
On Efficiently Transferring the Linear
Secret-Sharing Scheme Matrix in

Ciphertext-Policy Attribute-Based Encryption

Zhen Liu and Zhenfu Cao ?

Department of Computer Science and Engineering
Shanghai Jiao Tong University, Shanghai, China
liuzhen@sjtu.edu.cn, zfcao@cs.sjtu.edu.cn

Abstract. Ciphertext-Policy Attribute-Based Encryption(CP-ABE) is
a system for realizing complex access control on encrypted data, in which
attributes are used to describe a user’s credentials and a party encrypting
data determines a policy over attributes for who can decrypt. In CP-ABE
schemes, access policy is attached to the ciphertext to be the input of
the decryption algorithm.
An access policy can be expressed in terms of monotone boolean formula
or monotone access structure, and can be realized by a linear secret-
sharing scheme(LSSS). In recent provably secure and efficient CP-ABE
schemes, the LSSS induced from monotone span program(MSP) is used,
where the LSSS is a matrix whose rows are labeled by attributes. And
a general algorithm for converting a boolean formula into corresponding
LSSS matrix is described recently. However, when there are threshold
gates in the access structure, the number of rows of the LSSS matrix
generated by the algorithm will be unnecessary large, and consequently
the ciphertext size is unnecessary large.
In this paper, we give a more general and efficient algorithm that the
number of rows of the LSSS matrix is as small as possible. And by some
tricks, the boolean formula acts as the label function, so that only the
boolean formula needs to be attached to the ciphertext, which decreases
the communication cost drastically.

Keywords: attribute based encryption, ciphertext policy, access struc-
ture, linear secret sharing scheme, monotone span program

1 Introduction

Attribute-Based Encryption(ABE), introduced by Sahai and Waters [8],
provides a new way for access control of encrypted data. Goyal, Pandey,
Sahai, and Waters [3] clarified the concept of ABE into Key-Policy ABE

? Corresponding author.

(KP-ABE) and Ciphertext-Policy (CP-ABE). In KP-ABE, attributes are
used to annotate the ciphertexts and formula over attributes are ascribed
to user’s secret keys. CP-ABE is complementary in that attributes are
used to describe user’s credentials and the formulas over these creden-
tials are attached to ciphertext by encrypting party. As the CP-ABE is
conceptually closer to the traditional access control methods, since the
first CP-ABE scheme is presented by Bethencourt, Sahai, and Waters [2],
CP-ABE is regarded as a promising concept for next-generation access
control. And recently several elegant CP-ABE schemes, which achieve sat-
isfying security, efficiency, access policy expressibility and other virtues
such as multi-authority, have been presented in [10, 6, 5].

Access policy can be described in terms of monotone boolean formula
or monotone access structure, and can be realized by linear secret-sharing
schems (LSSS). In these schemes in [10, 6, 5], the access policy attached
to the ciphertext is realized by an LSSS induced from monotone span
program(MSP) [4], i.e., a labeled matrix M̂ = (M,ρ) over Zp where p is
a large prime1. While p is related with the security parameter and must
be very large, efficiently transferring the LSSS matrix to the decryptor
is an important task for using these schemes in practice. In addition, as
the ciphertext size is linear in the size of the LSSS matrix (the number
of rows), it is desired to construct LSSS matrices with smaller size.

Our contribution In this paper, we present a general and efficient algo-
rithm that converts a boolean formula into corresponding LSSS matrix.
Taking the boolean formula as an access tree where interior nodes are
threshold gates and leaf nodes correspond to attributes, our algorithm
generates the corresponding LSSS matrix whose size is as small as pos-
sible. And the ith row of the LSSS matrix is labeled by the ith attribute
in the boolean formula. Embedding the algorithm into the Encrypt and
Decrypt algorithm, only the boolean formula needs to be attached to the
ciphetext. The total communication cost is drastically decreased.

Related work In [5] a general algorithm for converting boolean formulas
into LSSS matrices is described. The algorithm considers the formula as
an access tree, where interior nodes are AND(∧) or OR(∨) gates and leaf
nodes correspond to attributes. The number of rows in the corresponding
LSSS matrix is same with the number of leaf nodes in the access tree.

1 Zp is used in [10] and ZN is used in [6, 5] where N is a product of three large primes.
The use of composite N is critical to the schemes in [6, 5]. But for the access policy,
ZN plays the same role as Zp. For simplicity, we state only Zp.

However, when there are threshold gates in the access structure, the num-
ber of rows of the LSSS matrix will be unnecessary large. For example, for
a (3, 2) threshold access structure (A∧B)∨ (B∧C)∨ (A∧C), the matrix
generated by the algorithm has 5 rows at least. In fact, there exists an
LSSS matrix of 3 rows for the access structure.

Organization The remainder of our paper is structured as follows. In
Section 2 we first give background on access structure and the recent CP-
ABE schemes, then we review the definitions and some previous work on
the monotone span program. We present our algorithm and give some
examples in Section 3. Efficiency improvements are discussed in Section
4, and finally we conclude in Section 5.

2 Background

We first give formal definitions for access structures and relevant back-
ground on Linear Secret Sharing Schemes(LSSS).

2.1 Access Structures

Definition 1 (Access Structure [1]). Let {P1, P2, . . . , Pn} be a set of
parties. A collection A ⊆ 2{P1,P2,...,Pn} is monotone if ∀B,C : if B ∈
A and B ⊆ C then C ∈ A. An access structure (respectively, monotone
access structure) is a collection (respectively, monotone collection) A of
non-empty subsets of {P1, P2, . . . , Pn}, i.e., A ⊆ 2{P1,P2,...,Pn} \ {∅}. The
sets in A are called the authorized sets, and the sets not in A are called
the unauthorized sets.

In these recent CP-ABE schemes [10, 6, 5], the attributes will play the
role of parties and only the monotone access structures are dealt with.
From now on, unless stated otherwise, by an access structure we mean a
monotone access structure.

The recent CP-ABE schemes [10, 6, 5] employ linear secret-sharing
schemes and use the definition adapted from [1].

Definition 2 (Linear Secret-Sharing Schemes(LSSS)[1, 10]). A se-
cret scheme Π over a set of parties P is called linear (over Zp) if

1. The shares for each party form a vector over Zp.
2. There exists a matrix A called the share-generating matrix for Π. The

Matrix A has l rows and n columns. For all i = 1, . . . , l, the ith row
of A is labeled by a party ρ(i) (ρ is a function from {i, . . . , l} to P).

When we consider the column vector v = (s, r2, . . . , rn), where s ∈ Zp
is the secret to be shared and r2, . . . , rn ∈ Zp are randomly chosen,
then Av is the vector of l shares of the secret s according to Π. The
share (Av)i belongs to party ρ(i).

It is shown in [1] that every linear secret sharing-scheme according
to the above definition also enjoys the linear reconstruction property:
Suppose that Π is an LSSS for the access structure A. Let S ∈ A be an
authorized set, and define I ⊂ {1, 2, . . . , l} as I = {i : ρ(i) ∈ S}. There
exist constants {ωi ∈ Zp}i∈I such that for any valid shares {λi} of a secret
s according to Π,

∑
i∈I ωiλi = s. And these constants {ωi} can be found

in time polynomial in the size of the share-generating matrix A. For the
security property of LSSS, no such constants {ωi} exist for unauthorized
sets.

Boolean formulas Access policy can also be described in terms of mono-
tone boolean formulas. Every monotone access structure or monotone
boolean formula can be realized by a linear secret-sharing scheme. The
LSSS in definition 2 is a scheme induced from monotone span program
(MSP) [4]. Naturally, boolean formulas are used to describe the access
policy, and equivalent LSSS are used to encrypt the message and decrypt
the ciphertext.

2.2 Access Structure in CP-ABE Schemes

[10, 6] are on CP-ABE and [5] is on Multi-Authority CP-ABE. The defi-
nitions and constructions in these two kinds of schemes are different, but
the uses of the access structure in the Encrypt and Decrypt algorithms
are same. We use the definition and construction in [6] as the example.

A CP-ABE scheme consists of four algorithms: Setup, Encrypt, Key-
Gen, and Decrypt.

Setup (λ,U)→ (PK,MSK) The setup algorithm takes in the security
parameter λ and the attribute universe description U . It outputs the
public parameters PK and a master key MSK.

Encrypt (PK,M,A)→ CT The encryption algorithm takes in the pub-
lic parameters PK, the message M , and an access structure A over the
universe of attributes. It will output a ciphertext CT such that only users
whose attributes satisfy the access structure A should be able to decrypt
the message. It is assumed that A is implicitly included in CT .

KeyGen (MSK,PK, S) → SK The key generation algorithm takes in
the master secret key MSK, the public parameters PK, and a set of
attributes S. It outputs a private key SK.

Decrypt (PK,CT, SK) → M The decryption algorithm takes in the
public parameters PK, a ciphertext CT , which contains an access policy
A, and a private key SK. If the set S of attributes of the private key
satisfies the access structure A, it outputs the message M .

Observations on the Access Policy in the CP-ABE Schemes
Observing the constructions in [10, 6, 5], we draw the following conclu-
sions.

1. In these schemes, LSSS is used to realize the access policy. And the
LSSS matrix (A, ρ) is attached to the ciphertext.

2. (A, ρ) is a labeled matrix over Zp. It is very large and increases the
communication cost drastically.

3. The size of the ciphertext is linear in the size of A (the number of
rows of A).

4. In order to use these schemes in practice, we should design a general
algorithm for converting any boolean formula into corresponding LSSS
matrix.

5. For a boolean formula, the size of the corresponding LSSS matrix
should be as small as possible.

2.3 Monotone Span Program and LSSS

The label matrix (A, ρ) in definition 2 is also called a monotone span pro-
gram [4]. Karchmer and Widgerson [4] introduced the model of monotone
span program, and proved that if there is a monotone span program for
some boolean function then there exists a linear secret sharing scheme for
the corresponding access structure in which the sum of the sizes of the
shares of the parties is the number of rows in the span program, i.e., the
size of the span program. We give the formal definitions and conclusions
as follows.

Definition 3 (Monotone Span Program(MSP)[4, 7]). A Monotone
Span Program (MSP)M is a quadruple (F,M, ε, ρ), where F is a field, M
is a matrix (with m rows and d ≤ m columns) over F, ρ : {1, . . . ,m} →
{1, . . . , n} is a surjective function and the row vector ε = (1, 0, . . . , 0) ∈ Fd
is called target vector. The size of M is the number m of rows and is
denoted as size(M).

As ρ labels each row i of M to a player Pρ(i), each player can be
regarded as the “owner” of one or more rows. For any set of players
G ⊆ P, the sub-matrix consisting of rows owned by players in G is denoted
by MG.

The span of a matrix M , denoted span(M) is the subspace generated
by the rows of M , i.e., all vectors of the form sM .

An MSP is said to compute an access structure A if

G ∈ A if and only if ε ∈ span(MG).

Theorem 1 (LSSS induced from MSP[4, 1]). Assume that there ex-
ists a monotone span programM = (F,M, ε, ρ), of size m, computing the
access structure A. Then there is a linear secret sharing scheme over F
realizing the access structure in which the total size of the shares is m.

Using the labeled matrix (M,ρ) in definition 3 as the share-generating
matrix in definition 2, we get the LSSS Π. The LSSS Π is said to be
induced from MSP M. The complete proof is presented in [4], and we
only show the reconstruction property of the LSSS here.

For any secret s ∈ Zp,v = (s, r2, . . . , rd) is a random vector in Zdp.
For an authorized set G ∈ A, let I = {i : Pρ(i) ∈ G} and Mi denote the

ith row of M , the shares {λi = (Mv)i = Mi · v|i ∈ I} are held by G,
and G can compute the reconstruction constants {ωi : i ∈ I} such that∑

i∈I ωiMi = ε. Then G can compute∑
i∈I

ωiλi =
∑
i∈I

ωi(Mi · v) = ε · v = s

2.4 New Monotone Span Programs from Old

Definition 4 (Insertion of MSP [7]). Let A1 and A2 be two monotone
access structures defined on participant sets P1 and P2 respectively, and
let Pz ∈ P1. Define the insertion of A2 at player Pz in A1, A1(Pz → A2),
to be the monotone access structure defined on the set (P1 \ {Pz}) ∪ P2
such that for G ⊆ (P1 \ {Pz}) ∪ P2 we have

G ∈ A1(Pz → A2) ⇐⇒

{
(G ∩ P1 ∈ A1), or

((G ∩ P1) ∪ {Pz} ∈ A1 and G ∩ P2 ∈ A2).

In other words, A1(Pz → A2) is the monotone access structure A1 with
participant Pz “replaced” by the sets of A2.

Theorem 2. [7] Let A1 and A2 be monotone access structures defined on
the set of participants P1 and P2 and with MSPsM1 andM2 respectively,
and let Pz ∈ P1. Let the size ofM1 be m1 and the size ofM2 be m2. Then
there exists an MSP M computing the access structure A1(Pz → A2) of
size equal to m1 + (m2 − 1)q, where q is the number of rows owned by Pz
in M1.

Nikov and Nikova [7] give the construction of the MSPM and prove that
M computes A1(Pz → A2). We only present the construction here.

Let m1 × d1 matrix M (1) =

(
M

(1)
Pz

M
(1)

)
and m2 × d2 matrix M (2) =(

u(2) M̃ (2)
)

be the corresponding matrices of MSPsM1 andM2, where

M
(1)
Pz

is the q rows owned by Pz and u(2) is the first column, assuming

that the rows of Pz are the first rows in M (1). Let M
(1)
Pz

=

v1

v2
...
vq

, u(2) =

u1
u2
...

um2

, where vi(i = 1, . . . , q) are row vectors in Zd1p and uj ∈ Zp(j =

1, . . . ,m2). For i = 1 to q define vi⊗u(2) =

u1vi
u2vi

...
um2vi

, note that vi⊗u(2)

be a m2 × d1 matrix. Let M =

v1 ⊗ u(2) M̃ (2) 0 0 0

v2 ⊗ u(2) 0 M̃ (2) 0 0
... 0 0

. . . 0

vq ⊗ u(2) 0 0 0 M̃ (2)

M
(1)

0 0 0 0

. The

rows of
(
M

(1)
0
)

are labeled as the rows of M
(1)

inM1, and the rows of(
vi ⊗ u(2) 0 M̃ (2) 0

)
are labeled as the corresponding rows inM2. Then

M computes A1(Pz → A2), and it is a (m1 +(m2−1)q)× (d1 +(d2−1)q)
matrix.

3 Our Technique to Transfer the LSSS Matrix

Intuition

1. Design a general and efficient algorithm for converting boolean for-
mulas into corresponding LSSS matrices, and embed the converting
algorithm into the Encrypt and Decrypt algorithm.

2. The converting algorithm takes as input a boolean formula, and out-
puts a labeled LSSS matrix (A, ρ).

3. Use the boolean formula as the label function (for example, the ith

row is labeled by the ith attribute in the boolean formula).
4. The size of the LSSS matrix should be as small as possible, and using

the threshold MSP as the underlying MSP is an attractive idea.

With the above ideas, the boolean formula rather than the LSSS matrix
(A, ρ) needs to be attached to the ciphertext, and the communication
cost is decreased drastically. This is at the cost of running the converting
algorithm in Decrypt algorithm. And we will show that the running cost
is small.

The Expression of the Boolean Formula We consider the boolean
formula as an access tree, where interior nodes are threshold gates and
the leaf nodes correspond to attributes. The access tree can be expressed
by a formatted formula.

A boolean formula F can be expressed as (F1, F2, . . . , Fn, t). The root
node of the tree is a (n, t)-gate, and its children are F1, F2, . . . , Fn, where
Fi is a leaf node corresponding to an attribute or is a threshold gate
node with similar form. Note that the value n is implicitly decided by the
number of the children, and only the threshold value t is explicit in the
formula.

For example,

((A ∧B) ∨ (B ∧ C) ∨ (A ∧ C)) ∧ (A ∨D) ∧ E
=((A,B,C, 2), (A,D, 1), E, 3)

=(F1, F2, F3, t)

where F1 = (A,B,C, 2), F2 = (A,D, 1), F3 = E, and t = 3.
It is easy to format any boolean formula to this form, and for simplicity

we will use “Formatted Boolean Formula” of this form as the input of our
converting algorithm.

In addition, when we say “the ith attribute of the formatted formula”,
we mean the index of the attribute in the formatted formula from left to
right. For example, in the formatted formula ((A,B,C, 2), (A,D, 1), E, 3),
A,B,C,A,D are the 1th, 2th, 3th, 4th, 5th attributes respectively.

MSP for Threshold Access Structure Inspired by [4], for a (n, t)
threshold access structure, we can construct a special (n, t)-MSP over

field Zp(p > n+ 1) as M =

1 1 1 . . . 1
1 2 22 . . . 2t−1

1 3 32 . . . 3t−1

...
...

...
. . .

...
1 n n2 . . . nt−1

. It is easy to see that for

any subset S ⊆ {1, 2, . . . , n}, (1, 0, . . . , 0) ∈ span(MS) iff |S| ≥ t.
Actually, it is based on the same idea behind Shamir’s sceret sharing

scheme for threshold functions [9].

Note that this (n, t)-MSP is completely decided by the values of n
and t, and we will use this special (n, t)-MSP for threshold gates in our
converting algorithm.

Modified Construction of Theorem 2 In theorem 2, it is assumed
that all the rows of Pz are first rows in M (1). To use the construction in
our algorithm and make the formatted boolean formula act as the label
function, we remove the assumption. We “replace” one row each time as
follows.

Without loss of generality, we let q = 2 and M (1) =

M

(11)

v1

M
(12)

v2

M
(13)

. We

find the first row labeled by Pz, the row v1, “replace” v1 with M (2)

and get the new M (1) =

M

(11)
0

v1 ⊗ u(2) M̃ (2)

M
(12)

0
v2 0

M
(13)

0

. Repeatedly, we find the

first row labeled by Pz in the new M (1), the row
(
v2 0

)
, “replace” this

row with M (2) and get the new M (1) =

M

(11)
0 0

v1 ⊗ u(2) M̃ (2) 0

M
(12)

0 0

v2 ⊗ u(2) 0⊗ u(2) M̃ (2)

M
(13)

0 0

 =

M

(11)
0 0

v1 ⊗ u(2) M̃ (2) 0

M
(12)

0 0

v2 ⊗ u(2) 0 M̃ (2)

M
(13)

0 0

. This is an equivalent MSP matrix that com-

putes the access structure A1(Pz → A2).

3.1 Our algorithm

Taking formatted boolean formula as input, repeatedly using the special
(n, t)-MSP and the above modified construction, we describe our algo-
rithm and give the detail pseudocode.

The Description of Our Algorithm

Input : A formatted boolean formula F .
Output : An LSSS matrix M that realizes the access structure of the

boolean formula. The ith row of M is labeled by the ith attribute in
the formatted formula.

Convert(F) : In the following, M is a m× d matrix over Zp, and L is a
vector with m coordinates, where each coordinate is an attribute or a
formatted boolean formula. The ith coordinate of L labels the ith row
of M .
1. Let matrix M = (1), vector L = (F) , and let m = 1, d = 1.
2. Repeat until all coordinates of L are attributes

(a) M is a m× d matrix over Zp, and L = (L1, L2, . . . , Lm).
(b) Scan the coordinates of L to find the first coordinate that is

a formatted formula rather than an attribute. Assume the in-
dex is z and Lz = Fz = (Fz1, Fz2, . . . , Fzm2 , t2) is a formatted
boolean formula.

(c) Resolve Fz to get its m2 children Fz1, Fz2, . . . , Fzm2 and its
threshold value t2.

(d) Execute “Insertion” of the special (m2, t2)-MSP matrix on the
zth row of M , getting the new M with m − 1 + m2 rows and
d− 1 + t2 columns.
Let L = (L1, L2, . . . , Lz−1, Fz1, Fz2, . . . , Fzm2 , Lz+1, . . . , Lm).
Let m = m− 1 +m2, d = d− 1 + t2.

3. Return the matrix M

Note that “2.(c) Resolve Fz to get its m2 children Fz1, Fz2, . . . , Fzm2

and its threshold value t2” is easy and we do not discuss the detail here.

Algorithm 1.1 Convert Boolean Formula F to LSSS Matrix M
Require: F is a formatted boolean formula.
Ensure: M is the LSSS matrix of F , and the ith row of M is labeled by the ith

attribute in F .
1: (M [1, 1], L[1],m, d)← (1, F, 1, 1)
2: z ← 1
3: while z 6= 0 do
4: z ← 0
5: i← 1
6: while i ≤ m AND z = 0 do
7: if L[i] is a Formula then
8: z ← i
9: end if

10: i← i + 1
11: end while
12: if z 6= 0 then
13: Fz ← L[z]
14: m2 ← the number of children of Fz

15: L2[i]← the ith children of Fz (i = 1, 2, . . . ,m2)
16: d2 ← the threshold value of Fz

17: (M1, L1,m1, d1)← (M,L,m, d)
18: for i = 1 to z − 1 step 1 do
19: L[i]← L1[i]
20: for j = 1 to d1 step 1 do
21: M [i, j]←M1[i, j]
22: end for
23: for j = d1 + 1 to d1 + d2 − 1 step 1 do
24: M [i, j]← 0
25: end for
26: end for
27: for i = z to z + m2 − 1 step 1 do
28: L[i]← L2[i− z + 1]
29: for j = 1 to d1 step 1 do
30: M [i, j]←M1[z, j]
31: end for
32: a← i− (z − 1)
33: x← a
34: for j = d1 + 1 to d1 + d2 − 1 step 1 do
35: M [i, j]← x
36: x← x ∗ a mod p
37: end for
38: end for
39: for i = z + m2 to m1 + m2 − 1 step 1 do
40: L[i]← L1[i−m2 + 1]
41: for j = 1 to d1 step 1 do
42: M [i, j]←M1[i−m2 + 1, j]
43: end for
44: for j = d1 + 1 to d1 + d2 − 1 step 1 do
45: M [i, j]← 0
46: end for
47: end for
48: (m, d)← (m1 + m2 − 1, d1 + d2 − 1)
49: end if
50: end while

3.2 Examples of Our algorithm

We show some examples here. For simplicity, we use the filed Zp = Z47.

Example 1. The access structure is

((A ∧B) ∨ (B ∧ C) ∨ (C,D,E, 2)) ∧ (E,F,G,H, 3).

Format the boolean formula as

((A ∧B) ∨ (B ∧ C) ∨ (C,D,E, 2)) ∧ (E,F,G,H, 3)

=((B ∧ (A ∨ C)) ∨ (C,D,E, 2)) ∧ (E,F,G,H, 3)

=(((B, (A,C, 1), 2), (C,D,E, 2), 1), (E,F,G,H, 3), 2)

Taking the formula (((B, (A,C, 1), 2), (C,D,E, 2), 1), (E,F,G,H, 3), 2) as
input, the algorithm works as follows.

1. M =
(

1
)
, L =

(
(((B, (A,C, 1), 2), (C,D,E, 2), 1), (E,F,G,H, 3), 2)

)
2. M =

(
1 1
1 2

)
, L =

(
((B, (A,C, 1), 2), (C,D,E, 2), 1)

(E,F,G,H, 3)

)

3. M =

1 1
1 1
1 2

, L =

 (B, (A,C, 1), 2)
(C,D,E, 2)

(E,F,G,H, 3)

4. M =

1 1 1
1 1 2
1 1 0
1 2 0

, L =

B

(A,C, 1)
(C,D,E, 2)

(E,F,G,H, 3)

5. M =

1 1 1
1 1 2
1 1 2
1 1 0
1 2 0

, L =

B
A
C

(C,D,E, 2)
(E,F,G,H, 3)

6. M =

1 1 1 0
1 1 2 0
1 1 2 0
1 1 0 1
1 1 0 2
1 1 0 3
1 2 0 0

, L =

B
A
C
C
D
E

(E,F,G,H, 3)

7. M =

1 1 1 0 0 0
1 1 2 0 0 0
1 1 2 0 0 0
1 1 0 1 0 0
1 1 0 2 0 0
1 1 0 3 0 0
1 2 0 0 1 1
1 2 0 0 2 4
1 2 0 0 3 9
1 2 0 0 4 16

=

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

, L =

B
A
C
C
D
E
E
F
G
H

S1 = {A,B, F,G,H} is an authorized set, and the rows owned by S1
are {v1,v2,v8,v9,v10}, the reconstruction constants are {ω1 ≡ 4, ω2 ≡
−2, ω8 ≡ −6, ω9 ≡ 8, ω10 ≡ −3} mod 47.
S2 = {D,E, F,G} is an authorized set, and the rows owned by S2 are
{v5,v6,v7,v8,v9}, the reconstruction constants are {ω5 ≡ 6, ω6 ≡ −4, ω7 ≡
−3, ω8 ≡ 3, ω9 ≡ −1} mod 47.

If there are only AND and OR gates in the access structure, the size
of the LSSS matrix generated by our algorithm is same with that of [5]. If
there are threshold gates in the access structure, our algorithm generates
matrix of smaller size than that of [5].

Example 2. The access structure is A ∧ (D ∨ (B ∧ C)).

The matrix generated by algorithm [5] is

1 1 0
0 −1 0
0 −1 1
0 0 −1

 labeled by

A
D
B
C

The matrix generated by our algorithm is

1 1 0
1 2 0
1 2 1
1 2 2

 labeled by

A
D
B
C

.

Example 3. The access structure is

(A ∧B) ∨ (B ∧ C) ∨ (A ∧ C) = (B ∧ (A ∨ C)) ∨ (A ∧ C) = (A,B,C, 2).

Taking (B ∧ (A ∨C)) ∨ (A ∧C) as input, the algorithm [5] generates the

matrix

1 1 0
0 −1 0
0 −1 0
1 0 1
0 0 −1

 labeled by

B
A
C
A
C

 with size = 5.

Taking the formatted formula (A,B,C, 2) as input, our algorithm gener-

ates the matrix

1 1
1 2
1 3

 labeled by

A
B
C

 with size = 3.

3.3 Using Our Algorithm in the CP-ABE schemes

Our algorithm can be used in the recent CP-ABE schemes[10, 6, 5] by

1. Embedding our converting algorithm in the Encrypt and Decrypt al-
gorithm.

2. Attaching the formatted boolean formula to the ciphertext.

In this way, at the cost of running the converting algorithm in the
Decrypt algorithm, we attach the formatted boolean formula, instead of
the LSSS matrix (A, ρ), to the ciphertext. Note that (A, ρ) over Zp is very
large, we decrease the communication cost drastically.

Observing Algorithm 1.1, we know that the main computation cost
of the algorithm is on “x← x ∗ a mod p”, i.e., computing

aj mod p (a = 1, 2, . . . , n; j = 1, 2, . . . , t− 1)

for each (n, t) threshold gate. While 1 ≤ t ≤ n� p and most values can
be used multiple times, the computation cost of the algorithm is small.

4 Efficiency Improvement of the Converting Algorithm
in Decryption

While the LSSS matrix must be completely generated in the Encrypt
algorithm, we can only generate the rows labeled by the attributes that
the decryptor possesses.

4.1 Modified Converting Algorithm

Input : A formatted boolean formula F , a set S of attributes.
Output : An LSSS sub-matrix MS . The ith row of MS is labeled by the

ith attribute in the formatted formula F and possessed by S.
Convert(F) : In the following, M is a m× d matrix over Zp, and L is a

vector with m coordinates, where each coordinate is an attribute or a
formatted boolean formula. The ith coordinate of L labels the ith row
of M .
1. Let matrix M = (1), vector L = (F) , and let m = 1, d = 1.

2. Repeat until all coordinates of L are attributes in S

(a) M is a m× d matrix over Zp, and L = (L1, L2, . . . , Lm).
(b) Scan the coordinates of L to find the first coordinate that is a

formatted formula or an attribute not in S. Assume the index is
z and Lz = Fz = (Fz1, Fz2, . . . , Fzm2 , t2) is a formatted boolean
formula or Lz = attz is an attribute not in S. Let SFz denote
the attributes set on the leaf nodes of Fz.

(c) If (Lz = attz /∈ S) OR ((Lz = Fz) AND (SFz ∩ S = ∅)),
i. Remove the zth of M
ii. Let L = (L1, L2, . . . , Lz−1, Lz+1, . . . , Lm)
iii. Let m = m− 1.

Otherwise,

i. Resolve Fz to get its m2 children Fz1, Fz2, . . . , Fzm2 and its
threshold value t2.

ii. Execute “Insertion” of the special (m2, t2)-MSP matrix on
the zth row of M , getting the new M with m−1+m2 rows
and d− 1 + t2 columns.

iii. Let L = (L1, L2, . . . , Lz−1, Fz1, Fz2, . . . , Fzm2 , Lz+1, . . . , Lm).

iv. Let m = m− 1 +m2, d = d− 1 + t2.

3. Return the matrix M as MS

4.2 Examples

For the access structure in Example 1, the modified converting algorithm
will work as follows.

Example 4. The access structure is

((A ∧B) ∨ (B ∧ C) ∨ (C,D,E, 2)) ∧ (E,F,G,H, 3),

and the formatted boolean formula is

(((B, (A,C, 1), 2), (C,D,E, 2), 1), (E,F,G,H, 3), 2).

Considering the authorized set S2 = {D,E, F,G},

1. M ′S2
=
(

1
)
, L′S2

=
(

(((B, (A,C, 1), 2), (C,D,E, 2), 1), (E,F,G,H, 3), 2)
)

2. M ′S2
=

(
1 1
1 2

)
, L′S2

=

(
((B, (A,C, 1), 2), (C,D,E, 2), 1)

(E,F,G,H, 3)

)

3. M ′S2
=

1 1
1 1
1 2

, L′S2
=

 (B, (A,C, 1), 2)
(C,D,E, 2)

(E,F,G,H, 3)

4. M ′S2

=

(
1 1
1 2

)
, L′S2

=

(
(C,D,E, 2)

(E,F,G,H, 3)

)

5. M ′S2
=

1 1 1
1 1 2
1 1 3
1 2 0

, L′S2
=

C
D
E

(E,F,G,H, 3)

6. M ′S2

=

1 1 2
1 1 3
1 2 0

, L′S2
=

 D
E

(E,F,G,H, 3)

7. M ′S2
=

1 1 2 0 0
1 1 3 0 0
1 2 0 1 1
1 2 0 2 4
1 2 0 3 9
1 2 0 4 16

, L′S2
=

D
E
E
F
G
H

8. M ′S2
=

1 1 2 0 0
1 1 3 0 0
1 2 0 1 1
1 2 0 2 4
1 2 0 3 9

 =

v′5
v′6
v′7
v′8
v′9

, L′S2
=

D
E
E
F
G

.

The reconstruction constants of S2 are {ω′5 ≡ 6, ω′6 ≡ −4, ω′7 ≡ −3, ω′8 ≡
3, ω′9 ≡ −1} mod 47.

Note that in Example 1, MS2 =

1 1 0 2 0 0
1 1 0 3 0 0
1 2 0 0 1 1
1 2 0 0 2 4
1 2 0 0 3 9

 =

v5

v6

v7

v8

v9

, LS2 =

D
E
E
F
G

,

and the reconstruction constants of S2 are also {ω5 ≡ 6, ω6 ≡ −4, ω7 ≡
−3, ω8 ≡ 3, ω9 ≡ −1} mod 47.
The Decrypt algorithm works well with the modified converting algo-
rithm. Essentially, some all-zero columns are “missing” in the modified
converting algorithm, but the reconstruction constants are not affected.
Thus we can use the modified converting algorithm in Decrypt algorithm
to spare computation and space cost.

5 Conclusion

In this paper, we present a general and efficient algorithm for converting
boolean formula into corresponding LSSS matrix whose size is as small
as possible. And by some tricks, the boolean formula acts as the label
function simultaneously. Thus, embedding this converting algorithm in
the Encrypt and Decrypt algorithm of the CP-ABE schemes, only for-
matted boolean formula needs to be attached to the ciphertext so that
the communication cost is drastically decreased.

References

1. Beimel, A.: Secure Schemes for Secret Sharing and Key Distribution. Ph.D. thesis,
Israel Institute of Technology, Technion, Haifa, Israel (1996)

2. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy. pp. 321–334. IEEE Computer
Society (2007)

3. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Juels, A., Wright, R.N., di Vimercati,
S.D.C. (eds.) ACM Conference on Computer and Communications Security. pp.
89–98. ACM (2006)

4. Karchmer, M., Wigderson, A.: On span programs. In: Structure in Complexity
Theory Conference. pp. 102–111 (1993)

5. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. Cryptology
ePrint Archive, Report 2010/351 (2010), http://eprint.iacr.org/

6. Lewko, A.B., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: Attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT. Lecture Notes in Computer
Science, vol. 6110, pp. 62–91. Springer (2010)

7. Nikov, V., Nikova, S.: New monotone span programs from old. Cryptology ePrint
Archive, Report 2004/282 (2004), http://eprint.iacr.org/

8. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EU-
ROCRYPT. Lecture Notes in Computer Science, vol. 3494, pp. 457–473. Springer
(2005)

9. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
10. Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient,

and provably secure realization. Cryptology ePrint Archive, Report 2008/290
(2008), http://eprint.iacr.org/

