
TASTY: Tool for Automating Secure Two-partY
computations

(Full Version)

Wilko Henecka, Stefan Kögl, Ahmad-Reza Sadeghi,
Thomas Schneider, Immo Wehrenberg

System Security Lab
Ruhr-University Bochum

Germany
{ahmad.sadeghi,thomas.schneider}@trust.rub.de,

{wilko.henecka,stefan.koegl,immo.wehrenberg}@rub.de

ABSTRACT
Secure two-party computation allows two untrusting parties
to jointly compute an arbitrary function on their respective
private inputs while revealing no information beyond the
outcome. Existing cryptographic compilers can automati-
cally generate secure computation protocols from high-level
specifications, but are often limited in their use and effi-
ciency of generated protocols as they are based on either gar-
bled circuits or (additively) homomorphic encryption only.

In this paper we present TASTY, a novel tool for automat-
ing, i.e., describing, generating, executing, benchmarking,
and comparing, efficient secure two-party computation pro-
tocols. TASTY is a new compiler that can generate pro-
tocols based on homomorphic encryption and efficient gar-
bled circuits as well as combinations of both, which often
yields the most efficient protocols available today. The user
provides a high-level description of the computations to be
performed on encrypted data in a domain-specific language.
This is automatically transformed into a protocol. TASTY
provides most recent techniques and optimizations for prac-
tical secure two-party computation with low online latency.
Moreover, it allows to efficiently evaluate circuits generated
by the well-known Fairplay compiler.

We use TASTY to compare protocols for secure multipli-
cation based on homomorphic encryption with those based
on garbled circuits and highly efficient Karatsuba multipli-
cation. Further, we show how TASTY improves the online
latency for securely evaluating the AES functionality by an
order of magnitude compared to previous software imple-
mentations. TASTY allows to automatically generate effi-
cient secure protocols for many privacy-preserving applica-
tions where we consider the use cases for private set inter-
section and face recognition protocols.

A short version of this paper appears in ACM CCS’10 [23].

Categories and Subject Descriptors
D.0 [Software]: General

General Terms
Design, Security, Languages, Performance, Measurement

Keywords
Cryptography, secure function evaluation, compiler, garbled
circuits, homomorphic encryption

1. INTRODUCTION
The design of efficient secure two-party computation pro-

tocols is vital for a variety of security-critical applications
with sophisticated privacy and security requirements such
as electronic auctions [40], data mining [34], remote diag-
nostics [7], medical data classification [1], or face recognition
[15, 50, 44] to name some.

Modern cryptography provides various tools for secure
computation. The concept of two-party Secure Function
Evaluation (SFE) was introduced in 1982 by Yao [59]. The
idea is to let two mutually mistrusting parties compute an
arbitrary function (known by both)1 on their private inputs
without revealing any information about their inputs beyond
the function’s output. However, the real-world deployment
of SFE was believed to be very limited and expensive for a
relatively long time. Fortunately, the cost of SFE has been
dramatically reduced in the recent years thanks to many
algorithmic improvements and automatic tools, as well as
faster computing platforms and communication networks.

For several years, two different approaches for secure two-
party computation have co-existed. One of them is based
on homomorphic encryption (HE). Here one party sends its
encrypted inputs to the other party, who then computes
the desired function under encryption using the homomor-
phic properties of the cryptosystem, and sends back the en-
crypted result. Popular examples are the additively homo-
morphic cryptosystems of Paillier [45] and Damg̊ard-Jurik
[12], and the recent fully homomorphic schemes [17, 13, 55].
The other approach is based on garbled circuits (GC), intro-
duced by Yao [60], that works as follows: one party (con-

1Universal circuits [58, 32, 49] allow to hide the function
from one party.

structor) “encrypts” the circuit (using symmetric keys), the
other party (evaluator) obliviously obtains the keys corre-
sponding to both parties’ inputs and the garbled circuit,
and is able to decrypt the corresponding output value. Both
approaches have their respective advantages and disadvan-
tages, i.e., GC requires to transfer the garbled circuit (com-
munication complexity is at least linear in the size of the
circuit) but allows to pre-compute almost all expensive oper-
ations resulting in a low latency of the online phase, whereas
most HE schemes require relatively expensive public-key op-
erations in the online phase but can result in a smaller overall
communication complexity.

In the recent years several cryptographic compilers and
specification languages have been proposed that, after a pro-
grammer has manually mapped an existing algorithm to in-
teger arithmetics, automatically compile this into SFE pro-
tocols. We will give an overview on such previous works in
§1.2. However, such tools are currently restricted to gen-
erating protocols based on only one SFE paradigm, i.e.,
use either garbled circuits (GC) or homomorphic encryp-
tion (HE), which often results in protocols with suboptimal
efficiency. For instance HE allows efficient addition and mul-
tiplication of large values (as confirmed by our implementa-
tion results in §5.1.2), whereas GCs are better for non-linear
functionalities such as comparison [31]. By combining both
approaches, relatively efficient protocols can be obtained
when designing privacy-preserving applications, e.g., remote
diagnostics [7], classification [1], or face recognition [50].

The main goal of this work is the design and implemen-
tation of the first compiler, we call TASTY, that can auto-
matically generate efficient protocols based on homomorphic
encryption (HE) and garbled circuits (GC) as well as combi-
nations of both from a high-level description of the protocol.

Finally, we would like to stress that although fully homo-
morphic encryption schemes have emerged recently [17, 13,
55], they are still not efficient enough to be used in practi-
cal applications. Nevertheless, they could be integrated into
our compiler framework once they are efficient enough.

1.1 Our Contribution and Outline
In this paper, we present the following contributions in

the respective sections.
SFE Compiler: We present TASTY, a tool that allows

to automatically generate, benchmark and compare the per-
formance of efficient two-party SFE protocols in the semi-
honest model (§4). We show how TASTY is related to, im-
proves over, and can be combined with existing tools for
automatic generation of (two-party) SFE protocols (§1.2).

Specification Language: TASTYL, the TASTY input
Language, allows to describe SFE protocols as sequence of
operations on encrypted data based on combinations of Gar-
bled Circuits (GC) and Homomorphic Encryption (HE). We
review the underlying theoretical framework for such modu-
larly composed SFE protocols [31] in §2. TASTYL is based
on the Python programming language and hides technical
cryptographic details from the programmer (§4.1).

Efficient Building Blocks: TASTY implements effi-
cient building blocks for HE and GC which allow to shift
most of the complexity into the less time critical setup phase
resulting in SFE protocols with a low-latency online phase
(§4.3). While the implemented techniques have been known
before, their combination and implementation in a single
package is unique and useful. We show how the combina-

tion of these techniques speeds up the online phase for secure
evaluation of AES (a large circuit with more than 30, 000
gates) compared to the currently fastest software implemen-
tation of GCs [48] from 5 s to only 0.5 s, while the total costs
for setup plus online phase stay almost the same (§5.2).

Circuit Optimizations: Additionally, TASTY has built-
in tools for on-the-fly generation and minimization of boolean
circuits (§4.3). As new circuit building block we implement
fast multiplication circuits based on Karatsuba method [28]
that are more efficient than textbook multiplication (used in
previous SFE tools), already for 20 bit numbers; for multipli-
cation of 128 bit values, it is more efficient by 45% (§5.1.1).

Benchmarking: Using TASTY, we obtain measurements
for a detailed performance comparison of multiplication pro-
tocols based on GCs with those based on HE. Our experi-
ments show that GC-based multiplication has large commu-
nication and time complexity in the setup phase, but results
in a more efficient online time than HE-based multiplication
for small values (§5.1.2). In particular, multiplication of two
garbled values with bitlength ` ≤ 16 bits requires less on-
line communication and time than the multiplication of two
homomorphically encrypted values for short-term security.

Applications: We show that TASTY is a usable and
useful tool for describing and automatically generating ef-
ficient protocols for several privacy-preserving applications.
We implemented set intersection and face recognition (§3).

The paper is concluded with an overview on future work
which could be based on the TASTY framework (§6).

1.2 Related Work
While the theoretical foundations of two-party Secure

Function Evaluation (SFE) have been laid already in the
eighties [59, 60], recent optimizations and prototype imple-
mentations show that SFE is ready to be used in practical
applications (e.g., [35, 48]). To allow the deployment of SFE
in a wide range of privacy-preserving applications it is not
only important to maximize the efficiency of SFE proto-
cols, but also to make SFE usable by automatically generat-
ing protocols from high-level descriptions. For this, several
frameworks for SFE consisting of languages and correspond-
ing tools have been developed in the last years. We review
these proposals briefly in the following.

Existing SFE frameworks can be divided into three classes
on different abstraction levels as summarized in Table 1.

Table 1: Abstraction Levels for Automatic Genera-
tion of SFE Protocols

Abstraction Level Primitives

Function Description I/O, computation
Protocol Description I/O, enc/dec, compu-

tation under encryption
Protocol Implementation I/O, protocols, messages,

cryptographic primitives

Function Description languages allow to specify what
function should be computed securely. The function is de-
scribed in a domain-specific high-level programming lan-
guage which allows programmers to write programs using
SFE without any expert knowledge about SFE. Functions

described in such languages can then be (formally) analyzed
to ensure security of the function (e.g., no information leak
to the other party) and are compiled (potentially through
lower-level SFE languages) into SFE protocols. Examples
are Fairplay’s Secure Function Definition Language (SFDL)
[37, 3] which can be compiled to boolean circuits (see below),
or the Secure Multiparty Computation Language (SMCL)
[42] and its Python-based successor PySMCL [41] which al-
low compilation into arithmetic circuit-based secure multi-
party computation (SMPC) protocols such as the Virtual
Ideal Functionality Framework (VIFF) [11].

Protocol Description languages allow to specify how
the SFE protocol is composed as sequence of basic opera-
tions on encrypted (or secret-shared data). Examples (de-
scribed in more detail below) are VIFF [11], the Secure
Multiparty Computation language (SMC) [43, 54], Share-
mind [5], and the compiler of MacKenzie et al. [36]. These
languages allow to specify SFE protocols while abstracting
away the details of the underlying cryptographic protocols.
The language and compiler we present in this paper also fall
into this class. However, in contrast to previous works which
were restricted to using homomorphic encryption only, our
compiler TASTY allows arbitrary combinations of compu-
tations under encryption based on garbled circuits and/or
homomorphic encryption for highly efficient SFE protocols.

Protocol Implementation languages allow to describe
how exactly the target SFE protocol is composed as sequence
of basic cryptographic protocol building blocks. They reside
at the lowest level of the abstraction hierarchy and require
a substantial amount of expert knowledge in cryptographic
protocol design. For example the L1 language [52] allows
to describe secure computation protocols as sequence of ba-
sic primitives such as oblivious transfer (OT), homomor-
phic encryption/decryption, creation and evaluation of gar-
bled circuits, and messages to be exchanged. Qilin [38] is a
Java library for rapid prototyping of cryptographic protocols
which currently provides common cryptographic protocols
(e.g., OT [39] and coin flipping) using cryptographic prim-
itives (e.g., Pedersen Commitment [47] and ElGamal [14])
implemented with elliptic curves.

Next we describe SFE frameworks which are closely re-
lated to ours. In contrast to TASTY, the existing SFE
frameworks are based on either garbled circuits (GC) or ho-
momorphic encryption (HE), but not combinations of both.

Garbled Circuits (GC). The most prominent example
for automatic generation of SFE protocols is Fairplay [37]
which is based on GCs. Fairplay provides a high-level func-
tion description language, SFDL, which allows to specify
the function to be computed securely, i.e., the inputs and
outputs of the involved parties, and how the outputs are to
be computed from the inputs. The language resembles a
simplified version of a hardware description language, such
as Verilog or VHDL2, and supports types, variables, func-
tions, boolean operators (∧,∨,⊕, . . .), arithmetic operators
(+,−), comparison (<,≥,=, . . .) and control structures like
if-then-else or for-loops with constant range. The Fairplay
compiler compiles and optimizes an SFDL program into a
boolean circuit which is stored in a file. The circuit can
then be evaluated using the Fairplay runtime environment,
two Java programs which securely evaluate the circuit us-

2Very high speed integrated circuit Hardware Description
Language

ing Yao’s garbled circuit protocol, communicating over a
TCP socket. Fairplay is supplemented by FairplayMP [3], a
multi-party version of Fairplay suited for three or more par-
ties with the more powerful SFDL 2 input language (with
support for ∗, / and generic functions) and a corresponding
circuit compiler. TASTY can serve as efficient runtime en-
vironment for the Fairplay compiler suite, i.e., it allows to
read in circuits generated by the FairplayMP compiler from
SFDL 2 programs3 and optimizes these for efficient secure
evaluation with state-of-the-art GC evaluation techniques.

Homomorphic Encryption (HE). VIFF [11], the Vir-
tual Ideal Functionality Framework, is an open source frame-
work written in Python for specifying secure multi-party
computation (SMPC) protocols as a sequence of operations
performed on secret-shared (i.e., encrypted) data. While
VIFF was mainly designed for secret-sharing based SMPC
protocols with three or more parties, it also offers a two-
player runtime based on the additively homomorphic Paillier
cryptosystem [45]. Using operator overloading, VIFF allows
the programmer to express a desired secure computation di-
rectly as standard arithmetic without knowing about the
used protocol. Indeed, TASTYL, the input language of our
compiler, is inspired by the VIFF language, but additionally
allows to combine HE with GC-based computations.
In contrast to general-purpose compilers such as Fairplay,
VIFF, and TASTY, the compilers described below are built
for specific application scenarios, e.g., use specific number
representations [36, 5] or require n ≥ 3 parties [43, 54, 5]:
The compiler of MacKenzie et al. [36] implements secure
two-party computations over values which are secret-shared
between both parties using

(
2
2

)
secret-sharing over a prime

field. The computations are composed as sequence of basic
operations on the shared data (e.g., addition or multiplica-
tion). The compiler can be used for specific functions such
as cryptographic primitives defined over prime fields, e.g.,
signatures or encryption schemes, where the secret key is
shared between both parties.
SMC [43, 54], the Secure Multiparty Computation language,
provides a declarative language for describing SMPC based
on constraint programming. A program is distributed among
the parties in the computation along with an interpreter,
each party gives its secret inputs and the interpreter calcu-
lates the result. Computations are specified as arithmetic
circuits and at least 3 parties are required as the underlying
multiplication protocol is based on the BGW protocol [4].
Sharemind [5] allows secure computation over the ring of
32-bit integers for three parties and provides an assembly-
like programming language. As this setting is fixed and very
specific it allows highly efficient protocols.

2. THEORETICAL BACKGROUND
In this section we summarize the framework for modu-

lar design of efficient two-party Secure Function Evaluation
(SFE) protocols of [31] on which TASTY is built.

Model. We concentrate on the semi-honest model, where
both parties follow the protocol but try to infer additional
information from the transcript of messages seen in the pro-
tocol. Far from trivial, this model covers many typical prac-
tical settings such as protection against insider attacks. Fur-
ther, designing and evaluating the performance of proto-
cols in the semi-honest model is a first stepping stone to-

3FairplayMP’s compiler can generate circuits for two parties.

wards protocols with stronger security guarantees. Indeed,
most protocols and implementations of protocols for practi-
cal privacy-preserving applications focus on the semi-honest
model [40, 7, 1, 15, 50, 44]. For a detailed discussion on the
semi-honest model and its extensions we refer to [34, 31].

Notation. We call the two semi-honest SFE participants
client C and server S. This naming choice is influenced by
the asymmetry in the SFE protocols, which fits into the
client-server model. We stress that, while in most real-
life two-party SFE scenarios this client-server relationship
in fact exists, we do not limit ourself to this setting.

Function Representations. Given a function f that
should be computed securely, the first task during the de-
sign of the corresponding SFE protocol is to find a suitable
representation for f . Well-established representations which
allow efficient SFE protocols are boolean circuits and arith-
metic circuits as shown in Fig. 1.4 The representation deter-
mines the size of the function, e.g., multiplication can be ex-
pressed as arithmetic circuit with a single multiplication gate
while its representation as boolean circuit is substantially
larger (cf. §5.1). As described in §2.2, the online phase for
SFE of boolean circuits is substantially more efficient than
SFE of arithmetic circuits, so especially non-linear functions
such as comparisons benefit from boolean circuits [30]. The
framework of [31] allows to modularly compose functions
from building blocks which are compactly represented as
boolean or arithmetic circuits and then convert back and
forth between the representations under encryption.

∧

∨

⊕

=

x1 x2 x3 x4

z1 z2

(a) Boolean Circuit

x1 x2 5

×

z

×+

(b) Arithmetic Circuit

Figure 1: Function Representations

In the following, we summarize efficient methods for SFE
of arithmetic and boolean circuits, and conversions between
them which are implemented in TASTY. For a comprehen-
sive description we refer to [31] and list the specific primi-
tives implemented in TASTY in §4.3.

2.1 Homomorphic Encryption: SFE of Arith-
metic Circuits

Additively homomorphic encryption schemes (e.g., [45, 12])
are semantically secure encryption schemes with plaintext
space P and ciphertext space C that allow addition under
encryption: The operation + can be computed on plain-
texts by defining a corresponding operation � on ciphertexts
which satisfies ∀x, y ∈ P : JxK�JyK = Jx+yK. This naturally
allows for multiplication with a plaintext constant a using
repeated doubling and adding: ∀a ∈ N, x ∈ P : aJxK = JaxK.
We write JxK for homomorphic encryption of plaintext x.

SFE of arithmetic circuits can be naturally based on ad-
ditively homomorphic encryption as follows: Client C gen-

4Ordered Binary Decision Diagrams (OBDDs), an alterna-
tive function representation which also fits into the frame-
work of [31] is not implemented in TASTY yet.

erates a key-pair for the homomorphic cryptosystem and
sends the public key together with his inputs encrypted un-
der the public key to server S. S uses the homomorphic
property to evaluate the arithmetic circuit on the encrypted
data. If the cryptosystem is only additively homomorphic,
multiplication under encryption requires the help of C in a
single round of interaction (details in [31]). Finally, S sends
the encrypted outcome of the computation back to C who
can decrypt. As often the maximum size of elements in the
plaintext space (e.g., P = Zn with RSA modulus n for the
Paillier cryptosystem [45]) is substantially larger than the
size of encrypted values, S can pack multiple values under
encryption using Horner’s method before sending them to C
to reduce communication and number of decryptions by C.

As described in [31], the interactive approach for multipli-
cation currently results in faster SFE protocols than using
schemes which also provide one (e.g., [6, 18]) or arbitrary
many (e.g., [17, 13, 55]) multiplications under encryption,
called fully homomorphic encryption. Such schemes could
be integrated in TASTY in future work as described in §6.

2.2 Garbled Circuits: SFE of Boolean Circuits
Garbled circuits (GC) are an efficient method for SFE of

boolean circuits. The general idea of GCs, going back to
Yao [60], is to encrypt (garble) each wire with a symmetric
encryption scheme. In contrast to homomorphic encryption
(cf. §2.1), the encryptions/garblings here cannot be oper-
ated on directly, but require helper information which is
generated and sent to C in the setup phase in form of a
garbled table for each gate. On the other hand, the online
phase of GCs is highly efficient as it requires only symmetric
cryptographic operations, e.g., the GC method of [48] im-
plemented in TASTY needs one invocation of SHA-256 per
non-XOR gate (cf. §4.3).

On a high-level, Yao’s GC protocol works as follows: In
the setup phase, the constructor (server S) generates an en-
crypted version of the function f (represented as boolean

circuit), called garbled circuit f̃ . For this, he assigns to each
wire Wi of f two randomly chosen garbled values w̃0

i , w̃
1
i

(symmetric keys) that correspond to the respective values 0
and 1. Note that w̃j

i does not reveal any information about
its plain value j as both keys look random. Then, for each
gate of f , the constructor creates helper information in form

of a garbled table T̃i that allows to decrypt only the output

key from the gate’s input keys. The garbled circuit f̃ con-
sists of the garbled tables of all gates and is sent to C in
the setup phase. Later, in the online phase the evaluator
(client C) obliviously obtains the garbled values x̃ and ỹ
corresponding to the plain inputs x and y of C and S, re-
spectively (see below). Afterwards, C evaluates the garbled

circuit f̃ on x̃, ỹ by evaluating the garbled gates one-by-one
using their garbled tables. Finally, C obtains the correspond-
ing garbled output values ỹ which allow S to decrypt them
into the corresponding plain output z = f(x, y).

For converting a plain input bit yi of S into its garbled
equivalent, S simply sends the key ỹyii to C. Similarly, C
must obtain the garbled bit x̃i corresponding to his input
bit xi, but without S learning xi. This can be achieved
by running (in parallel for each bit xi of x) a 1-out-of-2
Oblivious Transfer (OT) protocol. OT is a cryptographic
protocol into which C inputs his choice bit b = xi and S
inputs two strings s0 = x̃0i and s1 = x̃1i . The protocol
guarantees that C obtains only the chosen string sb = x̃xi

i =

x̃i while S learns no information on b = xi. We summarize
efficient instantiations for parallel OT later in §4.3.

We emphasize that GCs cannot be evaluated twice, and
refer to [33] for a proof of security for Yao’s protocol in the
semi-honest model and to [31] for a summary of different
methods for constructing garbled tables and converting gar-
bled outputs into plain values.

2.3 Hybrid SFE of Mixed Representations
The SFE framework proposed in [31] allows to modularly

compose SFE protocols as sequence of operations on en-
crypted data as shown in Fig. 2: Both parties have Plain
Values as their inputs into the protocol. These plain val-
ues, denoted as x, are first encrypted by converting them
into their corresponding encrypted value. A Garbled Value,
denoted as x̃, held by client C or a Homomorphic Value,
denoted as JxK held by server S, depending on which oper-
ations should be applied. After encryption, the function is
securely evaluated on the encrypted values, which may in-
volve conversion of the encryptions into the respective other
type of encryption (see below). Finally, the encrypted out-
put values are revealed and can be decrypted by converting
them into their corresponding plain output values. In the
following we describe how to efficiently convert between the
two types of encryptions.

Plain Value x

Boolean Circuits
using Garbled Circuits

Client C

Homomorphic Value �x�

Plain Value x

Server S

Garbled Value �x

Arithmetic Circuits
using Homomorphic Encryption

Inputs/Outputs

Encrypted Values

SFE of

Figure 2: Hybrid SFE Protocols

Conversion between Garbled and Homomorphic
Values. To convert an Homomorphic Value JxK into a Gar-
bled Value x̃, S adds a random mask r under homomorphic
encryption, sends the blinded value Jx̄K = JxK � JrK to C
who decrypts and both parties evaluate a garbled subtrac-
tion circuit which takes off the random mask under “garbled
encryption”. A similar method can be used for converting
a Garbled Value x̃ into an Homomorphic Value JxK. For
details we refer to [31].

3. SELECTED APPLICATIONS
In this section we show how the TASTY framework can be

used to intuitively describe, and automatically generate and
measure the performance of two privacy-preserving applica-
tions. We consider privacy-preserving set intersection (§3.1)
and privacy-preserving face recognition (§3.2). A detailed
description of TASTY and its input language TASTYL is
given later in §4; further performance results and the specs
of the machines used in our performance measurements are
given in §5.

3.1 Privacy-Preserving Set Intersection
Privacy-preserving set intersection is a fundamental build-

ing block for many privacy-preserving applications such as
privacy-preserving checking of no-flight list. We briefly sum-
marize the HE-based set-intersection protocol of [16, 34]:

Two parties, client C and server S, have as inputs a set
X = {x1, . . . , xm} respectively Y = {y1, . . . , yn}. The pro-
tocol should compute the intersection X∩Y without reveal-
ing any other elements to the other party. The main idea
behind this protocol is to encode X as a polynomial p(x)
whose roots are the m values xi, i.e., p(x) = (x − x1)(x −
x2) . . . (x − xm) =

∑
m aix

i. C computes the coefficients ai
of p(x), encrypts them separately using homomorphic en-
cryption and then sends these ciphertexts to S. Then, S
evaluates the polynomial p under homomorphic encryption:
Jp(yi)K = JakKyki � Jak−1Kyk−1

i � . . . � Ja0K. This is done
efficiently with Horner’s method. Now, for each yi ∈ Y ,
S picks a random value ri, computes JȳiK = Jri ∗ p(yi) + yiK,
and sends it to C. If yi is equal to an element in X, then
this is an encryption of yi (as p(yi) evaluates to 0), and of
a random element otherwise. C finally decrypts JȳiK into ȳi,
and if ȳi ∈ X, C puts ȳi into the intersection set.

This protocol can be implemented in TASTYL as listed
in Appendix §A. The performance for random 32-bit inputs,
measured automatically with TASTY, is shown in Table 2.

Table 2: Set Intersection of [16, 34] with TASTY.
Elements (m = n) 10 100 1,000
C setup 153 ms 969 ms 9.3 s
S setup 194 ms 1.6 s 15.8 s
C online 357 ms 7.2 s 489 s
S online 216 ms 6.2 s 478 s
Total send 19.6 kB 186 kB 1.86 MB

3.2 Privacy-Preserving Face Recognition
For privacy-preserving face recognition, client C has a

query face which should be searched in a database (DB)
of faces held by server S without disclosing any additional
information on the queried face to S nor any information
on the DB to C (besides the size and the outcome of the
computation). At the end, C obtains either the index of the
queried face in the DB, or ⊥ if no match was found.

We summarize the face recognition protocol of [50] which
evaluates the well-known Eigenface algorithm [57] under en-
cryption and can be divided into the following three phases:
Projection. First, the query face Γ is projected into a low-
dimensional eigenspace. This is done under homomorphic
encryption as follows: C encrypts Γ pixelwise and sends JΓK
to S who performs the projection under encryption and ob-
tains the encrypted projected query face JΩ̄K.
Distance. Then, the squared Euclidean distance JDiK =
J(Ωi − Ω̄)2K between the projected face and all faces Ωi in
S’s DB is computed under homomorphic encryption.
Minimum. Finally, the minimum value of {JDiK} is com-
puted and, if smaller than a threshold τ provided by S, the
corresponding index in the DB is revealed to C. Otherwise,
no match was found and ⊥ is returned. The protocol of [50]
improves over [15] by computing this phase with garbled
circuits instead of homomorphic encryption.

The TASTYL code of this protocol is given in Appendix §B.
Performance. In the following we compare the perfor-
mance of this protocol implemented in TASTY with its hand-
optimized implementation of [50] and the original protocol
of [15] based on HE only. As previous works we perform
our measurements with ultra-short term security parame-

ters (cf. Table 4). The results are summarized in Table 3
and visualized in Fig. 3 (time) and Fig. 4 (communication).

Setup Phase. While [50] focused on the online phase only,
we also provide performance measurements for the setup
phase. As expected, both time and communication of the
setup phase grow linearly in the DB size (corresponding to
linear circuit size and number of OTs). A constant overhead
is needed for pre-computing random masks for HE (≈ 20s).
The setup phase is less efficient than that of the HE-only
protocol of [15] as GCs need to be generated and transferred.

Online Phase. When comparing the online time of the
protocol generated by TASTY with the hand-optimized im-
plementation of [50] we observe that they mostly differ by a
constant overhead. In fact, the online phase is dominated by
homomorphically encrypting the vector Γ in the projection
phase which is not yet optimized in TASTY. For the online
communication complexity we observe that data serializa-
tion in TASTY, which is also not optimized yet, requires
approximately twice as much data as the theoretical lower
bound of the protocol of [50]. Still, even without further
serialization optimizations, the online communication com-
plexity outperforms that of [15] already for databases with
slightly more than 200 faces. We note that the communica-
tion complexity of [15] closely matches the theoretical lower
bound, i.e., their serialization cannot be optimized further.

Table 3: Hybrid Face Recognition with TASTY

Time in s
Communication

in MBytes
|DB| Setup Online Setup Online

[15] 320 22 18 7.3
[50] 320 - 8.4 - 2.8

TASTY 320 38.1 41.5 3.3 5.9
[50] 1, 000 - 13 - 3.5

TASTY 1, 000 83.4 56.2 10.2 6.8

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 100 200 300 400 500 600 700 800 900 1000

Ti
m

e
in

 s

DB Size

Setup
C Online
S Online

[15] Online
[50] Online

Figure 3: Hybrid Face Recognition: Times

SCiFI - a system for secure face identification. We note
that the recent face recognition system of [44], consisting of a
novel recognition algorithm which was co-designed together
with a highly efficient SFE protocol, is more accurate and
efficient than Eigenface-based protocols.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 100 200 300 400 500 600 700 800 900 1000

D
at

a
in

 M
By

te
s

DB Size

Setup
Online

[15] Online
[15] Online (theoretical)
[50] Online (theoretical)

Figure 4: Hybrid Face Recognition: Communication

4. TASTY
In this section we present TASTY, our tool for describing

and automatically generating, benchmarking, and evaluat-
ing hybrid secure two-party computation protocols.

Design Goals. TASTY was designed and developed to
meet the following goals:

1. SFE protocols are programmed in TASTYL, an intu-
itive high-level language for describing the protocol as
sequence of operations on encrypted data (cf. §4.1).

2. TASTY allows to test, benchmark and compare the
performance of the generated SFE protocols (cf. §4.2).

3. The generated SFE protocols aim at minimizing the
latency of the online phase, i.e., the time from pro-
viding the inputs until obtaining the outputs. This
is achieved by using a combination of highly efficient
primitives and pre-computations (cf. §4.3).

Architecture and Workflow (cf. Fig. 5). The work-
flow for using TASTY is as follows:

1. Both users, client C and server S, agree on a Protocol
Description of the SFE protocol in the TASTY input
Language (TASTYL) as described in detail in §4.1.

2. Both users invoke TASTY’s Runtime Environment (de-
tails later in §4.2), a program that can automatically
analyze, run, test, and benchmark the SFE protocol:

(a) In the Analyzation Phase, the runtime environ-
ment checks the syntactical correctness of the pro-
tocol description, exchanges a hash of it to en-
sure that both parties run the same protocol, and
analyzes the protocol to automatically determine
which parts of the protocol can be pre-computed.

(b) In the Setup Phase, the parties pre-compute those
parts of the protocol which are independent of
their inputs, e.g., create/send garbled circuits and
oblivious transfers (OT), see §4.3 for details.

(c) Finally, in the Online Phase, both parties provide
their inputs to the computation, and the online
part of the SFE protocol is executed (e.g., ho-
momorphic encryptions and decryptions, online
OTs, and evaluation of GCs) to jointly compute
the respective outputs for both parties.

3. TASTY provides a tool to compare the performance
costs of multiple SFE protocols as described in §4.2.

Client C Server S

Input

Output

Input

Output

Costs

Protocol Description
in TASTYL

Analyzation Phase

Setup Phase

Online Phase

Runtime Environment

Figure 5: Architecture and Workflow of TASTY

Implementation. We selected Python as implementa-
tion language for TASTY as it combines elements from both,
object oriented and functional programming paradigms. In
particular the built-in support for generators, a function
which yields a value and can be resumed afterwards, was
useful for intuitive programming of streamlined large data
structures, e.g., for dynamic generation of circuits which al-
lows TASTY to evaluate very large circuits. We successfully
created and evaluated garbled circuits with 221 non-XOR
gates in less than 14 minutes on the PCs used for the exper-
iments in §5.

4.1 TASTY input Language (TASTYL)
TASTYL, the input language for TASTY, allows to for-

mulate secure computations as sequence of operations on en-
crypted data, allowing to abstract away all details of the un-
derlying cryptographic protocols. We start with an overview
of the types and operators provided by TASTYL in §4.1.1
and explain the concrete syntax afterwards in §4.1.2.

4.1.1 Types and Operators
The type system of TASTYL and the operators supported

by each type are shown in Fig. 6. Each variable in TASTYL
is either a scalar Value (cf. top half of Fig. 6) or a Vector (cf.
bottom half of Fig. 6) which consists of N Values. They can
be either unencrypted Plain Values/Vectors or encrypted
Garbled or Homomorphic Values/Vectors.

All Values and Vectors provide the basic operators for
(component-wise) addition, subtraction, and multiplication;

Vectors also provide dot multiplication: v ·w =
∑N

i=1 viwi.
Number Representation. Each Value has a bitlength `

that represents the number of bits needed for its represen-
tation. Unsigned are unsigned integer values in the range
[0, 2`[, Signed are signed integers in the range]−2`−1, 2`−1[5,
and Modular are elements in the plaintext space of the ho-
momorphic cryptosystem, i.e., Zn for Paillier.

In addition to the operations of Value/Vector, the plain/en-
crypted types support further operations and conversions:

Plain Value/Vector. Inputs and outputs of the two par-
ties are Plain Values/Vectors. They can be chosen uniformly
at random and provide additional operations (integer) divi-
sion6 and comparison.

5Note, we exclude the value −2`−1 for signed integers to also
allow sign-magnitude representation.
6Division raises an exception for division by zero or (the
unlikely event of) a non-invertible Modular value.

Garbled
Vector

min, max, ...
Vector

+, -, *, dot

Garbled
Value

mux, <, =, ...

Homomorphic
Value

Plain Value
rand, input, output
/, <, =, ...

Unsigned ModularSigned

bitlength

Value

+, -, *

N

Homomorphic
Vector

Plain Vector
rand, input, output
/, =, ...

Unsigned
Vector

Signed
Vector

Modular
Vector

Figure 6: TASTYL Types and Operators

Homomorphic Value/Vector. Unsigned, Signed and
Modular Values/Vectors can be converted into and from ho-
momorphically encrypted Homomorphic Values/Vectors of
server S. While Unsigned and Modular values are mapped
directly, for Signed values, the positive values are mapped to
the elements 0, 1, . . . of the plaintext space of the underly-
ing homomorphic cryptosystem, and the negative values to
n− 1, n− 2, . . . as described in [31]. Addition of two Homo-
morphic, and (dot) multiplication of a Homomorphic with a
Plain Value/Vector provided by S is done non-interactively.
(Dot) multiplication of two Homomorphic Values/Vectors
requires one round of interaction.

Garbled Value/Vector. Unsigned/Signed Plain and
Homomorphic Values/Vectors can be converted into and
from Garbled Values/Vectors of client C. A Garbled Value
can be compared with another one resulting in a Garbled
Value of length one bit. This can be used to multiplex (mux)
between two Garbled Values. Similarly, the minimum or
maximum value and/or index of the components of a Gar-
bled Vector can be determined as Garbled Value(s), e.g.,
min_value computes the minimum value. For each opera-
tion on Garbled Values/Vectors, TASTY automatically in-
fers the underlying garbled circuit.

4.1.2 Syntax and Example
TASTYL is a subset of the Python language; we use the

following example to explain its syntax and semantics.
Example (cf. Fig. 7). Client C and server S have

vectors v and w of N = 4 unsigned 32-bit values as inputs.
As output, C obtains mini=1,..,N (vi ·wi). The products vi ·wi

are computed with homomorphic encryption (HE) and the
minimum with garbled circuits (GC).

This protocol can be directly formulated in TASTYL as
shown in Fig. 7 and described in the following: The protocol
gets two parties client and server as inputs to whom the
variables used throughout the protocol are bound (details
below). At the beginning, two constants N = 4 and L = 32
are defined. Then, the input of C, client.v, is defined as an
unsigned vector of bitlength L and dimension N , and read
from standard input. Similarly, the input of S, server.w, is

−∗− coding : ut f−8 −∗−
def pro toco l (c l i e n t , s e r v e r) :

N = 4
L = 32

input of c l i e n t
c l i e n t . v = UnsignedVec (b i t l e n=L , dim=N)
c l i e n t . v . input (desc=”ente r va lues f o r v”)

input of server
s e r v e r .w = UnsignedVec (b i t l e n=L , dim=N)
s e rv e r .w. input (desc=”ente r va lues f o r w”)

convert unsigned to homomorphic vector
c l i e n t . hv = HomomorphicVec (va l=c l i e n t . v)
s e r v e r . hv <<= c l i e n t . hv

mul t ip ly vec tors (component−wise)
s e r v e r . hx = se rv e r . hv ∗ s e r v e r .w

convert homomorphic to garb led vector
c l i e n t . gx <<= GarbledVec (va l=s e rv e r . hx)

compute minimum value
c l i e n t . gmin = c l i e n t . gx . min value ()

convert garb led to unsigned value and output
c l i e n t . min = Unsigned (va l=c l i e n t . gmin)
c l i e n t . min . output (desc=”minimum value ”)

Figure 7: Example TASTYL Program

defined and read. Then, C’s input vector client.v is con-
verted into a homomorphic vector server.hv for S who mul-
tiplies this component-wise with his input vector server.w

resulting in the homomorphic vector server.hx. This homo-
morphic vector is converted into a garbled vector client.gx
and its minimum value client.gmin is computed. Finally,
C obtains the intended output by decrypting (converting)
client.gmin into the unsigned value client.min.

Type Conversions. Types can be naturally converted
into each other by providing them as input to the con-
structor of the target type, e.g., in Fig. 7, the unsigned
vector client.v is converted into the homomorphic vector
client.hv via client.hv=HomomorphicVec(val=client.v).
The underlying conversion protocols are described in §2.

Garbled Bit Manipulations. To allow manipulation of
single bits, a Garbled Value gv can be converted back and
forth into a list of Garbled Bits (= Garbled 1-bit Values):
gv[i] yields the i-th garbled bit of gv (i = 0 is the least
significant bit). Vice versa, a (unsigned) garbled m-bit value
gv can be constructed from a list of m garbled bits, e.g.,
gv = Garbled(val=[gb0,gb1]).

Send Operator. The send operator <<= transfers vari-
ables between the parties, e.g., in Fig. 7, hv is sent from C to
S with server.hv <<= client.hv. When combined with a
type conversion, the send operator invokes the correspond-
ing conversion protocol, e.g., in Fig. 7, homomorphic vector
hx held by S is converted into garbled vector gx held by C
with client.gx <<= GarbledVec(val=server.hx).

Binding of Variables. While constants can be declared
globally (e.g., N and L in Fig. 7), each variable has to be
assigned to one of the parties as an attribute.

Inferring Type and Length Automatically. For each
operator, TASTY automatically infers the bitlength and
type of the output variables from those of the input variables
s.t. no overflow occurs. Homomorphic variables raise an ex-

ception if the result does not fit into the plaintext space of
the homomorphic cryptosystem. For example, in Fig. 7 the
component-wise product of two vectors with N components
of unsigned L-bit values results in the homomorphic vector
server.hx with N components of unsigned 2L-bit values.

Multiple Outputs. Garbled circuits can also have mul-
tiple garbled output values written as comma separated list
on the left side of the assignment operator, e.g., the garbled
minimum value gv and its index gi can be computed as
(client.gv, client.gi)=client.gx.min_value_index().

Circuits from File. TASTY allows secure evaluation of
boolean circuits read from an external file, e.g., circuits gen-
erated by the FairplayMP compiler [3]. For this, the labels
of the input- and output wires of the circuit are mapped
to Garbled Values of corresponding bitlength. An exam-
ple TASTYL file with the concrete syntax for evaluating a
garbled file circuit is available at [56].

4.2 Tools
The TASTY framework provides the following tools to

initialize, execute, and post-process TASTYL programs:
tasty_init <path> creates a new directory which con-

tains a file protocol.py with a template for the TASTYL
program (the example program shown in Fig. 7) and a file
protocol.ini which contains default configuration param-
eters such as the intended security level (cf. Table 4), or the
IP address and port of the server.
tasty <options> <path> is the runtime environment of

TASTY as explained in §4 (cf. Fig. 5): it analyzes the
TASTYL program in path, establishes a TCP/IP socket be-
tween server S and client C, and runs the setup phase and
online phase of the SFE protocol. The option flags allow
to overwrite the default parameters and to specify if run as
server (-s) or as client (-c).

Testing and Benchmarking. When invoked with the
-d option, tasty runs in driver mode. Here, the TASTYL
program is instrumented by a driver, an additional class
written in protocol.py. The driver can invoke the protocol
multiple times with varying static parameters (e.g., different
bitlengths) and inputs to the TASTYL program; the outputs
of the TASTYL program are sent back to the driver which
allows to write functional test cases. The costs of each pro-
tocol run, i.e., detailed information on the transferred data
and timings of the sub-tasks of the protocol phases, are writ-
ten into a file which can be post-processed as described next.
tasty_post <analyze_script> <cost_files> can post-

process the costs measured in one or more driver runs with
an analyze script, e.g., average, print, or plot graphs [22].
All graphs in this paper were plotted with tasty_post.

A concrete example for how to use TASTY’s benchmark-
ing capability is given in Appendix §C.

4.3 Primitives and Optimizations
In TASTY we implemented the following efficient primi-

tives and automatic optimizations that allow to move expen-
sive operations as pre-computations into the setup phase (cf.
Fig. 5) in order to achieve an online phase with low latency.
The modular architecture of TASTY allows easy extension
with other primitives as well. Due to the lack of space we
mention the key-features of the used primitives and refer to
the description in [31] and the original papers for details.

Pre-Defined Security Levels. TASTY has pre-defined
security levels following standard recommendations of NIST

and ECRYPT II [19] as shown in Table 4. By using matching
basic primitives both security and efficiency are optimized
simultaneously. We use elliptic curves from the SECG stan-
dard [53] and SHA-256 as cryptographic hash function.

Table 4: Pre-Defined Security Levels in TASTY.

Security Level
Symmetric/

Asymmetric Curve [53]
Statistical

ultra-short 80 bit 1,248 bit secp160r1
short 96 bit 1,776 bit secp192r1
medium 112 bit 2,432 bit secp224r1
long 128 bit 3,248 bit secp256r1

Homomorphic Encryption (HE). We use the addi-
tively homomorphic cryptosystem of Paillier [45]. As key
generation for Paillier (an RSA modulus n) is computation-
ally expensive and can be used over multiple protocol runs,
the public key is generated and exchanged in the analyza-
tion phase. For efficient encryption we use the extensions
of [12, Sect. 6] for pre-computing expensive modular expo-
nentiations of the form rn mod n2 in the setup phase and
only two modular multiplications per encryption in the on-
line phase. As C knows the factorization p, q of n, he uses
Chinese remaindering modulo p and q for pre-computing rn

mod n2 and efficient decryption. Paillier ciphertexts have
twice the length of the asymmetric security parameter as
the ciphertext space is Z∗n2 . For modular arithmetics we use
gmpy [21], a Python wrapper for the GMP library [20].

Garbled Circuits (GC). We use the GC construction
with free XORs and garbled row reduction of [48] secure in
the random-oracle model. This GC construction provides
free XOR gates (no garbled table and negligible computa-
tion). For non-XOR d-input gates, the garbled table consists
of 2d−1 entries (of size t+1 bit each with symmetric security
parameter t), creation requires 2d and evaluation 1 invoca-
tion of SHA-256 modeled as random oracle.

Circuits. For computations on Garbled Values/Vectors,
TASTY dynamically generates circuits using the efficient
circuit constructions of [30] which are optimized for a low
number of non-XOR gates (cf. §5.1.1 for multiplication cir-
cuits). Alternatively, circuits can be generated externally,
e.g., using the Fairplay compiler [37], and read from a file (cf.
§4.1.2). TASTY optimizes the circuits to a low number of
non-XOR gates using the optimization of [48] which replaces
3-input gates with a low number of 2-input non-XOR gates.
XNOR gates are replaced by an XOR gate and an inversion
gate which is propagated into successor gates [46]. Generat-
ing, reading, and optimizing circuits is mostly pipelined to
allow processing of large circuits with low memory footprint.

Oblivious Transfer (OT). All OTs are pre-computed in
the setup phase (cf. Fig. 5) using the construction of [2]; the
resulting online phase for OT is highly efficient (transfer and
XOR of bitstrings) and depends mostly on the network la-
tency for two messages. To minimize the computation com-
plexity of the setup phase, we use the efficient OT extension
of [24] to reduce the usually large number of OTs needed
in the protocol down to at most t real OTs and some in-
vocations of SHA-256 modeled as random oracle, where t is
the symmetric (computational) security parameter. The re-
maining real OTs (at most t) are implemented with the OT
protocol of [39, Sect. 3.1] using elliptic curves and SHA-256

as random oracle. The elliptic curve implementation pro-
vides (optional) point compression to reduce communication
at the cost of a negligibly larger computation overhead.

Compiler Optimizations. TASTY parses the TASTYL
program and performs several optimizations on the result-
ing abstract syntax tree (AST): constant propagation, dead
code elimination, partial code evaluation, and loop unrolling.

5. PERFORMANCE MEASUREMENTS
We measure the performance of primitives implemented in

TASTY and compare different protocols against each other
and with existing SFE implementations: multiplication cir-
cuits and protocols based on GC or HE (§5.1), SFE of an
AES circuit generated by the Fairplay compiler (§5.2), and
SFE of large GCs (§5.3).

System Setup. All performance measurements are per-
formed on two desktop PCs with Intel Core 2 Duo CPU
(E6850) running at 3.00GHz and 4GB RAM connected via
Gigabit Ethernet. The system runs on 64 bit Gentoo Linux
with Python version 2.6.5, gmpy version 1.11 and GMP ver-
sion 4.3.2. Unless stated otherwise, all measurements were
performed for short-term security (cf. Table 4) and using
point compression for elliptic curves (cf. §4.3).

5.1 Multiplication Circuits and Protocols
As arithmetic circuits can express arbitrary computations

as sequence of additions and multiplications, multiplication
is a fundamental basic operation. Indeed, the main differ-
ence between SFE protocols based on arithmetic and boolean
circuits is the cost for multiplications. We present efficient
multiplication circuits in §5.1.1 and compare the perfor-
mance of secure multiplication protocols in §5.1.2.

5.1.1 Multiplication Circuits
Textbook Multiplication. The usual way of multi-

plying two unsigned `-bit integers x and y, called “Text-
book Method”, multiplies x with each bit of y and adds
up all the properly shifted results according to the formula
x · y =

∑`−1
i=0 xyi2

i. This results in a circuit with 2`2 − `
non-XOR 2-input gates [30].

Karatsuba Multiplication. As observed by Karatsuba
[28], multiplication can be performed more efficiently using
the following recursive method (details in Algorithm 1): x

and y are split into two halves as x = xh2d`/2e + xl and
y = yh2d`/2e + yl. Then, the product can be computed as
xy = (xh2d`/2e+xl)(yh2d`/2e+yl) = zh22d`/2e+zd2d`/2e+zl.
After computing zh = xhyh and zl = xlyl, zd can be com-
puted with only one multiplication as zd = (xh + xl)(yh +
yl) − zh − zl. This process is continued recursively until
the numbers are sufficiently small (` = 19 in our case as
described below) and multiplied with the classical school
method. Overall, multiplying two ` bit numbers with Karat-
suba’s method requires three multiplications of `/2 bit num-
bers and some additions and subtractions with linear bit
complexity resulting in costs

TKara(`) = 3TKara (`/2) + c`+ d

for constants c and d. The master theorem [8, §4.3f] yields
asymptotic complexity TKara(`) ∈ O(`log2 3) ≈ O(`1.585).

Circuit Complexity. In TASTY we have implemented
both methods for multiplication based on efficient addition
and subtraction circuits of [30]. As shown in Fig. 8 and Ta-
ble 5, Karatsuba multiplication is more efficient, i.e., results

Algorithm 1 Karatsuba multiplication

1: function karatsuba(x, y) . x, y are `-bit integers
2: if ` ≤ 19 then
3: return Textbook(x,y)
4: end if
5: xh||xl ← x . x = xh2d`/2e + xl
6: yh||yl ← y . y = yh2d`/2e + yl
7: Ph ← KARATSUBA(xh, yh)
8: Pl ← KARATSUBA(yl, yl)
9: xs ← xh + xl

10: ys ← yh + yl
11: Ps ← KARATSUBA(xs, ys)
12: Pd ← Ps − Ph − Pl

13: return (Ph22d`/2e) + Pd2d`/2e + Pl

14: end function

in circuits with less non-XOR gates, than Textbook multipli-
cation already for multiplication of 20 bit operands. By in-
terpolating through the points for bitlength ` ∈ {32, 64, 128}
and solving the resulting system of linear equations we ob-
tain as approximation for the number of non-XOR gates

TKara(`) ≈ 9.0165`1.585 − 13.375`− 34.

Figure 8: Size of Multiplication Circuits

Table 5: Size of Multiplication Circuits (in number
of 2-input non-XOR gates)

Bitlength ` 19 20 32 64 128
Textbook 703 780 2,016 8,128 32,640
Karatsuba 703 721 1,729 5,683 17,973
Improvement 0.0 % 7.6 % 14.2 % 30.1 % 44.9 %

5.1.2 Multiplication Protocols
Using TASTY we compare the performance of different

secure multiplication protocols based on homomorphic en-
cryption (HE) and garbled circuits (GC). For this we con-
structed four basic test cases. For each SFE paradigm, we

consider the case where both inputs are provided by one
party (S for GC1 and C for HE1), or one by each of the
parties (GC2 and HE2). The inputs are Unsigned `-bit val-
ues and the output, a 2`-bit Unsigned value is converted
into a Plain output for C. In the following, we compare
the communication- and the computation complexity of the
setup- and online phase of the protocols.

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 2 4 8 16 32 64 128

D
at

a
in

 B
yt

es

Bitlength

HE1: Online
HE2: Online
GC1: Setup
GC1: Online
GC2: Setup
GC2: Online

Figure 9: Multiplication Protocols: Communication

Communication (cf. Fig. 9). Our experiments show
that GC-based multiplication requires a substantial amount
of setup communication (for transfer of GCs) whereas the
online communication of GC is better than HE for mul-
tiplication of small values. The online communication for
multiplying with HE is independent of the bitlength ` as a
constant number of ciphertexts (2 for HE1 and 5 for HE2) is
exchanged. For multiplying with GC, the setup communica-
tion grows rapidly due to the large size of the GCs, whereas
the online communication complexity grows much slower.

Setup Time (cf. Fig. 10(a)). The time of the setup
phase for GC-based multiplication protocols depends on the
bitlength ` as GCs need to be computed; for better visual-
ization we do not plot GC setup times for S in Fig. 10(a) as
they are similar to those of C. For HE-based multiplication,
the setup time is independent of ` as a constant number of
encryptions is pre-computed.

Online Time (cf. Fig. 10(b)). For GC-based multi-
plication, the time needed by C depends on the size of the
evaluated GC which grows with the bitlength `; GC’s online
time for S is negligible. For HE-based multiplication, the
time in the online phase is almost independent of ` for small
bitlengths.

Conclusion. The setup phase for GC-based multiplica-
tion is substantially more expensive than that of HE-based
multiplication. However, for small values, GC-based multi-
plication can result in a faster online time than HE-based
multiplication. Furthermore, GC-based multiplication, in
contrast to HE-based multiplication, needs no (when com-
posed with other GC-based computations) or negligible on-
line interaction and workload for S.

Parallel Multiplications. When N multiplications are
done in parallel, e.g., component-wise multiplication of two
vectors of N components, time and data complexity of GC-
based multiplication grows linearly in N . HE-based paral-
lel multiplication increases slower as multiple homomorphic
values can be packed before sending from S to C (cf. §2.1).

Security Level. We note that when the security level is

 0.1

 1

 10

 100

 1000

 10000

 1 2 4 8 16 32 64 128

Se
tu

p
Ti

m
e

in
 m

s

Bitlength

HE1: C
HE1: S
HE2: C
HE2: S
GC1: C
GC2: C

(a) Setup Time

 0.1

 1

 10

 100

 1000

 1 2 4 8 16 32 64 128

O
nl

in
e

Ti
m

e
in

 m
s

Bitlength

HE1: C
HE1: S
HE2: C
HE2: S
GC1: C
GC1: S
GC2: C
GC2: S

(b) Online Time

Figure 10: Multiplication Protocols: Times

increased to medium- or even long-term security, the perfor-
mance of HE-based multiplication decreases rapidly while
the performance of GC-based multiplication is affected only
moderately, as the asymmetric security parameter grows
substantially faster than the symmetric one (cf. Table 4).

5.2 Evaluation of Fairplay Circuits and AES
As described in §4.1.2, TASTY can evaluate externally

generated file circuits. Using this feature, we compare the
performance of TASTY for evaluation of the AES function-
ality with the state of the art software implementation of
GCs reported in [48, Table 2] which is implemented in C++
and measured on two machines also with Intel Core 2 Duo’s
running at 3.0 GHz and 4GB of RAM connected by gigabit
ethernet. We use the AES circuit of [48] which has 128 bit
input bits provided by each party, 128 output bits for C and
is optimized for a low number of non-XOR gates (22, 594
XOR gates and 11, 286 non-XOR 2-input gates).

The performance of different GC implementations for eval-
uating the AES functionality is compared in Table 6:

For ultra-short-term security, when evaluating AES with
Fairplay’s Java runtime [37], we see that Fairplay requires
substantially more communication than TASTY, as Fairplay
provides no free XOR gates (2/3 of the gates are XOR gates).
Also TASTY’s time complexity is slightly better than that
of Fairplay due to free XOR and more efficient OT.

Also for long-term security, TASTY’s online phase is faster

Table 6: GC Evaluation of AES. Times in seconds.

Time KByte
Security Setup Online Total Total

[37] ultra-short - - 4 3760
TASTY ultra-short 2.9 0.4 3.3 567

[48] long 2 5 7 503
TASTY long 4.0 0.5 4.5 860

than that of [48] by an order of magnitude. Recall, a short
online phase, i.e., latency from providing the inputs until
obtaining the outputs, is important for many real-world ap-
plications. To minimize this, TASTY shifts most computa-
tions into the less time-critical setup phase (cf. §4). Also
TASTY has a slightly shorter total time than [48], whereas
the data complexity is slightly larger due to less optimal
data serialization in Python. More detailed, the setup time
of [48] is 1s for GC creation and 1s for data transfer, and
the online time is 3s for OT7 and 2s for GC evaluation. In
TASTY the setup time is dominated by 1.1s for OT and
1.8s for GC creation, and the online time is dominated by
0.4s for GC evaluation.

5.3 Evaluation of Large GCs
As AES, compared in §5.2, is the only non-trivial circuit

for which performance results are reported in [48] and the
code is not available yet, we compare the performance of
TASTY for evaluation of large GCs with the original Fair-
play system [37] implemented in Java.

Our test circuits have 10 unsigned 8-bit input values8 pro-
vided by C, |C| non-XOR 2-input gates and one output bit
for S. For our measurements we use ultra-short term secu-
rity parameters which provide the same security as Fairplay.
Our measurement results are shown in Table 7.

Comparison. Memory. With 4GB memory, Fairplay
was not able to evaluate circuits with 222 gates and raised
an OutOfMemoryError, while TASTY ran out of memory
for circuits with 223 gates. In both cases, the huge blowup
in memory is due to allocation of intermediate objects for
each gate.

Communication. As expected, TASTY needs less com-
munication than Fairplay as the chosen GC technique needs
3 instead of 4 entries per garbled 2-input non-XOR gate.
Further, as GC is transferred in the setup phase, TASTYś
online communication is independent of the circuit size.

Time. TASTY’s setup time is slower than Fairplay’s to-
tal time by approximately a factor of 2 which we assume
is due to less efficient internal data structures and nested
function calls in the completely interpreted Python language
compared to bytecode-compiled Java. On the other hand,
TASTY’s online time is faster than the total time of Fairplay
by factor 2 as we shifted complexity into the setup phase.

Conclusion. From the performance measurements with
previous GC implementations in §5.2 and §5.3 we conclude
that choosing more efficient primitives has large impact on
the communication complexity whereas the memory and
time complexity are dominated by non-cryptographic factors

7As OT seemed not to be the performance bottleneck in [48],
they implemented a less efficient, UC secure OT protocol.
8This yields the maximum number of 80 OTs before the OT
extension kicks in which is not provided by Fairplay.

Table 7: Evaluation of Large GCs
Time [s] Communication [MB]

|C| [37]
TASTY

[37]
TASTY

Setup Online Setup Online

210 2 0.8 0.3 0.155 0.07 0.003
215 4 6 1 3.67 1.7 0.003
218 17 44 8 28.8 13.5 0.003
220 80 177 32 113 54.2 0.003
221 175 368 65 226 109 0.003
222 - 787 132 - 217 0.003
223 - - - - - -

such as optimizing data structures and flow for the selected
programming language.

6. FUTURE WORK
To facilitate future work, TASTY is available for down-

load at [56]. It is ready for being used as a tool for describ-
ing, implementing, benchmarking, and comparing protocols
for many privacy-preserving applications. It could also be
extended into a platform for comparing cryptographic primi-
tives, e.g., rapidly emerging (fully) homomorphic encryption
schemes.

Further Primitives. By adding 1-out-of-n OT as fur-
ther primitive, TASTY could be used for Hamming distance
based computations [25] (based on HE and 1-out-of-n OT)
with application to secure face identification [44]. Also other
additively homomorphic encryption schemes for large [12] or
small [9, 10] ciphertext space, or the schemes of [6, 18] which
allow arbitrary many additions and one multiplication might
be useful for some protocols. If applications require multi-
plication of very large numbers within a circuit one might
consider implementation of multiplication circuits which are
asymptotically faster than Karatsuba multiplication, e.g.,
Toom-3 [29, Sect. 4.3.3.A] splits each factor into 3 parts and
performs 5 instead of 9 sub-multiplications resulting in com-
plexity Θ(nlog3 5) ≈ Θ(n1.47).

Compilation to TASTYL. As a long-term goal it would
be beneficial to automatically generate TASTYL programs
from a high-level description of the algorithm to be com-
puted securely in a function description language such as
Fairplay’s SFDL language (cf. §1.2). Using TASTY’s ca-
pabilities for measuring the costs of the generated protocols
the compilation process could automatically choose between
circuits or homomorphic encryption (with one out of multi-
ple homomorphic encryption schemes) for specific sub-tasks
to generate highly efficient protocols.

Streaming vs. Pre-Computation. As discussed in §4,
a crucial design goal of TASTY is to shift as many operations
as possible into the setup phase resulting in a highly efficient
online phase. This paradigm is justified when the two par-
ties have a long-term relation where the function is known
in advance and pre-computations can be performed ahead
of time; this leads to a quick response time once the parties
provide their inputs in the online phase. In some applica-
tion scenarios where parties make ad-hoc decision when and
what to compute securely, such pre-computations are not
possible. HE-based SFE protocols naturally allow to change
the evaluated functionality on-the-fly and stream data as
soon as it is ready to keep CPUs and network busy simulta-
neously (e.g., as implemented in VIFF [11]). Also GC-based

SFE protocols can be adapted to this streaming scenario
as described in [26, 27, 51]: In contrast to the compilation
paradigm used in Fairplay [37, 3], TASTY already gener-
ates the circuits on-the-fly gate-by-gate. Fore each gate, the
garbled table can be generated on-the-fly [26], sent over the
network and evaluated directly [27]. Also OT can be ex-
tended on-the-fly as mentioned in [24].

7. ACKNOWLEDGEMENTS
We thank anonymous reviewers of ACM CCS’10 for their

helpful comments and Benny Pinkas for his suggestions on
an early version of this paper. This work was funded by EU
FP7 project CACE and ECRYPT II.

8. REFERENCES
[1] M. Barni, P. Failla, V. Kolesnikov, R. Lazzeretti,

A.-R. Sadeghi, and T. Schneider. Secure evaluation of
private linear branching programs with medical
applications. In European Symposium on Research in
Computer Security (ESORICS’09), volume 5789 of
LNCS, pages 424–439. Springer, 2009.

[2] D. Beaver. Precomputing oblivious transfer. In
Advances in Cryptology – CRYPTO’95, volume 963 of
LNCS, pages 97–109. Springer, 1995.

[3] A. Ben-David, N. Nisan, and B. Pinkas. FairplayMP:
a system for secure multi-party computation. In ACM
Conference on Computer and Communications
Security (ACM CCS’08), pages 257–266. ACM, 2008.
http://fairplayproject.net/fairplayMP.html.

[4] M. Ben-Or, S. Goldwasser, and A. Wigderson.
Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In Symp. on
Theory of Comp. (STOC’88), pages 1–10. ACM, 1988.

[5] D. Bogdanov, S. Laur, and J. Willemson. Sharemind:
A framework for fast privacy-preserving computations.
In European Symposium on Research in Computer
Security (ESORICS’08), volume 5283 of LNCS, pages
192–206. Springer, 2008.

[6] D. Boneh, E.-J. Goh, and K. Nissim. Evaluating
2-DNF formulas on ciphertexts. In Theory of
Cryptography (TCC’05), volume 3378 of LNCS, pages
325–341. Springer, 2005.

[7] J. Brickell, D. E. Porter, V. Shmatikov, and
E. Witchel. Privacy-preserving remote diagnostics. In
ACM Conference on Computer and Communications
Security (ACM CCS’07), pages 498–507. ACM, 2007.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms, Second Edition.
MIT Press and McGraw-Hill Book Company, 2001.

[9] I. Damg̊ard, M. Geisler, and M. Krøigaard. Efficient
and secure comparison for on-line auctions. In
Australasian Conference on Information Security and
Privacy (ACISP’07), volume 4586 of LNCS, pages
416–430. Springer, 2007.

[10] I. Damg̊ard, M. Geisler, and M. Krøigaard. A
correction to “Efficient and Secure Comparison for
On-Line Auctions”. Cryptology ePrint Archive, Report
2008/321, 2008. http://eprint.iacr.org.

[11] I. Damg̊ard, M. Geisler, M. Krøig̊ard, and J. B.
Nielsen. Asynchronous multiparty computation:
Theory and implementation. In Public Key

http://fairplayproject.net/fairplayMP.html
http://eprint.iacr.org

Cryptography (PKC’09), volume 5443 of LNCS, pages
160–179. Springer, 2009. http://viff.dk.

[12] I. Damg̊ard and M. Jurik. A generalisation, a
simplification and some applications of paillier’s
probabilistic public-key system. In Public-Key
Cryptography (PKC’01), volume 1992 of LNCS, pages
119–136. Springer, 2001.

[13] M. Dijk, C. Gentry, S. Halevi, and
V. Vaikuntanathan. Fully homomorphic encryption
over the integers. In Advances in Cryptology –
EUROCRYPT’10, LNCS, pages 24–43. Springer, 2010.

[14] T. El Gamal. A public key cryptosystem and a
signature scheme based on discrete logarithms. In
Advances in Cryptology – CRYPTO’84, volume 196 of
LNCS, pages 10–18. Springer, 1985.

[15] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser,
I. Lagendijk, and T. Toft. Privacy-preserving face
recognition. In Privacy Enhancing Technologies
(PET’09), volume 5672 of LNCS, pages 235–253.
Springer, 2009.

[16] M. J. Freedman, K. Nissim, and B. Pinkas. Efficient
private matching and set intersection. In Advances in
Cryptology – EUROCRYPT’04, volume 3027 of LNCS,
pages 1–19. Springer, 2004.

[17] C. Gentry. Fully homomorphic encryption using ideal
lattices. In ACM Symposium on Theory of Computing
(STOC’09), pages 169–178. ACM, 2009.

[18] C. Gentry, S. Halevi, and V. Vaikuntanathan. A
simple BGN-type cryptosystem from LWE. In
Advances in Cryptology – EUROCRYPT’10, volume
6110 of LNCS, pages 506–522. Springer, 2010.

[19] D. Giry and J.-J. Quisquater. Cryptographic key
length recommendation, 2010. http://keylength.com.

[20] GMP – GNU multi precision arithmetic library.
http://gmplib.org.

[21] gmpy – multiprecision arithmetic for Python.
http://code.google.com/p/gmpy.

[22] Gnuplot.py. http://gnuplot-py.sourceforge.net.

[23] W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider,
and I. Wehrenberg. TASTY: Tool for Automating
Secure Two-partY computations. In ACM Conference
on Computer and Communications Security (ACM
CCS’10), pages 451–462. ACM, 2010.

[24] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank.
Extending oblivious transfers efficiently. In Advances
in Cryptology – CRYPTO’03, volume 2729 of LNCS,
pages 145–161. Springer, 2003.

[25] A. Jarrous and B. Pinkas. Secure hamming distance
based computation and its applications. In Applied
Cryptography and Network Security (ACNS’09),
volume 5536 of LNCS, pages 107–124. Springer, 2009.

[26] K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, and
T. Schneider. Embedded SFE: Offloading server and
network using hardware tokens. In Financial
Cryptography and Data Security (FC’10), volume 6052
of LNCS, pages 207–221. Springer, 2010.

[27] K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, and
T. Schneider. Garbled circuits for leakage-resilience:
Hardware implementation and evaluation of one-time
programs. In Cryptographic Hardware and Embedded
Systems (CHES’10), volume 6225 of LNCS, pages

383–397. Springer, 2010.

[28] A. Karatsuba and Y. Ofman. Multiplication of
many-digital numbers by automatic computers. SSSR
Academy of Sciences, 145:293–294, 1962.

[29] D. E. Knuth. The Art of Computer Programming,
Volume II: Seminumerical Algorithms, 3rd Edition.
Addison-Wesley, 1997.

[30] V. Kolesnikov, A.-R. Sadeghi, and T. Schneider.
Improved garbled circuit building blocks and
applications to auctions and computing minima. In
Cryptology and Network Security (CANS’09), volume
5888 of LNCS, pages 1–20. Springer, 2009.

[31] V. Kolesnikov, A.-R. Sadeghi, and T. Schneider. From
dust to dawn: Practically efficient two-party secure
function evaluation protocols and their modular
design. Cryptology ePrint Archive, Report 2010/079,
2010. http://eprint.iacr.org.

[32] V. Kolesnikov and T. Schneider. A practical universal
circuit construction and secure evaluation of private
functions. In Financial Cryptography and Data
Security (FC’08), volume 5143 of LNCS, pages 83–97.
Springer, 2008.

[33] Y. Lindell and B. Pinkas. A proof of Yao’s protocol for
secure two-party computation. Journal of Cryptology,
22(2):161–188, 2009. Cryptology ePrint Archive:
Report 2004/175.

[34] Y. Lindell and B. Pinkas. Secure multiparty
computation for privacy-preserving data mining. J. of
Privacy and Confidentiality, 1(1):59–98, 2009.

[35] Y. Lindell, B. Pinkas, and N. Smart. Implementing
two-party computation efficiently with security against
malicious adversaries. In Security and Cryptography
for Networks (SCN’08), volume 5229 of LNCS, pages
2–20. Springer, 2008.

[36] P. MacKenzie, A. Oprea, and M. K. Reiter. Automatic
generation of two-party computations. In ACM
Conference on Computer and Communications
Security (ACM CCS’03), pages 210–219. ACM, 2003.

[37] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay
— a secure two-party computation system. In
USENIX Security Symposium, 2004.
http://fairplayproject.net/fairplay.html.

[38] T. Moran. The qilin crypto SDK – an open-source
java SDK for rapid prototyping of cryptographic
protocols. http://qilin.seas.harvard.edu.

[39] M. Naor and B. Pinkas. Efficient oblivious transfer
protocols. In ACM-SIAM Symposium On Discrete
Algorithms (SODA’01), pages 448–457. Society for
Industrial and Applied Mathematics, 2001.

[40] M. Naor, B. Pinkas, and R. Sumner. Privacy
preserving auctions and mechanism design. In ACM
Conf. on Electronic Commerce, pages 129–139, 1999.

[41] J. D. Nielsen. Languages for Secure Multiparty
Computation and Towards Strongly Typed Macros.
PhD thesis, University of Aarhus, Denmark, 2009.

[42] J. D. Nielsen and M. I. Schwartzbach. A
domain-specific programming language for secure
multiparty computation. In Workshop on
Programming Languages and Analysis for Security
(PLAS’07), pages 21–30. ACM, 2007.

[43] J. Nzouonta, M. C. Silaghi, and M. Yokoo. Secure

http://viff.dk
http://keylength.com
http://gmplib.org
http://code.google.com/p/gmpy
http://gnuplot-py.sourceforge.net
http://eprint.iacr.org
http://fairplayproject.net/fairplay.html
http://qilin.seas.harvard.edu

computation for combinatorial auctions and market
exchanges. In Autonomous Agents and Multiagent
Systems (AAMAS’04), pages 1398–1399. IEEE, 2004.

[44] M. Osadchy, B. Pinkas, A. Jarrous, and B. Moskovich.
SCiFI - a system for secure face identification. In
IEEE Symposium on Security & Privacy (S&P’10),
pages 239–254. IEEE, 2010.

[45] P. Paillier. Public-key cryptosystems based on
composite degree residuosity classes. In Advances in
Cryptology – EUROCRYPT’99, volume 1592 of LNCS,
pages 223–238. Springer, 1999.

[46] A. Paus, A.-R. Sadeghi, and T. Schneider. Practical
secure evaluation of semi-private functions. In Applied
Cryptography and Network Security (ACNS’09),
volume 5536 of LNCS, pages 89–106. Springer, 2009.

[47] T. P. Pedersen. Non-interactive and
information-theoretic secure verifiable secret sharing.
In Advances in Cryptology – CRYPTO’91, volume 576
of LNCS, pages 129–140. Springer, 1992.

[48] B. Pinkas, T. Schneider, N. P. Smart, and S. C.
Williams. Secure two-party computation is practical.
In Advances in Cryptology – ASIACRYPT’09, volume
5912 of LNCS, pages 250–267. Springer, 2009.

[49] A.-R. Sadeghi and T. Schneider. Generalized universal
circuits for secure evaluation of private functions with
application to data classification. In International
Conference on Information Security and Cryptology
(ICISC’08), volume 5461 of LNCS, pages 336–353.
Springer, 2008.

[50] A.-R. Sadeghi, T. Schneider, and I. Wehrenberg.
Efficient privacy-preserving face recognition. In 12th
International Conference on Information Security and
Cryptology (ICISC ’09), LNCS. Springer, 2009.

[51] A.-R. Sadeghi, T. Schneider, and M. Winandy.
Token-based cloud computing – secure outsourcing of
data and arbitrary computations with lower latency.
In Trust and Trustworthy Computing (TRUST’10) -
Workshop on Trust in the Cloud, volume 6101 of
LNCS, pages 417–429. Springer, 2010.

[52] A. Schröpfer, F. Kerschbaum, D. Biswas, S. Geißinger,
and C. Schütz. L1 – faster development and
benchmarking of cryptographic protocols. In ECRYPT
Workshop on Software Performance Enhancements for
Encryption and Decryption and Cryptographic
Compilers (SPEED-CC ’09), October 12-13, 2009.

[53] Standards for efficient cryptography, SEC 2:
Recommended elliptic curve domain parameters.
Technical report, Certicom Research, 2000. Available
from http://www.secg.org.

[54] M. C. Silaghi. SMC: Secure multiparty computation
language. http://cs.fit.edu/~msilaghi/SMC/, 2004.

[55] N. P. Smart and F. Vercauteren. Fully homomorphic
encryption with relatively small key and ciphertext
sizes. In Public Key Cryptography (PKC’10), volume
6056 of LNCS, pages 420–443. Springer, 2010.

[56] TASTY – Tool for Automating Secure Two-partY
computations. http://tastyproject.net.

[57] M. Turk and A. Pentland. Eigenfaces for recognition.
Journal of Cognitive Neuroscience, 3(1):71–86, 1991.

[58] L. G. Valiant. Universal circuits (preliminary report).
In ACM Symposium on Theory of Computing
(STOC’76), pages 196–203. ACM, 1976.

[59] A. C. Yao. Protocols for secure computations. In
IEEE Symposium on Foundations of Computer
Science (FOCS’82), pages 160–164. IEEE, 1982.

[60] A. C. Yao. How to generate and exchange secrets. In
IEEE Symposium on Foundations of Computer
Science (FOCS’86), pages 162–167. IEEE, 1986.

APPENDIX
A. SET INTERSECTION (§3.1) IN TASTYL

−∗− coding : u t f−8 −∗−
from ta s ty . crypt . math import \

g e tPo l yCo e f f i c i e n t s

def pro to co l (c , s) :
M = 100 # s i z e o f c l i e n t ’ s s e t
N = 100 # s i z e o f s e r ve r ’ s s e t

c .X = ModularVec (dim=M) . input (desc=”X”)
s .Y = ModularVec (dim=N) . input (desc=”Y”)

in t e r p o l a t e c o e f f s o f po ly with roo t s c .X
c . a = g e tPo l yCo e f f i c i e n t s () (c .X)

encrypt and send c o e f f i c i e n t s to se rve r
s . ha <<= HomomorphicVec (va l=c . a)

eva lua t e and rerandomize p (y i) under enc
s . hbarY = HomomorphicVec (dim=N)
for i in xrange (N) : # 0 , . . . , N−1

eva l po ly us ing Horner scheme
s . p = s . ha [M]
for j in xrange (M−1,−1,−1) :

s . p = (s . p ∗ s .Y[i]) + s . ha [j]
s . hbarY [i] = s . p ∗ Modular () . rand () + \

Homomorphic (va l=s .Y[i])

send hbarY to c l i e n t and decrypt
c . hbarY <<= s . hbarY
c . barY = ModularVec (va l=c . hbarY)

compute i n t e r s e c t i o n o f c .X and c . barY
for e in c .X:

i f e in c . barY :
c . output (e , desc=”in output s e t ”)

B. FACE RECOGNITION (§3.2) IN TASTYL

−∗− coding : u t f−8 −∗−
def pro to co l (c , s) :

K = 12 # dimension o f e igenspace
N = 10304 # number o f p i x e l s
M = 42 # s i z e o f database

Dec lara t ions
s . homegabar = HomomorphicVec (dim=K)
s . hgamma = HomomorphicVec (dim=N)
s .hD = HomomorphicVec (dim=M)
c . bot = Unsigned (va l=M, b i t l e n=b i t l e ng th (M+1))
c . gbot = Garbled (va l=c . bot)

Cl i en t inpu t s
c . gamma=UnsignedVec (b i t l e n =8, dim=N) . input ()

Server inpu t s
s . omega = UnsignedVec (b i t l e n =32, dim=(M,

K)) . input ()
s . p s i = UnsignedVec (b i t l e n =8, dim=N) . input ()
s . u = SignedVec (b i t l e n =8, dim=(K, N)) . input ()

http://www.secg.org
http://cs.fit.edu/~msilaghi/SMC/
http://tastyproject.net

s . tau = Unsigned (b i t l e n =50) . input ()

Projec t ion
s . hgamma <<= HomomorphicVec (va l=c .gamma)
for i in xrange (K) :

s . homegabar [i] = Homomorphic (va l=−(s . u [i] . \
dot (s . p s i)))+ (s . hgamma . dot (s . u [i]))

Distance
s . hs3 = s . homegabar . dot (s . homegabar)
for i in xrange (M) :

s .hD[i] = s . hs3 +
s . omega [i] . dot (s . omega [i])

s .hD[i] += s . homegabar . dot (s . omega [i]∗(−2))

Minimum
c . gD <<= GarbledVec (va l=s .hD,

f o r c e b i t l e n =50, f o r c e s i g n e d=False)
c . gDmin val , c . gDmin ix=c . gD . min va lue index ()
c . gtau <<= Garbled (va l=s . tau)
c . gcmp = c . gDmin val < c . gtau
c . gout = c . gcmp .mux(c . gbot , c . gDmin ix)
c . out = Unsigned (va l=c . gout)
i f c . out == c . bot :

c . output (”no match found ”)
else :

c . out . output (desc=”matched index in DB”)

C. EXAMPLE: AUTOMATIC BENCHMARK-
ING WITH TASTY

In this section we give a basic example how TASTY can be
used to easily and automatically benchmark a TASTYL pro-
gram for different parameter lengths. A high-level overview
of TASTY’s benchmarking capabilities is given in §4.2.

First, we create a new TASTYL project folder by invoking

> tasty_init -d our_example

Afterwards, we adapt the benchmarking driver and the
TASTYL program to our needs as shown in Fig. 11. The
benchmarking driver’s next_params method yields the bit-
lengths for which the protocol should be run: l = 1, . . . , 80.
The TASTYL program whose performance we would like
to benchmark is a protocol which chooses two random l-bit
inputs and multiplies them using homomorphic encryption.

We copy the TASTY project folder (our_example/) to
client and server and invoke TASTY on both machines (client
connects to server on TCP port 9000):

server> tasty -sd our_example

client> tasty -cd -H server:9000 our_example

TASTY automatically iterates over all bitlengths returned
by the benchmarking driver, invokes the TASTYL program
for this bitlength and stores the measured performance bench-
marks into a file (results/costs.bin) on the client.9

Finally, we adapt the post-processing script (analyze.py)
as shown in Fig. 12 to select the costs to be drawn into the
graph and run it with the measured costs:

client:our_example/> tasty_post analyze.py \

results/costs.bin

The resulting graph is shown in Fig. 13. As expected, the
costs are similar to HE2 in Fig. 10(b).

9To see a list of all costs which were measured use
tasty post − i our example/results/costs.bin.

from ta s ty . types . d r i v e r import Driver
from ta s ty import u t i l s

class BenchmarkingDriver (Dr iver) :
””” ba s i c d r i v e r f o r benchmarking ”””
def next da ta in (s e l f) :

””” y i e l d b i t l e n g t h f o r each pro toco l run :
l = 1 , 2 , . . . , 80 ”””

for b i t l e n in xrange (1 , 81) :
s e l f . params = { ” l ” : b i t l e n }
s e l f . c l i e n t i n p u t s = { ”x” :

u t i l s . rand . rand int (0 , 2∗∗ b i t l e n − 1) }
s e l f . s e r v e r i npu t s = { ”y” :

u t i l s . rand . rand int (0 , 2∗∗ b i t l e n − 1) }
y i e l d

d r i v e r = BenchmarkingDriver () # s e l e c t d r i v e r

def pro to co l (c l i e n t , s e rver , params) :
””” TASTYL program to mu l t i p l y two unsigned

va lue s he ld by C and S using HE ”””

use parameter y i e l d e d by next params
LENGTH = params [” l ”]

c l i e n t . x =
Unsigned (b i t l e n=LENGTH) . input (s r c=dr ive r ,
desc=”x”)

s e r v e r . y =
Unsigned (b i t l e n=LENGTH) . input (s r c=dr ive r ,
desc=”y”)

c l i e n t . hx = Homomorphic (va l=c l i e n t . x)
s e r v e r . hx <<= c l i e n t . hx
s e r v e r . hr = s e r v e r . hx ∗ s e r v e r . y
c l i e n t . hr <<= se rv e r . hr
c l i e n t . r = Unsigned (va l=c l i e n t . hr)
c l i e n t . r . output (des t=dr ive r , desc=”r ”)

Figure 11: Driver and TASTYL Program
(protocol.py)

from ta s ty . c o s t r e s u l t s import e x t r a c t c o s t s
from ta s ty . u t i l s import t a s t y p l o t
from ta s ty . po s tp ro c e s s i ng import ∗

def p r o c e s s c o s t s (c o s t o b j s) :
””” Process measured cos t o b j e c t s ”””
x va lue s = [i [”params ”] [” l ”] for i in

c o s t o b j s [0] [0]]

s e l e c t c o s t s to be drawn
y va lue s = e x t r a c t c o s t s (c o s t o b j s [0] ,

C’ s on l ine time
(”C Online ” , ” c l i e n t>r ea l>on l ine>durat ion ”) ,
S ’ s on l ine time
(”S Online ” , ”se rver>r ea l>on l ine>durat ion ”))

x l a b e l = ”b i t l e ng th ” # l a b e l o f x ax i s
y l a b e l = ”Time in ms” # l a b e l o f y ax i s
graph name = ”Times f o r HE Mu l t i p l i c a t i on ”

draw graph in to PDF f i l e
t a s t y p l o t (graph name , x l abe l , y l abe l ,

x va lues , y va lues , l egend=” i n s i d e ” ,
o u t f i l e=”mu l t i p l i c a t i o n t ime . pdf ”)

Figure 12: Postprocessing Script To Draw Graph
(analyze.py)

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80

Ti
m

e
in

 m
s

bitlength

Times for HE Multiplication

C Online
S Online

Figure 13: Graph generated by TASTY(multiplication time.pdf)

	Introduction
	Our Contribution and Outline
	Related Work

	Theoretical Background
	Homomorphic Encryption: SFE of Arithmetic Circuits
	Garbled Circuits: SFE of Boolean Circuits
	Hybrid SFE of Mixed Representations

	Selected Applications
	Privacy-Preserving Set Intersection
	Privacy-Preserving Face Recognition

	TASTY
	TASTY input Language (TASTYL)
	Types and Operators
	Syntax and Example

	Tools
	Primitives and Optimizations

	Performance Measurements
	Multiplication Circuits and Protocols
	Multiplication Circuits
	Multiplication Protocols

	Evaluation of Fairplay Circuits and AES
	Evaluation of Large GCs

	Future Work
	Acknowledgements
	References
	Set Intersection (§3.1) in TASTYL
	Face Recognition (§3.2) in TASTYL
	Example: Automatic Benchmarking with TASTY

