
One-Round Password-Based

Authenticated Key Exchange

Jonathan Katz∗ Vinod Vaikuntanathan†

Abstract

We show a general framework for constructing password-based authenticated key exchange
protocols with optimal round complexity — one message per party, sent simultaneously — in
the standard model, assuming the existence of a common reference string. When our framework
is instantiated using bilinear-map cryptosystems, the resulting protocol is also (reasonably)
efficient. Somewhat surprisingly, our framework can be adapted to give protocols (still in the
standard model) that are universally composable while still using only one (simultaneous) round.

∗Dept. of Computer Science, University of Maryland. Work done while visiting IBM. Email: jkatz@cs.umd.edu.
Research supported by NSF grant #0627306 and NSF CAREER award #0447075.

†IBM Research. vinodv@alum.mit.edu.

1 Password-Based Authenticated Key Exchange

Protocols for authenticated key exchange enable two parties to generate a shared, cryptographically
strong key while communicating over an insecure network under the complete control of an adver-
sary. Such protocols are among the most widely used and fundamental cryptographic primitives;
indeed, agreement on a shared key is necessary before “higher-level” tasks such as encryption and
message authentication become possible.

Parties must share some information in order for authenticated key exchange to be possible.
It is well known that shared cryptographic keys — either in the form of public keys or a long,
uniformly random symmetric key — suffice, and several protocols in this model (building on the
classic Diffie-Hellman protocol [22], which protects only against an eavesdropping adversary and
provides no authentication at all) are known [8, 5, 6, 3, 43, 18, 19, 36, 37].

Password-based protocols allow users to “bootstrap” even a very weak (e.g., short) shared
secret into a (much longer) cryptographic key. The canonical application here is authentication
using passwords, though protocols developed in this context can be useful even when the shared
secret has high min-entropy (but is not uniform) [13]. The security guaranteed by password-based
protocols (roughly speaking) is that if the password is chosen uniformly1 from a dictionary of
size D then an adversary who initiates Q “on-line” attacks — i.e., who actively interferes in Q
sessions — has “advantage” at most Q/D. (This is inherent, as an adversary can always carry out
Q impersonation attempts and succeed with this probability.) In particular, “off-line” dictionary
attacks where an adversary enumerates all passwords from the (presumably small) dictionary of
potential passwords, and tries to match observed protocol executions to each one, are of no use.

Early work [27, 30] considered a “hybrid” setting where users share public keys in addition to
a password. In the setting where only a password is shared, Bellovin and Merritt [7] proposed the
first protocols for password-based authenticated key exchange (PAK) with heuristic arguments for
their security. Several years later, provably secure PAK protocols were constructed [4, 14, 38] in the
random oracle/ideal cipher models, and many improvements and generalizations of these protocols
are known. In contrast, only a handful of PAK protocols are known in the so-called “standard
model” (i.e., without random oracles):

General assumptions: Goldreich and Lindell [26] gave the first PAK protocol in the standard
model. Subsequent work of Barak et al. [2] shows a general feasibility result for computation
over unauthenticated networks which implies a solution for PAK as a special case. These
approaches gives the only PAK protocols for the plain model where there is no setup. (Nguyen
and Vadhan [40] show efficiency improvements to the Goldreich-Lindell protocol, but achieve
a weaker notion of security.) Unfortunately, all these approaches are completely impractical in
terms of communication, computation, and round complexity. Moreover, they do not tolerate
concurrent executions by the same party (unless additional setup is assumed).

Efficient protocols: Katz, Ostrovsky, and Yung [34] demonstrated the first efficient PAK proto-
col with a proof of security based on standard assumptions; extensions and improvements of
their protocol were given in [25, 17, 33, 24, 35]. Different constructions of efficient PAK proto-
cols in the CRS model are given in [32, 28]. In contrast to the work of Goldreich and Lindell,
these approaches are secure even under concurrent executions by the same party. On the

1Although the usual presentation of PAK assumes a uniform password, all known protocols work with passwords
chosen from an arbitrary (efficiently sampleable) distribution.

1

other hand, they require a common reference string (CRS). (Use of a CRS in cryptographic
protocols has a long history that can be traced back to [10].) While less appealing than the
“plain model”, using a CRS is not a serious drawback in the context of PAK where the CRS
can be hard-coded into an implementation of the protocol. We note also that reliance on a
CRS (or some other setup) is inherent for achieving universally composable PAK [17].

Round/message complexity of existing protocols. We distinguish between rounds and mes-
sages. Differing somewhat from the usual convention in the two-party setting (but matching the
usual convention in the multi-party setting), we let a round consist of one message sent by each
party simultaneously; note that in a one-round protocol each honest party’s message (if any) cannot
depend on the other party’s message. We stress, however, that even for one-round protocols the
adversary is always assumed to be rushing ; i.e., the adversary may wait to receive the other party’s
first-round message before sending its own.

Determining the optimal round complexity of key-exchange protocols is of both theoretical
and practical interest, and has been studied in various settings. The original Diffie-Hellman proto-
col [22], which provides security against a passive eavesdropper, can be run in one round; one-round
authenticated key exchange based on shared public/symmetric keys is also possible [31, 41]. One-
round protocols for PAK are also known (e.g., [4]), albeit in the random oracle model. All known
PAK protocols based on standard assumptions, though, require three or more rounds. We remark
that the protocols in [32, 28] achieve explicit authentication in three rounds (whereas the protocols
of [34, 25, 24, 35] achieve only implicit authentication in three rounds, and require an additional
round for explicit authentication), but the round complexity of these protocols cannot be reduced
even if only implicit authentication is desired.

1.1 Our Results

We show a new framework for constructing one-round PAK protocols in the standard model (as-
suming a CRS), where each party may send their message simultaneously. (Once again, we stress
that our security model allows for a “rushing” adversary who waits to see the message sent by a
party before sending its response.) Our protocols achieve implicit authentication but can be ex-
tended to give explicit authentication using one additional round; it is not hard to see that explicit
authentication is impossible in one round without stronger setup assumptions (e.g., a global clock).

Our framework relies on non-interactive zero-knowledge proofs (NIZK) and so, in general, may
be computationally inefficient. When instantiating our framework using bilinear maps, however, we
obtain a reasonably efficient solution (e.g., communicating a constant number of group elements).

Moreover, and somewhat surprisingly, we can extend our framework to give a universally com-
posable PAK protocol [16] without increasing the round complexity at all (and still without relying
on random oracles). In contrast, the work of [17] shows a method (used also by [28]) for obtaining
universal composability that requires additional messages/rounds. Abdalla et al. [1] show a uni-
versally composable PAK protocol, proven secure in the random oracle model, that requires three
rounds. To the best of our knowledge, no prior universally composable protocol (whether in the
random oracle model or not) can be run in only one round.

2

1.2 Our Techniques

At a basic level, we rely on smooth projective hash functions [20], as used in [25] (and implicitly
in [34]); see Section 2.2 for a definition. The basic structure of previous protocols [34, 25], omitting
many important details, is as follows:

First round: The client sends an encryption C of the password pw.

Second round: The server sends an encryption C ′ of pw, and a projected key s′ = α(k′, C, pw).

Third round: The client sends a projected key s = α(k, C ′, pw).

The client computes the session key as Hk(C ′, pw) · Hs′(C, pw, r), and the server computes the
session key as Hs(C ′, pw, r′) · Hk′(C, pw). (Here, r, r′ is the randomness used to compute C, C ′,
respectively.) Properties of the smooth projective hash function ensure that these are equal.

Two difficulties must be overcome in order to collapse a protocol of the above form to one round:

• In the smooth projective hash functions used in prior work, the “projection function” α was
adaptive, and depended on both the hash key k and the element being hashed (i.e., (C, pw) in
the above example). This leads to protocols requiring three rounds just to ensure correctness.

Here we show a construction of CCA-secure encryption schemes with associated smooth
projective hash functions whose projection function is non-adaptive, and depends only on the
hash key k. This allows us to obtain the functionality of PAK in a single round, by having
the client send (α(k), C) and the server send (α(k′), C ′) simultaneously.

• The above addresses correctness, but says nothing about security of the protocol. The tech-
nical difficulty here is that an honestly generated client message msg = (s, C) might be
forwarded by an adversary to multiple server instances (and vice versa), and we need to guar-
antee that the session keys computed in all these instances look random and independent to
the adversary. (This issue does not arise in prior work because, roughly speaking, messages
are bound to a single session by virtue of a signature key sent in the first round [34, 25] or
a MAC derived from the shared session key [24]. Neither approach is viable if we want the
entire protocol to take place in a single round.)

Due to the above difficulty, the proof of security is the most technically challenging part of
our work. Our proof relies on a technical lemma related to re-use of hash keys and elements
that may be of independent interest.

Additional ideas are needed to obtain a universally composable protocol without increasing the
number of rounds. We refer the reader to Section 4.1 for an overview of the techniques used there.

1.3 Outline of the Paper

In Section 2 we present a standard definition of security for PAK due to Bellare et al. [4]. We also
review there the notion of smooth projective hashing, and prove an important technical lemma
regarding its usage. In Section 3.1 we describe our basic framework for constructing one-round
PAK protocols, and prove security of this approach according to the definition of [4]. We discuss
in Section 3.2 two instantiations of our framework: one based on the decisional Diffie-Hellman
assumption, and a second, more efficient instantiation based on bilinear maps. In Section 4 we
describe an extension of our framework that yields one-round, universally composable password-
based authenticated key-exchange protocols.

3

2 Definitions and Background

Throughout, we denote the security parameter by n.

2.1 Password-Based Authenticated Key Exchange

Here we present a definition of security for PAK due to Bellare, Pointcheval, and Rogaway [4],
based on prior work of [5, 6]. The text here is taken almost verbatim from [34].

Participants, passwords, and initialization. Prior to any execution of the protocol there is
an initialization phase during which public parameters are established. We assume a fixed set
User of protocol participants (also called principals or users). For every distinct U,U ′ ∈ User, we
assume U and U ′ share a password pwU,U ′ . We make the simplifying assumption that each pwU,U ′ is

chosen independently and uniformly at random from the set [D] def= {1, . . . , D} for some integer D.
(Our proof of security extends to more general cases, and we explicitly consider arbitrary password
distributions when we move to the setting of universal composability.)

Execution of the protocol. In the real world, a protocol determines how principals behave in
response to input from their environment. In the formal model, these inputs are provided by the
adversary. Each principal can execute the protocol multiple times (possibly concurrently) with dif-
ferent partners; this is modeled by allowing each principal to have an unlimited number of instances
with which to execute the protocol. We denote instance i of user U as Πi

U . Each instance may
be used only once. The adversary is given oracle access to these different instances; furthermore,
each instance maintains (local) state which is updated during the course of the experiment. In
particular, each instance Πi

U has associated with it the following variables:

• sidi
U , pidi

U , and ski
U denote the session id, partner id, and session key for an instance, respec-

tively. The session id is simply a way to keep track of different executions; we let sidi
U be the

(ordered) concatenation of all messages sent and received by Πi
U . The partner id denotes the

user with whom Πi
U believes it is interacting. (Note that pidi

U can never equal U .)

• acci
U and termi

U are boolean variables denoting whether a given instance has accepted or
terminated, respectively.

The adversary’s interaction with the principals (more specifically, with the various instances)
is modeled via access to oracles which we describe now:

• Send(U, i, msg) — This sends message msg to instance Πi
U . This instance runs according to

the protocol specification, updating state as appropriate. The output of Πi
U (i.e., the message

sent by the instance) is given to the adversary.

The adversary can “prompt” instance Πi
U to initiate the protocol with partner U ′ by querying

Send(U, i, U ′). In response to this query, instance Πi
U outputs the first message of the protocol.

• Execute(U, i, U ′, j) — If Πi
U and Πj

U ′ have not yet been used, this oracle executes the protocol
between these instances and gives the transcript of this execution to the adversary. This
oracle call represents passive eavesdropping of a protocol execution.

• Reveal(U, i) — This outputs the session key ski
U , modeling leakage of session keys due to, e.g.,

improper erasure of session keys after use, compromise of a host computer, or cryptanalysis.

4

• Test(U, i) — This oracle does not model any real-world capability of the adversary, but is
instead used to define security. A random bit b is chosen; if b = 1 the adversary is given ski

U ,
and if b = 0 the adversary is given a session key chosen uniformly from the appropriate space.

Partnering. Let U,U ′ ∈ User. Instances Πi
U and Πj

U ′ are partnered if: (1) sidi
U = sidj

U ′ 6= null;
and (2) pidi

U = U ′ and pidj
U ′ = U .

Correctness. To be viable, a key-exchange protocol must satisfy the following notion of correct-
ness: if Πi

U and Πj
U ′ are partnered then acci

U = accj
U ′ = true and ski

U = skj
U ′ , i.e., they both accept

and conclude with the same session key.

Advantage of the adversary. Informally, the adversary succeeds if it can guess the bit b used
by the Test oracle. To formally define the adversary’s success, we first define a notion of freshness.
An instance Πi

U is fresh unless one of the following is true at the conclusion of the experiment:
(1) at some point, the adversary queried Reveal(U, i); or (2) at some point, the adversary queried
Reveal(U ′, j), where Πj

U ′ and Πi
U are partnered. We allow the adversary to succeed only if its Test

query is made to a fresh instance; this is necessary for any reasonable definition of security.
An adversary A succeeds if it makes a single query Test(U, i) to a fresh instance Πi

U , and outputs
a bit b′ with b′ = b (recall that b is the bit chosen by the Test oracle). We denote this event by Succ.
The advantage of adversary A in attacking protocol Π is given by AdvA,Π(k) def= 2 · Pr[Succ] − 1,
where the probability is taken over the random coins used by the adversary and the random coins
used during the course of the experiment (including the initialization phase).

It remains to define a secure protocol. A probabilistic polynomial-time (ppt) adversary can
always succeed with probability 1 by trying all passwords one-by-one; this is possible since the size
of the password dictionary is small. Informally, a protocol is secure if this is the best an adversary
can do. Formally, an instance Πi

U represents an on-line attack if both the following are true at
the time of the Test query: (1) at some point, the adversary queried Send(U, i, ∗); and (2) at some
point, the adversary queried Reveal(U, i) or Test(U, i). The number of on-line attacks represents a
bound on the number of passwords the adversary could have tested in an on-line fashion.

Definition 1 Protocol Π is a secure protocol for password-based authenticated key exchange if, for
all dictionary sizes D and for all ppt adversaries A making at most Q(n) on-line attacks, it holds
that AdvA,Π(n) ≤ Q(n)/D + negl(n).

2.2 Smooth Projective Hash Functions

We provide a self-contained definitional treatment of smooth projective hash functions. These were
introduced by Cramer and Shoup [20], and our discussion here is based on that of Gennaro and
Lindell [25]. Rather than aiming for utmost generality, we tailor the definitions to our application.

Hard subset membership problems. Fix some integer D. Let (Gen, Enc,Dec) be a CCA-secure
labeled encryption scheme (cf. Appendix A.1). For a given public key pk, we let Cpk denote the
set of pairs of valid labels and valid ciphertexts with respect to pk, and require that this set be
efficiently recognizable. For a given public key pk, define sets X and {Lpw}pw∈[D] as follows:

1. X
def= {(label, C, pw)}, where (label, C) ∈ Cpk and pw ∈ {1, . . . , D}.

2. Lpw
def= {(label, Encpk(label, pw), pw)}, where label ∈ {0, 1}∗. Let L =

⋃D
pw=1 Li.

5

Note that L ⊂ X. It follows from CCA security of (Gen, Enc, Dec) that the following is negligible
for any polynomial-time adversary A:

∣∣∣Pr
[
(pk, sk) ← Gen(1n); (label, pw) ← A(pk);C ← Encpk(label, pw) : ADecsk(·,·)(C) = 1

]

− Pr
[
(pk, sk) ← Gen(1n); (label, pw) ← A(pk);C ← Encpk(label, 0) : ADecsk(·,·)(C) = 1

]∣∣∣ , (1)

where A is disallowed from querying (label, C) to its decryption oracle.

Smooth projective hash functions. Fix pk and sets X, {Li} as above. A smooth projective
hash function H = {Hk}k∈K is a keyed function mapping elements in X to elements in some
group G, along with a projection function α : K → S. Informally, if x ∈ L then the value
of Hk(x) is uniquely determined by s = α(k) and x, whereas if x ∈ X \ L then the value of
Hk(x) is statistically close to uniform given α(k) and x (assuming k was chosen uniformly in K).
A smooth projective hash function is formally defined by a sampling algorithm that, given pk,
outputs (K,G,H = {Hk : X → G}k∈K , S, α : K → S) such that:

1. There are efficient algorithms for (1) sampling a uniform k ∈ K, (2) computing Hk(x) for
all k ∈ K and x ∈ X, and (3) computing α(k) for all k ∈ K.

2. For all (label, C, pw) ∈ L, the value of Hk(label, C, pw) is uniquely determined by α(k).
Moreover, there is an efficient algorithm that takes as input s = α(k) and (label, C, pw, r)
for which C = Encpk(label, pw; r), and outputs Hk(label, C, pw). (In other words, when
(label, C, pw) ∈ L then Hk(label, C, pw) can be computed in two ways: either using k itself,
or using α(k) and the randomness used to generate C.)

3. For any (even unbounded) function f : S → X \L, the following distributions have statistical
difference negligible in n:

{
k ← K; s = α(k) :

(
s,Hk(f(s))

)}
and {k ← K; s = α(k); g ← G : (s, g)} . (2)

We stress that in the above we modify the definition from [25] in two ways: first, α is non-adaptive,
and depends on k only (rather than both k and x); second, we require Equation (2) to hold even
for adaptive choice of f(s) 6∈ L.

2.2.1 A Technical Lemma

We now prove a technical lemma regarding smooth projective hash functions. Somewhat informally,
Gennaro and Lindell [25] showed that, for randomly generated pk and any label, pw, the distribution

{
k ← K; s = α(k);C ← Encpk(label, pw) :

(
s, C, Hk(label, C, pw)

)}

is computationally indistinguishable from the distribution

{k ← K; s = α(k);C ← Encpk(label, pw); g ← G : (s, C, g)} .

(Note this holds even though Hk(label, C, pw) is uniquely determined by s and C.) Here we show
that this continues to hold even if hash keys and ciphertexts are re-used multiple times. That is,
at a high level (ignoring labels and technical details), we show that the distribution

{
k1, . . . , k` ← K; ∀i : si = α(ki);C1, . . . , C` ← Encpk(pw) :

(
{si}, {Ci}, {Hki(Cj , pw)}`

i,j=1

)}

6

is computationally indistinguishable from the distribution
{

k1, . . . , k` ← K; ∀i : si = α(ki);C1, . . . , C` ← Encpk(pw); gi,j ← G :
(
{si}, {Ci}, {gi,j}`

i,j=1

)}
.

Formally, fix a function ` = `(n), let A be an adversary, and let b ∈ {0, 1}. Consider the
following experiment Exptb:

1. Compute (pk, sk) ← Gen(1n) and let (K, G,H = {Hk : X → G}k∈K , S, α : K → S) be an
associated smooth projective hash function for pk. Given pk to A.

2. Sample k1, . . . , k` ← K, and let si = α(ki) for all i. Give s1, . . . , s` to A.

3. A may adaptively query a (modified) encryption oracle that takes as input (label, pw) and
outputs a ciphertext C ← Encpk(label, pw) along with

(a) If b = 0, the values Hki(label, C, pw) for i = 1 to `.

(b) If b = 1, random values g1, . . . , g` ← G.

4. A can also query a decryption oracle Decsk(·, ·) at any point, except that it may not query
any pair (label, C) where C was obtained from the encryption oracle on query (label, pw).

5. At the end of the experiment, A outputs a bit b′. We say A succeeds if b′ = b.

A proof of the following appears in Appendix C.1:

Lemma 1 Let (Gen,Enc, Dec) be a CCA-secure labeled encryption scheme. For any polynomial `
and polynomial-time A, we have Pr[A succeeds] ≤ 1

2 + negl(n).

3 A One-Round PAK Protocol

3.1 The Framework and Proof of Security

Our protocol uses a CCA-secure labeled public-key encryption scheme (Gen, Enc,Dec), and a smooth
projective hash function as described in Section 2.2.

Public parameters. The public parameters consist of a public key pk generated by Gen(1n).
No one need know or store the associated secret key. (For the specific instantiations given in
Section 3.2, a public key can be derived from a common random string.) Let (K, G,H = {Hk :
X → G}k∈K , S, α : K → S) be a smooth projective hash function for pk.

Protocol execution. Consider an execution of the protocol between users U and U ′ 6= U holding
a shared password pw. Our protocol is symmetric, and so we describe the execution from the point
of view of U ; see also Figure 1.

First, U chooses random hash key k ← K and computes s := α(k). It then sets label := (U,U ′, s)
and computes the ciphertext C ← Encpk(label, pw). It sends the message (s, C).

Upon receiving the message (s′, C ′), user U does the following. If C ′ is not a valid ciphertext
or s′ 6∈ S, then U simply rejects. Otherwise, U sets label′ := (U ′, U, s′) and computes

skU := Hk(label′, C ′, pw) ·Hk′(label, C, pw).

Note that U can compute Hk(label′, C ′, pw) since it knows k, and can compute Hk′(label, C, pw)
using s′ = α(k′) and the randomness it used to generate C. Correctness follows immediately from
the definition of smooth projective hashing.

7

Public parameters: pk

User U User U ′

k ← K; s := α(k)
label := (U,U ′, s)

C ← Encpk(label, pw)

k′ ← K; s′ := α(k′)
label := (U ′, U, s′)
C ′ ← Encpk(label′, pw)s, C -

s′, C ′
¾

label′ := (U ′, U, s′)
skU := Hk(label′, C ′, pw)

·Hk′(label, C, pw)

label := (U,U ′, s)
skU ′ := Hk(label′, C ′, pw)

·Hk′(label, C, pw)

Figure 1: A one-round protocol for password-based authenticated key exchange.

Theorem 1 If (Gen, Enc, Dec) is a CCA-secure labeled encryption scheme and (K,G,H = {Hk :
X → G}k∈K , S, α : K → S) is a smooth projective hash function, then the protocol in Figure 1 is
a secure protocol for password-based authenticated key exchange.

Proof Let Π denote the protocol in Figure 1, and fix a polynomial-time adversary A attacking Π.
We construct a sequence of experiments Expt0, . . . ,Expt5, with the original experiment correspond-
ing to Expt0. Let AdvA,i(n) denote the advantage of A in experiment Expti. To prove the desired
bound on AdvA,Π(n) = AdvA,0(n), we bound the effect of each change in the experiment on the
advantage of A, and then show that AdvA,5(n) ≤ Q(n)/D (where, recall, Q(n) denotes the number
of on-line attacks made by A, and D denotes the dictionary size).

Experiment Expt1: Here we change the way Execute queries are answered. Specifically, the
ciphertexts C,C ′ sent by the two parties U,U ′ are computed as encryptions of 0 instead of being
computed as encryptions of the correct password pwU,U ′ . (Recall that the space of legal passwords
is {1, . . . , D}, and so 0 is never a valid password.) The (common) session key is computed as

skU := skU ′ := Hk(label′, C ′, pw) ·Hk′(label, C, pw),

where both values are computed using the (known) keys k, k′. A proof of the following is immediate:

Claim 1 If (Gen, Enc, Dec) is semantically secure, |AdvA,0(n)− AdvA,1(n)| is negligible.

Experiment Expt2: Here, we again change the way Execute queries are answered. Now, the
(common) session key skU = skU ′ is chosen uniformly from G.

Claim 2 |AdvA,1(n)− AdvA,2(n)| is negligible.

Proof The claim follows from the properties of the smooth projective hash function. Consider
a single call to the Execute oracle (in either Expt1 or Expt2), where the transcript given to the
adversary is (s, C, s′, C ′) with C ← Encpk(label, 0) and C ′ ← Encpk(label′, 0). In Expt1 the session
keys are computed as

skU := skU ′ := Hk(label′, C ′, pw) ·Hk′(label, C, pw),

8

where pw = pwU,U ′ is the password shared by U and U ′. Since (label′, C ′, pw) is not in L, it
follows (cf. Equation (2)) that (s,Hk(label′, C ′, pw)) is statistically close to (s, g), where g is a
uniform element in G. Similarly, (s′,Hk′(label, C, pw)) is statistically close to (s′, g′). This means
that skU = skU ′ is statistically close to a uniform element in G, even conditioned on the given
transcript. Since this is how skU , skU ′ are chosen in Expt2, the claim follows.

Before continuing, we distinguish between two possible types of Send oracle queries. We let
Send0(U, i, U ′) denote a “prompt” query that causes instance Πi

U of user U to initiate the protocol
with user U ′. In response to a Send0 query, the adversary is given the message sent by U to U ′.
This query also has the effect of setting pidi

U = U ′.
The second type of Send query, Send1(U, i,msg), denotes the event where A sends the message

msg to instance Πi
U . In response to this query, a session key ski

U is computed. (Nothing is output in
response to this query, but the value of the computed session key can be learned via a subsequent
Reveal or Test query.) For a query Send1(U, i,msg) with pidi

U = U ′, we say msg is previously
used if it was output by a previous oracle query Send0(U ′, ?, U). In any other case, we say msg is
adversarially generated.

Experiment Expt3: We first modify the experiment so that, when the public parameters pk are
generated, the simulator stores the associated secret key sk. (This is just a syntactic change.) We
then modify the way queries to the Send1 oracle are handled. Specifically, in response to the query
Send1(U, i,msg) where msg = (s′, C ′), we distinguish the following three cases (in all the following,
let pidi

U = U ′ and set label′ := (U ′, U, s′)):

1. If msg is adversarially generated, then compute pw′ := Decsk(label′, C ′). Then:

(a) If pw′ = pwU,U ′ , the simulator declares that A succeeds and terminates the experiment.

(b) If pw′ 6= pwU,U ′ , the simulator chooses ski
U uniformly from G.

2. If msg is previously used, then in particular the simulator knows a value k′ such that s′ = α(k′).
The simulator computes ski

U := Hk(label′, C ′, pw) ·Hk′(label, C, pw), but using k′ to compute
Hk′(label, C, pw) (rather than using the randomness used to generate C, as done in Expt2).

Invalid messages are treated as before, and no session key is computed.

Claim 3 AdvA,2(n) ≤ AdvA,3(n) + negl(n).

Proof Consider the three possible cases described above. The change in Case 2 does not affect
the computed value ski

U . The change in Case 1(b) introduces a negligible statistical difference
between Expt3 and Expt2 (the analysis is as in Claim 2, except that we now specifically use the fact
that Equation (2) holds even under adaptive choice of (label′, C ′, pw) 6∈ L). Finally, the change in
Case 1(a) can only increase the advantage of A.

Experiment Expt4: Once again we change how Send1 queries are handled. In response to query
Send1(U, i,msg) where msg = (s′, C ′) is previously used, let pidi

U = U ′ and proceed as follows:

• If there exists an instance Πj
U ′ partnered with Πi

U (i.e., such that sidj
U ′ , the transcript of the

protocol for instance Πj
U ′ , is equal to sidi

U), then set ski
U := skj

U ′ .

• Otherwise, choose ski
U uniformly from G.

9

Claim 4 If (Gen, Enc, Dec) is CCA-secure, |AdvA,3(n)− AdvA,4(n)| is negligible.

Proof The proof relies on Lemma 1 (cf. Section 2.2.1). Let ` be a polynomial upper bound on
the number of Send queries issued by A, and consider the following adversary S interacting in the
experiment defined in Lemma 1:

1. S is given pk, and s1, . . . , s`.

2. S chooses random passwords pwU,U ′ for all pairs of parties U,U ′, and runs A on input pk.

3. S responds to Execute queries as in Expt2 by generating a transcript where C, C ′ are encryp-
tions of 0, and where the (matching) session keys are chosen uniformly at random.

4. For all i, adversary S responds to the ith Send0 query Send0(U, ?, U ′) as follows: Set label :=
(U,U ′, si). Submit (label, pwU,U ′) to the encryption oracle, and receive in return a cipher-
text Ci along with values h1,i, . . . , h`,i. Give to A the message (si, Ci).

5. S responds to a query Send1(U, j,msg), where msg = (s′, C ′), as follows: If there exists
an instance Πk

U ′ partnered with Πj
U , then set skj

U := skk
U ′ . Otherwise, let pidj

U = U ′, set
label′ := (U ′, U, s′), and say the query Send0(U, j, U ′) (i.e., the Send query that initiated
instance Πj

U) was the ith Send0 query made by A, and resulted in the response (si, Ci). We
now distinguish several cases based on msg = (s′, C ′):

(a) If msg is invalid (i.e., C ′ is an invalid ciphertext, or s′ 6∈ S), no session key is computed.

(b) If msg is previously used, then (by definition) it was output by some previous query
Send0(U ′, ?, U). Say this was the rth Send0 query made by A, and so msg = (sr, Cr).
Then S computes skj

U := hi,r · hr,i.

(c) If msg is adversarially generated, then S submits (label′, C ′) to its decryption oracle and
receives in return a value pw. If pw 6= pwU,U ′ then skj

U is chosen uniformly from G. If
pw = pwU,U ′ then S declares that A succeeds and terminates the experiment.

6. At the end of the experiment, S outputs 1 if and only if A succeeds.

Referring to the game defined in Section 2.2.1, note that if b = 0 then the view of A in the
above execution with S is identical to the view of A in Expt3. This is true since when b = 0 it
holds in step 5(b), above, that hi,r = Hki(label′, Cr, pwU,U ′) and hr,i = Hkr(label, Ci, pwU,U ′), where
si = α(ki), sr = α(kr), and Ci, Cr are encryptions of pwU,U ′ .

On the other hand, when b = 1 we claim that the view of A in the above execution with S is
identical to the view of A in Expt4. To see this, recall that when b = 1 all the values {hi,j} received
by S are chosen uniformly and independently from G. We need to show that this yields a uniform
and independent distribution on all the session keys computed in step 5(b). Consider a particular
session key skj

U computed as in step 5(b). The only other possible time the value hi,r can be used
in the experiment is if A queries Send1(U ′, k, (si, Ci)) to the instance Πk

U ′ which sent (sr, Cr). But
then Πk

U ′ and Πj
U are partnered, and so the session key will be set equal to skj

U (exactly as in Expt4).
Since hi,r is random and used only once to compute a session key in step 5(b), we conclude that
(when b = 1) any session keys computed in that step are uniform and independent in G.

The claim now follows from Lemma 1.

Experiment Expt5: Here, we change how Send0 queries are handled. Now, in response to a query
Send0(U, i, U ′), we compute s as usual but let C be an encryption of 0. The following claim is
immediate from CCA-security of (Gen, Enc, Dec).

10

Claim 5 If (Gen, Enc, Dec) is CCA-secure, |AdvA,4(n)− AdvA,5(n)| is negligible.

In Expt5, the view of A is independent of any of the user’s passwords until it sends an adversar-
ially generated message that corresponds to an encryption of the correct password (at which point
A succeeds, as described in Expt3). It therefore holds that AdvA,5(n) ≤ Q(n)/D. Claims 1–5 thus
imply that AdvA,0(n) ≤ Q(n)/D + negl(n), completing the proof of the theorem.

3.2 Instantiating the Building Blocks

We now discuss two possible instantiations of the building blocks required by the protocol of the
previous section. Our first instantiation is based on the decisional Diffie-Hellman (DDH) assumption
and (generic) simulation-sound non-interactive zero-knowledge (NIZK) proofs. (It could also be
based on the quadratic residuosity assumption or the Paillier assumption, as in [25]. We omit further
details.) Our second, more efficient construction is based on the decisional linear assumption [12]
in groups with a bilinear map.

3.2.1 A Construction Based on the DDH Assumption

We first describe the encryption scheme and then the smooth projective hash function.

A CCA-secure encryption scheme. We apply the Naor-Yung/Sahai paradigm [39, 42] to the
El Gamal encryption scheme. Briefly, the public key defines a group G of prime order p along
with generators g1, h1, g2, h2 ∈ G. The public key also contains a common random string crs for a
(one-time) simulation-sound NIZK proof system [42]; refer to Appendix A.2 for a definition.

Fixing G, let ElGamalg,h(m) denote an El Gamal encryption of m ∈ Zp with respect to (g, h);
namely, ElGamalg,h(m) → (gr, hr ·gm), where r ∈ Zp is chosen uniformly at random. (Note: we put
m in the exponent which means that efficient recovery of m is not possible. For our purposes all that
is needed is to recover gm, which can be done in the usual way.) To encrypt a message m ∈ Zp in
our CCA-secure scheme, the sender outputs the ciphertext (ElGamalg1,h1(m), ElGamalg2,h2(m), π),
where π is a simulation-sound NIZK proof that the same m is encrypted in both cases. Labels can
be incorporated by including the label in the proof π; we omit the standard details.

Decryption of the ciphertext (c1, d1, c2, d2, π) rejects if c1, d1, c2, d2 6∈ G or if the proof π is
invalid. (Note that the space of valid label/ciphertext pairs is efficiently recognizable without the
secret key.) If the ciphertext is valid, then one of the two component ciphertexts is decrypted and
the resulting message is output. The results of [42] show that this yields a CCA-secure (labeled)
encryption scheme based on the DDH assumption and simulation-sound NIZK.

A smooth projective hash function. Fix G and a public key pk = (g1, h1, g2, h2, crs) as above,
and define sets X and {Li} as described in Section 2.2. Define a smooth projective hash function as
follows. The set of keys K consists of all four-tuples of elements in Zp. Given a valid label/ciphertext
pair (label, C = (c1, d1, c2, d2, π)) and key k = (x1, y1, x2, y2), the hash function is defined as:

H(x1,y1,x2,y2)

(
label, (c1, d1, c2, d2, π), pw

)
= cx1

1 · (d1/gpw
1)y1 · cx2

2 · (d2/gpw
2)y2 .

(Thus, the range of H is the group G itself.) The projection function α is defined as:

α(x1, y1, x2, y2) = gx1
1 · hy1

1 · gx2
2 · hy2

2 .

11

A proof of the following is standard, and is given for completeness in Appendix C.2.

Lemma 2 (K,G,H = {Hk}k∈K , S, α) as defined above is a smooth projective hash function for the
hard subset membership problem (X, {Li}).

3.2.2 A Construction Based on the Decisional Linear Assumption

We now present a more efficient construction based on bilinear maps. The efficiency advantage is
obtained by using a specific simulation-sound NIZK proof system, built using techniques adapted
from [29, 15]. Our construction here relies on the decisional linear assumption as introduced by
Boneh et al. [12]; we refer the reader there for a precise statement of the assumption.

A CPA-secure encryption scheme. We start by describing a semantically secure encryption
scheme, due to Boneh et al. [12], based on the decisional linear assumption; we then convert
this into a CCA-secure encryption scheme via the same paradigm as above, but using an efficient
simulation-sound NIZK proof system. The bilinear map itself is used only in the construction of
the simulation-sound NIZK.

Fix groups G,GT of prime order p, and a bilinear map e : G × G → GT . The public key is
pk = (f, g, h) ∈ G3, and the secret key is (α, β) such that f = h1/α and g = h1/β. A message
m ∈ Zp is encrypted by choosing random r, s ∈ Zp and computing the ciphertext (f r, gs, hr+sfm).
Given a ciphertext (c1, c2, c3), we can recover fm as c3/cα

1 cβ
2 .

A simulation-sound NIZK proof of plaintext equality. We can construct a (one-time)
simulation-sound NIZK proof of plaintext equality for the encryption scheme described above using
the techniques of [29, 15]. Details of the construction (which, while not entirely straightforward,
are not the focus of this work) are given in Appendix B.

A CCA-secure encryption scheme. We obtain a CCA-secure encryption scheme by using the
Naor-Yung/Sahai paradigm, as described previously. (The following discussion relies on the results
of Appendix B.) The public key consists of group elements (f1, g1, f2, g2, h) used for encryption, in
addition to any group elements needed for the CRS of the simulation-sound NIZK proof. Encryption
of m, as described in Appendix B, is done by choosing r1, s1, r2, s2 ∈ Zp and computing the
ciphertext

(f r1
1 , gs1

1 , hr1+s1fm
1 , f r2

2 , gs2
2 , hr2+s2fm

1 , π),

where π denotes a simulation-sound NIZK proof that the same m was encrypted both times. (Once
again, the space of valid label/ciphertext pairs is efficiently recognizable without the secret key.) It
follows from [39, 42] that this yields a CCA-secure scheme under the decisional linear assumption.
Ciphertexts consist of 66 group elements altogether.

A smooth projective hash function. Fix G,GT , and a public-key pk = (f1, g1, f2, g2, h) as
above, and define sets X and {Li} as in Section 2.2. We define a smooth projective hash function
as follows. The set of keys K is the set of six-tuples of elements in Zp. Given a valid label/ciphertext
pair (label, C = (c1, d1, e1, c2, d2, e2, π)) and a key k = (x1, y1, z1, x2, y2, z2) ∈ Z6

p, the hash function
is defined as

H(x1,y1,z1,x2,y2,z2)(label, C, pw) = cx1
1 · dy1

1 · (e1/fpw
1)z1 · cx2

2 · dy2
2 · (e2/fpw

2)z2 .

(The range of H is G itself.) The projection function α : K → G4 is defined as:

α(x1, y1, z1, x2, y2, z2) = (fx1
1 hz1 , gy1

1 hz1 , fx2
2 hz2 , gy2

2 hz2) .

12

In Appendix C.3 we show:

Lemma 3 (K,G,H = {Hk}k∈K , S, α) as defined above is a smooth projective hash function for the
hard subset membership problem (X, {Li}).

4 A One-Round, Universally-Composable PAK Protocol

A definition of security for password-based authenticated key exchange in the universal compos-
ability (UC) framework [16] was given by Canetti et al. [17]. We review the UC framework in
Appendix A.3, and include there the password-based key-exchange functionality FpwKE from [17].
(We also let F̂pwKE denote the multi-session extension of FpwKE.) This definition guarantees a
strong, simulation-based notion of security that, in particular, guarantees that security is main-
tained even when multiple protocols are run concurrently in an arbitrary network. For the specific
case of password-based key exchange, the definition also has the advantage of automatically han-
dling arbitrary (efficiently sampleable) distributions on passwords, and even correlations between
passwords of different users. We refer to [17] for a more complete discussion.

4.1 Overview of the Construction

We do not know how to prove that the protocol from Section 3.1 is universally composable. The
main difficulty is that the definition of PAK in the UC framework requires simulation even if the
adversary guesses the correct password. (In contrast, in the proof of security in Section 3.1 we simply
“give up” in case this ever occurs.) To see the problem more clearly, consider what happens in the
UC setting when the simulator sends the first message of the protocol to the adversary, before the
simulator knows the correct password. The simulator must send some ciphertext C as part of the
first message, and this “commits” the simulator to some password pw. When the adversary sends
the reply, the simulator can extract the adversary’s “password guess” pw′ and submit this guess to
the ideal functionality. If this turns out to be the correct password, however, the simulator is stuck:
it needs to compute a session key that matches the session key the adversary would compute, but
the simulator is (information-theoretically!) unable to do so because it sent an incorrect ciphertext
in the first message.

In [17], this was resolved (roughly) by having one party send a “pre-commitment” to the pass-
word, and then running a regular PAK protocol along with a proof that the password being used
in the protocol is the same as the password to which it “pre-committed”. (The proof is set up in
such a way that the simulator can equivocate this proof, but the adversary cannot.) This requires
at least one additional round.

We take a different approach that does not affect the round complexity at all. Roughly, we
modify the protocol from Figure 1 by having each party include as part of its message an encryption
C1 of its hash key k, along with a proof that C1 encrypts a value k for which α(k) = s. Now, even
if the simulator is wrong in its guess of the password it will still be able to compute a session key by
extracting this hash key from the adversary’s message. A full description of the protocol is given
in the following section.

While we do not describe in detail any instantiation of the components, we remark that it
should be possible to use the same techniques as in Appendix B to construct (reasonably) efficient
realizations of the necessary components using bilinear maps. We leave this for future work.

13

Public Parameters: (pk1, pk2, crs)

User U User U ′

k ← K; s := α(k)
C1 ← Encpk1(k)

π := Pcrs((s, C1) ∈ L∗)
label := (ssid, U, U ′, s, C1, π)

C2 ← Encpk2(label, pw)

k′ ← K; s′ := α(k′)
C ′

1 ← Encpk1(k
′)

π′ := Pcrs((s′, C ′
1) ∈ L∗)

label′ := (ssid, U ′, U, s′, C ′
1, π

′)
C ′

2 ← Encpk2(label′, pw)s, C1, π, C2 -

s′, C ′
1, π

′, C ′
2¾

label′ := (ssid, U ′, U, s′, C ′
1, π

′)
skU := Hk(label′, C ′

2, pw)
·Hk′(label, C2, pw)

label := (ssid, U, U ′, s, C1, π)
skU ′ := Hk(label′, C ′

2, pw)
·Hk′(label, C2, pw)

Figure 2: A universally composable protocol for password-based authenticated key exchange.

4.2 Description of the Protocol

In addition to the building blocks used in Section 3.1, here we also rely on an unbounded simulation-
sound NIZK proof system (CRSGen,P,V) for a language L∗ defined below; see Appendix A.2.

Public parameters. The public parameters consist of two public keys pk1 and pk2 generated
by Gen(1n) and a common random string crs for the simulation-sound NIZK proof system. Let
(K,G,H = {Hk : X → G}k∈K , S, α : K → S) be a smooth projective hash function for pk2.

Protocol execution. Consider an execution of the protocol between users U and U ′ 6= U holding
a shared password pw and a common session identifier ssid. (The ssid is an artefact of the UC
framework, and it is guaranteed that (1) parties communicating with each other begin holding
matching ssids, and (2) each ssid is used only once. We remark that the presence of these ssids
is not essential to our proof of security, though it does make the proof somewhat simpler.) Our
protocol is symmetric, and so we describe the execution from the point of view of U ; see Figure 2.

First, U chooses a random hash key k ← K and computes s := α(k). It then computes an
encryption of k, namely C1 ← Encpk1(k). Define a language L∗ as follows.

L∗ def= {(s, C1) : ∃k ∈ K and ω s.t s = α(k) and C1 = Encpk1(k; ω)}.

U computes an NIZK proof π that (C1, s) ∈ L∗, using crs. It then sets label := (ssid, U, U ′, s, C1, π)
and computes the ciphertext C2 ← Encpk2(label, pw). The message it sends is (s, C1, π, C2).

Upon receiving the message (s′, C ′
1, π

′, C ′
2), user U does the following. If the message is in-

valid (i.e., if verification of π′ fails, or C ′
2 is not a valid ciphertext, or s′ 6∈ S), then U simply

rejects. Otherwise, U sets label′ := (ssid, U ′, U, s′, C ′
1, π

′) and computes skU := Hk(label′, C ′
2, pw) ·

Hk′(label, C2, pw). Note U can compute Hk(label′, C ′
2, pw) since it knows k, and can compute

Hk′(label, C2, pw) using s′ = α(k′) and the randomness used to generate C2. Correctness follows
from the definition of smooth projective hashing. A proof of the following is given in Appendix C.4.

14

Theorem 2 If (Gen, Enc,Dec) is a CCA-secure encryption scheme, (CRSGen,P,V) is an un-
bounded simulation-sound NIZK proof system, and (K, G,H = {Hk : X → G}k∈K , S, α : K → S)
is a smooth projective hash family, then the protocol in Figure 2 securely realizes F̂pwKE in the
Fcrs-hybrid model.

References

[1] M. Abdalla, D. Catalano, C. Chevalier, and D. Pointcheval. Efficient two-party password-
based key exchange protocols in the UC framework. In T. Malkin, editor, Cryptographers’
Track — RSA 2008, LNCS, pages 335–351. Springer, Apr. 2008.

[2] B. Barak, R. Canetti, Y. Lindell, R. Pass, and T. Rabin. Secure computation without authen-
tication. In Advances in Cryptology — Crypto 2005, volume 3621 of LNCS, pages 361–377.
Springer, 2005.

[3] M. Bellare, R. Canetti, and H. Krawczyk. A modular approach to the design and analysis of
authentication and key exchange protocols. In 30th Annual ACM Symposium on Theory of
Computing (STOC), pages 419–428. ACM Press, 1998.

[4] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure against
dictionary attacks. In Advances in Cryptology — Eurocrypt 2000, volume 1807 of LNCS,
pages 139–155. Springer, 2000.

[5] M. Bellare and P. Rogaway. Entity authentication and key distribution. In Advances in
Cryptology — Crypto ’93, volume 773 of LNCS, pages 232–249. Springer, 1994.

[6] M. Bellare and P. Rogaway. Provably secure session key distribution: The three party case.
In 27th Annual ACM Symposium on Theory of Computing (STOC), pages 57–66. ACM Press,
1995.

[7] S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based protocols secure
against dictionary attacks. In IEEE Symposium on Security & Privacy, pages 72–84. IEEE,
1992.

[8] R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva, and M. Yung. Systematic
design of two-party authentication protocols. IEEE J. on Selected Areas in Communications,
11(5):679–693, 1993.

[9] M. Blum, A. De Santis, S. Micali, and G. Persiano. Noninteractive zero-knowledge. SIAM
Journal on Computing, 20(6):1084–1118, 1991.

[10] M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and its applications. In
20th Annual ACM Symposium on Theory of Computing (STOC), pages 103–112. ACM Press,
1988.

[11] M. Blum, P. Feldman, and S. Micali. Proving security against chosen cyphertext attacks. In
Advances in Cryptology — Crypto ’88, volume 403 of LNCS, pages 256–268. Springer, 1990.

[12] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In Advances in Cryptology —
Crypto 2004, volume 3152 of LNCS, pages 41–55. Springer, 2004.

15

[13] X. Boyen, Y. Dodis, J. Katz, R. Ostrovsky, and A. Smith. Secure remote authentication using
biometric data. In Advances in Cryptology — Eurocrypt 2005, volume 3494 of LNCS, pages
147–163. Springer, 2005.

[14] V. Boyko, P. D. MacKenzie, and S. Patel. Provably secure password-authenticated key ex-
change using Diffie-Hellman. In Advances in Cryptology — Eurocrypt 2000, volume 1807 of
LNCS, pages 156–171. Springer, 2000.

[15] J. Camenisch, N. Chandran, and V. Shoup. A public key encryption scheme secure against
key dependent chosen plaintext and adaptive chosen ciphertext attacks. In Advances in Cryp-
tology — Eurocrypt 2009, volume 5479 of LNCS, pages 351–368. Springer, 2009. Available at
http://eprint.iacr.org/2008/375.

[16] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
42nd Annual Symposium on Foundations of Computer Science (FOCS), pages 136–145. IEEE,
2001.

[17] R. Canetti, S. Halevi, J. Katz, Y. Lindell, and P. D. MacKenzie. Universally composable
password-based key exchange. In Advances in Cryptology — Eurocrypt 2005, volume 3494 of
LNCS, pages 404–421. Springer, 2005.

[18] R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for building
secure channels. In Advances in Cryptology — Eurocrypt 2001, volume 2045 of LNCS, pages
453–474. Springer, 2001.

[19] R. Canetti and H. Krawczyk. Universally composable notions of key exchange and secure
channels. In Advances in Cryptology — Eurocrypt 2002, volume 2332 of LNCS, pages 337–
351. Springer, 2002.

[20] R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive chosen ciphertext
secure public-key encryption. In Advances in Cryptology — Eurocrypt 2002, volume 2332 of
LNCS, pages 45–64. Springer, 2002.

[21] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust non-interactive
zero knowledge. In Advances in Cryptology — Crypto 2001, volume 2139 of LNCS, pages 566–
598. Springer, 2001.

[22] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on Infor-
mation Theory, 22(6):644–654, 1976.

[23] U. Feige, D. Lapidot, and A. Shamir. Multiple non-interactive zero knowledge proofs under
general assumptions. SIAM Journal on Computing, 29(1):1–28, 1999.

[24] R. Gennaro. Faster and shorter password-authenticated key exchange. In 5th Theory of
Cryptography Conference — TCC 2008, volume 4948 of LNCS, pages 589–606. Springer, 2008.

[25] R. Gennaro and Y. Lindell. A framework for password-based authenticated key exchange.
ACM Trans. Information and System Security, 9(2):181–234, 2006.

[26] O. Goldreich and Y. Lindell. Session-key generation using human passwords only. Journal of
Cryptology, 19(3):241–340, 2006.

16

[27] L. Gong, T. M. A. Lomas, R. M. Needham, and J. H. Saltzer. Protecting poorly chosen secrets
from guessing attacks. IEEE J. Selected Areas in Communications, 11(5):648–656, 1993.

[28] A. Groce and J. Katz. A new framework for efficient password-based authenticated key ex-
change. In 17th ACM Conf. on Computer and Communications Security (ACM CCCS 2010),
pages ???–??? ACM Press, 2010.

[29] J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups. In Advances
in Cryptology — Eurocrypt 2008, volume 4965 of LNCS, pages 415–432. Springer, 2008.

[30] S. Halevi and H. Krawczyk. Public-key cryptography and password protocols. ACM Trans.
Information and System Security, 2(3):230–268, 1999.

[31] I. R. Jeong, J. Katz, and D. H. Lee. One-round protocols for two-party authenticated key
exchange. In ACNS 04: 2nd International Conference on Applied Cryptography and Network
Security (ACNS), volume 3089 of LNCS, pages 220–232. Springer, 2004.

[32] S. Jiang and G. Gong. Password based key exchange with mutual authentication. In 11th
Annual International Workshop on Selected Areas in Cryptography (SAC), volume 3357 of
LNCS, pages 267–279. Springer, 2004.

[33] J. Katz, P. D. MacKenzie, G. Taban, and V. D. Gligor. Two-server password-only authenti-
cated key exchange. In 3rd International Conference on Applied Cryptography and Network
Security (ACNS), volume 3531 of LNCS, pages 1–16. Springer, 2005.

[34] J. Katz, R. Ostrovsky, and M. Yung. Efficient password-authenticated key exchange using
human-memorable passwords. In Advances in Cryptology — Eurocrypt 2001, volume 2045 of
LNCS, pages 475–494. Springer, 2001.

[35] J. Katz and V. Vaikuntanathan. Smooth projective hashing and password-based authenticated
key exchange from lattices. In Advances in Cryptology — Asiacrypt 2009, volume 5912 of
LNCS, pages 636–652. Springer, 2009.

[36] H. Krawczyk. SIGMA: The “SIGn-and-MAc” approach to authenticated Diffie-Hellman and
its use in the IKE protocols. In Advances in Cryptology — Crypto 2003, volume 2729 of LNCS,
pages 400–425. Springer, 2003.

[37] H. Krawczyk. HMQV: A high-performance secure diffie-hellman protocol. In Advances in
Cryptology — Crypto 2005, volume 3621 of LNCS, pages 546–566. Springer, 2005.

[38] P. D. MacKenzie, S. Patel, and R. Swaminathan. Password-authenticated key exchange based
on RSA. In Advances in Cryptology — Asiacrypt 2000, volume 1976 of LNCS, pages 599–613.
Springer, 2000.

[39] M. Naor and M. Yung. Universal one-way hash functions and their cryptographic applications.
In 21st Annual ACM Symposium on Theory of Computing (STOC), pages 33–43. ACM Press,
1989.

[40] M.-H. Nguyen and S. Vadhan. Simpler session-key generation from short random passwords.
Journal of Cryptology, 21(1):52–96, 2008.

17

[41] T. Okamoto. Authenticated key exchange and key encapsulation in the standard model (invited
talk). In Advances in Cryptology — Asiacrypt 2007, volume 4833 of LNCS, pages 474–484.
Springer, 2007.

[42] A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext secu-
rity. In 40th Annual Symposium on Foundations of Computer Science (FOCS), pages 543–553.
IEEE, 1999.

[43] V. Shoup. On formal models for secure key exchange. Technical Report RZ 3120, IBM, 1999.
Available at http://eprint.iacr.org/1999/012.

A Additional Definitions

A.1 Labeled CCA-Secure Encryption

We use the standard notion of chosen-ciphertext security for public-key encryption, though adapted
to support the inclusion of labels when generating ciphertexts.

Definition 2 A public-key encryption scheme supporting labels is a tuple of ppt algorithms (Gen,
Enc, Dec) such that:

• The key generation algorithm Gen takes as input a security parameter 1n and returns a public
key pk and a secret key sk.

• The encryption algorithm Enc takes as input a public key pk, a label label, and a message m.
It returns a ciphertext C ← Epk(label, m).

• The decryption algorithm Dec takes as input a secret key sk, a label label, and a ciphertext C.
It returns a message m or a distinguished symbol ⊥. We write this as m = Dsk(label, C).

We require that for all pk, sk output by gen(1n), any label ∈ {0, 1}∗, all m in the (implicit) message
space, and any C output by Encpk(label, m) we have Decsk(label, C) = m.

Our definition of security against chosen-ciphertext attacks is standard except for our inclusion of
labels. In the following, we define a left-or-right encryption oracle Epk,b(·, ·, ·) (where b ∈ {0, 1}) as
follows:

Encpk,b(label,m0, m1)
def= Encpk(label,mb).

Definition 3 A public-key encryption scheme (Gen, Enc, Dec) is secure against adaptive chosen-
ciphertext attacks (CCA-secure) if the following is negligible for all ppt algorithms A:

∣∣∣2 · Pr[(pk, sk) ← Gen(1n); b ← {0, 1} : AEncpk,b(·,·,·),Decsk(·,·)(1n, pk) = b]− 1
∣∣∣ ,

where A’s queries are restricted as follows: if A makes a query Epk,b(label, m0,m1) then |m0| =
|m1|; furthermore, if A receives ciphertext C in response to this query, then A cannot later query
Decsk(label, C) (but it is allowed to query (Decsk(label′, C ′) with C ′ = C and label′ 6= label).

18

A.2 Simulation-Sound Non-Interactive Zero Knowledge (NIZK)

Simulation-sound NIZK was introduced in [42, 21]. Intuitively, a simulation-sound NIZK proof
system is a NIZK proof system with the extra property that a polynomially bounded cheating
prover is incapable of convincing the verifier of a false statement, even after seeing any number of
simulated proofs of her choosing. We first recall the notion of (adaptive) NIZK:

Definition 4 ([23, 11, 9]) A tuple of ppt algorithms Π = (CRSGen,P,V,S1,S2) is an efficient
NIZK proof system for a language L ∈ NP with witness relation R if the following hold:

• Completeness: For all n, all x ∈ L ∩ {0, 1}n, all w such that R(x,w) = 1, and all strings
σ ← CRSGen(1n), it holds that Vσ(x,Pσ(x,w)) = 1.

• Adaptive Soundness: For all adversaries A, the following is negligible (in n):

Pr[σ ← CRSGen(1n); (x, π) ← A(σ) : Vσ(x, π) = 1 ∧ π 6∈ L].

• Adaptive Zero Knowledge: For all ppt adversaries A, the following is negligible
∣∣Pr[ExptA(n) = 1]− Pr[ExptSim

A (n) = 1]
∣∣,

where experiment ExptA(n) is defined as:

σ ← CRSGen(1n)

Return APσ(·,·)(1n, σ)

and experiment ExptSim
A (n) is defined as:

(σ, τ) ← S1(1n)

Return AS′σ,τ (·,·)(1n, σ),

where S′σ,τ (x,w) =
{ S2(x, σ, τ) R(x,w) = 1 ∧ x ∈ {0, 1}n

⊥ otherwise
.

We next define the notion of simulation-sound NIZK. (Note that although one-time simulation
soundness would suffice for our applications in Section 3.2, we only define the stronger notion of
unbounded simulation-sound NIZK. See [42] for a definition of the former.)

Definition 5 Let Π = (CRSGen,P,V,S1,S2) be an efficient NIZK proof system for a language
L ∈ NP. We say Π is simulation sound if for all ppt adversaries A it holds that Pr[ExptA,Π(n) = 1]
is negligible, where ExptA,Π(n) denotes the following experiment:

(σ, τ) ← S1(1n)

(x, π) ← AS2(·,σ,τ)(1n, σ)
Let Q be the list of proofs returned by S2, above
Return 1 iff (π 6∈ Q and x 6∈ L and Vσ(x, π) = 1) .

Assuming the existence of enhanced trapdoor permutations, every language inNP has a simulation-
sound NIZK proof system [21].

19

A.3 The Universal Composability Framework

We provide a brief review of the universally composable security framework [16]. The framework
allows for defining the security properties of cryptographic tasks so that security is maintained
under general composition with an unbounded number of instances of arbitrary protocols running
concurrently. In the UC framework, the security requirements of a given task are captured by
specifying an ideal functionality run by a “trusted party” that obtains the inputs of the participants
and provides them with the desired outputs. Informally, then, a protocol securely carries out a
given task if running the protocol in the presence of a real-world adversary amounts to “emulating”
the desired ideal functionality.

The notion of emulation in the UC framework is considerably stronger than that considered in
previous models. As usual, the real-world model includes the parties running the protocol and an
adversary A who controls their communication and potentially corrupts parties, while the ideal-
world includes a simulator S who interacts with an ideal functionality F and also with dummy
players who simply send input to/receive output from F ; “emulating an ideal process” requires
that for any adversary A there should exist a simulator S that causes the outputs of the parties
in the ideal process to have a “similar” (i.e., computationally-indistinguishable) distribution to
the outputs of the parties in a real-world execution of the protocol. In the UC framework, the
requirement on S is more stringent than this. Specifically, there is also an additional entity called
the environment Z. This environment generates the inputs to all parties, observes all their outputs,
and interacts with the adversary in an arbitrary way throughout the computation. A protocol π
is said to securely realize an ideal functionality F if for any real-world adversary A that interacts
with Z and real players running π, there exists an ideal-world simulator S that interacts with Z,
the ideal functionality F , and the “dummy” players communicating with F , such that no poly-time
environment Z can distinguish whether it is interacting with A (in the real world) or S (in the
ideal world). Z thus serves as an “interactive distinguisher” between a real-world execution of the
protocol π and an ideal execution of functionality F . A key point is that Z cannot be re-wound by
S; in other words, S must provide a so-called “straight-line” simulation.

The following universal composition theorem is proven in [16]. Consider a protocol π that
operates in the F-hybrid model, where parties can communicate as usual and in addition have
ideal access to an unbounded number of copies of the functionality F . Let ρ be a protocol that
securely realizes F as sketched above, and let πρ be identical to π with the exception that the
interaction with each copy of F is replaced with an interaction with a separate instance of ρ. Then,
π and πρ have essentially the same input/output behavior. In particular, if π securely realizes
some functionality G in the F-hybrid model then πρ securely realizes G in the standard model (i.e.,
without access to any functionality).

A.3.1 Universally-Composable Password-Based Key Exchange

In Figure 3 we present the functionality FpwKE for password-based key exchange, taken directly
from [17]. We refer the reader to their work for extensive discussion regarding the particular choices
made regarding this formulation of this functionality.

20

Functionality FpwKE

The functionality FpwKE is parameterized by a security parameter n. It interacts with an adversary S and
a set of parties via the following queries:

Upon receiving a query (NewSession, sid, Pi, Pj , pw) from party Pi:
Send (NewSession, sid, Pi, Pj) to S. In addition, if this is the first NewSession query, or if this is the
second NewSession query and there is a record (Pj , Pi, pw′), then record (Pi, Pj , pw) and mark this
record fresh.

Upon receiving a query (TestPwd, sid, Pi, pw′) from the adversary S:
If there is a record of the form (Pi, Pj , pw) which is fresh, then do: If pw′ = pw, mark the record
compromised and reply to S with “correct guess”. If pw 6= pw′, mark the record interrupted and
reply with “wrong guess”.

Upon receiving a query (NewKey, sid, Pi, sk) from S, where |sk| = n:
If there is a record of the form (Pi, Pj , pw), and this is the first NewKey query for Pi, then:

• If this record is compromised, or either Pi or Pj is corrupted, then output (sid, sk) to player Pi.

• If this record is fresh, and there is a record (Pj , Pi, pw′) with pw′ = pw, and a key sk′ was sent
to Pj , and (Pj , Pi, pw) was fresh at the time, then output (sid, sk′) to Pi.

• In any other case, pick a new random key sk′ ← {0, 1}n and send (sid, sk′) to Pi.

Either way, mark the record (Pi, Pj , pw) as completed.

Figure 3: The password-based key-exchange functionality FpwKE.

B A Simulation-Sound NIZK Proof of Plaintext Equality

Fix groups G,GT of prime order p, and a bilinear map e : G×G→ GT as in Section 3.2.2. Fix also
two public keys pk1 = (f1, g1, h) and pk2 = (f2, g2, h). We encrypt a message m with respect to pk1

by choosing random r, s and computing the ciphertext (f r
1 , gs

1, h
r+sfm

1). We encrypt a message m
with respect to pk2 by choosing random r, s ∈ Zp and computing the ciphertext (f r

2 , gs
2, h

r+sfm
1).

We stress that the public keys use the same value h, and that the group element fm
1 is used when

encrypting with respect to both public keys.
We first describe a (potentially malleable) NIZK proof of plaintext equality. That is, given

two ciphertexts (F1, G1,H1) and (F2, G2,H2) encrypted with respect to pk1, pk2, respectively, we
describe a proof that these ciphertexts encrypt the same message. The observation is that plaintext
equality is equivalent to the existence of r1, s1, r2, s2 ∈ Zp such that:

F1 = f r1
1 (3)

G1 = gs1
1 (4)

F2 = f r2
2 (5)

G2 = gs2
2 (6)

H1/H2 = hr1+s1−r2−s2 . (7)

As shown in [29] (see also [15, Section 4.4] for a self-contained description), NIZK proofs of satisfi-
ability (with a CRS) can be constructed for a system of equations as above; since, in our case, we
have 5 (linear) equations in 4 variables, proofs would contain 22 group elements.2

2Our calculations here are based on the decisional linear assumption (the 2-linear assumption in the terminology
of [15]). If we are willing to use the 1-linear assumption, the efficiency of our proofs can be improved.

21

Camenisch et al. [15] show a construction of an unbounded simulation-sound NIZK. For our pur-
poses, a simpler construction that is one-time simulation sound [42] will suffice. Let (Gen,Sign,Vrfy)
be a one-time signature scheme, where for simplicity we assume verification keys are elements
of G (this can always be achieved using an extra step of hashing). To make the above (one-time)
simulation-sound, we add to the CRS group elements (f, g, h, F, G,H). Roughly, proofs of plaintext
equality now contain:

1. A fresh signature verification key vk.

2. A proof that either there exists a satisfying assignment to Equations (3)–(7), or that the
given tuple (f, g, h, F,G, H) is an encryption of vk. I.e., there exist r, s such that:

F = f r, G = gs, H/vk = hr+s. (8)

3. A signature σ (with respect to vk) on the proof from the previous step.

Noting that Equation (8) describes a system of 3 (linear) equations in 2 variables, and using the
techniques from [15, Appendix A.2], an NIZK proof as required in step 2 can be done using 58 group
elements, for a total of 60 group elements for the entire simulation-sound NIZK proof (assuming
signatures are one group element for simplicity). See also footnote 2.

C Deferred Proofs

C.1 Proof of Lemma 1

Let `′ be a (polynomial) bound on the number of encryption queries asked by A. Then when b = 0,
the values given to A include pk, s1, . . . , s`, the ciphertexts C1, . . . , C`′ , and the values

Hk1(label1, C1, pw1) · · · · · · Hk1(label`′ , C`′ , pw`′)
...

.
...

Hk`
(label1, C1, pw1) · · · · · · Hk`

(label`′ , C`′ , pw`′)

 .

We show that this is computationally indistinguishable from the experiment where A gets pk,
s1, . . . , s`, ciphertexts C1, . . . , C`′ , and a matrix of ` · `′ uniform and independent elements of G.

To prove this we show that, for arbitrary i, j, the experiment in which A is given

g1,1
...

...
... gi−1,j

...
... · · · Hki(labelj , Cj , pwj) · · · ...
... Hki+1(labelj , Cj , pwj)

...

g`,1
... Hk`

(label`′ , C`′ , pw`′)

22

is computationally indistinguishable from the experiment in which A is given

g1,1
...

...
... gi−1,j

...
... · · · gi,j · · · ...
... Hki+1

(labelj , Cj , pwj)
...

g`,1
... Hk`

(label`′ , C`′ , pw`′)

,

where the ga,b denote uniform and independent elements of G. (In both cases, A is also given pk,
s1, . . . , s`, and C1, . . . , C`′ , and may access the decryption oracle as in the original experiment.)
Once we show this, the lemma follows by a standard hybrid argument.

We denote the first experiment, in which the (i, j)th entry of the matrix is computed as
Hki(labelj , Cj , pwj), by reali,j ; we denote the second experiment, in which the (i, j)th entry of
the matrix is a random gi,j , by randi,j . To prove that these two experiments are indistinguishable,
we introduce two additional experiments. Experiment real′i,j (resp., rand′i,j) is identical to reali,j
(resp., randi,j) except that now the jth ciphertext Cj returned by the encryption oracle is computed
as an encryption of 0 (i.e., Cj ← Encpk(label, 0)). It follows immediately from the CCA-security
of the encryption scheme that reali,j and real′i,j (resp., randi,j and rand′i,j) are computationally
indistinguishable.

To complete the proof that reali,j and randi,j are computationally indistinguishable, we show
that real′i,j and rand′i,j are statistically close. To see this, consider the following experiment involving
an algorithm B who is given si = α(ki) for unknown (random) ki, outputs (label, C, pw) ∈ X \ L,
and is given in response an element hi,j ∈ G:

1. Compute (pk, sk) ← Gen(1n) and choose ki ← K. Give B the values (pk, sk) and si = α(ki).

2. B internally runs A on initial input pk. (Note that B can easily answer decryption queries of
A using sk.) Then B samples k1, . . . , ki−1, ki+1, . . . , k` ← K, sets sm = α(km) for all m 6= i,
and gives s1, . . ., s` to A.

3. When A queries its encryption oracle with (label, pw), we have B act as follows:

(a) For the kth such query, with k < j, we have B compute Ck ← Encpk(label, pw) and give
to A the ciphertext Ck along with random g1,k, . . . , g`,k ← G.

(b) For the jth such query (so (labelj , pwj) = (label, pw)), B computes Cj ← Encpk(labelj , 0),
outputs (labelj , Cj , pw), and receives hi,j . It then chooses g1,j , . . . , gi−1,j ← G, and gives
to A the values g1,j , . . . , gi−1,j , hi,j ,Hki+1(labelj , Cj , pwj), . . . , Hk`

(labelj , Cj , pwj). Note
that B can compute these latter values since it knows ki+1, . . . , k`.

(c) For the kth such query, with k > j, we have B compute Ck ← Encpk(label, pw) and give
to A the ciphertext Ck along with Hk1(label, Ck, pw), . . . , Hk`

(label, Ck, pw). Note that
B can compute Hki(label, Ck, pw), even though it does not know ki, because of the fact
that (label, Ck, pw) ∈ Lpw and B knows the randomness used to compute Ck.

Observe that the view of A is distributed according to real′i,j if hi,j = Hki(labelj , Cj , pw), and is
distributed according to rand′i,j if hi,j is chosen uniformly from G. It follows from Equation (2)
that real′i,j and rand′i,j are statistically close.

23

C.2 Proof of Lemma 2

Sampling a uniform k ∈ K, computing Hk(x) given k ∈ K and x ∈ X, and computing α(k) for
k ∈ K are all easy.

We now show that if (label, C, pw) ∈ L, then Hk(label, C, pw) can be computed efficiently
given α(k) and the randomness used to generate C. Since (label, C, pw) ∈ L, we have that C =
(gr1

1 , hr1
1 gpw

1 , gr2
2 , hr2

2 gpw
2 , π) for some r1, r2 ∈ Zp. For k = (x1, y1, x2, y2) we have

Hk(label, C, pw) = cx1
1 · (d1/gpw

1)y1 · cx2
2 · (d2/gpw

2)y2

= gr1x1
1 · (h1)

r1y1 · gr2x2
2 · (h2)

r2y2

= (gx1
1 hy1

1)r1 · (gx2
2 hy2

2)r2 .

This can be computed easily given r1, r2 and α(k) = (gx1
1 hy1

1 , gx2
2 hy2

2).
Next, we show that if (label, C, pw) ∈ X \ L, then the value of Hk(label, C, pw) is uniform

conditioned on α(k). (This holds even if (label, C, pw) are chosen adaptively depending on α(k).)
Fix any α(k) = (s1, s2). This constrains k = (x1, y1, x2, y2) to satisfy

x1 + logg1
h1 · y1 = logg1

s1 (9)
x2 + logg2

h2 · y2 = logg2
s2, (10)

where the above are modulo the group order p. For any (label, C, pw) ∈ X \ L, we can write
C = (gr1

1 , hr1
1 gpw′

1 , gr2
2 , hr2

2 gpw′
2 , π) for some pw′ 6= pw. (We assume for simplicity that the same

pw′ is encrypted twice; since π is valid, this is the case with all but negligible probability.) Then:

Hk(label, C, pw) = gr1x1
1 ·

(
h1 · gpw−pw′

1

)r1y1 · gr2x2
2 ·

(
h2 · gpw′−pw

2

)r2y2

= gr1x1
1 · hr′1y1

1 · gr2x2
2 · hr′2y2

2 ,

for some r′1 6= r1 and r′2 6= r2. So, for any g ∈ G, we have Hk(label, C, pw) = g iff

r1 · x1 + (r′1 · logg1
h1) · y1 + (r2 · logg1

g2) · x2 + (r′2 · logg1
h2) · y2 = logg1

g.

Since this equation in the unknowns x1, y1, x2, y2 is linearly independent of Equations (9) and (10),
we see that the probability that Hk(label, C, pw) = g is exactly 1/|G|, and so the distribution of
Hk(label, C, pw) is uniform in G.

C.3 Proof of Lemma 3

Sampling a uniform k ∈ K, computing Hk(x) given k ∈ K and x ∈ X and computing α(k) for
k ∈ K are all easy.

We show that if (label, C, pw) ∈ L, then Hk(label, C, pw) can be computed efficiently given
α(k) and the randomness used to generate C. Since (label, C, pw) ∈ L, we have that C =
(f r1

1 , gs1
1 , hr1+s1fpw

1 , f r2
2 , gs2

2 , hr2+s2fpw
2) for some r1, s1, r2, s2 ∈ Zp. For k = (x1, y1, z1, x2, y2, z2)

we have

Hk(label, C, pw) = cx1
1 dy1

1 · (e1/fpw
1)z1 · cx2

2 · dy2
2 · (e2/fpw

2)z2

= (fx1
1 hz1)r1 · (gy1

1 hz1)s1 · (fx2
2 hz2)r2 · (gy2

2 hz2)s2 .

24

This can be computed easily given r1, s1, r2, s2 and α(k) = (fx1
1 hz1 , gy1

1 hz1 , fx2
2 hz2 , gy2

2 hz2).
Next, we show that if (label, C, pw) ∈ X \ L, then the value of Hk(label, C, pw) is uniform

conditioned on α(k). (This holds even if (label, C, pw) are chosen adaptively depending on α(k).)
Fix any α(k) = (S1, S2, S3, S4). Letting αi = logh fi and βi = logh gi, this value of α(k) constrains
k = (x1, y1, z1, x2, y2, z2) to satisfy

α1 0 1 0 0 0
0 β1 1 0 0 0
0 0 0 α2 0 1
0 0 0 0 β2 1

x1

y1

z1

x2

y2

z2

=

γ1

γ2

γ3

γ4

 , (11)

where γi = logh Si. For any (label, C, pw) ∈ X \ L, we can write

C = (f r1
1 , gs1

1 , hr1+s1fpw′
1 , f r2

2 , gs2
2 , hr2+s2fpw′

2 , π)

for some pw′ 6= pw. (We assume for simplicity that the same pw′ is encrypted twice; since π is
valid, this is the case with all but negligible probability.) We then have

Hk(label, C, pw) = f r1x1
1 · gs1y1

1 · h(r1+s1)z1 · (f∆
1

)z1 · f r2x2
2 · gs2y2

2 · h(r2+s2)z2 · (f∆
2

)z2

= Sr1
1 Ss1

2 Sr2
3 Ss2

4 · (fz1
1 fz2

2)∆ , (12)

where ∆ = pw′ − pw 6= 0. For any g ∈ G, we have fz1
1 fz2

2 = g iff

α1 · z1 + α2 · z2 = logh g. (13)

Since the system of equations given by (11) and (13) is under-defined, the probability that fz1
1 fz2

2 =
g is exactly 1/|G| even conditioned on the value α(k). Looking at Equation (12), and noting
that Sr1

1 Ss1
2 Sr2

3 Ss2
4 is entirely determined by α(k) and C, we conclude that the distribution of

Hk(label, C, pw) is uniform in G.

C.4 Proof of Theorem 2

Let A be an adversary that interacts with the parties running the protocol. We construct an ideal-
world adversary (simulator) S interacting with the ideal functionality F̂pwKE, such that no ppt
environment Z can distinguish an interaction with A in the real world from an interaction with S
in the ideal world.

C.4.1 Description of the Simulator

S starts by invoking a copy of A and running a simulated interaction of A with Z and the parties
in the network. S forwards all messages to/from A and Z in the usual way.

Generating the public parameters. S generates pk1 and pk2 along with their corresponding
secret keys sk1 and sk2. It also runs (crs, τ) ← S1(1k), where S1 is the initial simulator for the
simulation-sound NIZK proof system. The public parameters (pk1, pk2, crs) are given to A, and
then S responds to the messages of A as described below.

25

Receiving a (NewSession, sid, Pi, Pj) message from F̂pwKE. Upon receiving such a message
(indicating that Pi should initiate the protocol with Pj), S proceeds as follows. Choose a random
hash key k ← K and compute s := α(k). Compute the ciphertext C1 ← Encpk1(0) and a simulated
NIZK proof π for the statement (C1, s) ∈ L∗. Set label := (sid, Pi, Pj , s, C1, π) and compute
C2 ← Encpk2(label, 0). Give the message (s, C1, π, C2) to A.

Receiving a message msg′ = (s′, C ′
1, π

′, C ′
2) from A. Let Pi denote the user to whom A sends

this message, and let sid denote the session ID with which this message is associated. Let Pj denote
the partner of Pi for this session.

If msg′ is invalid then S does nothing. Otherwise, we say msg′ is previously used if it was sent
by S (on behalf of Pj) upon receiving the message (NewSession, sid, Pj , Pi) from F̂pwKE. In any
other case we say msg′ is adversarially generated. To respond to this message, S does:

1. If msg′ is previously used, then S sends (NewKey, sid, Pi,⊥) to the functionality F̂pwKE. (Note
this has the effect of choosing a random session key for this instance of Pi if it terminates
before the partnered session at Pj , and otherwise sends to Pi the same session key already
computed for the partnered session at Pj ; cf. Figure 3 in Appendix A.3.1.)

2. If msg′ is adversarially generated, then S decrypts the ciphertext C ′
2 using the secret key sk2 to

obtain a password pw′. Then S queries the functionality F̂pwKE on input (TestPwd, sid, Pi, pw′),
which replies with either “correct guess” or “wrong guess”.

(a) If the reply is “correct guess”, then S decrypts C ′
1 using sk1 to obtain k′. It then com-

putes sk := Hk(label′, C ′
2, pw′) ·Hk′(label, C2, pw′), where Hk′(C2) is computed using k′.

Finally, S sends (NewKey, sid, Pi, sk) to F̂pwKE.

(b) If the reply is “wrong guess”, then S sends (NewKey, sid, Pi,⊥) to F̂pwKE.

C.4.2 Proof of Indistinguishability

Let idealF̂pwKE,S,Z denote the view of the environment Z in the ideal world when interacting with
S, and let execP,A,Z denote the view of Z in the real world when the protocol from Figure 2
is being run. Our aim is to show that these distributions are computationally indistinguishable.
We do this by considering a sequence of experiments P1, . . . , P5 (where P0 corresponds to the
real-world execution). Let execPi,A,Z denote the view of Z in Pi. We show that execPi,A,Z is
computationally indistinguishable from execPi+1,A,Z for all i, and then argue that execP5,A,Z is
identical to idealF̂pwKE,S,Z . This completes the proof.

Experiment P0: Recall, experiment P0 involves the environment Z interacting with the adver-
sary A, who in turn interacts with parties running the real protocol as specified in Figure 2. The
view of Z consists of public parameters and all the protocol messages (forwarded to it by A) as
well as all the session keys produced by parties during the course of the experiment.

Experiment P1: We change the distribution of the public parameters and the messages generated
by the parties in the protocol. Specifically, the common random string crs is replaced with a
simulated one, and the proof π in every outgoing message is replaced with a simulated proof. It
follows from the zero-knowledge properties of the proof system that execP1,A,Z ≈c execP0,A,Z .

Experiment P2: Here, we again change the distribution of the outgoing messages by always
computing the ciphertext C1 as an encryption of 0 (rather than an encryption of the hash key k).
The proof of the following claim is immediate:

26

Claim 6 If (Gen, Enc, Dec) is a CPA-secure encryption scheme, then execP2,A,Z ≈c execP1,A,Z .

Before continuing, we define the notion of a previously used message. Note that the definition
here is slightly different from the definition used in the proof of Theorem 1.

Consider a message msg′ = (s′, C ′
1, π

′, C ′
2) sent to a user Pi and associated with session ID sid.

Let Pj denote the partner of Pi in this session. We say msg′ is previously used if it was sent by Pj

for the same session ID sid, where Pj is partnered with Pi in that session. In any other case, we
say msg′ is adversarially generated.

Experiment P3: We change the way session keys are computed. Specifically, consider an in-
stance of user Pi, with session ID sid and partner Pj , who receives an incoming message msg′ =
(s′, C ′

1, π
′, C ′

2). If this message is invalid, then it is handled as before (and no session key is com-
puted). Otherwise, set label′ := (sid, Pj , Pi, s

′, C ′
1, π

′) and then:

• If msg′ is adversarially generated, compute pw′ := Decsk2(label′, C ′
2). Let pw be the value of

the password being used by the current instance.

1. If pw′ = pw, compute k′ := Decsk1(C1). Then compute sk := Hk(label′, C ′
2, pw) ·

Hk′(label, C2, pw), where the hash values are computed using the known keys k and k′.

2. If pw′ 6= pw, choose sk uniformly from G.

• If msg is previously used, then in particular the simulator knows a value k′ such that s′ = α(k′).
The simulator computes sk := Hk(label′, C ′

2, pw) ·Hk′(label, C2, pw), but using k′ to compute
the second hash value (rather than using the randomness used to generate C2, as done in P2).

Claim 7 If (CRSGen,P,V) is simulation-sound, execP3,A,Z ≈s execP2,A,Z .

Proof The only difference between the proof here and the proof of Claim 3 is with regard to
what happens when msg′ is adversarially generated and pw′ = pw, so we focus on that case. Since
the proof system is simulation-sound, with all but negligible probability S extracts a value k′ such
that α(k′) = s′. Assuming this occurs, the session key computed in P3 is identical to the session
key that would be computed in P2.

Experiment P4: Here, in every outgoing message the ciphertext C2 is generated as an encryption
of 0, rather than as an encryption of pw. It follows readily from the CCA-security of the encryption
scheme used that execP4,A,Z ≈c execP3,A,Z .

Experiment P5: We once again change the secret key computed on input a message msg′ =
(s′, C ′

1, π
′, C ′

2) that is previously used. In this case, let pidi
U = U ′ and proceed as follows:

• If there exists an instance Πj
U ′ partnered with Πi

U , then set ski
U := skj

U ′ .

• Otherwise, choose ski
U uniformly from G.

Claim 8 execP5,A,Z ≈s execP4,A,Z .

Proof Since msg′ is previously used, the ciphertext C ′
2 is an encryption of 0. Thus (label′, C ′

2, pw)
is not in L, and it follows (cf. Equation (2)) that (s,Hk(label′, C ′

2, pw)) is statistically close to (s, g),
where s = α(k) and g is a uniform element in G. This means that the secret key is statistically
close to a uniform element in G, even conditioned on the given transcript. The claim follows.

27

Finally, we claim that the distribution execP5,A,Z is identical to the distribution produced by
the simulator, namely idealF̂pwKE,S,Z . This follows by inspection. The only change is a syntactic
one: in experiment P5 the secret keys are computed and stored locally, whereas in the ideal world
the simulator computes the secret keys and sends them to the functionality, which in turn forwards
them to the (dummy) parties.

The above shows that execP,A,Z ≡ execP0,A,Z ≈c execP5,A,Z ≡ idealF̂pwKE,S,Z , completing
the proof of the theorem.

28

