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Abstract

Boolean functions with high nonlinearity and good autocorrelation properties play

an important role in the design of block ciphers and stream ciphers. In this paper, we

give a method to construct balanced Boolean functions with n variables, where n ≥ 10 is

an even integer, satisfying strict avalanche criterion (SAC). Compared with the known

balanced Boolean functions with SAC property, the constructed functions possess the

highest nonlinearity and the best global avalanche characteristics (GAC) property.
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1 Introduction

Boolean functions are the building blocks of symmetric cryptographic systems. They are

used for S-box designing in block ciphers and utilized as nonlinear filters and combiners in

stream ciphers. Generally speaking, cryptographic Boolean functions should satisfy various

criteria simultaneously, mainly balancedness, high nonlinearity and good autocorrelation

properties, to resist linear cryptanalysis and differential cryptanalysis particularly.

In 1985, Webster and Tavares introduced the concept of the strict avalanche criterion

(SAC) when searching for principles for designing DES-like data encryption algorithms [2].

Since characterizing an important property that whenever a single input bit is comple-

mented, each of the output bits changes with a probability of one half, immediately SAC

turned out to be a widely accepted cryptographic criterion for Boolean functions. However

in 1995, Zhang and Zheng pointed out that SAC is a measure for local avalanche and hence

has some limitations [12]. So, they introduced the global avalanche characteristics (GAC),

which including two indicators: the absolute indicator and the sum-of-squares indicator, to

forecast the overall avalanche characteristics of a Boolean function [12].
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Table 1. Comparison among balanced SAC Boolean functions

Constructions n even Nf ∆f σf

Canteaut et al. [1] n ≥ 8 2n−1 − 2n/2 2n 22n+2

Stănică [9] n ≥ 4 2n−2 2n 23n−2

Stănică [9] n ≥ 8 2n−1 − 2n/2 2n 22n+2

Stănică and Sung [7] n ≥ 8 2n−1 − 2n/2 − 22n+2

Maitra [11] n ≥ 6 2n−1 − 2n/2−1 − 2n/2−2 2n−1 22n+0.89

Stănică and Sung [8] n ≥ 4 2n−1 − 2n/2 − 22n + 6 · 23n/2

Ours (Theorem 2) n ≥ 10 2n−1 − 2n/2−1 − 2⌈n/4⌉ 2n/2 + 2⌈n/4⌉+1 22n + 5 · 23n/2 + 2n+3

For even number of variables, the well-known bent functions possess possible highest

nonlinearity and the best autocorrelation properties. Unfortunately, bent functions are not

balanced and then are improper for direct use. Therefore, constructing the balanced Boolean

function f with SAC property, which is called balanced SAC Boolean function in this paper

for short, high nonlinearity Nf and very good GAC property (low absolute indicator ∆f and

low sum-of-squares indicator σf ) is very desirable. Addressing this problem, many works

have been done, for instance [1, 7, 9, 11, 8], which are summarized in Table 1.

In this paper we propose a method to construct balanced SAC Boolean functions on even

number of variables with very good GAC property and high nonlinearity. Our construction

is based on a modification of the Maiorana-McFarland (M-M) class bent functions [6]. As

a result, we can obtain a large class of balanced SAC Boolean function f with Nf =

2n−1 −2n/2−1 −2⌈n/4⌉, ∆f ≤ 2n/2 +2⌈n/4⌉+1, and σf ≤ 22n +5 ·23n/2 +2n+2 (n = 0 mod 4)

or σf ≤ 22n + 5 · 23n/2 + 2n+3 (n = 2 mod 4), where n ≥ 10 is an even integer. It is seen

from Table 1 that our Boolean function is the better than all the known results with respect

to all the three parameters.

The organization of this paper is as follows. In Section 2, the notations and the nec-

essary preliminaries required for the subsequent sections are reviewed. In Section 3, our

construction and main results are presented. The proof of the main results are given in

Section 4. Finally, Section 5 concludes the paper.

2 Preliminaries

Let F2 = {0, 1} and F
n
2 be the vector space of n-tuples over F2. In this paper, some

additions of bits will be considered in Z and denoted by +, and some will be computed over

F2 (i.e., modulo 2) and denoted by ⊕. For simplicity, if there is no ambiguity, we shall use

+ to denote the addition of vectors of F
n
2 .
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Denote Bn the set of Boolean functions of n variables. A Boolean function with n

variables is a function from F
n
2 into F2. The basic representation of a Boolean function

f(x1, · · · , xn) is by its truth table, i.e.,

(f(0, · · · , 0, 0), f(0, · · · , 0, 1), f(0, · · · , 1, 0), f(0, · · · , 1, 1), · · · , f(1, · · · , 1, 1)).

Furthermore, any Boolean function f ∈ Bn can be uniquely represented by a multivariate

polynomial over F2, called the algebraic normal form (ANF), of the form:

f(x1, · · · , xn) =
⊕

u∈F
n
2

au

(

n
∏

j=1

x
uj

j

)

,

where au ∈ F2 and u = (u1, · · · , un). The algebraic degree, denoted by deg(f), is the

maximal value of wH(u) such that au 6= 0, where the Hamming weight wH(u) of a binary

vector u ∈ F
n
2 is the number of its nonzero coordinates (i.e. the size of {1 ≤ i ≤ n |ui 6= 0}).

A Boolean function is said to be an affine function if its degree is at most 1. The set of all

affine functions is denoted by An. To resist the Berlekamp-Massey attack [5], any Boolean

function used in a cryptosystem should have high algebraic degree.

Another important cryptographic property for a Boolean function is nonlinearity. The

nonlinearity Nf of a Boolean function f ∈ Bn is defined as

Nf = min
g∈An

(dH(f, g)),

where dH(f, g) is the Hamming distance between f and g, i.e., dH(f, g) = |{x ∈ F
n
2 | f(x) 6=

g(x)}|. In other words, the nonlinearity Nf is the minimum Hamming distance between f

and all the affine functions.

The nonlinearity can also be expressed by the Walsh transform of f . Let x = (x1, x2, · · · , xn)

and α = (α1, α2, · · · , αn) both belong to F
n
2 and x ·α = x1α1 ⊕ x2α2 ⊕ · · · ⊕ xnαn, then the

Walsh transform of f ∈ Bn at α is defined by

Wf (α) =
∑

x∈F
n
2

(−1)f(x)+α·x.

We say that f ∈ Bn is balanced if its Hamming weight equals 2n−1, where the Hamming

weight of a Boolean function f ∈ Bn (denoted by wH(f)) is the size of its support {x ∈

F
n
2 | f(x) 6= 0}. Obviously, f is balanced if and only if Wf (0) = 0. Then, by the Walsh

transform the nonlinearity of a Boolean function f ∈ Bn can be computed as

Nf = 2n−1 −
1

2
max
α∈F

n
2

|Wf (α)|.
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Any cryptographic Boolean function should have high nonlinearity for resisting the Best

Affine Approximation (BAA) [4]. So, the value of maxα∈Fn
2
|Wf (α)| should be low. However,

it is limited by the Parseval’s equality, which states that the Walsh transform of a Boolean

function f ∈ Bn satisfies
∑

α∈F
n
2

W 2
f (α) = 22n.

Consequently, Nf ≤ 2n−1−2n/2−1 for any Boolean function f ∈ Bn. The functions achieving

this bound are called bent functions [6], which only exist for even n.

For reducing the likelihood between the outputs and the inputs of a Boolean functions, it

is desirable for function to have low additive autocorrelation. The autocorrelation function

of a Boolean function f at the shift α is defined by

Cf (α) =
∑

x∈Fn
2

(−1)f(x)+f(x+α).

f is said to satisfy strict avalanche criterion (SAC) if

Cf (α) = 0, wH(α) = 1.

Global avalanche characteristics (GAC) describes the overall avalanche characteristics

of f , which are related to two indicators: the absolute indicator

∆f = max
α6=0

|Cf (α)|

and the sum-of-squares indicator

σf =
∑

α∈Fn
2

C2
f (α).

An important relation between σf and the Walsh transform as follows [3]

W 2
f (b) =

∑

α∈F
n
2

Cf (α)(−1)b·α. (1)

which results in
∑

α∈F
n
2

W 4
f (α) = 2nσf . (2)

3 Construction and Main results

This section presents a method for constructing balanced SAC Boolean functions with

very good GAC and high nonlinearity properties.
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For simplicity, denote x′ = (x1, · · · , xn/2−1) for a given vector x = (x1, · · · , xn/2) ∈ F
n/2
2

from now on.

Construction : Let n ≥ 4 be an even number. Let x = (x1, · · · , xn/2), and y =

(y1, · · · , yn/2). Let S = F
n/2
2 \ {0,1} and T = F

n/2
2 \ {0,1}, where 0 = (0, · · · , 0) ∈ F

n/2
2

and 1 = (1, · · · , 1) ∈ F
n/2
2 . Let φ be a bijective mapping from S to T satisfying φ(x) =

φ(x + 1) + 1 when wH(x) = 1.

Then we construct a cryptographic Boolean function f ∈ Bn as follows:

f(x, y) =















φ(x) · y, if x 6= 0 and x 6= 1

g0(y), if x = 0

g1(y), if x = 1

(3)

where

g0(y) = (1 · y) · h(y′)

and

g1(y) = g0(y) + 1 · y + 1

in which h(y′) is an (n/2− 1)-variable balanced Boolean function with nonlinearity as large

as possible, i.e., max
α∈F

n/2−1

2

|Wh(α)| ≤ 2⌈
n/2−1−1

2
⌉+1 = 2⌈n/4⌉ and Nh ≥ 2n/2−2 − 2⌈n/4⌉−1.

We have the following main results.

Theorem 1. Let n ≥ 4 be an even number. Let f be an n-variable Boolean function given

by (3). Then the following statements hold:

1) f is balanced;

2) Nf ≥ 2n−1 − 2n/2−1 − 2⌈n/4⌉;

3) f satisfy SAC;

4) ∆f ≤ 2n/2+1;

5) σf ≤

{

22n + 5 · 23n/2 + 2n+3, if n = 2 (mod 4)

22n + 5 · 23n/2 + 2n+2, if n = 0 (mod 4).

Example 1. Let n = 12. Let φ be a bijective mapping from F
6
2\{0,1} to F

6
2\{0,1} such that

φ(x) = x, where x ∈ F
6
2\{0,1}. Choose h = (1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1,

0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0), which has maxβ∈F
5

2

|Wh(β)| = 2⌈n/4⌉ = 8 and ∆h = 2n/2−1 = 32.

Then it is checked by program that the f given by (3) is a balanced Boolean function satisfy

SAC, and f has the following parameters
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1) Nf = 2008;

2) ∆f = 128;

3) σf = 18104320,

which coincides with Theorem 1.

From the proof of Theorem 1 which will be given in next section, it is easy to see that

the nonlinearity and GAC property of f ∈ Bn heavily rely on the nonlinearity and absolute

indicator of the balanced function h(y′) ∈ Bn/2−1.

Therefore, firstly we can lower the the absolute indicator ∆f by choosing some spe-

cific functions h(y′) ∈ Bn/2−1 with small absolute indicator ∆h, for example the Boolean

functions by Zhang and Zheng in [12].

Theorem 2. Let n ≥ 10 be an even number. Let h be an (n/2−1)-variable Boolean function

given in [12] satisfying

• max
α∈F

n/2−1

2

|Wh(α)| ≤ 2n/4 and ∆h ≤ 2n/4 for n = 0 (mod 4), or

• max
α∈F

n/2−1

2

|Wh(α)| ≤ 2(n+2)/4 and ∆h ≤ 2(n+2)/4 for n = 2 (mod 4)

Then,

∆f ≤ 2n/2 + 2⌈n/4⌉+1.

Example 2. Let n = 12. Let φ be a bijective mapping from F
6
2\{0,1} to F

6
2\{0,1} such that

φ(x) = x, where x ∈ F
6
2 \ {0,1}. Choose h as a 5-variable Boolean function given by (13)

in [12], i.e., h = (1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1),

which has maxβ∈F
5

2

|Wh(β)| = ∆h = 2⌈n/4⌉ = 8. Then verified by program, f constructed by

(3) satisfies that

1) ∆f = 80;

2) σf = 18104320,

which is consistent with Theorem 2. In contrast to the previous one in Example 1, this

function f has all the same properties but smaller absolute indicator ∆f .

Secondly for some specific cases, it is possible to improve the nonlinearity and lower GAC

indicators of f simultaneously by taking the appropriate functions in [10]. For example,

in [10] Maitra has constructed a balanced function h ∈ B15 with Nh = 214 − 27 + 6 and

∆h ≤ 2(15+1)/2 − 16. Based on it, we can construct a balanced SAC Boolean function

f ∈ B32 with Nf ≥ 231 − 215 − 28 + 12, ∆f ≤ 216 + 29 − 32 and σf < 264 + 5 · 248 + 234,

whereas by Theorem 2 Nf ≥ 231 − 215 − 28, ∆f ≤ 216 + 29 and σf ≤ 264 + 5 · 248 + 234.
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4 The Proof of Main results

In order to prove our main results, we need the following three useful lemmas.

Lemma 1. Given β ∈ F
n
2 , then

• β = 0 or β = 1, then Wg0
(β) = 2n/2−1.

• β 6= 0 and β 6= 1, then |Wg0
(β)| ≤ 2⌈

n
4
⌉.

Proof : Let β = (β1, · · · , β2n/2). By definition, we have

Wg0(y)(β) =
∑

y∈F
n/2

2

(−1)g0(y)+β·y

=
∑

1·y=1

(−1)h(y′)+β′·y′+βn/2·yn/2 +
∑

1·y=0

(−1)β
′·y′+βn/2·yn/2

=
∑

1′·y′=1,yn/2=0

(−1)h(y′)+β′·y′

+
∑

1′·y′=0,yn/2=1

(−1)h(y′)+β′·y′+βn/2

+
∑

1
′·y′=0,yn/2=0

(−1)β
′·y′

+
∑

1
′·y′=1,yn/2=1

(−1)β
′·y′+βn/2

When βn/2 = 0, it becomes

Wg0(y)(β) =
∑

y′∈F
n/2−1

2

(−1)h(y′)+β′·y′

+
∑

y′∈F
n/2−1

2

(−1)β
′·y′

=

{

Wh(β′), if β 6= 0

2n/2−1 + Wh(0), if β = 0.

When βn/2 = 1, set γ′ = β′ + 1′. It gives

Wg0(y)(β) = −
∑

y′∈F
n/2−1

2

(−1)h(y′)+γ′·y′

+
∑

y′∈F
n/2−1

2

(−1)γ
′·y′

=

{

−Wh(β′ + 1′), if β 6= 1

2n/2−1 − Wh(0), if β = 1.

Recall that h is balanced, i.e., Wh(0) = 0, and max
β∈F

n/2−1

2

|Wh(β)| ≤ 2⌈n/4⌉, we finish

the proof.

�

Lemma 2. Let s(x′) be an (n/2 − 1)-variable Boolean function. Then,

∑

1·x=c

(−1)s(x
′) =

∑

y′∈F
n/2−1

2

(−1)s(x
′)

where c = 0 or c = 1 is a constant.
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Proof : Without loss of generality, assume that c = 0. Then, the equation can be

rewritten as

∑

1·x=c

(−1)s(x
′) =

∑

1′·x′=0,xn/2=0

(−1)s(x
′) +

∑

1′·x′=1,xn/2=1

(−1)s(x
′),

which leads to the conclusion.

�

Lemma 3. Define

Γ =
∑

1·b=0

(

(

∑

1·y=0

(−1)g0(y)+g0(y+b)
)2

+
(

∑

1·y=1

(−1)g0(y)+g0(y+b)
)2

)

,

then

Γ ≤

{

23n/2−3 + 2n, if n = 2 (mod 4)

23n/2−3 + 2n−1, if n = 0 (mod 4).

Proof : From the construction of the function g0 over F
n/2
2 , we get

Γ =
∑

1·b=0

(

(

∑

1·y=0

(−1)(1·y)·h(y′)+(1·(y+b))·h(y′+b′)
)2

+
(

∑

1·y=1

(−1)(1·y)·h(y′)+(1·(y+b))·h(y′+b′)
)2

)

= 23n/2−3 +
∑

1·b=0

(

∑

1·y=1

(−1)h(y′)+h(y′+b′)
)2

= 23n/2−3 +
∑

b′∈F
n/2−1

2

(

∑

y′∈F
n/2−1

2

(−1)h(y′)+h(y′+b′)
)2

= 23n/2−3 +
∑

b′∈F
n/2−1

2

C2
h(b′)

where we use Lemma 2 twice in the third identity.

According to the equations
∑

α∈F
n/2−1

2

W 4
h (α) = 2n/2−1 ·

∑

β∈F
n/2−1

2

C2
h(β) by (2) and

∑

α∈F
n/2−1

2

W 2
h (α) = 2n−2 by Parseval’s equality, we can easily deduce that

∑

β∈F
n/2−1

2

C2
h(β) ≤ 2n/2−1 · max

α∈F
n/2−1

2

W 2
h (α)

≤

{

2n, if n = 2 (mod 4)

2n−1, if n = 0 (mod 4).

This completes the proof.

�

Now, we are able to to prove Theorem 1.
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Proof of Theorem 1: 1) and 2). For α ∈ F
n/2
2 and β ∈ F

n/2
2 , we have

Wf (α, β) =
∑

x∈S,y∈F
n
2

(−1)φ(x)·y+α·x+β·y +
∑

y∈F
n/2

2

(−1)g0(y)+β·y +
∑

y∈F
n/2

2

(−1)g1(y)+1·α+β·y

=
∑

x∈S

(−1)α·x
∑

y∈F
n/2

2

(−1)(φ(x)+β)·y +
∑

y∈F
n/2

2

(−1)g0(y)+β·y +
∑

y∈F
n/2

2

(−1)g0(y)+β·y+1·y+1·α+1

=















(−1)φ
−1(β)·α · 2n/2 + Wg0

(β) − (−1)1·αWg0
(β + 1), if β 6= 0 and β 6= 1

Wg0
(0) − (−1)1·αWg0

(1), if β = 0

Wg0
(1) − (−1)1·αWg0

(0), if β = 1.

Hence, Wf (0, 0) = 0 and |Wf (α, β)| ≤ 2n/2 + 2⌈
n
4
⌉+1. The assertions of 1) and 2) then

follow.

3). Notice that

Cf (a, b) =
∑

x,y∈F
n/2

2

(−1)f(x,y)+f(x+a,y+b)

which can be classified into four cases:

• a = 0 and b = 0. Obviously Cf (a, b) = 2n.

• a = 0 and b 6= 0.

Cf (a, b)

=
∑

x∈S,y∈F
n/2

2

(−1)φ(x)·b +
∑

y∈F
n/2

2

(−1)g0(y)+g0(y+b) +
∑

y∈F
n/2

2

(−1)g1(y)+g1(y+b)

= 2n/2
∑

x∈S

(−1)φ(x)·b +
∑

y∈F
n/2

2

(−1)g0(y)+g0(y+b) + (−1)1·b
∑

y∈F
n/2

2

(−1)g0(y)+g0(y+b)

= 2n/2(
∑

z∈F
n/2

2

(−1)z·b − (−1)0·b − (−1)1·b) + (1 + (−1)1·b)Cg0
(b)

= −2n/2(1 + (−1)1·b) + Cg0
(b)(1 + (−1)1·b)

=

{

0, if 1 · b = 1

−2n/2+1 + 2Cg0
(b), if 1 · b = 0 and b 6= 0,

(4)

where the substitution z = φ(x) is used in the third identity.
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• a = 1.

Cf (a, b)

=
∑

x∈S

(−1)φ(x+1)·b
∑

y∈F
n/2

2

(−1)(φ(x)+φ(x+1))·y +
∑

y∈F
n/2

2

(−1)g0(y)+g1(y+b) +
∑

y∈F
n/2

2

(−1)g1(y)+g0(y+b)

=
∑

y∈F
n/2

2

(−1)g0(y)+g0(y+b)+1·(y+b)+1 +
∑

y∈F
n/2

2

(−1)g0(y)+g0(y+b)+1·y+1

=























0, if b = 0

0, if 1 · b = 1

−2
∑

y∈F
n/2

2

(−1)g0(y)+g0(y+b)+1·y, if 1 · b = 0 and b 6= 0.

• a 6= 0 and a 6= 1.

Cf (a, b)

=
∑

x∈S\{a,a+1},y∈F
n/2

2

(−1)f(x,y)+f(x+a,y+b)

+
∑

y∈F
n/2

2

(−1)f(a,y)+f(0,y+b) +
∑

y∈F
n/2

2

(−1)f(a+1,y)+f(1,y+b)

+
∑

y∈F
n/2

2

(−1)f(0,y)+f(a,y+b) +
∑

,y∈F
n/2

2

(−1)f(1,y)+f(a+1,y+b)

=
∑

x∈S\{a,1+a}

(−1)φ(x+a)·b
∑

y∈F
n/2

2

(−1)(φ(x)+φ(x+a))·y

+
∑

y∈F
n/2

2

(−1)φ(a)·y+g0(y+b) +
∑

y∈F
n/2

2

(−1)φ(a+1)·y+g1(y+b)

+
∑

y∈F
n/2

2

(−1)g0(y)+φ(a)·(y+b) +
∑

y∈F
n/2

2

(−1)g1(y)+φ(a+1)·(y+b)

= 2 · (−1)φ(a)·b · Wg0
(φ(a)) + 2 · (−1)φ(a+1)·b · Wg1

(φ(a + 1))

= 2 · (−1)φ(a)·b · Wg0
(φ(a)) − 2 · (−1)φ(a+1)·b · Wg0

(φ(a + 1) + 1) (5)

where we make use of the fact that

Wg1
(φ(a + 1)) = −Wg0

(φ(a + 1) + 1)

since g1(y) = g0(y) + 1 · y + 1.

If wH(a, b) = 1, there are two subcases (a = 0 and wH(b) = 1) or (wH(a) = 1 and

b = 0). For the former, it follows from (4) that Cf (a, b) = 0. Regarding the later, we see

Cf (a, b) = 0 from (5) where φ(a) = φ(a + 1) + 1 for wH(a) = 1. Therefore, f satisfies SAC.
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4) We prove that ∆f = max
a6=0 or b6=0

|Cf (a, b)| ≤ 2n/2+1 by further investigating the fol-

lowing three subcases in above cases.

• a = 0, 1 · b = 0, and b 6= 0. we have

Cf (a, b) = −2n/2+1 + 2
∑

y∈F
n/2

2

(−1)g0(y)+g0(y+b)

= −2n/2+1 + 2
(

∑

1·y=0

(−1)(1·y)·h(y′)+(1·(y+b))·h(y′+b′)

+
∑

1·y=1

(−1)(1·y)·h(y′)+(1·(y+b))·h(y′+b′)
)

= −2n/2+1 + 2 · 2n/2−1 + 2
∑

y′∈F
n/2−1

2

(−1)h(y′)+h(y′+b′)

= −2n/2 + 2
∑

y′∈F
n/2−1

2

(−1)h(y′)+h(y′+b′) (6)

where the last identity follow from Lemma 2.

Substituting the trivial bound that ∆h ≤ 2n/2−1 into (6), we get

|Cf (a, b)| ≤ 2n/2+1.

• a = 1, 1 · b = 0, and b 6= 0 . Similarly, we have

|Cf (a, b)| ≤ 2n/2+1.

• a 6= 0 and a 6= 1. Hence by Lemma 1,

|Cf (a, b)| ≤ 4 max
a6=0 and a6=1

(|Wg0
(φ(a))|, |Wg0

(φ(a + 1) + 1)|)

which is ≤ 4 · 2⌈n/4⌉ = 2⌈n/4⌉+2.

5) Summing all the nonzero value C2
f (a, b), we have

σf = 22n + 4
∑

a∈F
n/2

2
\{0,1},b∈F

n/2

2

(

(−1)φ(a)·bWg0
(φ(a)) − (−1)φ(a+1)·bWg0

(φ(a + 1) + 1)
)2

+4
∑

a=0,b6=0,1·b=0

(−2n/2 + Cg0
(b))2 + 4

∑

a=1,b6=0,1·b=0

(
∑

y∈F
n/2

2

(−1)g0(y)+g0(y+b)+1·y+1)2

= 22n + 4S + 4U (7)

where

S =
∑

a∈F
n/2

2
\{0,1},b∈F

n/2

2

(

(−1)φ(a)·bWg0
(φ(a)) − (−1)φ(a+1)·bWg0

(φ(a + 1) + 1)
)2
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and

U =
∑

1·b=0,b6=0

(−2n/2 + Cg0
(b))2 +

∑

1·b=0,b6=0

(
∑

y∈F
n/2

2

(−1)g0(y)+g0(y+b)+1·y+1)2.

In what follows, we calculate S and U respectively.

Firstly,

S =
∑

a∈F
n/2

2
\{0,1}

∑

b∈F
n/2

2

(

W 2
g0

(φ(a)) + W 2
g0

(φ(a + 1) + 1)

−2
∑

a∈F
n/2

2
\{0,1}

∑

b∈F
n/2

2

(−1)(φ(a)+φ(a+1))·bWg0
(φ(a)) · Wg0

(φ(a + 1) + 1)
)

= 2n/2 ·
∑

a∈F
n/2

2
\{0,1}

(

W 2
g0

(φ(a)) + W 2
g0

(φ(a + 1) + 1)
)

−2
∑

a∈F
n/2

2
\{0,1}

Wg0
(φ(a)) · Wg0

(φ(a + 1) + 1)
∑

b∈F
n/2

2

(−1)(φ(a)+φ(a+1))·b

= 2n/2 ·
(

∑

c∈F
n/2

2

W 2
g0

(c) +
∑

d∈F
n/2

2

W 2
g0

(d) − 2W 2
g0

(0) − 2W 2
g0

(1)
)

+ 0

= 2n/2 ·
(

2n + 2n − 2W 2
g0

(0) − 2W 2
g0

(1))
)

= 2n/2 ·
(

2n + 2n − 4 · (2n/2−1)2
)

= 23n/2 (8)

where we set two permutations c = φ(a) and d = φ(a + 1) + 1 in the third identity and use

the Parseval’s equality
∑

c∈F
n/2

2

W 2
g0

(c) =
∑

d∈F
n/2

2

W 2
g0

(d) = 2n in the fourth identity.

Next,

U = 2n · (2n/2−1 − 1) +
∑

1·b=0,b6=0

C2
g0

(b) − 2n/2+1
∑

1·b=0,b6=0

Cg0
(b)

+
∑

1·b=0,b6=0

(
∑

y∈F
n/2

2

(−1)g0(y)+g0(y+b)+1·y+1)2 (9)

= 23n/2−1 − 2n + U1 − 2n/2+1U2
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where

U1 =
∑

1·b=0,b6=0

C2
g0

(b) +
∑

1·b=0,b6=0

(
∑

y∈F
n/2

2

(−1)g0(y)+g0(y+b)+1·y+1)2

=
∑

1·b=0

(

(
∑

y∈F
n/2

2

(−1)g0(y)+g0(y+b))2 + (
∑

y∈F
n/2

2

(−1)g0(y)+g0(y+b)+1·y+1)2
)

− 2n

=
∑

1·b=0

(

(

∑

1·y=0

(−1)g0(y)+g0(y+b) +
∑

1·y=1

(−1)g0(y)+g0(y+b)
)2

+
(

∑

1·y=1

(−1)g0(y)+g0(y+b) −
∑

1·y=0

(−1)g0(y)+g0(y+b)
)2

)

− 2n

=
∑

1·b=0

(

2
(

∑

1·y=0

(−1)g0(y)+g0(y+b)
)2

+ 2
(

∑

1·y=1

(−1)g0(y)+g0(y+b)
)2

)

− 2n (10)

which is ≤ 23n/2−2 + 2n for n = 2 (mod 4) and ≤ 23n/2−2 for n = 0 (mod 4) by Lemma 3,

and

U2 =
∑

1·b=0,b6=0

Cg0
(b) =

∑

1·b=0

Cg0
(b) − 2n/2.

Note that from (1) we have

∑

1·b=0

Cg0
(b) −

∑

1·b=1

Cg0
(b) =

∑

b∈F
n/2

2

Cg0
(b)(−1)1·b = W 2

g0
(1) = 2n−2

and

∑

1·b=0

Cg0
(b) +

∑

1·b=1

Cg0
(b) =

∑

b∈F
n/2

2

Cg0
(b)(−1)0·b = W 2

g0
(0) = 2n−2.

Then, we have

∑

1·b=0

Cg0
(b) = 2n−2

which leads to

U2 = 2n−2 − 2n/2. (11)

Combining (9)-(11), we have

U = 23n/2−1 − 2n + U1 − 2n/2+1U2

≤

{

23n/2−2 + 2n+1, if n = 2 (mod 4)

23n/2−2 + 2n, if n = 0 (mod 4).

Associated with (7) and (8), it results in the assertion 5).

�
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5 Conclusion

In this paper, we describe a method for constructing balanced SAC Boolean functions

on even number of variables with very good GAC property and high nonlinearity. As a

consequence, we obtain a large class of balanced SAC Boolean functions which provide

currently best known GAC property.
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