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SUMMARY: In this paper we propose new key 

agreement protocols based on multivariate algebraic 
equations. We choose the multivariate function F(X) of 
high degree on non-commutative quaternion ring H over 
finite field Fq. Common keys are generated by using the 
public-key F(X). Our system is immune from the 
Gröbner bases attacks because obtaining parameters of 
F(X) to be secret keys arrives at solving the multivariate 
algebraic equations that is one of  NP complete 
problems .Our protocols are also thought to be immune 
from the differential attacks and the rank attacks. 
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key words: key agreement protocol, multivariable 
algebraic equation, Gröbner bases, NP complete 
problems, quaternion 
 

1. Introduction 

Since Diffie and Hellman proposed the concept of key 
agreement protocols (KAP) and the public key 
cryptosystem (PKC) in 1976[1], various KAP and the 
PKC were proposed.  
  Typical examples of KAP are almost based on the 
discrete logarithm problem over finite fields . Typical 
examples of PKC are classified as follows. 
1) RSA cryptosystem[2] based on factoring problem ,    
2) ElGamal cryptosystem[3] based on the discrete 
logarithm problem over finite fields , 
3) the elliptic curve cryptosystem[4] based on the 
discrete logarithm problem on the elliptic curve[5],[6],  
4)  multivariate public key cryptosystem (MPKC)[7], 
and so on.  
   It is said that the problem of factoring large integers, 
the problem of solving discrete logarithms and the 
problem of computing elliptic curve discrete logarithms 
are efficiently solved in a polynomial time by the 
quantum computers. 
 It is thought that MPKC is immune from the attack of 
quantum computers. But MPKC proposed until now 
almost adopts multivariate quadratic equations because 
of avoiding the explosion of key length. 
In the current paper, we propose KAP using 

multivariate functions of high degree on non-
commutative quaternion[8] ring H over finite fields Fq 
without the explosion of key length. The security of this 
system is based on the computational difficulty to solve 
the multivariate algebraic equations of high degree. 
  To break this cryptosystem it is thought that we must 

probably solve the multivariate algebraic equations of 
high degree that is equal to solving the NP complete 
problem. Then it is thought that our system is immune 
from the attacks by quantum computers.  
   In the next section, we begin with the definition of 
the product AB between A and B on the non-
commutative quaternion ring over Fq. In section 3 ,we 
generate the multivariate functions of high degree on the 
ring. In section 4, we describe the element expression of 
the multivariate functions of high degree . In section 
5,we construct proposed KAP. In section 6, we verify the 
strength of our KAP. We consider the size of the keys for 
our KAP in section 7. In the last section, we provide 
concluding remarks.  

2. The definition of the product AB   

Let q be an odd prime.Let H be the quaternion ring 
over Fq. As we select the non-commutative quaternion 
ring as the basic ring, the modulus q needs to be more 
than 2 to keep non-commutative. 

Here we define the product AB of A=(a0,a1,a2,a3) and 
B=(b0,b1,b2,b3) on quaternion ring H over Fq  such that  

 
 
 
 
 
 
 
 
Let A-1 be the inverse of A such that 
A-1=(a0Is,-a1Is,-a2Is,-a3Is)                     (1) 
where  
a0

2+a1
2+a2

2+a3
2≠0   mod q                 (2) 

Is=1/(a0
2+a1

2+a2
2+a3

2) mod q.                (3) 

3. Multivariate functions of high degree  

Let m, d and r be positive integers . As secret keys we 
choose arbitrary parameters ki∈Fq and Ai∈H(i=1,..,m) 
which have the inverse Ai

-1 . We define the multivariate 
function F(X) of high degree such that  
 
                                           (4) 
                                                         

                                               
We determine the value of m later so that the number 
of variables(i.e secret keys) is nearly equal to the 
number of equations . 
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4.  The element expression of F(X) 

Let s be 
s=1+r+r2+…+rd .                           (5) 
Let (f0,f1,f2,f3) be the element expression of F(X) .From 

(4), fj (j=0,..,3) is given such that  
 

  F(X)=(f0,f1,f2,f3)  ,             (6) 
 

(7) 
 
with 0 ≤ e0,e1,e2,e3 ≤ s and the coefficients fje0e1e2e3 
∊Fq to be published , where  

 
 
 

e0,e1,e2 and e3 are non-negative integers which satisfy 
e0+…+e3=s. 
Then the number n of fje0e1e2e3  is  
 n=44Hs=4s+3C3.                            (8) 

 Let { fje0e1e2e3 } be the set that includes all fje0e1e2e3 . 
 

5. Proposed key agreement protocol 

Let's describe the procedure that user U and user V 
obtain the common keys using F(X ) and T(X) as follows. 

Let S be the set of system parameters 
S=[q,d,r,m].                               (9) 

1) User U selects randomly ki ∈ Fq and 
Ai=(Ai0,Ai1,Ai2,Ai3)∈H (i=1,..,m) which have the 
inverse Ai

-1 .   The secret keys of user U are  
SK=[k1,..,km;A1,..,Am] .                     (10) 

2) User U generates F(X)  such that 
 
                                          (11) 
 
3)  User U calculates {fje0e1e2e3} from (11) . 
4) Let PK be the public keys of user U such as 

    PK={fje0e1e2e3}.                      (12) 
Beforehand user U publishes PK which consist of n 
parameters in Fq. 

5) User V selects randomly hi ∈ Fq and 
Ri=(Ri0,Ri1,Ri2,Ri3)∈H (i=1,..,m) 

    which have the inverse Ri
-1. 

6)  User V generates T(X) such that 
                                          

 (13) 
 

7)  Let (t0,t1,t2,t3) be the element expression of T(X). 
From (13) user V calculates the set of coefficients 
{tje0e1e2e3} which consists of n parameters in Fq . 

 tj (j=0,..,3) is given such that  
   T(X)=(t0,t1,t2,t3)   ,             (14) 

where 
(15) 

 

with the coefficients tje0e1e2e3 ∊Fq . e0,e1,e2 and e3 are 
non-negative integers which satisfy e0+…+e3=s. 
Then the number n of tje0e1e2e3  is  
 n=44Hs=4s+3C3.                            

  Let { tje0e1e2e3 } be the set that includes all tje0e1e2e3 . 
8) User V sends {tje0e1e2e3} to user U . 
9) User V calculates common keys Kv1 and Kv2 as 

follows. 
Let Kv1 and Kv2 be  
Kv1=(Kv10,Kv11,Kv12,Kv13) 

 Kv2=(Kv20,Kv21,Kv22,Kv23). 
 
                     (16)  
 

(j=0,1,2,3) 
e0,e1,e2 and e3 are non-negative integers which satisfy 

e0+…+e3=s. 
 
Let Rri and Tv2ij be 

 
                                          (17) 
 
                                           

(18) 
 
 (i=1,..,m;j=0,1,2,3) 
e0,e1,e2 and e3 are non-negative integers which satisfy 

e0+…+e3=s. 
 
                                        (19) 
 

10) User U calculates common keys Ku1,Ku2 as follows. 
Let Ku1 and Ku2 be  
Ku1=(Ku10,Ku11,Ku12,Ku13) 

 Ku2=(Ku20,Ku21,Ku22,Ku23). 
Let Ari and Tu1ij be 
                                          (20) 
 
 
                                          (21) 
 

(i=1,..,m;j=0,1,2,3) 
e0,e1,e2 and e3 are non-negative integers which satisfy 

e0+…+e3=s. 
 
                                        (22) 
 

 
                                          (23) 
 

(j=0,1,2,3) 
e0,e1,e2 and e3 are non-negative integers which satisfy 

e0+…+e3=s. 
We can confirm that 

Ku1=Kv1,                                  (24) 
Ku2=Kv2                                  (25) 
as follows. 
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                                          (26) 
 
 
 
 
 
                                           
 
 
 
 
                                         (27) 
 
We can also confirm in the same way that 
Ku2=Kv2. 
 

The common keys of user U and user V are [Ku1,Ku2] 
or [Kv1,Kv2]. 

6. Verification of the strength of our KAP  

Let's examine the strength of our KAP. The strength of 
our KAP depends on the strength of the multivariate 
functions described in section 3.  In other words, we 
mention the difficulty to obtain ki∈Fq and Ai ∈H  
(i=1,..,m) from the set of coefficients {fje0e1e2e3} of F(X) 
to be the public keys .  

6.1 Multivariate algebraic equations from F(X) 

Let Aj be 
 Ai=(Ai0,Ai1,Ai2,Ai3)   (i=1,..,m) .              (28) 
From (4) all fje0e1e2e3 have the form  
  
                                         

(29) 
 

 
 
with the coefficients hije0..e3cij0..cij3 ∈Fq where cij0,cij1,cij2 
and cij3 are non-negative integers which satisfy 
cij0+…+cij3=s. 
From (29) we obtain n multivariate algebraic equations 

over Fq where ki and Aij ∈Fq (i=1,..,m;j=0,..,3) are the 
variables i.e. unknown numbers. 

 

6. 2 Cryptanalysis using Gröbner bases 

It is said that the Gröbner bases attacks is efficient 
for solving multivariate algebraic equations .We 
calculate the complexity G[9] to obtain the Gröbner 
bases for our multivariate algebraic equations on 
quaternion ring so that we confirm immunity of our KAP 
to the Gröbner bases attack . 

We describe in the case of d=2 and r=3 as samples of 

lower degree equations. 
s’:degree of equations =s+1=1+3+32+1=14. 
n :the number of equations =4(s+3C3)=2240. 
We select m so that the number of variables(i.e secret 
keys) is nearly equal to n , that is  
m=┎(4s+3C3)/(4+1)┒=448, 
where ┎*┒ means the largest integer less than or the 
integer equal to *. 
z :the number of variables =5m=2240 
dreg =s’+1=15 
G=O((nGdreg)w)=O(2302 ) is more than 280  which is the 
standard for safety where w=2.39. 
 Our KAP is immune from the Gröbner bases attacks 
and from the differential attacks because of the equations 
of high degree in (29). 

It is thought that the polynomial-time algorithm to 
break our KAP does not exist probably.  
 

7. The Size of the keys  

We consider the size of the system parameter q . We 
choose q=O(210) so that the size of the space of Ku1 and 
Ku2 is more than O(280). 
In the case of d=2 and r=3 , the size of PK ,and SK  is 
23kbits , 23kbits each.  

8. Conclusion 

We proposed the KAP using multivariate functions 
on non-commutative quaternion ring over Fq. It is a 
computationally difficult problem to obtain the secret 
keys [k1,..,km;A1,..,Am] from the public keys {fje0e1e2e3} 
because the problem is one of NP complete problems. In 
order to ensure the safety, the size of q is to be more than 
10 bits . 

We can construct the KAP on the other non-
commutative ring ,for example matrix ring. 
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