
Ring Signature and Identity-Based Ring
Signature from Lattice Basis Delegation

Jin Wang

Institute for Advanced Study, Tsinghua University, Beijing 100084, China
jimiwang@mail.tsinghua.edu.cn

Abstract. In this paper, we propose a ring signature (RS) and an
identity-based ring signature (IBRS) schemes using the lattice basis del-
egation technique due to [10,22]. The schemes are unforgeable and hold
anonymity in the random oracle model. Using the method in [28,29], we
also extend our constructions to obtain RS and IBRS schemes in the
standard model. To the best of the authors’ knowledge, our proposed
constructions constitute the first ring signature and identity-based ring
signature schemes from lattices.1
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1 Introduction

Ring Signature. Ring signature, introduced by Rivest, Shamir and Tauman[23],
is a type of group-oriented signatures which provides anonymity in some scenar-
ios. In a ring signature scheme, a message signer forms a ring of any set of
possible signers including him/herself. The message signer can then generate a
ring signature using his/her secret key and public keys of other ring members.
The generated ring signature can convince an arbitrary verifier that the message
was signed by one of the ring members without revealing exactly the singer’s
identity. Ring signature schemes could be used for whistle blowing [23], anony-
mous membership authentication [7] and many other applications which do not
want complicated group formation stage but require signer anonymity.

Identity-Based Ring Signature. The concept of identity-based ring signature
[2,12,27] can be seen as the merge of identity-based cryptography and ring sig-
nature. Identity-based cryptography was introduced by Shamir [25] to simplify
the certificate management process. As in identity-based cryptographic construc-
tions [9,11,14], a user’s public key is allowed to be derived from his/her identity
information, such as an email address, while the corresponding private key is
calculated by a trusted authority called Key Generator Center (KGC). This
property avoids the necessity of certificates and associates an implicit public key
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(user identity) to each user within the system.

Motivations. Up to date, most of the existing ring signature and identity-based
ring signature constructions are based on hard number theory assumptions rang-
ing from the Strong RSA [7,23] assumptions and the discrete logarithm problem
[1,17] to the bilinear pairings with diffie-hellman problems [26,27]. However,
above underlying number theory problems will be solvable if practical quan-
tum computers become reality, so it implies a potential security threat to these
schemes. Thus, a natural question one can ask is how to design ring signature
systems that are secure in the quantum environment. In recent years, lattices
have emerged as a possible alternative to number theory. Lattice-based cryptog-
raphy began with the seminal work of Ajtai[3], who showed that it is possible
to construct families of cryptographic functions in which average-case security
provably related to the worst-case complexity of hard lattice problems. Lattice-
based constructions also enjoy relatively efficient implementations, as well as
great simplicity. In addition, lattice-based cryptography is believed to be secure
against quantum computers. Following above discussion, we focus on construct-
ing ring signature and identity-based ring signature schemes from lattices.

Our Contribution. In this paper, we propose a new type of ring signature and
identity-based ring signature schemes from lattice. The idea behind our con-
struction is based on the lattice delegation method due to [10,22]. Our basic
approach is as follows. In our ring signature scheme, the public/secret key pair
of each user is simply a matrix A ∈ Zn×m

q and a corresponding short basis B for
lattice Λ⊥(A). As explored in prior works[3,14], short basis can be treated as a
trapdoor for the corresponding lattice. Knowledge of such a trapdoor makes it
easy to solve some seemingly hard problems relative to the lattice. In the ring
signature approach, for the ring set R of size l, the singer constructs a public
lattice corresponding to the ring set as AR = [A1‖...‖Al](for i ∈ R, 1 ≤ i ≤ l).
Using the basis delegation technique, each member in R should be able to deduce
a signature (short vector) for Λ⊥(AR) from its private information. Since short
basis for lattices essentially functions like cryptographic trapdoors, only the ring
members in R can generate the signature successfully. The above construction
can be generalized to obtain an identity-based ring signature scheme easily. Our
ring signature and identity-based ring signature schemes hold anonymity and un-
forgeability in the random oracle model. Moreover, using the similar technique
in [28,29] , we can modify our basic constructions to obtain a ring signature and
an identity-based ring signature scheme in the standard model.

Related Work. Our cryptographic constructions is based on the hardness as-
sumption of the Learning With Error problem (LWE)[24]. For reasonable choices
of parameters, LWE is as hard as the shortest vector problem (SVP) in lattices.
The first version of the LWE-based cryptosystem together with a security proof
were presented by Regev [24]. Gentry, Peikert, and Vaikuntanathan [16] con-
structed a kind of trapdoor primitive called Pre-image Sampling functions that,
given a basis of a q-ary modular lattice, samples lattice points from a Discrete
Gaussian probability distribution whose standard deviation is essentially the
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length of the longest Gram-Schmidt vector of the basis. As the application of
above trapdoors, Gentry et al. [16] constructed an identity-based encryption
scheme based on LWE. Another notable recent work is due to Cash et al.[9] who
constructed a basis delegation technique that allows one to derive a short basis
of a given lattice using a short basis of a related lattice. Using this basis del-
egation technique, Cash et al.[9] also constructed a hierarchical identity-based
encryption (HIBE) as well as a stateless signature of lattice-based constructions.
In other independent works, Peikert[21] proposed the notion of a ”bonsai tree”
on lattices which is equivalent the basis delegation technique in [7]. Agrawal and
Boyen [6] also obtained an identity-based encryption scheme without random
oracles using the similar technique.

2 Preliminaries

2.1 Notation

For a positive integer d, [d] denotes the set {1, ..., d}. For an n×m matrix A, let
A = [a1, ...,am], where ai denotes the i-th column vector of A. We define ‖a‖
for the Euclidean norm of a, and ‖A‖ = maxi∈[m]‖ai‖.

2.2 Lattices

Lattices. Let B = {b1, ...,bn} ∈ Rn consist of n linearly independent vectors.
A n-dimensional lattice Λ generated by B is defined as

Λ = L(B) = {Bc : c ∈ Zn}
Here B is called a basis of the lattice Λ = L(B). For a basis B = {b1, ...,bn}, let
B̃ denote its Gram-Schmidt orthogonalization, defined iteratively as follows: b̃1 =
b1, and for i = 2, ..., n, b̃i is the component of bi orthogonal to span(b1, ..., bi−1).

Hard Random Lattices. In this paper our cryptographic constructions will
build on a certain family of m-dimensional integer lattices defined by Ajtai [5].

Definition 1. Given a matrix A ∈ Zn×m
q for some integers q, m, n, define:

1 . Λ⊥(A) = {e ∈ Zm : Ae = 0 mod q}
2 . Λ⊥y (A) = {e ∈ Zm : Ae = y mod q}
3 . Λ(A) = {y ∈ Zm : y = AT w mod q, for somew ∈ Zn}

Observe that Λ⊥y (A) = t + Λ⊥(A)mod q where t is an arbitrary solution (over
Zm) of the equation At = y mod q. Thus Λ⊥y (A) is the coset of Λ⊥(A).
Discrete Gaussians on Lattices. Here we review Gaussian functions used in
lattice based cryptographic constructions. For any r > 0 the Gaussian function
on Rn centered at c with deviation parameter r is defined as

∀x ∈ Rn, ρr,c(x) = exp(−π‖x− c‖2/r2)
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For any c ∈ Rn, r > 0 and n-dimensional lattice Λ, the discrete gaussian distri-
bution over Λ is defined as

∀x ∈ Λ,DΛr,c(x) =
ρr,c(x)
ρr,c(Λ)

For a fixed vector y ∈ Zn
q in the span of a matrix A ∈ Zn×m

q , define the coset
of Λ⊥(A) as Λ⊥y (A) = {e ∈ Zm : Ae = y mod q} = t + Λ⊥(A)mod q; where t
is an arbitrary solution (over Z) of the equation At = y mod q. The Gaussian
on Λ⊥y (A), which is the conditional distribution of DZm,r on Ae = y mod q, is
given by

∀x ∈ Λ,DΛ⊥y (A),r(x) =
ρr,c(x)

ρr,c(t + Λ⊥(A))

Micciancio and Regev[20] proposed a lattice quantity called the smoothing pa-
rameter :

Definition 2. For any n-dimensional lattice Λ and positive real ε> 0, the smooth-
ing parameter ηε(Λ) is the smallest real r > 0 such that

∑
0 6=x∈Λ∗ ρ1/r,0(x) ≤ ε.

2.3 Hard Average Case Problems on Lattices

We recall the small integer solution (SIS) and learning with errors (LWE) prob-
lems, which may be seen as average-case problems related to the family of random
integer lattices.
Small Integer Solution Problem The most well known computational prob-
lem on lattices is the shortest vector problem (SVP), in which given a basis of a
lattice Λ and the goal is to find the shortest vector v ∈ Λ\{0}. There is a special
version of the SVP for the integer lattices, named small integer solution problem
(SIS).

Definition 3. The small integer solution problem SIS (in the Euclidean l2 norm)
is as follows: given an integer q, a matrix A ∈ Zn×m

q , and a real β, find a nonzero
integer vector e ∈ Zm such that Ae = 0 mod q and ‖e‖2 ≤ β

For functions q(n), m(n), and β(n), SISq,m,β is the ensemble over instances
(q(n),A, β(n)), where A ∈ Zn×m

q is uniformly random.

Learning With Errors Problem To describe the learning with error (LWE)
hardness assumption, the following probability distribution is needed. For any
α > 0, the continuous Gaussian distribution Dα has density function exp(−πx2/α2)
for all x ∈ R. For a positive integer q, define Ψα to be the distribution on Zq

obtained by taking a sample from Dq·α, rounding to the nearest integer, and
reducing modulo q. For a dimension parameter n ∈ Z, an integer q = q(n) > 2,
a Gaussian error distributions χ and a vector s ∈ Zn

q ; the distribution of the
variable (a,aT s+x) over Zn

q ×Zq is denoted as As,χ, where the vector a ∈ Zn
q is

uniform and the scalar x ∈ Zq is sampled from χ [20]. The learning with errors
problems is defined as follows [24]:



5

Definition 4. For an integer q = q(n) and a Gaussian error distributions χ
on Zq, the goal of the (average-case) learning with error problem LWEq,χ is
to distinguish (with non-negligible probability) between the distribution As,χ for
some random secret s ∈ Zn

q and the uniform distribution on Zn
q × Zq(via oracle

access to the given distribution)

We write Advsis
q,β,A(k) and Advlwe

q,χ,A(k) to denote the success probability and
distinguishing advantage of an algorithm A for the SIS and LWE problems, re-
spectively. Using Gaussian techniques, Micciancio and Regev[20] showed that for
any poly-bounded m, β = poly(n) and for any prime q ≥ β · ω(

√
n log n), the

average-case problem SISq,m,β is as hard as approximating the SIVP problem (a
variant of SVP) in the worst case within a factor Õ(β · √n). Regev[24] showed
that, for any prime q ≥ (1/α) · (ω(

√
n log n)) and a Gaussian Error Distribu-

tions χ = Ψα, the decisional LWEq,χ problem is as hard as approximating the
SIVP and GapSVP (a variant of SVP) problems in the worst case within Õ(n/α)
factors using a quantum algorithm.

2.4 Trapdoors and Basis Delegation Functions

It was shown in [16] that if SISq,m,2r
√

m is hard, A ∈ Zn×m
q defines a one-

way function fA : Dn → Rn with fA(e) = Ae mod q, where Dn = {e ∈
Zm : ‖e‖ ≤ r

√
m} and Rn = Zn

q . The input distribution is DZm,r. A short
basis B for Λ⊥(A) can be used as a trapdoor to sample from f−1

A (y) for any
y ∈ Zn

q . Knowledge of such a trapdoor makes it easy to solve some hard problems
relative to the lattice, such as LWE and SIS problems. Here we briefly introduce
such a set of one-way preimage sampleble functions (defined in [16]), denoted as
TrapGen,SampleD, SampleDom, SamplePre , which will be used as building blocks
in our cryptographic constructions (we refer the interested reader to [16] for
more details). The following functions take the Gaussian smoothing parameter
r ≥ ‖B̃‖ · ω(

√
log m) as a parameter:

− TrapGen(1λ): Let n, q, m be integers with q ≥ 2, m ≥ 5nlogq. TrapGen(1n)
outputs a pair (A,B) such that A ∈ Zn×m

q is statistically close to uniform
on Zn×m

q and B is a good basis of Λ⊥(A) such that ‖B̃‖ ≤ O(
√

n log q)
and ‖B‖ ≤ O(n log q) with all but nω(1) probability. (Ajtai [5] showed how
to sample a pair (A,B) with low Gram-Schmidt norm. Here we use an
improved sampling algorithm from Alwen and Peikert[3]).

− SampleD(B, r, c): On input of an m-dimensional basis B of a lattice Λ, a
parameter r, and a center vector c ∈ Rm, the algorithm SampleD samples
from a discrete Gaussian distribution over the lattice Λ around the center c
with standard deviation r.

− SampleDom(A, r): Samples an x from distribution DZm,r for which the dis-
tribution of fA(x) is uniform over Rn.

− SamplePre(A,B,y, r): On input of A ∈ Zn×m
q , a good basis B for Λ⊥(A)

as above, a vector y ∈ Zn
q and r; the conditional distribution of the output

e is within negligible statistical distance of DΛ⊥y (A),r. The algorithm works
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as follows. First, choose via linear algebra an arbitrary t ∈ Zm such that
At = u mod q. Then sample v from the Gaussian distribution DΛ⊥(A),r,−t

using SampleD(T, r,−t), and output e = t + v.

We now recall the method proposed in [10,22] which uses a good basis of
a lattice Λ to generate another good basis for a higher-dimensional lattice Λ′

which contains a sublattice isomorphic to Λ .

Theorem 1 ([10]). Let n, q, m, k be positive integers with q ≥ 2 and m ≥
2n log q. There exists a PPT algorithm SampleBasis, that on input of A ∈ Zn×km

q ,
a set S′ ⊆ [k], a basis BS′ for Λ⊥(AS′), and an integer L ≥ ‖B̃S′‖ ·

√
km ·

ω(
√

log km) outputs B ← SampleBasis(A,BS′ , S
′, L) such that, for an over-

whelming fraction of A ∈ Zn×km
q , B is a basis of Λ⊥(A) with ‖B̃‖ ≤ L (with

overwhelming probability). Furthermore, up to a statistical distance the distri-
bution of the basis B only depends on A and L.

To prove the above theorem, a sampling algorithm GenSamplePre(A,AS′ ,BS′ ,y, r)
was proposed in [10] (also in the signing algorithm in [22]) which allows to preim-
age samples of the function fA(e) = Ae mod q given a short basis BS′ for
Λ⊥(AS′). The output is within negligible statical distance of DΛ⊥y (A),r, where
r ≥ ‖B̃S′‖ · ω(

√
log km). (We refer the interested reader to [10,22] for more

details.)

2.5 Ring Signature and Identity-Based Ring Signature

Ring Signature. A ring signature scheme is a tuple of algorithms RS = (KeyGen,
Ring-Sign, Ring-Verify) described as follows:

− KeyGen(λ, l): A probabilistic algorithm takes as input the security parameter
λ and outputs a public key pk and secret signing key sk.

− Ring-Sign(pk, sk, R, m): A probabilistic algorithm takes as input a user’s key
pair (pk, sk); a set of public keys R of the ring and a message M to be signed
(We require that pk ∈ R). It returns a ring signature σ of m under sk.

− Ring-Verify(m,σ): Takes as input a set of public keys R that constitutes the
ring and a ring signature σ on a message m. It outputs ”accept” if the ring
signature is valid, or ”reject” otherwise.

For consistency purposes, we require that for n ∈ N, all {(pki, ski)n
1} ∈

[KeyGen(λ)], all i ∈ [n] and all m ∈ {0, 1}∗. Verify(m,Sign(ski,m, R)) = 1 where
R = (pk1, ..., pkn).

The security of a ring signature scheme consists of two requirements, namely
Anonymity and Unforgeability. Here we follow the formal security definitions for
ring signature presented by Bender, Katz, and Morselli[8].

Anonymity : Anonymity against full key exposure for a ring signature scheme
RS is defined using the following game between a challenger B1 and an adversary
A1:
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Setup: The challenger B1 runs algorithm KeyGen to obtain public/private key
pairs (pk1, sk1), ..., (pkl, skl). Here l is a game parameter. The adversary A1

is given the public keys {pki}l
1.

Query Phase : The adversary A1 is allowed to make ring signing queries and
corruption queries. A ring signing query is of the form (s,R, m). where m is
the message to be signed, R is a set of public keys, and s is an user index
with pks ∈ R. The challenger responds with σ = Sign(pks, sks, R, M).A
corruption query is of the form s, where s is again an index. The challenger
provides sks to A2 .

Challenge: Once the adversary A1 decides that the query phase is over, A1

requests a challenge by sending to the challenger the values (i0, i1, R, M) such
that M is a message to be signed with the ring R, and i0 and i1 are indices
with pki0 , pki1 ∈ R. The challenger chooses a bit bR ← {0, 1}, computes the
challenge signature σ ←Sig(pkib

, skib
, R, M), and provides A1 with σ.

Guess: The adversary A1 outputs a guess b′ ∈ {0, 1} and wins the game if
b′ = b

We define Advrsig−anon−ke
RS,A1

to be the advantage over 1/2 of A1 in the above
game.

Unforgeability : For a ring signature scheme with l public keys, the existential
unforgeability( with insider corruption )is defined as the following game between
a challenger and an adversary A2.

Setup: The challenger runs algorithm KeyGen to obtain public/private key
pairs (pk1, sk1), ..., (pkl, skl).A2 is given the public keys PK={pki}.The chal-
lenger also initializes the set C of corrupted users as C ← Ø

Queries: A2 is allowed to make ring signing queries and corruption queries.
A ring signing query is of the form (s,R, M). Here M is the message to be
signed, R is a set of public keys, and s is an index such that pks ∈ R holds.
The challenger responds with σ = Sig(pks, sks, R, M). A corruption query is
of the form s, where s is again an index. The challenger provides sks to A2

and adds pks to C.

Output: Finally A2 outputs a tuple (L∗,m∗, σ∗). A1 wins the game if: [1]
L∗ ⊆ L; [2] (L∗,m∗) has not been submitted to the signing oracle; [3] Ver-
ify(L∗,m∗, σ∗) = Accept.

We define A2’s advantage in this game to be AdvA2 = Pr[A2 wins].

Identity-Based Ring Signature. Identity-based ring signature scheme focus
on the case where ring members are given by arbitrary identities. Formally,
an identity-based ring signature scheme is a tuple of algorithms IRS = (Setup
KeyGen, Ring-Sign, Verify) described as follows:

− Setup(λ, l): Takes as input the security parameter λ and outputs a list of
system parameters PK and the master key MSK for the KGC.
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− Extract(MSK, ID): Takes as input a user’s identity string IDi ∈ {0, 1}∗ (1 ≤
i ≤ l) and the master key of the KGC. It outputs a user private key skIDi

.
− Sign(skIDi ,m, R): Takes as input a user IDi’s secret key skIDi

; the identities
ID1, ..., IDk of the members in the ring R and a message M to return a ring
signature σ of M under skIDi

.
− Verify(m,σ): Takes as input a message m and a ring signature σ, that includes

the identities of the members in the corresponding ring, and outputs ”accept”
if the ring signature is valid, or ”reject” otherwise.

For consistency purposes, we require that for k ∈ N, all {(IDi, skIDi
)n
1} ∈

[Extract(λ, k)], all i ∈ [n] and all m ∈ {0, 1}∗. Verify(m,Sign(skIDi
,m, R)) = 1

where R = (ID1, ..., IDn).

A secure identity-based (1, n) ring Signature scheme should be unforgeable and
anonymous which is defined in a similar way to that of a ring signature scheme.

3 Lattice Based Ring Signature

In this section, we describe our ring signature system using the lattice basis
delegation technique. We start with a slight variant of the generalized sampling
algorithm GenSamplePre in [10], which differs only in the structure of the ex-
tended lattice. The original algorithm enables the growth of extended matrices
in a tree form. In our approach, we will handle with another extension policy
better suited for our ring signature scheme given later.

3.1 Generalized Preimage Sampling Algorithm

Assume without loss of generality that S = [k], for some k ∈ [l]. Let k1, k2, k3, k4

be positive integers and k = k1+k2+k3+k4. We write AS = [AS1‖AS2‖AS3‖AS4 ] ∈
Zn×km

q , where AS1 ∈ Zn×k1m
q , AS2 ∈ Zn×k2m

q , AS3 ∈ Zn×k3m
q , AS4 ∈ Zn×k4m

q .

Let AR = [AS1‖AS3 ] ∈ Zn×(k1+k3)m
q . Given a short basis BR for Λ⊥(AR) and an

integer r ≥ ‖B̃R‖ · ω(
√

log km), the algorithm GenSamplePre allows to sample a
preimage of the function fAS

(e) = ASe mod q. GenSamplePre(AS ,AR,BR,y, r)
proceeds as follows:

1 Sample eS2 ∈ Zk2m from the distribution DZk2m,r and sample eS4 ∈ Zk4m

from the distribution DZk4m,r. Parse eS2= [ek1+1, ..., ek1+k2 ] ∈ (Zm)k2 and
eS4= [ek−k4+1, ..., ek] ∈ (Zm)k4 .

2 Let z = y −AS2eS2 −AS4eS4 . Run eR ← SamplePre(AR,BR, z, r) to sam-
ple a vector eR ∈ Z(k1+k3)m from the distribution DΛ⊥y (AS),r. Parse eR

= [e1, ..., ek1 , ek1+k2+1, ..., ek−k4 ] ∈ (Zm)k1+k3 and let eS1 = [e1, ..., ek1 ] ∈
(Zm)k1 , eS3 = [ek1+k2+1, ..., ek−k4 ] ∈ (Zm)k3 .

3 Output e ∈ Zkm, as e = [e1, ..., ek].

Note that by construction, we have AS1eS1 + AS3eS3 = AReR = z mod q.
Thus ASe =

∑4
i=1 ASi

eSi
= y mod q, and the output vector e of GenSamplePre

is contained in Λ⊥y (AS). For the analysis of theoutput distribution, we have the
following algorithm in [10].
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Theorem 2. Let n, q, m, k be positive integers with q ≥ 2 and m ≥ 2n lg q.
There exists a PPT algorithm GenSamplePre, that on input of AS ∈ Zn×km

q ,
a set R ⊆ [k], a basis BR for Λ⊥(AR), a vector y ∈ Zn

q and an integer r ≥
‖B̃R‖ ·ω(

√
log km) outputs e ← GenSamplePre(AS ,AR,BR,y, r) such that, for

an overwhelming fraction of AS ∈ Zn×km
q , is within negligible statical distance

of DΛ⊥y (AS),r

Proof: The algorithm differs from the original one in [8] only in the structure
of the extension matrix, so the proof can be deduced directly from [10] and here
it is omitted.

3.2 Basic Construction

Let l, m, n, q, t be positive integers with q ≥ 2 and m ≥ 5nlogq. Let l be the size
of the ring set. The ring signature scheme shares parameter functions L(l), r(l),
α(k) defined in [10] as follows:

− L̃ ≥ O(
√

n log q): an upper bound of the Gram-Schmidt size of a user’s secret
basis;

− r(l) ≥ L̃ · ω(
√

log km): a Gaussian parameter used to generate the secret
basis and short vectors.

The scheme employs a hash functions H1 : {0, 1}∗ → Zn
q . The security analysis

will view H1 as a random oracle.

KeyGen(l):A user with index i runs the trapdoor generation algorithm TrapGen(1λ)
(described in section 2.4) to generate Ai ∈ Zn×m

q with a short basis Bi ∈
Zm×m for Λ⊥(Ai). Note that by Theorem 1 we have ‖B̃i‖ ≤ L. The pub-
lic/private key pair for the user i is 〈pki = Ai, ski = Bi〉.

Ring-Sign(R, ski,M): Given a ring of l individuals with public keys R, assume
for notational simplicity that R = {A1, ...,Al} ∈ Zn×m

q , a user i’s secret
key ski = Bi, and a message M ∈ {0, 1}∗, the user i(1 ≤ i ≤ l) does the
following:
• Set AR=[A1‖...‖Al] ∈ Zn×lm

q and y = H1(M) ∈ Zn
q . Define a label labR

that contains information about how AR is associated with the sequence
of the ring numbers {1, ..., l}.

• Run the generalized preimage sampling algorithm GenSamplePre and
generate e ← GenSamplePre(AR,Ai,Bi,y, r(l)) ∈ Zlm. Note that e is
distributed according to DΛ⊥y AR,r(l).

• Output the ring signature σ =< e, labR >.

Ring-Verify(σ,M): Given a ring of public keys R = {A1, ...,Al} ∈ Zn×m
q , a

message M , and a ring signature σ =< e, labR >, the verifier accepts the
signature only if both the following conditions satisfied:
• e ∈ Dlm,r(l) such that 0 ≤ ‖e‖ ≤ r(l)
• ARe mod q=H2(M).

Otherwise, the verifier rejects.
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3.3 Correctness

The scheme’s correctness is inherited by the properties of the trapdoor functions
[15]. In the signing process, the ring members in R construct a one-way function
fAR

: DR → Zn
q as fAR

(e) = ARe mod q, where DR = {e ∈ Zlm : ‖e‖ ≤ r(l)}
with the following properties:

Correct Distributions: By Lemma 5.1 in [17], the distribution of the syndrome
vj = ARej mod q is within statistical distance 2ε of uniform over Zn

q . By the
Theorem 2, algorithm GenSamplePre(AR,QIDi ,Bi, vj , r(l)) samples an element
ej ∈ DS from distribution within negligible statistical distance of DΛ⊥vj

(AR),r(l).
One-Wayness Without Trapdoors: By Theorem 5.9 in [17], inverting a ran-
dom function fAR

on a uniform output u ∈ Zn
q is equivalent to solving the inho-

mogeneous small integer solution problem ISIS(a variant of SIS) as ISISq,lm,r(l).

3.4 Security Analysis

We now prove that our ring signature scheme is anonymous against full key
exposure and unforgeable with regard to insider corruption.

Full Anonymity: Before proving the full anonymity, we prepare the following
lemma on our ring signature scheme.

Lemma 1. let (i0, i1, R, M) be a tuple such that M ∈ {0, 1}∗ is a message to
be signed with the ring R = {A1, ...,Al} ∈ Zn×m

q , and i0 and i1 are indices with
Ai0 ,Ai1 ∈ R. If ISISq,lm,r(l) is hard, σi0 ←Sig(ski0 , R, M) and σi1 ←Sig(ski1 , R, M)
are computationally indistinguishable.

Proof : The proof is straightforward from the algorithm Sign. Recall that in the
signing process, σi0 and σi1 have the same distribution of the domain in fAR

within negligible statistical distance of DΛ⊥
H1(M)(AR),r(l) and it implies that σi0

and σi1 are computationally indistinguishable.

Theorem 3. Let q ≥ 2 and m ≥ 5n log q. If H1 is modeled as a random oracle,
the ring signature scheme above is fully-anonymous assuming that SISq,m,r(l) is
hard.

Proof(Sketch). Assume that there exists an adaptive adversary A1 attacking our
ring signature scheme following the definition of anonymity with full key expo-
sure. We construct a PPT algorithm B1 to simulates the attacking environment
for A1. Both A1 and B1 are given as input qE , the total number of extraction
queries that can be issued by A1. To respond to A2’s queries in the random
oracle, B2 will maintain two lists H1 and G, which are initialized to be empty
and will store tuples of values.

In the Setup phase, B1 runs the algorithm TrapGen qE times to generate Ai ∈
Zn×m

q with the corresponding short basis Bi ∈ Zm×m (1 ≤ i ≤ qE). B stores
the tuple 〈i,Ai,Bi〉(1 ≤ i ≤ qE) in a list G and the system parameters <
A1‖...‖AqE

] > are given to A1. In the query phase, B1 answers the hash queries,
corruption queries and signing queries of A1 as follows:



11

• Hash Query to H1(mj) : B1 returns a random yj ∈ Zn
q to A1 and stores

〈mj ,yj〉 in list-H1.
• Corrupt(i) : B1 looks for the tuple 〈i,Ai,Bi〉 in list G and returns Bi to A1.
• Sign (Rj , i, Mj) : B1 computes the signature by running the sampling algo-

rithm σ ←GenSamplePre(ARj
,Bi,yj , kj) and returns σ to A1(kj is the size

of the ring Rj).

At some point, A1 provides < i0, i1,R∗, M∗ > such that M∗ is a message to be
signed with the ring R∗, and i0 and i1 are indices with pki0 , pki1 ∈ R∗. B chooses
a bit b∗ ← {0, 1}, and retrieve the tuple 〈M∗,y∗〉 in list-H1. Then B computes the
challenge signature e∗ ← GenSamplePre(AR∗ ,Aib∗ ,Bib∗ ,y

∗, r(l)) (here l is the
size of the ring R∗), and provides A1 with e∗. Finally, the adversary A1 outputs
a guess b′ ∈ {0, 1}. In the view of A1, the behavior of B2 is statistically close to
the one provided by the real adaptive security experiment. Observe that the ring
members in R∗ construct a one-way function fAR∗ (e) = AR∗e mod q: with the
domain DR∗ = {e ∈ Zlm : ‖e‖ ≤ r(l)} and Zn

q . If A1 exhibits a different success
probability in distinguishing between i0 and i1 with non-negligible probability,
it will contradict with the lemma 1. Hence, we claim that the adversary A1 in
the anonymity game under the simulated environment has negligible advantage
to guess the correct identity.

Unforgeability: The unforgeability proof closely follows that given by Gentry,
Peikert, and Vaikuntanathan [17] for their original lattice signature scheme based
on preimage sampleable trapdoor functions.

Theorem 4. Our ring signature scheme is unforgeable with regard to the insider
corruption assuming that H is collision resistant and SISq,m,r(l) is hard.

Proof : LetA2 be an adversary that breaks the unforgeability of the ring signature
scheme with probability ε = ε(n). We construct a poly-time adversary B2 that
solves SISq,m,r(l) with probability

AdvSIS
q,r(l)(B) ≥ AdvRS

l (A1)

qECqE/2
qE

− negl

Both the adversary and the challenger are given as input qE , the total number
of extraction queries that can be issued by the adversary. B1 interacts with A1

as follows:

Setup : B2 chooses l ∈ [qE ], a guess for the size of the challenge ring. Next
B obtains an instance AR ∈ Zn×lm

q from the SIS oracle and parses it as
Ai∗ ∈ Zn×m

q (1 ≤ i∗ ≤ l). B then picks a vector t = (t1, ..., tl) ∈ [qE ]. To
respond to A2’s hash queries and signing queries in the random oracle, B2

will maintain two lists H1 and G, which are initialized to be empty and will
store tuples of values. For 1 ≤ i ≤ qE and i /∈ t, B runs the algorithm TrapGen
to generate Ai ∈ Zn×m

q with the corresponding short basis Bi ∈ Zm×m and
stores the tuple 〈i,Ai,Bi〉 in list G. For 1 ≤ i ≤ qE and i = tj ∈ t, B2 sets
Ai = Aj∗ ∈ Zn×m

q . The system parameters < A1‖...‖AqE
] > are given to

A2.
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Query Phase: B2 answers the hash queries, corruption queries and signing
queries of A2 as follows:
− Hash Query to H1(mj). B2 chooses a random ej ← Dlm,r(l) by running

the algorithm SampleDom(1n), returns yj ← ARej mod q ∈ Zn
q to A

and stores 〈mj , ej ,yj〉 in list-H1.
− Corruption Query (i). If i /∈ t , B2 looks for the tuple 〈i,Ai,Bi〉 in list

G and returns Bi to A2. Otherwise, B2 aborts.
− Signing query(i,mj , Rj). It can be assumed, without loss of general-

ity, that A2 has made a H1 query on mj . If Rj = R, B2 searches
the tuple 〈mj , ej〉 in list-H1 and returns ej to A1. Otherwise if the
tuple 〈i,Ai,Bi〉 contains in list G, B1 retrieves the tuple 〈mj , ej ,yj〉
in list-H1 and then returns ej ← GenSamplePre(ARj ,Ai,Bi,yj , r(kj))
to A1 (kj is the size of the ring Rj). Otherwise, B2 looks for a j ∈
Rj such that 〈j,Aj ,Bj〉 contains in list G. B2 then computes ej ←
GenSamplePre(ARj

,Aj ,Bj ,yj , r(kj)) and returns ej to A2.

Challenge : Finally, A2 outputs a forgery 〈i∗,m∗, σ∗, R∗〉. If R∗ 6= R, B aborts.
Otherwise, B2 looks up the tuple 〈m∗, e∗, y∗〉 in list-H1 and output 〈σ∗, e∗〉
as a collision of m∗ in fAR

Analysis. It is easy to see that the probability of an abort is 1− 1

qEC
qE/2
qE

. We claim

that the view of A∈ in the adaptively chosen message attack is identical to its
view as provided by B. For each distinct query mj to H2, the value returned by
B2 is fAR

(ej) ∈ Zn
q where ej ← SampleDom(1n); by the uniform output property

of the constructed hash function, this is identical to the uniformly random value
of H(mj) ∈ Zn

q in the real environment. Therefore A2 outputs a valid forgery
〈m∗, σ∗〉 with probability (negligibly close to) ε. Because σ∗ is a valid signature
of the ring on m∗, we have σ∗ ∈ Dlm,r(l) and fAR

(σ∗) = H2(m∗) = fAR
(e∗),

and they form a collision in fAR
.

3.5 Ring Signature in the Standard Model

Recently, Boyen [28] proposed a framework for fully secure lattice-based signa-
tures in the standard model. Using the method in [28] , we can extend our work
to a ring signature in the standard model as follows.

Setup(l, d): For some integers l, d and t, the following construction assumes that
messages M are arbitrary d + 1-bit strings in {0} × {0, 1}d. Choose d + 1
independent matrix C0, ...,Cd ∈ Zn×tm

q .

KeyGen(l): As in the basic construction in section 3.2.

Ring-Sign(R, ski,M): Given a ring with public keys R = {A1, ...,Al} ∈ Zn×m
q ,

a user i’s secret key ski = Bi (i ∈ [l]), and a message M ∈ {0}×{0, 1}d, the
user i does the following:
• Set Cmsg =

∑d
i=0(−1)M [i]Ci.
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• Set AR=[A1‖...‖Al‖Cmsg] ∈ Zn×(l+t)m
q . Define a label labR that con-

tains information about how AR is associated with the sequence of the
ring numbers {1, ..., l}.

• Run the generalized preimage sampling algorithm GenSamplePre and
generate e ← GenSamplePre(AR,Ai,Bi, 0, r(l + t)) ∈ Z(l+t)m. Note that
e is distributed according to DΛ⊥AR,r(l+t).

• Output the ring signature σ =< e, labR >.

Ring-Verify(σ,M): Given a ring of public keys R = {A1, ...,Al} ∈ Zn×m
q , a

message M , and a ring signature σ =< e, labR >, the verifier accepts the
signature only if both the following conditions satisfied:
• 0 ≤ ‖e‖ ≤ r(l + t)
• [A1‖...‖Al‖

∑d
i=0(−1)M [i]Ci]e =0 mod q.

Otherwise, the verifier rejects.

Security Analysis The security proof involves the following two lemmas in
[28].

Lemma 2. Let A0,A1 ∈ Zn×m
q where A1 is rank n with a basis B1 of Λ⊥(A1)

( ‖B̃1‖ ≤ L). Let R0 ∈ {0, 1}m×m and F2 = [A0|A0R0 + A1]. There is a PPT
algorithm SampleRight(A0,A1,R0,B1,y, r(2)) that outputs a vector e ∈ Z2m

sampled form a distribution statically close to DΛ⊥y (F2),r(2).

Lemma 3. Let A0 ∈ Zn×m
q and H ∈ Zn×n

q . Suppose that H is invertible modulo
q. Then, the preimage-samplable functions A0 mod q and HA0 mod q admit
exactly the same trapdoors B0 ∈ Zm×m for Λ⊥(A0).

The scheme holds full anonymity and unforgeability in the standard model. The
proof closely follows the combination of the methods in the proof of Theorem 4
and the proof of Theorem 23 in [28]. We will give the details in the full version
of the paper.

4 Identity Based Ring Signature

4.1 Basic Construction

Let k, l, m, n, q, t be positive integers with q ≥ 2 and m ≥ 5nlogq. Let k ≤ l,
where l is the size of the group set. The identity-based ring signature scheme
shares parameter functions L(k), r(k), α(k) defined in [8] as follows:

− L̃ ≥ O(
√

n log q): an upper bound of the Gram-Schmidt size of a user’s secret
basis;

− r(k) ≥ L̃ · ω(
√

log km): a Gaussian parameter used to generate the secret
basis and short vectors.

The scheme employs two hash functions H1 : {0, 1}∗ → Zn
q and H2 : {0, 1}∗ →

Zn×m
q . The security analysis will view H1, H2 as random oracles.
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Setup(λ, l): The KGC runs the trapdoor generation algorithm TrapGen (de-
scribed in section 2.4) to generate A0 ∈ Zn×m

q with a short basis B0 ∈ Zm×m

(‖B0‖ ≤ L) for Λ⊥(A0). Output the system public parameters PK =<
A0,H1,H2 > and the KGC’s master key MSK = B0.

Extract(MSK, IDi): For an arbitrary identity IDi ∈ {0, 1}∗, define the associated
matrix QIDi

as
QIDi

= [A0‖AIDi
] ∈ Zn×2m

q

where AIDi = H2(IDi) ∈ Zn×m
q . To construct user’s secret key, run the basis

delegation algorithm SampleBasis (described in section 2.4) and generate
BIDi

← SampleBasis(QIDi
,B0, S0 = {1}, L(1)), which is a short basis for

Λ⊥(QIDi
). Note that by Theorem 1 we have ‖B̃IDi

‖ ≤ L(1). The secret key
for IDi is BIDi

.

Ring-Sign(R, ski,M): Given a ring R of identities, assume for notational sim-
plicity that R = {ID1, ..., IDl} ∈ {0, 1}∗, a user IDi’s secret key Bi (i ∈ [l]),
and a message M ∈ {0, 1}∗, the user i does the following:
• Set AR=[A0‖A1‖...‖Al] ∈ Zn×(l+1)m

q , where Ai = H2(IDi) ∈ Zn×m
q (1 ≤

i ≤ l) and y = H1(M) ∈ Zn
q . Define a label labR that contains informa-

tion about how AR is associated with the sequence of the ring numbers
{ID1, ..., IDi}.

• Run the generalized preimage sampling algorithm GenSamplePre and
generate e ← GenSamplePre(AR,QIDi

,Bi,y, r(l)) ∈ Zlm. Note that e is
distributed according to DΛ⊥y AR,r(l+1).

• Output the ring signature σ =< e, labR >.

Ring-Verify(σ,M): Given a ring of public keys R = {A1, ...,Al} ∈ Zn×m
q , a

message M , and a ring signature σ =< e, labR >, the verifier accepts the
signature only if both the following conditions satisfied:
• e ∈ Dlm,r(l) such that 0 ≤ ‖e‖ ≤ r(l + 1)‖
• ARe mod q=H2(M).

Otherwise, the verifier rejects.

Our identity-based ring scheme holds full anonymity and unforgeability in the
random orale model. The security analysis of our identity-based ring scheme is
similar to the analysis of our ring signature presented in Section 3. We will give
the details in the full version of the paper.

4.2 Identity-Based Ring Signature in the Standard Model

Agrawal et al. [29] recently showed how to construct efficient IBE in the standard
model based on LWE assumption. The construction involved two distinct trap
doors in the security proof. Using the similar technique in [28,29] , we can modify
our basic IBRS construction to obtain an identity-based ring signature scheme
in the standard model as follows:
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− The construction assumes that messages M are arbitrary string in {0} ×
{0, 1}d. Choose d + 1 independent matrix C0, ...,Cd ∈ Zn×m

q .
− Each identity IDi is presented as elements in Zn

q and then mapped to ma-
trices in Zn×n

q using an encoding function H2 : Zn
q → Zn×n

q (defined in
[29]).

− In the algorithm setup, the KGC selects two uniformly random matrices
E0, E1 ∈ Zn×m

q . For an arbitrary identity IDi ∈ Zn
q , define QIDi

=
[A0‖E0 + H2(IDi)E1] ∈ Zn×2m

q . As in the basic IBBE in section 3, a trap-
door for A0 is used as the master secret and enables one to generate private
keys for QIDi .

− In order to sign a message M ∈ {0} × {0, 1}d for a ring R = {ID1, ..., IDl},
the user IDi(1 ≤ i ≤ l) does the following:
• Set Cmsg =

∑d
i=0(−1)M [i]Ci.

• let AR = [A0‖E0 + H2(ID1)E1‖...‖E0 + H2(IDl)E1‖Cmsg]
• Generate e ← GenSamplePre(AR,QIDi ,Bi, 0, r(l)) ∈ Z(l+2)m. Note that

e is distributed according to DΛ⊥AR,r(l+2).
− The verifier accepts the signature only if both the following conditions sat-

isfied:
• e ∈ Dlm,r(l+2) such that 0 ≤ ‖e‖ ≤ r(l + 2)
• ARe= 0 mod q.

Otherwise, the verifier rejects.

The above identity-based ring scheme holds full anonymity and unforgeability in
the standard model. The security analysis is similar to the analysis of our ring
signature presented in Section 3. We will give the details in the full version of
the paper.
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