
Analysis of an internet voting protocol

Kristian Gjøsteen∗

July 5, 2010

Abstract

The Norwegian government is planning trials of internet voting in the 2011 local
government elections. We describe and analyse the cryptographic protocol that will be
used. In our opinion, the protocol is suitable for trials of internet voting, even though
it is not perfect.

This paper is a second1 step in an ongoing evaluation of the cryptographic protocol.

1 Introduction

The Norwegian government is planning trials of internet voting in the 2011 local government
elections. One of the key requirements for elections is trust, and for many internet voting
deployments this trust has been lacking.

One reason is excessive secrecy. It is a well-established cryptographic and computer
security principle that secrecy does not ensure security. Empirically, transparency seems
to increase security. We observe that making system architecture, design and even imple-
mentation details available for inspection leads to increased security, at least in the long
run.

In order to build trust in internet voting, the Norwegian government has decided on
nearly complete transparency. Most important documents from the tender process, in-
cluding most technical details in every submitted proposal, has been made public (see
www.evalg.dep.no). Before the 2011 trial, the architecture and even the source code for
the deployed system will be made available to the public.

At the heart of any internet voting system is a cryptographic protocol. The security of
this protocol is a necessary requirement for trust in the internet voting solution. As part of
the initial tender evaluation, a preliminary analysis of the cryptographic voting protocols
was carried out. After the winning bid was selected, it was decided to make some modest

∗kristian.gjosteen@math.ntnu.no, Department of Mathematical Sciences, NTNU.
1A previous version of this document, dated March 9, 2010, has been published at www.evalg.dep.no.

A version dated December 23, 2009 describing the full protocol and sketches of security proofs has been
circulated privately.

1

changes to the cryptographic protocol, partially to get security proofs. This paper is a
more extensive analysis of the resulting protocol.

Internet voting in Norway Norwegian elections are somewhat complicated, but ballots
essentially consists of a short sequence of options (a party list followed by selection of
candidates, at most about a hundred options in total) chosen from a small set of possible
options (at most a few thousand). Note that the entire sequence is required to properly
interpret and count the ballot. For parliamentary elections order within the sequence is
important, while order does not matter for county and municipal elections. There are no
write-ins.

There are significant functional constraints on any real-world voting system. The voter
should not have to interact with the voting system more than once to submit a ballot. Most
ballots will be submitted during peak hours, and the submitted ballots must be processed
quickly. Once the ballot box closes, the result must be available as soon as possible.

Since cost does matter and secure computing hardware is expensive, any election in-
frastructure will have quite limited computational resources available for the protocol ex-
ecution.

We also get functional constraints from security considerations. In practice, the two
most significant security problems with internet voting in Norway will be compromised
computers and coercion.

Since a significant fraction of home computers are compromised, the protocol must
allow voters to detect ballot tampering without relying on computers. This is complicated
by the fact that voters are unable to do even the simplest cryptographic processing without
computer assistance.

When voting from home, no amount of cryptography can protect the voter from coer-
cion. To defend against coercion, we mandate that the system must allow voters to vote
multiple times, so-called revoting, counting only the final ballot. Voters may also vote once
on paper and this vote should be counted instead of any electronic ballot, no matter when
submitted. The internet voting system must essentially allow election administrators to
cancel votes.

Defending against coercion by election insiders is very difficult. Before anyone can cast
their vote, they must somehow authenticate to the system. For most plausible authen-
tication systems, anyone with access to the authentication system will be able to detect
electronic revoting.

In the Norwegian electoral system, for any ballot there will be a large number of valid
ballots that are different, but have essentially the same effect on the final election result.
Therefore, any coercer with access to the counted ballots (electronic or on paper) can tell
his victim to submit an unlikely ballot with the desired effect, then verify that his victim
did not revote by observing if the unlikely ballot is preset among the counted ballots.

We should also note that traditionally, the electoral roll is considered sensitive in Nor-
way. This means that very little information about the count should be published, and

2

that universal verifiability will be impractical.

Related work We can roughly divide the literature into protocols suitable for voting
booths [5, 6, 16, 18, 19, 20], and protocols suitable for remote internet voting [7, 8, 14],
although protocols often share certain building blocks. One difference is that protocols for
voting booths should be both coercion-resistant and voter verifiable, while realistic attack
models (the attacker may know more than the voter knows) for remote internet voting
probably make it impossible to achieve both true voter verifiability and coercion-resistance.

For internet voting protocols, we can again roughly divide the literature into two main
strands distinguished by the counting method. One is based on homomorphic tallying.
Ballots are encrypted using a homomorphic cryptosystem, the product of all the ciphertexts
is decrypted (usually using some form of threshold decryption) to reveal the sum of the
ballots. For simple elections, this can be quite efficient, but for the Norwegian elections,
this quickly becomes unwieldy.

The other strand has its origins in mix nets [3]. Encrypted ballots are sent through a
mix net. The mix net ensures that the mix net output cannot be correlated with the mix
net input. There are many types of mixes, based on nested encryption [3] or reencryption,
verifiable shuffles [12, 18] or probabilistic verification [1, 14], etc. These can be quite
efficient, even for the Norwegian elections.

Much of the literature ignores the fact that a voter simply will not do any computations.
Instead, the voter delegates computations to a computer. Unfortunately, a voter’s computer
can be compromised, and once compromised may modify the ballot before submission.

One approach is so-called preencrypted ballots and receipt codes [4, 2], where the voter
well in advance of the election receives a table with candidate names, identification numbers
and receipt codes. The voter inputs a candidate identification number to vote and receives
a response. The voter can verify that his vote was correctly received by checking the
response against the printed receipt codes.

Note that unless such systems are carefully designed, privacy will be lost. Clearly,
general multiparty computation techniques can be used to divide the processing among
several computing nodes (presumably used by [4]). One approach for securely generating
the receipt codes is to use a proxy oblivious transfer scheme [13]. A ballot box has a
database of receipt codes and the voter’s computer obliviously transfers the correct one
to a messenger, who then sends the receipt to the voter. This approach seems to be very
expensive for Norwegian elections.

Another useful tool is the ability for out-of-band communication with voters [17]. This
allows us to give the voter information directly, information that his computer should not
know and not be able to tamper with. The scheme in [13] sends receipt codes to the
voter out-of-band. This helps ensure that a voter is notified whenever a vote is recorded,
preventing a compromised computer from undetectably submitting ballots on the voter’s
behalf.

3

Our contribution The cryptographic protocol to be used in Norway is designed by Scytl,
a Spanish electronic voting company. It is mostly a fairly standard internet voting system.
Essentially, a voter uses his computers to submit a ballot to an election infrastructure.
To defend against coercion, a voter is allowed to submit multiple ballots, where the final
submission will be counted.

The system works roughly as follows. The voter gives his ballot to a computer, which
encrypts the ballot and submits it to a ballot box. Once the ballot box closes, the submitted
ciphertexts are decrypted in some decryption service, based on a reencrypting mix net. An
auditor supervises the entire process.

The part of the system not usually found in other deployed internet voting systems
is detecting when a compromised computer has altered the ballot. The ballot box and
a receipt generator cooperate to compute a sequence of receipt codes for the submitted
ballot. These codes are sent to the voter through an independent channel (most likely
SMS messages to mobile phones). The voter verifies the receipt codes against a list of
precomputed receipt codes printed on his voting card.

Scytl originally proposed to use a pseudo-random function family to compute the receipt
codes. While this would most likely be secure, it was difficult to prove anything about the
proposal. It was therefore decided to use a slightly different construction. We use the
fact that exponentiation is in some sense a pseudo-random function [9, 11], and since
ElGamal is homomorphic, exponentiation can be efficiently done “inside” the ciphertext.
This mechanism is the only significant cryptographic novelty described in this paper.

Overview of the paper We describe the security goals for the protocol in Section 2. We
discuss what capabilities an adversary will have what the protocol is supposed to achieve.

A simplified protocol is specified and analysed in Section 3. We do this to focus on the
only novel cryptographic construction in this scheme, which is how the receipt codes are
computed.

We describe the full protocol in Sect. 4 and analyse its security in Sect. 5.

2 Security goal

To define security for a protocol, we must define what kind of attackers we face and how
we will allow them to influence the election.

We stress that we do not consider coercion in this analysis, beyond the brief discussion
in the introduction.

The attacker We start with the standard premise that the attacker controls the network.
What remains to decide is which players can be corrupted. Our players include a set
of voters, a set of computers and four infrastructure players, the ballot box, a receipt
generator, a decryption service, an auditor and a set of electoral board members.

4

Remark 1. The electoral board members will only appear in subprotocols that we do not
analyse. Therefore, we ignore the electoral board in this discussion.

Any external attacker will clearly be able to compromise a number of voters as well as
a larger number of computers. To simplify discussions, we shall assume that corrupt voters
only use corrupt computers. Honest voters may use honest computers, corrupt computers
or both.

Since the infrastructure is divided into a small number of separate players, organiza-
tional and non-cryptographic technical measures may make it reasonable to assume that
an inside attacker can compromise at most one infrastructure player.

Remark 2. Suppose we have some protocol satisfying the following: (i) the voter submits
his vote to the computer, the computer submits an encrypted ballot to the infrastructure,
and the infrastructure players cooperate to generate a receipt code and send it directly to
the voter; (ii) a single infrastructure player X is responsible for sending the receipt code
to the voter.

Consider the following attack where X and the voter’s computer are corrupt. The
computer submits a forged ballot to the infrastructure, leading to the computation of a
receipt code. This code is discarded by X. A forged ballot has been submitted, and the
voter has noticed nothing.

The conclusion is that for protocols like ours, it is impossible to protect the voter against
a corrupt computer cooperating with a corrupt receipt generator. For practical reasons,
our protocol will be of this form. We therefore arrive at the following static corruption
model:

The attacker may corrupt either (i) the ballot box and any subset of voters and
computers, or (ii) any single infrastructure player.

For the simplified protocol, we use a weaker attack model:

The attacker may corrupt either (i) any subset of voters and computers, or (ii)
passively any one infrastructure player.

The attacker’s influence We shall allow corrupt voters to submit spoilt ballots.
Since an attacker controls the network between a voter’s computer and the election

infrastructure, he will certainly be able to delay or block the submission of ballots. Obvi-
ously, any corrupt infrastructure player can halt and thereby stop the election. They can
usually cause more suspicious integrity failures, again stopping the election.

For usability reasons, the number of receipt codes must be equal to the number of
options chosen. Therefore, if the receipt generator is corrupt, it is unavoidable that the
number of options on a ballot leaks.

If the voter’s computer is compromised, the attacker will see the ballot. The attacker
may also modify the ballot, but in this case, the voter should be able to notice with high
probability.

5

V P B

R

D

A

Figure 1: Communication between players. The infrastructure players are inside the box.
The auditor A is not part of the simplified protocol.

We arrive at the following security goal:

At most one ballot per voter should be counted.

Any vote submitted through an honest computer should remain confidential
(up to information leaked through the receipt codes).

If no infrastructure player is corrupt, the auditor will not fail the election.

Suppose the auditor does not fail the election. If an honest voter has accepted
a ballot as cast, the ballot should be counted unless the voter subsequently sub-
mitted another ballot (but he need not have accepted it as cast) or complained
about a forgery.

3 Simplified Protocol

We describe the simplified protocol. The players in the protocol are the voter V , the
voter’s computer P , the ballot box B the receipt generator R, and the decryption service
D. The auditor is not part of the simplified protocol. The players communicate via secure,
authenticated channels, as described in Fig. 1. We note that in this simplified model, the
ballot box knows which voter is communicating with which computer.

The voter chooses as its ballot a sequence of options (v1, . . . , vk) from a set of options
O = {1, 2, . . . }, the computer pads the ballots with zeros to a fixed length kmax , encrypts
it with the election encryption key and submits the encrypted ballot to a ballot box. The
ballot box, in cooperation with the receipt generator computes a sequence of receipt codes
from a set C that are sent directly to the voter. The voter has a correspondence between
options and receipt codes. If the receipt codes received match the options selected, the
voter accepts, otherwise he knows something went wrong.

When the ballot box closes, the ballot box submits the encrypted ballots to the decryp-
tion service, which decrypts the ballots and publishes the result.

6

Prerequisites The system uses a finite cyclic group G of prime order q generated by g.
We also have a pseudo-random function family F from G to C.

An injective encoding function f : O → G is chosen (the choice is not arbitrary and has
implications for security, see Sect. 3.3 for details). We then extend the function by defining
f(0) to be the identity element in G. Corrupt voters will be able to submit spoilt ballots,
so we have a set O′ ⊇ O and shall sometimes consider f as a function from O′ to G.

Key generation For the simplified protocol, we shall assume that all key generation is
done by a trusted third party.

Before the election, three secret parameters a1, a2 and a3 are generated such that
a1 + a2 ≡ a3 (mod q). The ballot box gets a2, the receipt code generator gets a3 and the
decryption service gets a1. Three public parameters for the election, y1, y2 and y3, are
computed as y1 = ga1 , y2 = ga2 and y3 = ga3 .

For every voter, s is sampled from {0, 1, . . . , q − 1}, and d from F . The composition
of f , the exponentiation map x 7→ xs and d gives a function r : O → C for each user,
r(v) = d((f(v))s). Before the election, the set {(v, r(v)) | v ∈ O} is computed and given
to V .

Vote submission When the voter V wants to submit the ballot (v1, . . . , vk), the protocol
proceeds as follows:

1. The voter sends (v1, . . . , vk) to his computer P . The computer sets vi = 0 for i =
k + 1, . . . , kmax .

2. For 1 ≤ i ≤ kmax , the computer samples ti from {0, 1, . . . , q−1}, computes (xi, wi) =
(gti , yti1 f(vi)) and sends ((x1, w1), . . . , (xkmax , wkmax) to the ballot box B.

3. The ballot box computes x̌i = xsi and w̌i = wsi x̌i
a2 . The pairs ((x̌1, w̌1), . . . , (x̌kmax , w̌kmax))

and the voter’s name is sent to R.

4. The receipt generator computes ři = d(w̌ix̌
−a3
i) and sends (ř1, . . . , řk) to the voter.

(Note that k can be deduced from the number of non-identity decryptions.)

5. The voter verifies that every pair (vi, ři) is in the set of receipt codes received before
the election, and if so consideres the ballot cast.

The protocol is summarized in Fig. 2.
The voter may submit multiple ballots electronically, and the final submission su-

percedes any previous submissions.

Counting When the ballot box closes, superceded ballots are discarded, only the final
submitted ballot should count. The ballot box sends the remaining encrypted ballots to the
decryption service, in random order. The decryption service decrypts all the ciphertexts
(µi = wix

−a1
i) and outputs the resulting ballots in random order.

7

V P B R
v

(x,w)
x← gt1 ,
w ← yt11 f(v) (x̌, w̌)x̌← xs,

w̌ ← wsx̌a2 ř ← d(w̌x̌−a3)

ř

Figure 2: Protocol for submission of one option and generation of one receipt code.

3.1 Completeness

The protocol is complete if, when every participant is honest, the submitted ballots are
eventually correctly decrypted, and the receipt codes sent to the voter matches the expected
values.

Completeness is obvious, except for the receipt code received by the voter. We only
need to argue that (v, ř) will always be in the computed set of receipt codes, that is, that
ř = r(v). We compute

w̌x̌−a3 = wsx̌a2 x̌−a3 = wsx̌−a1 = ws(xs)−a1 = (wx−a1)s = (f(v))s.

Completeness follows.

3.2 Security

This section argues informally about the security of the simplified protocol. We consider
the following corruption model: (a) The voter and his computer are corrupted; (b) the
voter’s computer is corrupted; and (c) one of the infrastructure players is passively corrupt
(or honest-but-curious: the adversary follows the protocol, but tries to deduce information
about voters’ ballots). We prove the following properties:

1. If a corrupt computer modifies a ballot, the voter will most likely notice.

2. No honest-but-curious infrastructure player will learn any non-trivial information
about the ballots.

We see that for the given corruption models, our security goal follows from these properties.

(a) By the assumption of authenticated channels, the ballot box can trivially ensure that
at most one ballot is counted per voter. Submitting malformed ciphertexts will at most
invalidate the voter’s ballot, which we expressly permit.

8

(b) Suppose the computer submits (v′1, . . . , v
′
k′) instead of (v1, . . . , vk).

We know that the exponentiation map is a permutation on G and that f is an injection.
Since d will look like a random function, f composed with a permutation composed with
a random-looking function will again look like a random function from O′ to C.

Any function from O′ to the set of receipt codes C defines a partition of O′. A partition
defines an equivalence relation. The uniform distribution on the set of functions from O′
to the receipt code set therefore induces a probability distribution on the set of equivalence
relations on O′.

We extend an equivalence relation ∼ on O′ in the obvious way to strings of options,
i.e. (v1, . . . , vk) ∼ (v′1, . . . , v

′
k′) if and only if k = k′ and vi ∼ v′i for i = 1, . . . , k.

The voter will accept the manipulation if and only if (v′1, . . . , v
′
k′) ∼ (v1, . . . , vk). As

long as the set C is sufficiently large, the probability of this happening will be small.

(c) We consider the three infrastructure players in turn. Since they are honest-but-
curious, we only need to simulate the input they would normally see, we do not need to
model interaction with other parts of the system.

The ballot box Suppose we have an honest-but-curious ballot box B∗ that after the
election is over looks at the ciphertexts and outputs some information about the ballots
submitted.

Given a tuple (g, y1, u1, u2) of elements from G, we shall employ B∗ as follows:

1. Generate a2 and compute y3 = y1g
a2 . Send a2 to B∗.

2. Instead of encrypting the encoded option f(vi) as usual, we compute the encryption

as (xi, wi) = (gtiu
t′i
1 , y

ti
1 u

t′i
2 f(vi)), for some random ti and t′i.

If (g, y1, u1, u2) is a Diffie-Hellman tuple, this will simulate the ballot box input per-
fectly. If (g, y1, u1, u2) is not a Diffie-Hellman tuple, the ballot box input will contain no
information at all about the ballots.

The conclusion is that if B∗ can extract some information about the ballots, we have a
distinguisher for the Decision Diffie-Hellman problem.

The receipt generator We shall now assume that the family of functions from O to
G given by v 7→ f(v)s is a pseudo-random function family, that is, functions sampled uni-
formly at random from the family are indistinguishable from functions sampled uniformly
at random from the set of all possible functions from O to G (subject to 1 7→ 1). We shall
discuss this assumption and the choice of function f : O → G, as well as an alternative
assumption, in Sect. 3.3.

Suppose we have an honest-but-curious receipt generator R∗ that after the election is
over outputs some non-trivial information about the ballots submitted.

9

Given an encoding function f , a function ρ : O → G and j, 1 ≤ j ≤ N , we use R∗ as
follows:

1. For the voters V1, V2, . . . Vj−1, we choose random functions ρl : O → G, 1 ≤ l < j.

2. Generate keys as usual for Vj+1, . . . , VN and use the functions ρl : v 7→ f(v)sl , j <
l ≤ N .

3. For Vj , we use the given function ρ.

4. For every ballot (v1, . . . , vkmax) from a voter Vl with function ρl, we compute (x̌i, w̌i)

as (gt
′
i , y

t′i
3 ρl(vi)).

If our function ρ comes from the family and j = 1, this will simulate the receipt
generator input perfectly. If our function ρ is a random function and j = N , the receipt
generator input will contain no non-trivial information about the ballots submitted.

After a standard hybrid argument, the conclusion is that if R∗ can extract some non-
trivial information about the ballots, we have a distinguisher for the function family.

The decryption service Since the decryption service sees the encrypted ballots in
random order, it does not know which ballot originated with which voter, hence can extract
no information about which ballot belongs to which voter.

3.3 Encoding Options as Group Elements

The Decision Diffie-Hellman problem can be formulated as follows:

Given (g1, g2) ∈ G × G (where at least g2 is sampled at random), decide
if (x1, x2) ∈ G × G was sampled uniformly from the powers of (g1, g2) (i.e.
(x1, x2) = (gs1, g

s
2) for some s), or uniformly from G×G.

It is well-known (e.g. [9, 11]) that this is equivalent to the following problem:

Given (g1, . . . , gn) ∈ Gn (where at least g2, . . . , gn are sampled at random), de-
cide if (x1, . . . , xn) ∈ Gn was sampled uniformly from the powers of (g1, . . . , gn)
(i.e. (x1, . . . , xn) = (gs1, . . . , g

s
n) for some s), or uniformly from Gn.

Therefore, if we choose a random injection O → G as our encoding function f , the assump-
tion used to prove privacy against the receipt generator in the previous section follows easily
from Decision Diffie-Hellman.

However, choosing a different encoding function will allow a significant (by a factor of
20-100) speedup of vote decryption. Let p be a randomly chosen safe prime, let G be the
quadratic residues in F∗p and let L be a set of small primes whose images {`1, `2, . . . , `n} in
F∗p are quadratic residues. Consider the following problem:

10

Given (`1, . . . , `n) ∈ Gn as above, decide if (x1, . . . , xn) ∈ Gn was sampled
uniformly from the powers of (`1, . . . , `n) (i.e. (x1, . . . , xn) = (`s1, . . . , `

s
n) for

some s), or uniformly from Gn.

Now, if f is any injection from O into {`1, . . . , `n}, the assumption used to prove privacy
against the receipt generator in the previous section holds if the above problem is hard.

While this assumption is very similar to Decision Diffie-Hellman, it seems unlikely that
it will be possible to prove that it follows from Decision Diffie-Hellman.

We currently believe that the best way to solve Decision Diffie-Hellman is to compute
one of the corresponding discrete logarithms. It is known [15] that solving the static Diffie-
Hellman problem with a fairly large number of oracle queries is easier than solving the
discrete logarithm problem.

For fairly large n, a static Diffie-Hellman solver could be applied to decide the above
problem. This would be faster than the fastest known solver for the Decision Diffie-Hellman
problem in the same group. However, for our application, n will always be small, hence the
static Diffie-Hellman solver can not be applied. It seems as if the best approach to solving
the above decision problem is computing discrete logarithms.

Remark 3. It is important that the prime is chosen verifiably at random. If it is not, it
will probably be possible to choose the safe prime together with a relation among the small
primes. Given such a relation, the decision problem will be easy.

Other approaches While the assumption discussed above is sufficient for security, it is
not necessary. A weaker, sufficient condition would be if, given a permutation of a subset
of {`s1, . . . , `sn} for some random s, it was hard to deduce any information about the which
primes were involved and what the permutation was.

The simplest case, which happily corresponds to the most common voting pattern, is
that the receipt generator sees one group element, and must decide which prime was used
to generate it. For reasons explained in Sect. 4, the receipt generator is also given a random
generator g and gs.

We do the calculations for the case when there are only two primes to decide between,
say `0 and `1. Let R∗ be an algorithm that takes as input five group elements and outputs
0 or 1. Define

p00 = Pr[R∗(`0, `1, g, g
s, `s0) = 0],

p11 = Pr[R∗(`0, `1, g, g
s, `s1) = 1], and

pi,rnd = Pr[R∗(`0, `1, g, g
s, gt) = i], i ∈ {0, 1},

where s and t are sampled uniformly at random from {0, 1, . . . , q − 1}. Note that p0,rnd =
1− p1,rnd, since the input distribution to R∗ is identical for both probabilities.

We may define the advantage of R∗ as |p00 + p11 − 1|. Observe that if |p00 − p0,rnd|
or |p11 − p1,rnd| are large, we have a trivial solver for Decision Diffie-Hellman with the
generator fixed to either `0 or `1.

11

We may assume that p00 +p11−1 = 2ε > 0. Then either p00 ≥ 1/2+ ε or p11 ≥ 1/2+ ε,
so assume the former. Furthermore, let p00 − p0,rnd = µ. If |µ| ≥ ε, we have an adversary
against Decision Diffie-Hellman with the generator fixed to `0, so assume |µ| < ε. Then

p11 − p1,rnd = 1 + 2ε− p00 − (1− p0,rnd) = 2ε− µ ≥ ε,

which means that we must have an adversary with advantage ε against Decision Diffie-
Hellman with the generator fixed to either `0 or `1.

The same arguments applies to an R∗ that can decide between multiple primes, he must
lead to a successful adversary against Decision Diffie-Hellman with the generator fixed to
one of the primes.

Unfortunately, the above argument breaks down if R∗ is allowed to see multiple primes
raised to the same power, that is, given {`si | i ∈ I} for some small index set I, decide what
I is. It is not unlikely that a careful analysis could reduce this problem to our alternative
DDH problem (for a smaller number of primes), but such a result is of questionable value.

4 Full protocol

In this section, we shall describe the full protocol and the measures required to defend
against active attacks by infrastructure players. The basic idea is that everyone should
prove that they have faithfully executed the simplified protocol. The computer proves
knowledge of ciphertext content and the ballot box proves the correctness of its computa-
tions. In addition, the voter has the computer sign the submitted ballot on his behalf, and
the receipt generator signs a hash of the ballot. Finally, the electoral board is responsible
for key generation.

Technically, we shall describe a protocol employing several subprotocols. To simplify
analysis, we replace the subprotocols by so-called ideal functionalities, trusted third parties
that every player can communicate securely with. These ideal functionalities are discussed
in Sect. 4.1.

We briefly discuss each player and give an intuitive discussion of the protocol elements
and their purpose. The protocol messages are summarized in Fig. 3.

The voter The voter tells the computer what ballot to submit and allows the computer
to sign the encrypted ballot on his behalf. The voter then waits for an acceptance message
from the computer, and for receipt codes to arrive out-of-band. The receipt codes are
verified.

Intuitively, the signature prevents a corrupt ballot box from inserting forged ballots, or
falsely claiming that a given ballot belongs to someone else. With signed ballots, it is also
easy for the ballot box and the auditor to ensure that at most one ballot is counted per
voter.

12

The computer The computer encrypts the voter’s ballot and signs the ciphertext on the
voter’s behalf. The computer should also prove that it knows the content of the ciphertexts
before submission. The computer then waits for the receipt generator’s signature on a hash
of the encrypted ballot, before sending an acceptance message to the voter.

Intuitively, the receipt generator’s signature ensures that the receipt generator has seen
the encrypted ballot. The proof of knowledge is to prevent a corrupt ballot box from using
a corrupt voter to submit an honest voter’s ciphertexts as its own, then learn the ballot
contents from the receipt codes.

Proof-theoretically, we will need to extract the vote from the ballot. Therefore, in
theory, the proof of knowledge should have a proper online extractor [10], but morally a
more efficient non-interactive Schnorr proof will do, even if we do not have a knowledge
extractor that works for parallel composition.

The ballot box The ballot box receives signed, encrypted ballots from the voter’s com-
puter. It computes receipt code ciphertexts and proves to the receipt generator that its
computations are correct. When the receipt generator replies with a signature, it passes this
signature on to the voter’s computer. The ballot box numbers received ballots sequentially
when talking to the receipt generator.

In order to verify correct computation and that this was a real ballot, the receipt
generator must see the entire encrypted ballot, including the voter’s signature and the
computer’s proofs of knowledge.

When the ballot box closes, it selects the encrypted ballots that should be decrypted,
sends them to the decryption service and reveals the entire content of the ballot box to the
auditor.

Intuitively, the ballot box proofs are there to prevent a corrupt ballot box cooperating
with a corrupt computer from forging ciphertexts with correct receipt codes, or a corrupt
ballot box cooperating with a corrupt voter from abusing the receipt generator’s decryption
capability. The sequence numbers are there so that the receipt generator and the ballot
box explicitly agree on the order of submitted ballots.

Receipt generator The receipt generator verifies the voter’s signature and every proof,
then generates the receipt codes and sends them directly to the voter. Also, the receipt
generator signs a hash of the ballot and returns the signature to the ballot box. Without the
signature, the voter’s computer will not inform the user that the ballot has been accepted.

Remark 4. If the ballot box discards a ballot, the hash and the signature would allow
a voter to prove, in cooperation with an honest auditor, that his ballot was discarded.
There is no need for this functionality in our corruption models, but we believe there are
corruption models where this might be useful. We have not yet studied them.

When the ballot box closes, the receipt generator gives the auditor a list of hashes of
ballots with corresponding sequence numbers seen by the receipt generator.

13

V P B R
ballot

enc. w/proof&sign.

enc. w/proofs&sign.

signature
signature

acceptance

receipt codes

BR DA

ciphertexts

hashes

content

ciphertexts, decryptions, and correctness proof

Figure 3: Protocol messages involved in submitting a ballot and receiving receipts (above)
and counting (below). The players are: the voter V , the computer P , the ballot box B,
the receipt generator R, the decryption service D and the auditor A.

Decryption service The decryption service decrypts the incoming ciphertexts, shuffles
the decryptions before output, then proves to the auditor that the input ciphertexts contain
a shuffle of the decryptions. This is done using a mix net and standard Schnorr proofs of
decryption. The mix net is similar to randomized partial checking [14] or “almost entirely
correct mixing” [1].

Auditor The auditor receives the entire content of the ballot box and a list of hashes
of encrypted ballots seen by the receipt generator. The auditor verifies the content of the
ballot box (signatures and proofs), that no ballots have been inserted or lost compared to
the receipt generator list and computes on its own a list of encrypted ballots that should be
counted. The auditor compares this list to the ciphertexts input to the decryption service,
then verifies the proofs offered by the decryption service.

Electoral board The electoral board is responsible for key generation, which must be
done before ballot submission begins. The subprotocol used for key generation is not
analysed in this document.

14

4.1 Prerequisites

The full protocol uses a number of subprotocols for key generation, communication and
non-interactive zero knowledge proofs. In order to focus on the e-voting protocol, we
replace these subprotocols by so-called ideal functionalities and describe a hybrid protocol.
We also discuss what protocols will replace these ideal functionalities, to the extent that
these are known at this time.

The ideal functionalities are trusted third parties that every player can communicate
securely with. Standard protocol theory says that if we replace the ideal functionalities by
secure subprotocols, we get a composed protocol and any attacks against this protocol can
be translated into attacks on the hybrid protocols. If we know all possible attacks on the
hybrid protocol, we will also know all the attacks on the composed protocol.

Electronic identity We need some form of electronic identity to provide digital signa-
tures. We also use the electronic identity to establish a secure channel between the voter’s
computer and the ballot box.

The electronic identity is modeled using the following simplified ideal functionality,
where we ignore key generation. The motivating idea is that for most electronic identity
schemes, a voter essentially gives his computer custody of his electronic identity. If the
computer is honest, it will do only as the voter intends, but if it is compromised it can
usually abuse the voter’s identity arbitrarily.

On (key, Y,Σ,) from S:

1. Store (key, Y,Σ).

On (use, P) from V , do:

1. Record (use, P, V).

On (establish, V, B) from P :

1. Stop unless (use, P, V) is recorded.

2. Choose unique sid , send (establish, B, sid , V, P) to S, then record (sid , V, P,B).

3. Send delayed, queued output (established, sid) to P and delayed, queued output
(established, sid , V, P) to B.

On (send, sid ,m) from X:

1. Stop unless (sid , V,X, Y) or (sid , V, Y,X) is recorded.

2. Send (send, sid , |m|) to S and delayed, queued output (recv, sid ,m) to Y .

On (sign, V,m) from P :

Figure 4: Ideal functionality for electronic identity, Feid (continues).

15

1. Stop unless (use, P, V) and (key, V,Σ) is recorded.

2. Let σ ← Σ(m), record (signature, V,m, σ, 1) and output (signature, V,m, σ).

On (sign, R,m) from honest R:

1. Stop unless (key, R,Σ) is recorded.

2. Let σ ← Σ(m), record (signature, V,m, σ, 1) and output (signature, V,m, σ).

On (verify, Y,m, σ) from X:

1. If no record (key, Y,Σ) exists, output (fail, Y,m, σ) and stop.

2. If (signature, Y,m, σ, 1) is recorded, output (verified, Y,m, σ) and stop.

3. If (signature, Y,m, σ, 0) is recorded, output (fail, Y,m, σ) and stop.

4. If Y is corrupt or (use, P, Y) is recorded for some corrupt P , send (verify, Y,m, σ)
to S and wait for (verify, Y,m, σ, b). Record (signature, Y,m, σ, b). If b = 1, output
(verified, Y,m, σ), otherwise output (fail, Y,m, σ). Then stop.

5. Record (signature, Y,m, σ, 0) and output (fail, Y,m, σ).

Figure 4: Ideal functionality for electronic identity, Feid (final).

Remark 5. Originally, the assumption was that an electronic identity smart card issued by
the government coupled with a PKI would be available. This smart card would support
signatures and secure, identified channels (probably using some variant of TLS). Unfortu-
nately, this identity card has been delayed and will not be available for the trials.

The electronic identity system to be used has not yet been finalized, but will probably
be based on a government system using passwords and pins for identification, with some
additional functionality for simulating digital signatures. It is currently unclear how much
public documentation will be available for this system. Therefore, the assumptions on what
security is provided (implicit in the ideal functionality) is deliberately quite conservative.

Proofs of knowledge The computer and the ballot box need to prove that they have
acted correctly. One method to do that is for them to prove that they know certain discrete
logarithms. At some point, we shall also need to use that this proof is extractable. We
model this using the proof-of-knowledge functionality given in Fig. 5.

The actual proof is done as follows, where H is a hash function. On input of aux , n, ~ξ,
~η and ~ρ, do:

1. Choose random numbers ~t and compute ui = ξtii , i = 1, . . . , n.

2. Compute e← H(aux , n, ~ξ, ~η, ~u).

16

On (setup, (Sim,Ver)) from S:

1. Store (Sim,Ver).

On (prove, aux , n, ~ξ, ~η, ~ρ) from honest P :

1. Compute π ← Sim(aux , n, ~ξ, ~η), store (aux , n, ~ξ, ~η, π), and output (proof,
aux , n, ~ξ, ~η, π) to P .

On (verify, (aux , n, ~ξ, ~η, π)) from Y :

1. If we have recorded (aux , n, ~ξ, ~η, π), output (verified, aux , n, ~ξ, ~η, π) and stop. If we
have recorded (invalid, aux , n, ~ξ, ~η, π), output (invalid, aux , n, ~ξ, ~η, π) to Y .

2. Send (verify, (aux , n, ~ξ, ~η, π)) to S. If S replies with (witness, n, ~ρ) such that
ηi = ξρii for i = 1, . . . , n and Ver(aux , n, ~ξ, (ξρ11 , . . . , ξρnn), π) = 1, store

(aux , n, ~ξ, (ξρ11 , . . . , ξρnn), π) and output (verified, aux , n, ~ξ, ~η, π). Otherwise record

(invalid, aux , n, ~ξ, ~η, π) and output (invalid, aux , n, ~ξ, ~η, π).

Note: ~ξ and ~η are tuples of length n where the elements all come from either G, G2 or G3.

Figure 5: Ideal functionality for discrete logarithm proof of knowledge, Fpok .

3. Compute zi = ti − eρi, i = 1, . . . , n.

The proof is π = (e, ~z). To verify the proof π for aux , ~ξ and ~η, do:

1. Compute u′i = ηei ξ
zi
i , i = 1, . . . , n.

2. Compute e′ = H(aux , n, ~ξ, ~η, ~u′).

Accept the proof of e′ = e.

Remark 6. This (parallel) non-interactive Schnorr proof of knowledge does not realize
the ideal functionality, because it is not extractable when composed in parallel. In our
opinion, this does not seem to be a deficiency in the Schnorr proof, but rather a technical
obstruction. A protocol with an efficient online extractor [10] could have been used, but
there seems little point in using a significantly more expensive proof of knowledge when no
real security is gained.

We note that the cost of generating a proof in Gi is dominated by in exponentiations
in G, while verifying the proof is dominated by 2in exponentiations in G.

Collision resistant hashing The return code generator needs to sign hashes of votes.
We denote by Hash some hash function. When needed, we shall assume that this hash
function is collision resistant.

17

Additional secure channels We assume that inside the infrastructure, every player
communicates via secure channels. Also, there is a unidirectional out-of-band channel
from the receipt generator to the voter. We model this using the following functionality,
where V is the set of all voters and P is the set of all computers.

On (send, X, ξ) from Y :

1. If (X,Y) is in V × P, P × V, V × {R} or
{(R,B), (B,R), (D,B), (A,B), (A,R), (A,D)}, then send (recv, Y, ξ) to X. If
(X,Y) ∈ V × {R}, then the output to X is delayed.

On (flush) from R:

1. Deliver any pending outputs to voters.

Figure 6: Ideal functionality for secure communication, Fsc .

Remark 7. The communication between the ballot box, receipt generator, decryption ser-
vice and auditor is modeled as an untappable channel. Most likely, it will be realized by
some standard protocol like TLS or IPSEC running over a public, reliable network. Some
of the communication may also be out-of-band. We have not yet analyzed the realizing
protocols.

Remark 8. The out-of-band channel between the receipt generator and the voter will proba-
bly have unpredictable delivery scheduling. We (somewhat crudely) model this by allowing
the adversary to schedule deliveries. The adversary cannot be allowed to postpone delivery
indefinitely, however. The (flush) message is a technical trick to enforce this, not a real
message in the real protocol.

To simplify the description of protocols, we shall write “Send ξ to X” and “Receive ξ
from Y ” instead of “Send (send, X, ξ) to Fsc” and “Receive (recv, Y, ξ) from Fsc”. Since
the channel established by the electronic identity functionality is susceptible to adversarial
delay, we do not follow this convention there.

Key generation Certain global parameters, such as the group G, its order q and the
generator g are assumed to be public and known by everyone. The electoral board generates
the three election keys, a1, a2 and a3, using a multiparty computation protocol. The per-
voter keys are also generated by the electoral board. For simplicity, we model both of these
processes as one simple ideal functionality.

Once (start) has been received from every electoral board player:

1. Choose the function f : O → G.

Figure 7: Ideal functionality for key generation, Fkey (continues).

18

2. Choose random a1 and a2, and compute a3 = (a1 + a2) mod q. Compute y1 = ga1 ,
y2 = ga2 and y3 = ga3 .

3. For every voter V , choose random exponent s and PRF instance d. Compute the
per-voter commitment γ = gs and the set RC = {(v, d(f(v)s)) | v ∈ O}. Send
(codes,RC) to V .

4. Send (keys, y1, a2, y3, {(V, s)}) to B, (keys, y1, y2, a3, {(V, γ, d)}) to R, and (keys, y1)
to A.

5. For every computer P , send (keys, y1, f) to P .

Once (count) has been received by a qualified majority of the electoral board players:

1. Send (keys, a1) to D.

Figure 7: Ideal functionality for key generation, Fkey (final).

Remark 9. In practice, the per-voter exponent s will be pseudo-randomly generated. The
receipt generator may use a single pseudo-random function to generate the receipt codes,
but include a voter identifier to simulate a per-voter pseudo-random function.

Remark 10. The key generation protocols have not yet been analyzed.

4.2 The Protocol

The protocol has as its players the electoral board members, a set of voters, a larger set
of computers, a ballot box, a receipt generator, a decryption service and an auditor. The
programs run by the various players are described below.

Remark 11. Error handling is mostly ignored in the protocol descriptions, but follows the
usual principle that if something is wrong, the calling party is notified and processing stops.

4.2.1 The Voter

Before the election, the voter receives a table of option–receipt code pairs. When the
voter wants to submit a ballot, he gives the computer access to his electronic identity,
submits the vote to the computer and waits for the computer’s acceptance message and
the receipt codes from the receipt generator. The receipt codes are verified against the
option–receipt code pairs. If the voter receives receipt codes from the receipt generator
when not processing a vote, he complains about a forgery.

On (codes,RC) from Fkey :

Figure 8: Program for the voter V (continues).

19

1. Store RC.
On input (vote, P, v1, . . . , vk):

1. Send (use, P) to Fsc .

2. Send (vote, v1, . . . , vk) to P .

3. Wait for (accepted) or (fail) from P , and (receipt, ř1, . . . , řk′) from R.

4. If (fail) was received from P , if k 6= k′ or (vi, ři) 6∈ RC for some i ∈ {1, . . . , k},
output (fail). Otherwise erase ř1, . . . , řk and output (accepted).

On (receipt, . . .) from R:

1. Output (forgery!).

On input (use, P):

1. Send (use, P) to Feid .

Figure 8: Program for the voter V (final).

Remark 12. Given the receipt codes and the correspondence RC between options and
receipt codes, it will usually be possible to reconstruct the corresponding ballot. Therefore,
the voter should erase the receipt codes after verification (by deleting the SMS message
with the codes).

Remark 13. If the voter submits two or more ballots in parallel, the receipt codes from the
receipt generator may arrive out of order and the voter will have no way to decide which
receipt belongs to which ballot. There is no way for the voter to decide which ballot will be
counted and which will not be counted. Honest voters should therefore not submit ballots
in parallel.

4.2.2 The Computer

The computer receives the ballot from the voter. It encrypts the ballot, generates a proof
that it knows the contents of the encryption, signs the encrypted ballot on behalf of the
voter, then submits the signed, encrypted ballot to the ballot box via Feid . Then it waits
for the receipt generator’s signature from the ballot box. Finally, the computer informs
the voter that the ballot was accepted.

On (keys, y1, f) from Fkey :

1. Store y1 and f .

Figure 9: Program for the computer P (continues).

20

On (vote, v1, . . . , vk) from V :

1. Send (establish, V, B) to Feid and wait for (established, sid).

2. Set vk+1 = · · · = vkmax = 0.

3. For i from 1 to kmax : Choose random ti, compute (xi, wi) = (gti , yti1 f(vi)).

4. Send (prove, V, kmax , (g, . . . , g), (x1, . . . , xkmax), (t1, . . . , tkmax)) to Fpok and wait for
(proof, . . . , π) from Fpok .

5. Send (sign, V, ((x1, w1), . . . , (xkmax , wkmax), π)) to Feid , and wait for (sign, . . . , σV)
from Feid .

6. Send (send, sid , (vote, V, ((x1, w1), . . . , (xkmax , wkmax), π), σV)) to Feid , and wait for
(recv, sid , (receipt, σR)) from Feid .

7. Compute hb ← Hash(V, (x1, w1), . . . , (xkmax , wkmax), π).

8. Send (verify, R, hb, σR) to Feid and wait for (verified, R, hb, σR).

9. Send (accepted) to V .

Figure 9: Program for the computer P (final).

Remark 14. Note that when sending the encrypted ballot to the ballot box, a fixed-length
encoding should be used for the group elements. This is to prevent a compromised de-
cryption service from correlating message length (which leaks out of the electronic identity
functionality together with the identity) and encrypted ballots.

4.2.3 The Ballot Box

The ballot box does nothing until it has received its keys. Afterwards, as computers connect
to submit votes, it verifies signatures and proofs, then does the appropriate computations
and generates appropriate proofs of correct computation. The result is passed to the receipt
generator. The receipt generator replies with a signature, which the ballot box verifies and
passes on to the computer.

When the ballot box is told to close, it waits for ongoing submissions to complete, then
selects the ballots to be counted and sends them to the decryption service. Finally, the
entire contents of the ballot box is sent to the auditor.

Do nothing until (keys, y1, a2, y3, {(V, s)}) has been received from Fkey , then do:

1. Record y1, a2 and y3, as well as the pairs (V, s).

Figure 10: Program for the ballot box B (continues).

21

On (established, sid , V, P) from Feid :

1. Wait for (recv, sid , P, (((x1, w1), . . . , (xkmax , wkmax), π), σV)) from Feid .

2. Send (verify, V, ((x1, w1), . . . , (xkmax , wkmax), π), σV) to Feid and wait for (verified,
. . . , σV) from Feid .

3. Send (verify, V, kmax , (g, . . . , g), (x1, . . . , xkmax), π) to Fpok and wait for (verified,
. . . , π) from Fpok .

4. Look up the stored pair (V, s) and place an exclusive lock on the pair (waiting for
any other session to release its exclusive lock).

5. Select the next sequence number seq .

6. For i from 1 to kmax :

(a) Compute (x̌i, w̌i, π̌i) as specified below.

7. Send (ballot, seq , V, (x1, w1, x̌1, w̌1, π̌1), . . . , (xkmax , wkmax , x̌kmax , w̌kmax , π̌kmax), π, σV)
to R, and wait for (receipt, seq , σR) from R.

8. Compute hb ← Hash(V, (x1, w1), . . . , (xkmax , wkmax), π).

9. Send (verify, R, hb, σR) to Feid and wait for (verified, R, hb, σR) from Feid .

10. Store (seq , V, (x1, w1), . . . , (xkmax , wkmax), π, σV) and release the lock on the record
(V, s).

11. Send (receipt, σR) to P .

On (count) from D:

1. Stop processing (established, . . .) messages from Feid .

2. Stop any voting sessions that have not yet reached Step 4 and wait for remaining
sessions to terminate.

3. Send (count) to R.

4. Let Sbb be the list of all recorded entries (seq , V, (x1, w1), . . . , (xkmax , wkmax), π, σV).

5. For each voter V , find the recorded entry with the largest sequence number seq
and extract the ballot ((x1, w1), . . . , (xkmax , wkmax)). Compute

x =

kmax∏
i=1

xi w =

kmax∏
i=1

wi

Figure 10: Program for the ballot box B (continues).

22

and add (x,w) to the list L. (For elections where order is important, raise xi and
wi to the ith power in the product.)

6. Sort L. Send (decrypt, L) to the decryption service D, and (content, Sbb) to A.

Figure 10: Program for the ballot box B (final).

The triples (x̌i, w̌i, π̌i) are computed as follows. The pair (x̌i, w̌i) are computed as in
the simplified protocol. As for the correctness proof π̌i, the idea is to prove correctness by
proving equality of discrete logarithms, which is done by proving knowledge of the discrete
logarithm in G×G or G×G×G. (We note that non-extractability of the non-interactive
Schnorr proof is a non-issue here.)

On input of (x,w), s and a2, do:

1. Compute (x̄, w̄)← (xs, ws) and ŵ ← x̄a2 .

2. Send (prove, V, 1, (g, x, w), (gs, x̄, w̄), s) to Fpok and wait for (proof, . . . , π̄) from Fpok .

3. Send (prove, V, 1, (g, x̄), (y2, ŵ), a2) to Fpok and wait for (proof, . . . , π̂) from Fpok .

The result is (x̌, w̌) = (x̄, w̄ŵ), the proof is π̌ = (w̄, ŵ, π̄, π̂).
To verify a proof π̌ on input of (x,w), (x̌, w̌), y2 and γ, do:

1. Check that w̌ = w̄ŵ.

2. Send (verify, V, 1, (g, x, w), (γ, x̄, w̄), π̄) to Fpok and wait for (verified, . . .) from Fpok .

3. Send (verify, V, 1, (g, x), (y2, ŵ), π̂) to Fpok and wait for (verified, . . .) from Fpok .

4.2.4 Receipt Generator

The receipt generator receives from the ballot box the sequence number, the entire en-
crypted ballot, the computer’s proof, the voter’s signature, the ciphertexts {(x̌i, w̌i)} and
the proofs made by the ballot box. It verifies the proofs, the digital signature and the se-
quence number before decrypting (x̌i, w̌i). It then derives the receipt codes and sends them
to the voter. It signs a hash of the encrypted ballot and sends this receipt to the ballot
box. Also, it records the voter name, the sequence number and a hash of the encrypted
ballot.

On (keys, y1, y2, a3, {(V, γ, d)}) from Fkey :

1. Record y1, y2, a3, as well as the tuples (V, γ, d).

Figure 11: Program for the return code generator R (continues).

23

On (ballot, seq , V, (x1, w1, x̌1, w̌1, π̌1), . . . , (xkmax , wkmax , x̌kmax , w̌kmax , π̌kmax), π, σV) from
B:

1. Compute hb ← Hash(V, (x1, w1), . . . , (xkmax , wkmax), π, σV) and
h′b ← Hash(V, (x1, w1), . . . , (xkmax , wkmax), π).

2. Look up the recorded tuple (V, γ, d) and place an exclusive lock on the tuple
(waiting for any other session to release its exclusive lock).

3. Verify that no record (·, ·, ·, h′b) or (V, seq ′, ·, ·) with seq ′ ≥ seq exists.

4. Send (verify, V, ((x1, w1), . . . , (xkmax , wkmax), π), σV) to Feid and wait for (verified,
. . . , σV).

5. Send (verify, V, kmax , (g, . . . , g), (x1, . . . , xkmax), π) to Fpok and wait for (verified,
. . .).

6. For i from 1 to kmax :

(a) Verify the computation of (x̌i, w̌i) using the proof π̌i as described after the
ballot box program (Fig. 10).

(b) ri ← w̌ix̌
−a3
i . If ri 6= 1, then k ← i.

(c) ři ← d(r).

7. Send (sign, R, hb) to Feid and wait for (signature, R, hb, σR).

8. Record (V, seq , hb, h
′
b). Send (receipt, seq , σR) to B.

9. Send (receipt, ř1, . . . , řk) to V .

On (count) from B:

1. Verify that all sessions have terminated.

2. Send (flush) to Fsc .

3. Let SR be the list of all recorded entries (V, seq , hb, h
′
b). Send (hashes, SR) to A.

Figure 11: Program for the return code generator R (final).

4.2.5 Decryption Service

The decryption service decrypts the encrypted ballots sent by the ballot box and shuffles
the result before output. Before decryption, the auditor must approve the input. The de-
cryption service also proves to the auditor that the encrypted ballots contain a permutation
of the output ballots [12].

The proof that the encrypted ballots contain a permutation of the output ballots is

24

done by shuffling and rerandomizing the encrypted ballots, then decrypting the result.
The correctness of the shuffle and the decryptions are proved to the auditor.

The decryption service also decodes ballots. Let 2O denote the set of all subsets of O,
let G be a subgroup the non-zero elements of a finite prime field Fp under multiplication,
and let `1, . . . , `|O| be the primes used to encode options.

We define a decoding function φ : G→ 2O ∪ {spoilt}. Considering µ ∈ G as an integer
between 0 and p, we can try to factor that integer as a non-empty product of the small
primes `1, . . . , `|O|. From such a product, we can easily deduce a subset S of O such that
µ =

∏
v∈S f(v), and we let φ(µ) = S. If there is no such product, we let φ(µ) = spoilt.

(Note that for elections where order matter, the decoding function φ must be changed in
the obvious way.)

On (keys, a1) from Fkey :

1. Send (count) to B.

2. Wait for (decrypt, (x1, w1), . . . , (xn, wn)) from B.

3. Compute χ← Hash((x1, w1), . . . , (xn, wn)), send (hash, χ) to A, and wait for
(proceed) from A.

4. Choose a permutation Π on {1, . . . , n}.

5. For i from 1 to n: Choose a random number ti and compute:

x′i = xΠ(i)g
ti w′i = xΠ(i)y

ti
1

Compute µi = w′i(x
′
i)
−a1 , send (prove,−, 1, (g, x′i), (y1, w

′
iµ
−1
i), a1) to Fpok and wait

for (proof, . . . , πi).

6. Create a proof π′ that (x′1, w
′
1), . . . , (x′n, w

′
n) is a shuffle of (x1, w1), . . . , (xn, wn).

7. Send (proofs, (x′1, w
′
1, µ1, π1), . . . , (x′n, w

′
n, µn, πn), π′) to A, then output (ballots,

φ(µ1), . . . , φ(µn)).

Figure 12: Program for the decryption service D.

The proof of correctness π′ for the ciphertext shuffle is a protocol run by a prover and
a verifier. It works by the prover doing four intermediate shuffles and carefully revealing
some information about each shuffle in parallel.

Assume for the moment that the number of ciphertexts to be shuffled is a square, that
is n = ν2. Denote the i’th ciphertext (xi, wi) by ci.

For the k’th shuffle, the prover chooses a permutation Π(k) on {1, 2, . . . , n} for the

shuffle and lets c
(k+1)

Π(k)(i)
be a rerandomization of c

(k)
i . The challenger randomly divides the

25

index set into ν groups {Γ(k)
i }, each group containing ν indexes. The prover must then

reveal the images of the groups under Π(k), that is, {Π(k)(Γ
(k)
i)}, and prove (using Fpok)

that ∏
j∈Γ

(k)
i

c
(k)
j /

∏
j′∈Π(Γ

(k)
i)

c
(k+1)
j′

is an encryption of the identity element. The intermediate shuffles are connected by requir-

ing that for any i and j, the intersection of Π(k)(Γ
(k)
i) and Γ

(k+1)
j should contain exactly

one index. Finally, c
(5)
i should be (x′i, w

′
i).

The idea is that dividing the ciphertexts into groups prevents the prover from changing
the content of ciphertexts. Limiting the information revealed about the permutations limits
the information revealed to the verifier.

The proof should be interactive, that is, the prover commits to every shuffle, then the
verifier selects the groups.

4.2.6 Auditor

The auditor verifies that every encrypted ballot in the ballot box was seen by the receipt
generator. Also, it verifies the selection of ciphertexts sent for decryption. Finally, it
verifies correctness of decryption.

Remark 15. In the real protocol, the voter receives a receipt that he can verify after the
election by contacting the auditor. For our corruption model, no security is gained and we
have not modeled this process. In other corruption models, there might be some gain. We
have not yet analysed these corruption models.

On (keys, y1) from Fkey :

1. Store y1.

On (content, Sbb) from B:

1. Wait for (hashes, SR) from R.

2. Verify that every encrypted ballot in Sbb has a corresponding hash in SR, and vice
versa.

3. Verify the signatures on the encrypted ballots.

4. Select from Sbb the ciphertexts that should be decrypted, sort the list and
compute a hash χ of the list.

5. Wait for (hash, χ′) from D. Verify that χ = χ′, then send (proceed) to D.

Figure 13: Program for the auditor A (continues).

26

6. Wait for (proofs, (x′1, w
′
1, µ1, π1), . . . , (x′n, w

′
n, µn, πn), π′) from D.

7. For i from 1 to n, do: Send (verify,−, 1, (g, x′i), (y1, w
′
iµ
−1
i), πi) to Fpok and wait for

(verified, . . .) from Fpok .

8. Verify the proof π′.

9. Output (accepted, φ(µ1), . . . , φ(µn)).

Figure 13: Program for the auditor A (final).

4.3 The Electoral Board Member

The electoral board member participates in the key generation. Since we have not analysed
these protocols, but instead hide them in the key generation functionality, the electoral
board member protocol is quite simple.

On input (start):

1. Send (start) to Fkey .

On input (count):

1. Send (count) to Fkey .

Figure 14: Program for the electoral board member Ei.

5 Security

Our goal should be to prove that the protocol realizes a functionality roughly similar to
the one given in Fig. 15. Unfortunately, the protocol (given the subprotocols we have)
is not secure. Hence, it does not realize the protocol in the most interesting corruption
models. Fortunately, we are able to prove a number of interesting security properties for
the protocol.

Do nothing until (start) has been received from every election board player. Then:

1. For every voter, choose a random permutation ΠV on O and an equivalence
relation ∼V on a set O′ containing O (see Sect. 3 for the definition of O′ and
Sect. 3.2 for a discussion on ∼V).

On input (vote, P, v1, . . . , vk) from V :

Figure 15: Ideal functionality for electronic voting, Fvote (continues).

27

1. If V is corrupt, choose the next sequence number seq , store (seq , V, v1, . . . , vk) and
stop.

2. If P is corrupt, record (use, V, P).

3. If P is corrupt, set aux = (v1, . . . , vk). If R is corrupt, set
aux = (ΠV (v1), . . . ,ΠV (vk)). Otherwise, let aux be empty.

4. Choose unique sid and send (vote, sid , V, P, aux) to S and wait for (vote,
sid , result , aux′) from S, where result ∈ {fail, store}.

5. If result = fail, output (fail) to V and stop.

6. Choose next sequence number seq . If P is corrupt, parse aux′ as (v′1, . . . , v
′
k′) and

store (seq , V, v′1, . . . , v
′
k′). Otherwise store (seq , V, v1, . . . , vk).

7. Wait for (vote, sid , result ′), where result ∈ {fail, ok}. If result = fail, output (fail) to
V and stop.

8. If P is corrupt and (v1, . . . , vk) 6∼V (v′1, . . . , v
′
k′), output (fail) to V and stop.

Otherwise, output (accepted) to V .

On (use, P) from honest V :

1. If P is corrupt, record (use, V, P).

On (forge, V, P, v1, . . . , vk) from S:

1. If V is corrupt, P is honest or (use, V, P) is not recorded, stop.

2. Choose next sequence number seq and store (seq , V, v1, . . . , vk). Then send delayed
message (forgery!) to V .

On (count) from an election board player:

1. Stop unless a qualified majority of the election board players have input (count).

2. If B or R are corrupt, send (count) to S and wait for (count, result). If
result = fail, output (fail) to A and stop.

3. Stop processing new input from voters, and wait for processing of already received
input from voters to terminate.

4. For each voter V , select the stored record (seq , V, v1, . . . , vk) with maximal
sequence number. Add the set {v1, . . . , vk} to a list L at a random position.

5. If D or A are corrupt, send (count, L) to S and wait for (count, result). If
result = fail, output (fail) to A and stop. Otherwise, output (ballots, L) to D and
(accepted, L) to A.

Figure 15: Ideal functionality for electronic voting, Fvote (final).

28

Our general strategy create a sequence of indistinguishable games, starting with the
real world and ending with a game where it is easier to analyse security.

We consider the following cases for corruption in order:

• A subset of the voters and computers are corrupt, and possibly the ballot box.

• The receipt generator is corrupt.

• The decryption service is corrupt.

• The auditor is corrupt.

5.1 Voters, computers and the ballot box

Our starting game is the real protocol interacting with a real adversary that has corrupted
a number of voters and computers, and possibly the ballot box. We shall make a number of
changes to this game and finally arrive in a game that is indistinguishable from the initial
game, but where security analysis is easier. There we shall prove the following:

• If the ballot box is not corrupt, the auditor will not fail the election.

• For any honest voter that uses only honest computers, any ballot accepted as cast
and not superceded should be counted if the auditor accepts the election. The ballot
remains confidential regardless.

• If an honest voter uses a corrupt computer (not neccessarily for voting), nothing
can be guaranteed for voters that submit multiple ballots. However, for voters that
submit exactly one ballot and accepts that ballot as cast, with high probability that
ballot will be counted unless the voter observes an attack. If the ballot was submitted
through an honest computer, the ballot remains confidential.

Game 1 In the first game, one machine M plays the role of every honest player as well as
the ideal functionalities. Note that in this game, the machine M knows every decryption
key in the system, specifically the machine M knows a1, a2 and a3.

This game is clearly indistinguishable from our starting point.

Game 2 In this game, the machine M ignores mixing encrypted ballots and proving the
correctness of decryptions. Instead, the encrypted ballots are simply decrypted and the
ballots are shuffled.

Since the adversary cannot observe the conversation between the decryption service
and the auditor, this game is indistinguishable from the previous game.

29

Game 3 In this game, the machine M aborts if it ever observes a collision in Hash(·).
Clearly, this game is indistinguishable from the previous game if Hash(·) is collision resis-
tant.

From now on, we can treat Hash(.) as an injective function in analysis.

Game 4 The machine M samples the per-voter function d : G → C from the set of all
functions from G to C, not from F . Since F is a pseudo-random function family, this game
is indistinguishable from the previous game.

Game 5 We make two changes: First, the machine M computes the return codes sent to
voters (see the key generation functionality, Fig. 7) as d(f(v)), not d(f(v)s). Second, the
simulated return code generator (see Fig. 11) computes the return code as d(wix

−a1
i), not

as d(w̌ix̌
−a3
i). Note that the machine M knows (xi, wi) because the ballot box also sends

the original encrypted ballot.
Since d is a random function and exponentiation is a permutation, the only way these

changes can be observable is if (wix
−a1
i)s 6= w̌ix̌

−a3
i . Note that Schnorr proofs in the groups

G2 and G3 are sound in the sense that it is hard to create a valid proof unless a witness
exists. Therefore, as long as the ballot box proofs are valid, (wix

−a1
i)s = w̌ix̌

−a3
i holds

except with negligible probablity.
We conclude that this game is indistinguishable from the previous game. Observe also

that we no longer use the return code generator decryption key a3.

Game 6 In this game, the machine M remembers the ballot corresponding to every
honestly generated encrypted ballot (that is, signed by an honest user and created by an
honest computer). When such ballots arrive at the simulated receipt generator, it does
not decrypt the ciphertexts, but uses the stored ballot instead. When such encrypted
ballots are submitted for final decryption, the stored ballot is used instead of decrypting
the ciphertexts.

Clearly, this game is indistinguishable from the previous game.

Game 7 When an adversarially generated encrypted ballot ((x1, w1), . . . , (xkmax , wkmax), π)
reaches the simulated receipt generator, it verifies the proof π before decryption. This forces
the adversary to supply witnesses (ρ1, . . . , ρkmax) to Fpok that satisfy xi = gρi . The decryp-
tion of (xi, wi) is wiy

−ρi
1 . The simulated receipt generator uses this to decrypt instead of

wix
−a1
i .
The machine M remembers the cleartext ballot for adversarially encrypted ballots that

arrive at the receipt generator. When these are submitted for final decryption, the stored
ballot is used instead of decrypting the ciphertexts.

By the properties of Fpok , the computed decryptions are always correct. Therefore,
this game is indistinguishable from the previous game.

30

Claim. The decryption key a1 is not used in Game 7.

Proof. The only encrypted ballots that need to be decrypted are those that the receipt
generator have not seen. But if any such encrypted ballots reach the decryption service,
the auditor will complain since the list of encrypted ballots received from the ballot box
will either not match those submitted for decryption or not match those seen by the
receipt generator. If the auditor complains, the machine M does not need to decrypt the
ciphertexts, since there will be no election result.

Remark 16. We note again that the Schnorr proof we use is not extractable, hence it does
not realize the ideal functionality, hence the above argument does not strictly apply to our
protocol. In our opinion, this is a technical problem, not a security problem. Therefore,
the above argument is morally justified.

Game 8 In this game, the simulated honest computers no longer provide the simulated
Fpok with a witness for proofs. Since Fpok does not use the witness, this game is indistin-
guishable from the previous.

Game 9 In this game, the simulated honest computers no longer encrypt encoded op-
tions, but rather random group elements. Since we do not use any of the decryption keys,
a straight-forward DDH-reduction will show that this game is indistinguishable from the
previous game.

Analysis Suppose the auditor accepts the election. The auditor verifies that the list of
hashes retained by the receipt generator matches the list of encrypted ballots in the ballot
box. Since Hash(·) is injective in the final game, every encrypted ballot in the ballot box
must have been seen by the receipt generator. The receipt generator and the auditor verify
the voter’s signature, therefore the encrypted ballot must come from a computer used by
the voter.

If the computers used by the voter are all honest, the receipt generator sees and verifies
the sequence numbers, then gives them to the auditor. Since the voter’s computer verifies
the receipt generator’s signature, every honestly generated ballot must be in the ballot box.
Since an honest voter submits votes sequentially, the ballot box sequence numbers must
correspond to the submission order, which means that the correct ballot must be counted.

If the voter has used a corrupt computer, we suppose that the voter submits exactly
one ballot. Suppose first that this ballot is submitted through a corrupt computer. The
voter will not accept the ballot as cast unless he receives correct receipt codes. If he
receives correct receipt codes, then with high probability the ciphertexts seen by the receipt
generator contain the correct ballot. If there are more encrypted ballots from the voter in
the ballot box, these must have been seen by the receipt generator, which means that the

31

voter must have received unexpected receipt codes, which means that the voter will have
noticed (and complained about) an attack.

If the voter’s ballot is submitted through an honest computer, the ciphertexts seen by
the ballot box contain no information about the ballot. Also, unless the voter receives
unexpected receipt codes, the attacker cannot use the receipt generator as a decryption
oracle. Therefore, the ballot will remain confidential.

Discussion The above results are somewhat close to the security requirements, but there
is a gap. We provide three example attacks to show that the gap is real, and not just a
limitation of the security proof.

1. Consider a corrupt computer used by the voter to submit two ballots, and suppose
the ballots are known in advance to the attacker. The computer first submits the two
ballots in reverse order, but delays the receipt code messages. When the voter asks the
computer to submit the first ballot, the computer does nothing and the adversary
delivers the second receipt code message. When the voter asks the computer to
submit the second ballot, the computer does nothing and the adversary delivers the
first receipt code message. The voter accepts both ballots as cast, but the wrong
ballot is counted.

In this attack, the ballot box is honest and the voter does not notice an attack.

2. Consider a corrupt computer used by the voter to submit a ballot. The computer
first submits (on behalf of the voter) the correct ballot, but delays the receipt code.
He then submits a forged ballot and delivers this receipt code. In response to the
unexpected receipt code, the voter fails to accept the ballot as cast. Next, suppose the
voter resubmits his correct ballot through the same corrupt computer. The attacker
discards the submission, but delivers the delayed receipt code. The voter now accepts
his ballot as cast, but it will not be counted.

In this attack, the ballot box is honest, but the voter notices an attack.

3. Since the receipt generator remembers ciphertexts and proofs of knowledge, the at-
tacker cannot replay old ciphertexts. However, the attacker may substitute its own
ciphertexts for honestly generated ciphertexts, observe the voter’s subsequent be-
haviour and from that deduce something about the honestly generated ciphertexts.

Consider a voter that has used a corrupt computer. Later, this voter uses an honest
computer to vote. The adversary delays the receipt codes (but not the receipt for
the honest computer). The adversary guesses the content of the honestly encrypted
ballot and runs a second voting session from the corrupt computer submitting the
guessed ballot. The adversary allows these receipt code message to arrive. From the
voter’s subsequent behaviour, the attacker may decide if his guess is correct or not.

In this attack, the ballot box is honest, but the voter notices an attack.

32

Remark 17. To some extent, these attacks are artefacts of our model, specifically the fact
that the attacker schedules delivery of receipt code messages.

However, the main problem is that the voter cannot connect receipt code messages to
ballot submission sessions. Therefore, messages from two different protocols runs can be
confused, which is the essential cause of the attacks.

There may be solutions to this problem, but since these attacks are quite marginal,
our opinion is that any mitigation attempt should not reduce usability. The best approach
would be to use a stronger electronic identity scheme, where the voter is forced to approve
the connection to the ballot box. This would allow a voter to connect receipt code messages
to ballot submission sessions.

Until some mitigation is in place, we believe the government’s advice to voters should be
to vote only once electronically. If something goes wrong or the voter is subject to coercion,
the voter should submit a paper vote if possible, rather than vote again electronically.

Remark 18. Note that the ballot box is honest in every attack. Indeed, in our model,
corrupting the ballot box does not seem to help the attacker, because the ballot box must
prove correctness of everything it does. Also, the receipt generator will detect replay
attacks, so access to previously submitted electronic ballots does not help.

5.2 The Receipt Generator

Again, our starting point is the real protocol interacting with a real adversary that has
corrupted the receipt generator. For the final game, we shall prove the following:

• The corrupt receipt generator learns nothing about the submitted ballots, except
what the receipt codes tell him.

Remark 19. A moderately complicated argument with a simulator based on the final game
(with some minor modifications) should suffice to show that our protocol realizes the func-
tionality Fvote in this corruption model. We have not completed that argument.

Game 1 In this game, one machine M plays the role of every honest player as well as
the ideal functionalities. Note that in this game, the machine M knows every decryption
key in the system, specifically our machine M knows a1, a2 and a3.

This game is clearly indistinguishable from our starting point.

Game 2 Note that the machine M knows which cleartext ballot corresponds to which
encrypted ballot. In this game, the decryption service uses the cleartext ballots instead of
decrypting the encrypted ballots.

This game is clearly indistinguishable from the previous game. Note also that the
election decryption key a1 is no longer used.

33

Game 3 In this game, the machine M provides Fpok with random witnesses. Since the
witnesses are never used by Fpok , this game is clearly indistinguishable from the previous
game.

Game 4 Now the machine M generates the message to the receipt generator when it
generates the encrypted ballot (but does not send it until the appropriate message has
arrived at the ballot box). Again, this game is clearly indistinguishable from the previous
game.

Game 5 We change the machine M ’s computation of the values xi, wi, x̄i, w̄i, ŵi, x̌i, w̌i
related to the option vi as follows:

x̌i = gti w̌i = x̌a3i f(vi)
s

ŵi = x̌a2i

x̄i = x̌i w̄i = w̌iŵ
−1
i

xi = x̄s
−1

i wi = w̄s
−1

i

Here, s is the appropriate per-voter exponent and s−1 is its multiplicative inverse modulo
q.

A straight-forward computation will show that the change in method of computation
does not change the induced probability distributions. Therefore, this game is indistin-
guishable from the previous game.

Game 6 In this game, the machine M samples a random ŵi instead of computing it as
x̌a2i .

Claim. A distinguisher for this game and the previous game will result in an adversary
against Decision Diffie-Hellman.

Proof. If this game is distinguishable from the previous game, we get an adversary against
Decision Diffie-Hellman. On input of a tuple (g, y2, u1, u2), it works as follows. It runs the
game as usual, except that during key generation, y2 is taken as given, a2 and a1 are never
generated, and y1 = y3y

−1
2 . Furthermore, x̌i and ŵi are computed as:

x̌i = gtiu
t′i
1 ŵi = yti1 u

t′i
2

If we get a DDH tuple, the execution proceeds as in the previous game. If we get a random
tuple, the execution proceeds as in this game.

34

Game 7 In this game, we change the machine M ’s computation of xi, wi, x̄i, w̄i, ŵi, x̌i as
follows:

x̌i = x̄i

ŵi = w̌iw̄
−1
i

x̄i = xsi w̄i = wsi

xi = gti wi = gt
′
i

Here, s is the appropriate per-voter exponent.
Again, a straight-forward computation shows that this game is indistinguishable from

the previous game.

Game 8 In this game, we replace the per-voter functions v 7→ f(v)s with random func-
tions from O to G.

Claim. A distinguisher for this game and the previous game will result in an adversary
against the problem described in Sect. 3.3.

Proof. Our adversary gets as its input (`1, . . . , `|O|) and (u1, . . . , u|O|).
Define f : O → G to be f(i) = `i, i = 1, . . . , |O|. Let

g =

|O|∏
j=1

`
sj
j ,

where sj are random numbers. For one specific voter, we use the receipt code function
i 7→ ui. We generate the per-voter commitment as

γ =

|O|∏
j=1

u
sj
j .

When generating encrypted ballots, we compute xi, wi, x̄i, w̄i as follows:

x̄i =

|O|∏
j=1

u
ti,j
j w̄i =

|O|∏
j=1

u
t′i,j
j

xi =

|O|∏
j=1

`
ti,j
j wi =

|O|∏
j=1

`
t′i,j
j

Note that the per-voter exponent s is no longer used for the specific voter.
We divide the remaining voters into two groups. One group of voters uses f composed

with exponentiation for the per-voter receipt code function and generates xi, wi, x̄i, w̄i as

35

in the previous game. The other group uses random functions for the per-voter receipt
code function and generates xi, wi, x̄i, w̄i as random group elements.

It is now easy to observe that if there exists some exponent s such that ui = `si ,
i = 1, . . . , |O|, then the computations for the specific voter induce the same probability
distributions as for the first group. Otherwise, the induced distributions are as for the
second group.

The claim now follows by a straight-forward hybrid argument.

Analysis Observe that in the final game, the encrypted ballots contain no information
about the ballots except the (random) receipt codes. Given that the receipt generator must
see the receipt codes, it learns no unavoidable information about the submitted ballots.

5.3 The Decryption Service

We argue for the following claim for a compromised decryption service:

• The submitted ballots remain confidential, and it is unlikely that the election result
is incorrect.

Analysis Suppose the decryption service is compromised. Since encrypted ballots are
sent through secure channels (encoded using a fixed-length encoding) and the ballot box
shuffles the order of the encrypted ballots before they are sent for decryption, the decryption
service learns nothing about which encrypted ballot belongs to which voter, beyond what
the list of decrypted ballots will tell it. This ensures confidentiality.

Since correctness of decryption is proved using Fpok , we only need to consider the proof
of correctness for the shuffle. We can ignore the shuffling. Again, since we use Fpok to
prove that the rerandomization factors over groups are encryptions of the identity, the only
relevant issue is the choice of groups. Furthermore, since the different choices of groups are
dependent, we should only look at one round to produce an upper bound on the attackers
success probability.

The proof now reduces to the following: The decryption service generates n encryptions,
the auditor partitions the ciphertexts into groups, and the decryption service proves that
for each group, the product of all the ciphertexts is an encryption of the identity.

The decryption service can cheat successfully by not generating encryptions of the
identity and then hoping that the verifier chooses the groups such that for each group the
product ciphertext is an encryption of the identity.

This is essentially equivalent to the following game:

1. The attacker selects n = ν2 group elements z1, . . . , zn.

2. The verifier selects a permutation Π on {1, . . . , n}.

36

The attacker wins if at least one zi 6= 1, and

ν(j+1)∏
i=νj+1

zΠ(i)

holds for 1 ≤ j ≤ ν.
To estimate the attacker’s success probability, we need to estimate the number of per-

mutations for which the attacker wins. Intuitively, it seems reasonable that to maximize
the number of such permutations, the attacker wants many group elements to be the iden-
tity. This implies that the best choice is z1 = z−1

2 6= 1, while z3 = · · · = zn = 1. The
number of permutations that lead to success in this case is the number of permutations
that keep z1 and z2 inside the same arbitrary group, but at arbitrary positions, and moves
the other elements arbitrarily, that is

= ν · ν(ν − 1) · (ν2 − 2)! .

As a fraction of the total number of permutations, we get

ν · ν(ν − 1) · (ν2 − 2)!

ν2!
=
ν · ν(ν − 1)

ν2(ν2 − 1)
=

1

(ν + 1)
,

which should be an upper bound on the probability of successful cheating. We note that
for 10 000 votes, this gives an attacker a 1/100 chance of manipulating two votes.

It is therefore plausible that minor tampering with ballots could pass undetected, how-
ever any significant tampering is quite unlikely. We also note that since the decryption
service does not know who submitted which ballots, any tampering will essentially be
random.

Remark 20. Note that we cannot make the shuffle proof non-interactive in the usual man-
ner, because of the high probability of manipulation.

Remark 21. If the probability of manipulation is considered too large, one mitigation
strategy is to have the decryption service produce a proof that the input ciphertexts contain
a permutation of the output decryptions, e.g. like [18] or [12] (we do not need the full
verifiable shuffle, just the proof of permutation of known plaintexts). Such a proof could
be produced after the initial tally is published, but before the final result is certified.

5.4 The Auditor

As usual, our starting point is the real protocol interacting with a real adversary that has
corrupted the auditor. For the final game, we shall argue for the following:

• The submitted ballots remain confidential.

Remark 22. A moderately complicated argument with a simulator based on the final game
should suffice to show that our protocol realizes the functionality Fvote in this corruption
model. We have not completed that argument.

37

Game 1 In the first game, one machine M plays the role of every honest player as well as
the ideal functionalities. Note that in this game, the machine M knows every decryption
key in the system, specifically the machine M knows a1, a2 and a3.

This game is clearly indistinguishable from our starting point.

Game 2 In this game, the machine M provides Fpok with random witnesses. Since the
witnesses are never used by Fpok , this game is clearly indistinguishable from the previous
game.

Game 3 The machine M knows which cleartext ballot corresponds to which encrypted
ballot. In this game, the decryption service uses the cleartext ballots instead of decrypting
the ciphertexts. Likewise, the receipt generator never decrypts ciphertexts or generates
receipt codes, and the voters never check the receipt codes.

The adversary cannot observe these changes, therefore this game is indistinguishable
from the previous game.

Note also that the content of the ciphertexts is no longer used.

Game 4 Instead of using the cleartext ballots when generating the encrypted ballots, we
encrypt random group elements.

A straight-forward DDH reduction will show that this game is indistinguishable from
the previous game.

Game 5 In the generation of the shuffle proof, the decryption service uses fresh random
encryptions in each round instead of rerandomizations.

Again, a straight-forward DDH reduction will show that this game is indistinguishable
from the previous game.

Note that at this point, the only information the auditor has about correlations between
ciphertexts and decrypted ballots is through the groups in the shuffle proof.

Analysis The ciphertexts seen by the auditor contain no information about the ballots.
This means that the only way the auditor can deduce information about the voters’ ballots
is by correlating ciphertexts with decrypted ballots. As we have seen, the only information
it has is through its selection of groups in the shuffle proof.

We argue informally. Suppose that the auditor faces the simplest possible case, he
wants to correlate two decrypted ballots (among many) with two ciphertexts. Suppose
that groups are selected such the two ciphertexts are in distinct groups in the first round.
In the second round every group contains exactly one ciphertext from each first round
group. Therefore, the adversary cannot know in which group his ciphertexts are, he has
lost track of them. If the adversary chooses groups such that the two ciphertexts are in

38

the same group, they must be in distinct groups in the second round and the adversary
will have lost track of them after the third round.

It therefore seems reasonable that confidentiality is preserved, even if the auditor is
corrupt.

6 Conclusion

We have described the cryptographic protocol that will be used in the Norwegian gover-
ment’s e-voting experiment in 2011 and analysed its security.

We can summarize our findings for our corruption model as follows:

• If a voter uses only honest computers, his final submitted ballot will remain confiden-
tial (up to information leaked through receipt codes) and will (with high probability)
be counted correctly, or the auditor will complain.

• If the voter uses a compromised computer, but submits only one ballot, if he accepts
the ballot as cast, the ballot will (with high probability) be counted correctly, or the
auditor will complain.

• Any corrupt infrastructure player may prevent the election from completing. The
decryption service and the auditor may do so after seeing the result.

We believe these security properties, while not perfect, constitute a reasonable basis for an
e-voting experiment. We stress that there are many other requirements for a secure election
system that have not been examined, the most obvious being correct implementation and
deployment. Moreover, we have not examined the usability of this system. While we
believe many voters will be able to use this system correctly, we do not know how voters
in general will interact with the system and consequently which security properties the
deployed system will have. This will require further study.

While confidentiality from the receipt generator depends on a new and untested cryp-
tographic assumption, we believe this is justified for the following reasons:

• The receipt generator will be quite well protected, and a compromise of this system
is quite unlikely.

• A majority of voters submit ballots with exactly one option. For such ballots, the
problem facing the corrupt receipt generator is essentially equivalent to Decision
Diffie-Hellman with a fixed generator, a well-studied problem.

• While the efficiency gains for mixing and decryption are significant, it is possible to
sacrifice these gains to get a less efficient system whose security is based entirely on
Decision Diffie-Hellman.

39

Another part of our security proof pretends that a certain non-interactive proof is
extractable, which is not strictly true. We believe this is not a real deficiency, but rather
a technical obstacle, and therefore justified.

Future work The primary focus of future work should be to study the subprotocols
not studied in this paper. Of particular interest are the key generation protocols and the
electronic identity protocols.

There are several other ways in which the protocol or its analysis can be extended.
First of all, it should be easy to improve performance by more careful use non-interactice
zero knowledge proofs (for instance, the many proofs that {(x̄i, w̄i)} have been correctly
computed could be joined together).

It might be possible to use a variant of ElGamal, where the public key consists of a
number of group elements: y1,1, . . . , y1,kmax . To encrypt a ballot v1, . . . , vkmax , we choose
one random number t and compute the ciphertext as (gt, yt1,1f(v1), . . . , yt1,kmax

f(vkmax).
The proof of knowledge would now involve just one group element. The proofs of cor-
rectness could also be significantly improved. This would yield a significant performance
improvement.

One possible idea for extending the protocol is to have the voter’s computer generate
ciphertexts (x̂i, ŵi) for the public key y3 and prove that they have the same decryptions as
the ciphertexts (xi, wi). Then the ballot box computes (x̌, w̌) directly, obviating the need
for the secret key y2 and the relationship a1 + a2 ≡ a3. To prevent the receipt generator
from simply decrypting (x̂i, ŵi), the voter’s computer must actually submit a commitment
to ŵi as well as an opening that is only seen by the ballot box. Every proof must then
work with the commitment, significantly increasing total computational load.

If both the ballot box and the receipt generator are compromised and cooperate, election
privacy will still be lost even if the election decryption key is not revealed. The reason
is of course that the ballot box and the receipt generator together could decrypt (x̂i, ŵi).
However, if the system is only partially compromised (say, the keys and the content of the
ballot box leak after the election), it is possible to preserve election privacy if (x̂i, ŵi) and
(x̌i, w̌i) are discarded after use. It is unclear if the modest increase in robustness justifies
the cost.

If the public key infrastructure in use provides each voter with a public key encryption
functionality, in addition to the identification and signature functionality, it might be
possible to move the entire computation of (x̌, w̌) to the voter’s computer. This should
be safe because the receipt generator applies a secret, pseudo-random function to the
decryption to get the receipt codes. In such a scheme, the ballot box might not need any
secret keys at all, a significant system simplification. Alternatively (as in Scytl’s original
proposal), the seed for the secret exponent could be printed on the electoral card and typed
in by the voter.

It might also be interesting to study additional corruption scenarios, e.g. allowing the
adversary to corrupt both voters and computers in addition to the decryption service or

40

the auditor. If we relax the security requirements, it might also be interesting to study
simultaneous corruption of the ballot box, receipt generator and decryption service. Since
voters sign encrypted ballots and the auditor verifies these signatures, it should be hard to
insert forged ballots. Furthermore, since the receipt generator provides a signed receipt, it
should be possible for voters together with the honest auditor to verify that their vote was
counted.

Acknowledgements

The author has had useful discussions about this analysis with Kjell Jørgen Hole, the people
at Scytl, Helger Lipmaa in Trondheim, February 2010, Filip van Laenen, David Wagner
and Mariana Raykova, as well as many others.

References

[1] Dan Boneh and Philippe Golle. Almost entirely correct mixing with applications to
voting. In Vijayalakshmi Atluri, editor, ACM Conference on Computer and Commu-
nications Security, pages 68–77. ACM, 2002.

[2] e-voting security study. CESG, United Kingdom, July 2002. Issue 1.2.

[3] David Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM, 24(2):84–88, 1981.

[4] David Chaum. Surevote. www.surevote.com, 2000.

[5] David Chaum. Secret-ballot receipts: True voter-verifiable elections. IEEE Security
& Privacy, 2(1):38–47, 2004.

[6] David Chaum, Peter Y. A. Ryan, and Steve A. Schneider. A practical voter-verifiable
election scheme. In Sabrina De Capitani di Vimercati, Paul F. Syverson, and Dieter
Gollmann, editors, ESORICS, volume 3679 of Lecture Notes in Computer Science,
pages 118–139. Springer, 2005.

[7] Josh D. Cohen and Michael J. Fischer. A robust and verifiable cryptographically
secure election scheme (extended abstract). In Proceedings of 26th Symposium on
Foundations of Computer Science, pages 372–382. IEEE, 1985.

[8] Ronald Cramer, Matthew K. Franklin, Berry Schoenmakers, and Moti Yung. Multi-
autority secret-ballot elections with linear work. In Ueli M. Maurer, editor, EURO-
CRYPT, volume 1070 of Lecture Notes in Computer Science, pages 72–83. Springer,
1996.

41

[9] Ivan Damg̊ard, Kasper Dupont, and Michael Østergaard Pedersen. Unclonable group
identification. In Serge Vaudenay, editor, EUROCRYPT, volume 4004 of Lecture Notes
in Computer Science, pages 555–572. Springer, 2006.

[10] Marc Fischlin. Communication-efficient non-interactive proofs of knowledge with on-
line extractors. In Victor Shoup, editor, CRYPTO, volume 3621 of Lecture Notes in
Computer Science, pages 152–168. Springer, 2005.

[11] Kristian Gjøsteen. A latency-free election scheme. In Tal Malkin, editor, CT-RSA,
volume 4964 of Lecture Notes in Computer Science, pages 425–436. Springer, 2008.

[12] Jens Groth. A verifiable secret shuffle of homomorphic encryptions. In Yvo Desmedt,
editor, Public Key Cryptography, volume 2567 of Lecture Notes in Computer Science,
pages 145–160. Springer, 2003.

[13] Sven Heiberg, Helger Lipmaa, and Filip van Laenen. On achieving e-vote integrity in
the presence of malicious trojans. Submission to the Norwegian e-Vote 2011 tender
(see also http://eprint.iacr.org/2010/195), August 2009.

[14] Markus Jakobsson, Ari Juels, and Ronald L. Rivest. Making mix nets robust for
electronic voting by randomized partial checking. In Dan Boneh, editor, USENIX
Security Symposium, pages 339–353. USENIX, 2002.

[15] Antoine Joux, Reynald Lercier, David Naccache, and Emmanuel Thomé. Oracle-
assisted Static Diffie-Hellman is easier than discrete logarithms. In Matthew G. Parker,
editor, IMA Int. Conf., volume 5921 of Lecture Notes in Computer Science, pages 351–
367. Springer, 2009.

[16] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant electronic elec-
tions. Cryptology ePrint Archive, Report 2002/165, 2002. http://eprint.iacr.

org/.

[17] Miroslaw Kutylowski and Filip Zagórski. Verifiable internet voting solving secure
platform problem. In Atsuko Miyaji, Hiroaki Kikuchi, and Kai Rannenberg, editors,
IWSEC, volume 4752 of Lecture Notes in Computer Science, pages 199–213. Springer,
2007.

[18] C. Andrew Neff. A verifiable secret shuffle and its application to e-voting. In ACM
Conference on Computer and Communications Security, pages 116–125, 2001.

[19] P. Y. A. Ryan and T. Peacock. Prêt à voter: a systems perspective. Technical Report
CS-TR No 929, School of Computing Science, Newcastle University, September 2005.

[20] Kazue Sako and Joe Kilian. Receipt-free mix-type voting scheme - a practical solution
to the implementation of a voting booth. In Louis C. Guillou and Jean-Jacques

42

Quisquater, editors, EUROCRYPT, volume 921 of Lecture Notes in Computer Science,
pages 393–403. Springer, 1995.

43

