with using

(x′1, x
′
2).

Now, we have the similar analysis of the proof of Lemma 2 that eq. (14) holds for a negligible
probability. Hence, the output of decryption query with the re-encrypted ciphertext is a random
number with a overwhelming probability.

As a result, we have

|Pr[E13]− Pr[E11]| ≤
4 + 2qd

q
+ εddh + εtcr

H + 2εtcr
H̄ + εCSPRNGF (21)

13

Game G14: We modify the decryption oracle in Phase 2 in game G13, so that it will output a
random m from G for all invalid re-encrypted ciphertext (pk,C)’s with that the corresponding
delegator is pk∗. We have two cases of analysis for the modification.

– If (u1, u2, e) associated to C is equal to (u∗1, u
∗
2, e

∗), then the input of F (·) in eq. (1) is (u∗1)
f1(z̆1)(u∗2)

f2(z̆2),
where f1(·) and f2(·) are two polynomial functions known by the adversary, and (z̆1, z̆2) are com-
puted from (ŭ1, ŭ2, ĕ, v̆) and unknown to the adversary. Note that we assume that (z̆1, z̆2) are
valid; otherwise, this decryption query is helpless for the adversary. Since the adversary has no
idea about (z̆1, z̆2) and F (·) is a CSPRNG, the output m is a random number from the view of
the adversary.

– If (u1, u2, e) associated to C is not equal to (u∗1, u
∗
2, e

∗), then we have the similar analysis of
the proof of Lemma 2 that eq. (14) holds for a negligible probability. Hence, the output of
the decryption query with this kind of re-encrypted ciphertext are random numbers with a
overwhelming probability.

As a result, we have

|Pr[E14]− Pr[E13]| ≤ εtcr
H̄ + q2/q + εCSPRNGF (22)

Game G15: We modify Challenge phase in G14, so that we use a random value from G instead of
F ((u∗1)

z∗1 (u∗2)
z∗2). Since u∗1 and u∗2 are computed randomly and independently, and F is a CSPRNG,

we have
|Pr[E15]− Pr[E14]| ≤ εCSPRNGF (23)

Furthermore, it is easy to see that e∗ is computed by one-time pad, and the re-encryption oracle
and decryption oracle output random values when the input is invalid. Hence, we have

Pr[E15] = 1/2 (24)

Combining eqs.(4)— (13), (15)— (19) and (21)— (24), we have the theorem. ut

Theorem 2. Scheme
∏

sm is CCA-R-secure in the standard model, if the DDH assumption holds
in G, H̄,H are target collision-resistant, and F is a CSPRNG. In particular

AdvCCA-R
SUPRE(k) ≤ 4 + qd + q1

q
+ εddh + εtcr

H + εtcr
H̄ + εCSPRNGF ,

where the meanings of the notations are the same as that in Theorem 1.

Proof. We prove the theorem by the similar method in [12,21].
Let A be an adversary who breaks scheme

∏
sm in the sense of CCA-R security. The attack

game is as described in Section 3.1. Suppose that the system parameter is (q, g1, G, F, F̆ ,F, H̄, H),
and we denote the values related to the challenge ciphertext as starred letters. For example, the
target public key is (g∗2, ḡ

∗
2, c

∗, d∗, h∗, c̄∗, d̄∗), the corresponding secret key is (x∗1, x
∗
2, y

∗
1, y

∗
2, z

∗
1 , z

∗
2 , z

∗),
and the challenge re-encrypted ciphertext (u∗

1,u
∗
2, e

∗,v∗).
We say that a re-encrypted ciphertext is valid, if u1 = gr

1 and u2 = ḡr
2 for some r; otherwise,

we say that it is invalid.

14

Let β∗ = β∗
1β∗

2 = logg1
ḡ∗2 and logg1

= log. Then

log c̄∗ = x∗1 + β∗x∗2 (25)
log d̄∗ = y∗1 + β∗y∗2 (26)

Note that we do not know the value of β∗, but know the value of β∗
2 , where g∗2 = (ḡ∗2)

1/β∗
2 .

Game G0: Let G0 be the original attack game, E0 be the event that b = b′ in G0. Hence,

AdvCCA-R
SUPRE(k) = |Pr[E0]− 1/2| (27)

We shall define a sequence G1, · · · , GI of modified attack games. For any 1 ≤ i ≤ I, we let Ei

be the event that b = b′ in Gi.

Game G1: We modify Challenge phase in game G1, so that v∗ = (c̄∗)r
∗
(d̄∗)r

∗α̂∗
and e∗ = F(h∗r

∗
)⊕

∇ are replaced by v∗ = (u∗
1)

x∗
1+y∗

1 α̂∗
(u∗

2)
x∗
2+y∗

2 α̂∗
and e∗ = F((u∗

1)
z∗1 (u∗

2)
z∗2/β∗

2)⊕∇, respectively. This
change is purely conceptual, hence

Pr[E1] = Pr[E0] (28)

Game G2: We modify Challenge phase in game G1, so that (u∗
1,u

∗
2) is replaced by a random pair

(gr∗1
1 , (ḡ∗2)

r∗2), where r∗1 6= r∗2. Due to the target collision resistance of H̄, knowing (H̄(x∗1), H̄(x∗2), H̄(y∗1),
H̄(y∗2)) does not hurt the secrecy of (x∗1, x

∗
2, y

∗
1, y

∗
2). Hence, under the DDH assumption,A will hardly

notice this change. We have the same proof as that of Lemma 6.3 in [12] for the following.

|Pr[E2]− Pr[E1]| ≤ εddh + 3/q + εtcr
H̄ (29)

Game G3: We modify the decryption oracle in game G2, so that it applies the following spe-
cial rejection rule: In Phase 2, if the adversary submits a re-encrypted ciphertext (pk∗,C) with
(u1,u2, e) 6= (u∗

1,u
∗
2, e

∗) but α̂ = α̂∗, then the decryption oracle immediately outputs reject. It is
easy to see that game G2 and game G3 proceed identically until that the decryption oracle in G3

outputs reject by using the rule while the decryption oracle in G2 does not.
We have the same proof as that of Lemma 6.5 in [12] for the following.

|Pr[E3]− Pr[E2]| ≤ εtcr
H + 1/q (30)

Game G4: We modify the decryption oracle in game G3, so that it rejects all invalid re-encrypted
ciphertext (pk∗,C)’s in Phase 1. Let R4 be the event that (pk∗,C) is rejected in G4 that would not
have been rejected in G3. It is clear that games G4 and G3 proceed identically until the event R4

occurs. Hence, we have
|Pr[E4]− Pr[E3]| ≤ Pr[R4] (31)

Lemma 3.
Pr[R4] ≤ εtcr

H̄ + q1/q (32)

15

Proof of Lemma 3: A cannot get (x∗1, x
∗
2, y

∗
1, y

∗
2) from (H̄(x∗1), H̄(x∗2), H̄(y∗1), H̄(y∗2)) due to the target

collision resistance of H̄. Hence, from A’s view, (x∗1, x
∗
2, y

∗
1, y

∗
2) is a random point satisfying eqs.(25)

and (26). Suppose A queries an invalid ciphertext (u1, u2, e, v) to the decryption oracle, where
log u1 = r1 and log u2 = β∗r2 with r1 6= r2. The challenger won’t reject (u1,u2, e,v), unless the
following equation holds

log v = r1x
∗
1 + β∗r2x

∗
2 + α̂r1y

∗
1 + α̂r2β

∗y∗2 (33)

where α̂ = H(u1,u2, e). However, it is clear that eqs.(25), (26) and (33) are linearly independent.
Hence, we get the lemma.

Game G5: We modify Challenge phase in game G4, so that (u∗
1,u

∗
2) = (gr∗1

1 , (ḡ∗2)
r∗2) is randomly

chosen in such a way that an event R5 does not occur, where R5 is the event that (u∗
1,u

∗
2) = (u1,u2)

for some invalid ciphertext which A queries in Phase 1. It is clear that R5 happens with q1/q at
most since r∗1, r

∗
2 are chosen independently and randomly. Hence, we have

|Pr[E5]− Pr[E4]| ≤ q1/q (34)

Game G6: We modify the decryption oracle in game G5, so that it rejects all invalid re-encrypted
ciphertext (pk∗,C)’s in Phase 2. Let R6 be the event that an original ciphertext is rejected in G6

that would not have been rejected under the rules of G5. It is clear that games G6 and G5 proceed
identically until the event R6 occurs. Hence, we have

|Pr[E6]− Pr[E5]| ≤ Pr[R6] (35)

Lemma 4.
Pr[R6] ≤ εtcr

H̄ + q2/q (36)

Proof of Lemma 2: From A’s view, due to the target collision resistance of H̄, (x∗1, x
∗
2, y

∗
1, y

∗
2) is a

random point satisfying eqs.(25), (26) and (37).

log v∗ = r∗1x
∗
1 + β∗r∗2x

∗
2 + α̂∗r∗1y

∗
1 + α̂∗r∗2β

∗y∗2 (37)

Suppose A queries an invalid re-encrypted ciphertext (u1,u2, e,v) to the decryption oracle, where
log u1 = r1 and log u2 = β∗r2 with r1 6= r2. The challenger won’t reject (u1,u2, e,v), unless eq.
(33) holds. However, it is clear that eqs.(25), (26), (33) and (37) are linearly independent. Hence,
we get the lemma.

Game G7: We modify Challenge phase in G6, so that we use a random value from G instead
of F((u∗

1)
z∗1 (u∗

2)
z∗2/β∗

2). Since u∗
1 and u∗

2 are computed randomly and independently, and F is a
CSPRNG, we have

|Pr[E7]− Pr[E6]| ≤ εCSPRNGF (38)

16

Furthermore, it is easy to see that e∗ is computed by one-time pad, and decryption oracle
outputs reject when the input is invalid. Hence, we have

Pr[E7] = 1/2 (39)

Combining eqs.(27)— (32), (34)— (36) and (38)— (39), we have the theorem. ut

5 Comparison

In this section, we compare our proposal with scheme WCY+10 [29] in terms of the computational
cost and ciphertext size. In Table 2, we denote tp, tme, and tre as the timings of a bilinear pairing,
a multi(=sequential)-exponentiation, and a regular exponentiation, respectively. We omit other
timings. We also denote `G1 , `G2 , `G, `q and ` as the bit lengths of elements in bilinear groups G1,
G2 with prime order q, elements in a finite cyclic group G with prime order q, elements in Z∗

q , and
the security parameter, respectively.

Following the relations in [20], we have that bilinear pairings≈ 3 − 5, multi(=sequential)-
exponentiation≈ 1.2, and regular exponentiation= 1. From Table 2, we can see that scheme
WCY+10 needs less storage for the re-encrypted ciphertext and less time for algorithm ReKeyGen
than our proposal, while our proposal are more efficient in algorithms Enc, ReEnc, Dec, which are
used more frequently than ReKeyGen.

Table 2. Comparison between our proposal and scheme WCY+10.

WCY+10 [29] Ours

Comput.
Cost

ReKeyGen 1tre 1tme + 7tre

Enc 2tme + 3tre 1tme + 3tre

ReEnc 3tp + 3tme + 1tre 8tme + 4tre

Dec
Original 3tp + 3tme + 2tre 1tme + 1tre

Re-encrypted 2tp + 1tme + 1tre 4tme + 2tre

Ciphertext
Size

Original 1`q + 3`G1 + ` 4`G

Re-encrypted 1`q + 2`G1 + 1`G2 + ` 12`G + 6`q

6 Conclusion

In this paper, we have proposed a novel proxy re-encryption scheme. To the best of our knowledge,
our proposal is the first unidirectional PRE scheme without pairings while proven-secure in the
standard model. A special property of our proposal is without public verifiability, which is the key
part in all the existing CCA-secure PRE schemes.

References

1. http://tdt.sjtu.edu.cn/~jshao/prcbib.htm.

17

http://tdt.sjtu.edu.cn/~jshao/prcbib.htm

2. G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved Proxy Re-encryption Schemes with Applications
to Secure Distributed Storage. In Internet Society (ISOC): NDSS 2005, pages 29–43, 2005.

3. G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved Proxy Re-encryption Schemes with Applications
to Secure Distributed Storage. ACM Transactions on Information and System Security (TISSEC), 9(1):1–30,
2006.

4. M. Blaze, G. Bleumer, and M. Strauss. Divertible protocols and atomic proxy cryptography. In EUROCRYPT
1998, volume 1403 of LNCS, pages 127–144, 1998.

5. R. Canetti and S. Goldwasser. An efficient threshold public key cryptosystem secure against adaptive chosen
ciphertext attack. In EUROCRYPT 1999, volume 1592 of LNCS, pages 90–106, 1999.

6. R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-based encryption. In EUROCRYPT
2004, volume 3027 of LNCS, pages 207–222, 2004.

7. R. Canetti and S. Hohenberger. Chosen-Ciphertext Secure Proxy Re-Encryption. In ACM CCS 2007, 2007. Full
version: Cryptology ePrint Archieve: Report 2007/171.

8. Y-P. Chiu, C-L. Lei, and C-Y. Huang. Secure multicast using proxy encryption. In ICICS 2005, volume 3783 of
LNCS, pages 280–290, 2005.

9. S.S.M. Chow, J. Weng, Y. Yang, and R.H. Deng. Efficient Unidirectional Proxy Re-Encryption. In Africacrypt
2010, volume 6055 of LNCS, pages 316–332, 2010. Full version: http://eprint.iacr.org/2009/189.

10. C. Chu, S. S. M. Chow J. Weng, J. Zhou, and R. H. Deng. Conditional Proxy Broadcast Re-Encryption . In
ACISP 2009, volume 5594 of LNCS, pages 327–342, 2009.

11. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against adaptive chosen ciphertext
attack. In CRYPTO 1998, volume 1462 of LNCS, pages 13–25, 1998.

12. R. Cramer and V. Shoup. Design and analysis of practical public-key encryption schemes secure against adaptive
chosen ciphertext attack. SIAM Journal on Computing, 33(1):167–226, 2003.

13. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions
on Information Theory, 31(4):469–472, 1985.

14. C. Gentry. Fully homomorphic encryption using ideal lattices. In ACM STOC 2009, pages 169–178, 2009.
15. M. Green and G. Ateniese. Identity-Based Proxy Re-encryption. In ACNS 2007, volume 4521 of LNCS, pages

288–306, 2007. Full version: Cryptology ePrint Archieve: Report 2006/473.
16. T.S. Heydt-Benjamin, H. Chae, B. Defend, and K. Fu. Privacy for public transportation. In PET 2006, volume

4258 of LNCS, pages 1–19, 2005.
17. H. Khurana and H-S. Hahm. Certified mailing lists. In ASIACCS 2006, pages 46–58, 2006.
18. H. Khurana and R. Koleva. Scalable security and accounting services for content-based publish subscribe systems.

International Journal of E-Business Research, 2(3), 2006.
19. H. Khurana, A. Slagell, and R. Bonilla. Sels: A secure e-mail list service. In ACM SAC 2005, pages 306–313,

2005.
20. E. Kiltz. Chosen-ciphertext secure key-encapsulation based on gap hashed diffie-hellman. In PKC 2007, volume

4450 of LNCS, pages 282–297, 2007.
21. K. Kurosawa and Y. Desmedt. A new paradigm of hybrid encryption scheme. In CRYPTO 2004, volume 3152

of LNCS, pages 426–442, 2004.
22. B. Libert and D. Vergnaud. Unidirectional Chosen-Ciphertext Secure Proxy Re-Encryption. In PKC 2008,

volume 4939 of LNCS, pages 360–379, 2008.
23. T. Matsuda, R. Nishimaki, and K. Tanaka. CCA Proxy Re-Encryption without Bilinear Maps in the Standard

Model. In PKC 2010, volume 6056 of LNCS, pages 261–278, 2010.
24. J. Shao and Z. Cao. CCA-Secure Proxy Re-Encryption without Pairings. In PKC 2009, volume 5443 of LNCS,

pages 357–376, 2009. Full version: http://eprint.iacr.org/2009/164.
25. J. Shao, Z. Cao, and P. Liu. CCA-Secure PRE Scheme without Random Oracles. http://eprint.iacr.org/

2010/112.
26. J. Shao, Z. Cao, and P. Liu. SCCR: a generic approach to simultaneously achieve CCA security and collusion-

resistance in proxy re-encryption. SECURITY AND COMMUNICATION NETWORKS, 2009.
27. G. Taban, A.A. Cárdenas, and V.D. Gligor. Towards a secure and interoperable drm architecture. In ACM DRM

2006, pages 69–78, 2006.
28. A. Talmy and O. Dobzinski. Abuse freedom in access control schemes. In AINA 2006, pages 77–86, 2006.
29. J. Weng, M. Chen, Y. Yang, R.H. Deng, K. Chen, and Feng Bao. CCA-Secure Unidirectional Proxy Re-Encryption

in the Adaptive Corruption Model without Random Oracles. Science China Information Sciences, 53(3):593–606,
2010. Updated version: http://eprint.iacr.org/2010/265.

30. J. Weng and Y. Zhao. On the Security of a Bidirectional Proxy Re-Encryption Scheme from PKC 2010. http:

//eprint.iacr.org/2010/319.

18

http://eprint.iacr.org/2009/189
http://eprint.iacr.org/2009/164
http://eprint.iacr.org/2010/112
http://eprint.iacr.org/2010/112
http://eprint.iacr.org/2010/265
http://eprint.iacr.org/2010/319
http://eprint.iacr.org/2010/319

	CCA-Secure PRE Scheme without Public Verifiability
	Jun Shao, Peng Liu and Jian Weng
	Introduction
	Organization
	Preliminaries
	Definitions for Single-Use Unidirectional PRE
	Security Notions for SUPRE

	Scheme IIsm in the Standard Model
	Intuition Behind the Construction
	The Construction of Scheme IIsm
	The Security Analysis of Scheme IIsm

	Comparison
	Conclusion

