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Abstract. In 2007, the US National Institute for Standards and Technology announced a call for the
design of a new cryptographic hash algorithm in response to vulnerabilities identified in existing hash
functions, such as MD5 and SHA-1. NIST received many submissions, 51 of which got accepted to the
first round. At present, 14 candidates are left in the second round. An important criterion in the selection
process is the SHA-3 hash function security and more concretely, the possible security reductions of
the hash function to the security of its underlying building blocks. While some of the candidates are
supported with firm security reductions, for most of the schemes these results are still incomplete. In
this paper, we compare the state of the art provable security reductions of the second round candidates.
We discuss all SHA-3 candidates at a high functional level, and analyze and summarize the security
reduction results. Surprisingly, we derive some security bounds from the literature, which the hash
function designers seem to be unaware of. Additionally, we generalize the well-known proof of collision
resistance preservation, such that all SHA-3 candidates with a suffix-free padding are covered.

1 Introduction

Hash functions are a building block for numerous cryptographic applications. In 2004 a series of
attacks by Wang et al. [49,50] have exposed security vulnerabilities in the design of the most widely
adopted and deployed SHA-1 hash function. As a result, the US National Institute for Standards
and Technology (NIST) recommended the replacement of SHA-1 by the SHA-2 hash function family
and announced a call for the design of a new SHA-3 hashing algorithm. The SHA-3 hash function
must allow for message digests of length 224, 256, 384 and 512 bits, it should be efficient, and
most importantly it should provide an adequate level of security. In the current second round, 14
candidate hash functions are still in the race for the selection of the SHA-3 hash function. These
candidates are under active evaluation by the cryptographic community. As a result of the per-
formed comparative analysis, several classifications of the SHA-3 candidates, mostly focussed on
hardware performance, appeared in the literature [25,48,24,33]. A classification based on the by
NIST specified security criteria is however still due.

NIST Security Requirements. NIST specifies a number of security requirements [41] to be sat-
isfied by the future SHA-3 function: (i) at least one variant of the hash function must securely
support HMAC and randomized hashing. Furthermore, for all n-bit digest values, the hash function
must provide (ii) preimage resistance of approximately n bits, (iii) second preimage resistance
of approximately n−L bits, where the first preimage is of length at most 2L blocks, (iv) collision
resistance of approximately n/2 bits, and (v) all variants must be resistant to the length-extension
attack. Finally, (vi) for any m ≤ n, the hash function specified by taking a fixed subset of m bits
of the function’s output is required to satisfy properties (ii)-(v) with n replaced by m.

Our Contribution. In this work we provide a survey of the 14 remaining SHA-3 candidates, in
which we compare their security reductions. More concretely, we consider preimage, second preim-
age and collision resistance (security requirements (ii)-(iv)) for the n = 256 and n = 512 variants.
Most of our security analysis is realized in the ideal model, where one or more of the underlying



integral building blocks (e.g., the underlying block cipher or permutation(s)) are assumed to be
ideal, i.e. random primitives. To argue collision security we extend the standard proof of Merkle-
Damg̊ard collision resistance [20,39] to cover all SHA-3 candidate hash function with a suffix-free
padding (App. A). Notice that the basic Merkle-Damg̊ard proof does not suffice in the presence of
a final transformation and/or a chopping.
Our main contribution consists in performing a comparative survey of the existing security results
on the 14 hash function candidates and results derivable from earlier works on hash functions, and
suggesting possible research directions aimed at resolving some of the identified open problems.
Section 2 briefly covers the notation, and the basic principles of hash function design. In Sect. 3,
we consider all candidates from a provable security point of view. We give a high level algorithmic
description of each hash function, and discuss the existing security results. All results are summa-
rized in Table 1. We conclude the paper with Sect. 4 and give some final remarks on the security
comparison.

2 Preliminaries

For a positive integer value n ∈ N, we denote by Zn2 the set of bit strings of length n, and by (Zn2 )∗

the set of strings of length a positive multiple of n bits. We denote by Z∗2 the set of bit strings of
arbitrary length. If x, y are two bit strings, their concatenation is denoted by x‖y. By |x| we denote
the length of a bit string x, and for m,n ∈ N we denote by 〈m〉n the encoding of m as an n-bit
string. The function chopn(x) chops off the n rightmost bits of a bit string x.
Throughout, we use a unified notation for all candidates. The value n denotes the output size of
the hash function, l the size of the chaining value, and m the number of message bits compressed
in one iteration of the compression function. A padded message is always parsed as a sequence of
k ≥ 1 message blocks of length m bits: (M1, . . . ,Mk).

2.1 Security Notions

In this section we investigate the security of the hash functions in the ‘ideal model’ and the more
classical ‘generic’ security.

Security in the ideal model. In the ideal model, a compressing function F (either on fixed
or arbitrary input lengths) that uses one or more underlying building blocks is viewed insecure if
there exists a successful information-theoretic adversary that has only query access to the idealized
underlying primitives of F . The complexity of the attack is measured by the number of queries q
made by the adversary. In this work it is clear from the context which of the underlying primitives
is assumed to be ideal. The three main security properties required from the SHA-3 hash func-
tion are preimage, second preimage and collision resistance. For each of these three notions, with
Advatk

F , where atk ∈ {pre, sec, col}, we denote the maximum advantage of an adversary to break
the function F under the security notion atk. The advantage is the probability function taken over
all random choices of the underlying primitives, and the maximum is taken over all adversaries that
make at most q queries to their oracles.
If F outputs bit strings of length n, one expects to find collisions with high probability after ap-
proximately 2n/2 queries (due to the birthday attack). Similarly, preimages can be found with high
probability after approximately 2n queries. Depending on the design of F , one might be able to
find second preimages in less queries. More concretely, Kelsey and Schneier [32] describe a second
preimage attack on the Merkle-Damg̊ard hash function that requires at most approximately 2n−L

queries, where the first preimage is of length at most 2L blocks. This attack does, however, not



apply to all SHA-3 candidates. In particular, wide-pipe designs remain mostly unaffected due to
their increased internal state [32].
Additionally, we consider the indifferentiability of the SHA-3 candidates. The indifferentiability
framework introduced by Maurer et al. [38] is an extension of the classical notion of indistinguisha-
bility, and ensures that a hash function has no structural defects. We denote the indifferentiability
security of a hash function H by Advpro

H , maximized over all adversaries making at most q queries
of maximal length K ≥ 0 message blocks to their oracles. We refer to [19] for a formal definition.

Generic security. The generic collision security in the context of this work deals with analyz-
ing the collision resistance of hash functions in the standard model. A hash function H is called
generically (t, ε) collision resistant if no adversary running in time at most t can find two different

messages M,M ′ such that H(M) = H(M ′) with advantage more than ε. We denote by Advgcol
H

the generic collision resistance security of the function H, maximized over all ‘efficient’ adversaries.
We refer the reader to [44,43,2] for a more formal discussion.
To argue generic collision security of the hash function H (as domain extenders of fixed input
length compression functions) we use the composition result of [20,39] and extend it to a wider
class of suffix-free hash functions (App. A). This result concludes the collision security of the hash
function H assuming collision security guarantees from the underlying compression functions. We
then translate ideal model collision security results on the compression functions via the latter
composition to ideal model collision results on the hash function1 (expressed by Advcol

H ). A generic
collision result, however, applies to a wider class of schemes for which no bounds on the collision
security of the underlying compression functions is known, e.g. for BLAKE and BMW.

2.2 Compression Function Design Strategies

A common way to build compression functions is to base it on a block cipher [42,15,47], or on a
(limited number of) permutation(s) [14,45,46]. Preneel et al. [42] analyzed and categorized 64 block
cipher based compression functions. Twelve of them were formally proven secure by Black et al. [15].
These results have been recently generalized by Stam [47]. Interestingly, the latter result allows for
obtaining security bounds for some compression functions that do not fit in the PGV-model, like
ECHO, Hamsi and SIMD. Throughout, by ‘PGVx’ we denote the xth type compression function
of [42]. We note that PGV1, PGV3 and PGV5 are better known as the Matyas-Meyer-Oseas, the
Miyaguchi-Preneel and the Davies-Meyer compression functions, respectively.
In the context of permutation based compression functions, Black et al. [14] analyzed 2l- to l-
bit compression functions based on one l-bit permutation, and proved them insecure. This result
has been generalized by Rogaway and Steinberger [45] and Stam [46] to compression functions
with arbitrary input and output sizes, and an arbitrary number of underlying permutations. Their
bounds indicate the number of queries required to find collisions or preimages for permutation
based compression functions.

2.3 Hash Function Design Strategies

In order to allow the hashing of arbitrarily long strings, all SHA-3 candidates employ a specific
mode of operation. Central to all designs is the iterated hash function principle [35]: on input an
initialization vector IV, the iterated hash function Hf based on the compression function f proceeds

1 A single exception is the collision result for the hash function Shabal, for which the authors derive a collision bound
on the hash function directly based on the ideal behavior of the block cipher underlying their compression function.



a padded message (M1, . . . ,Mk) as follows:

Hf (IV;M1, . . . ,Mk) = hk, where: h0 = IV,

hi = f(hi−1,Mi) for i = 1, . . . , k.

This principle is also called the plain Merkle-Damg̊ard (MD) design [39,20]. Each of the 14 remain-
ing candidates is based on this design, possibly followed by a final transformation (FT), and/or a
chop-function2.

The padding function pad : Z∗2 → (Zm2 )∗ is an injective mapping that transforms a message of ar-
bitrary length to a message of length a multiple of m bits (the number of message bits compressed
in one compression function iteration). Most of the candidates employ a sufficiently strong padding
rule (cf. App. B). Additionally, in some of the designs the message blocks are compressed along
with specific counters or tweaks, which may strengthen the padding rule. We distinguish between
‘prefix-free’ and/or ‘suffix-free’ padding.
A padding rule is called suffix-free, if for any distinct M,M ′, there exists no bit string X
such that pad(M ′) = X‖pad(M). The plain MD design with any suffix-free padding (also called
MD-strengthening [35]) preserves collision resistance [39,20]. We generalize this result in Thm. 1
(App. A): informally, this preservation result also holds if the iteration is finalized by a distinct
compression function and/or the chop-function. Other security properties, like preimage resistance,
are however not preserved in the MD design [2]. It is also proven that the MD design with a
suffix-free padding need not necessarily be indifferentiable [19]. However, the MD construction is
indifferentiable if it ends with a chopping function or a final transformation [19]3.
A padding rule is called prefix-free, if for any distinct M,M ′, there exists no bit string X such
that pad(M ′) = pad(M)‖X. It has been proved in [19] that the MD design with prefix-free padding
is indifferentiable from a random oracle. Security notions like collision-resistance, are however not
preserved in the MD design with prefix-free only padding.

HAIFA design. A concrete design based on the MD principle is the HAIFA construction [12]. In
HAIFA the message is padded in a specific way so as to solve some deficiencies of the original MD
construction: in the iteration, each message block is accompanied with a fixed (optional) salt of s
bits and a (mandatory) counter Ci of t bits. The counter Ci keeps track of the number of message
bits hashed so far, and equals 0 by definition if the ith block does not contain any message bits.
Partially due to the properties of this counter, the HAIFA padding rule is suffix- and prefix-free.
As a consequence, the indifferentiability results of [19] carry over and the construction preserves
collision resistance (cf. Thm. 1). Furthermore, the HAIFA construction is proven secure against
second preimage attacks if the underlying compression function is assumed to behave like an ideal
primitive [16].
Wide-pipe design. In the wide-pipe design [37], the iterated state size is significantly larger than
the final hash output: at the end of the iteration, a fraction of the output of a construction is
discarded. As proved in [19], the MD construction with an additional chopping at the end is indif-
ferentiable from a random oracle.
Sponge functions. We do not explicitly consider sponge functions [10] as a specific type of con-
struction: all SHA-3 candidates known to be sponge(-like) functions, CubeHash, Fugue, JH, Keccak

2 A function g is a final transformation if it differs from f , and is applied to the final state, possibly with the injection
of an additional message block. The chop-function is not considered to be (a part of) a final transformation.

3 The indifferentiability results of [19] hold if the underlying compression function is ideal, or if the hash function is
based on the PGV5 construction with ideal block cipher.



and Luffa, can be described in terms of the chop-MD construction (possibly with a final transfor-
mation before chopping).

3 SHA-3 Hash Function Candidates

In this section, we analyze the security of the 14 remaining SHA-3 candidates in more detail. For
simplicity, we only consider the proposals of the SHA-3 candidates that output digests of 256 or
512 bits. Observe that in many candidate SHA-3 hash function families, the algorithms that output
224 and 384 bits are the same as the 256- or 512-bits algorithms, except for an additional chopping
at the end. Particularly, the results of [19] and Thm. 1 carry over in most of the cases. The same
remark applies to requirement (vi) of NIST.

Requirement (i). All designers claim that their proposal can safely be used in HMAC mode [4]
or for randomized hashing [31], and we do not discuss it here;

Requirements (ii)-(iv). Preimage, second preimage and collision resistance of each hash func-
tion are discussed in this section. Additionally, we also consider the indifferentiability of the
candidates;

Requirement (v). All hash function candidates are secure against the length extension attack,
and thus we do not discuss it further.

Below, we examine the SHA-3 candidate hash functions in more detail. Each paragraph contains
an informal discussion for each of the second round SHA-3 candidates and their security reduc-
tion results. The mathematical descriptions of the (abstracted) designs are given in Fig. 1, and
the candidates’ padding functions are summarized in App. B. The concrete security results for all
current candidate hash functions are summarized in Table 1. More precisely, for each candidate and
each security notion, this table includes the security bound, as far as it exists, and the underlying
assumption.

3.1. The BLAKE hash function [3] is a HAIFA construction. The message blocks are accompanied
with a HAIFA-counter, and more generally, the function employs a suffix- and prefix-free padding
rule. The compression function f is block cipher based4. It moreover employs an injective linear
function L, and a linear function L′ that XORs the first and second halves of the input.
Security of BLAKE. The compression function of BLAKE shows similarities with the PGV5 com-
pression function [15], but no security results are known for this variation. The mode of operation
of BLAKE is based on the HAIFA structure, and as a consequence all security properties regarding
this type hold [12]. In particular, the design preserves collision resistance, and is secure against
second preimage attacks. Also, the BLAKE hash function is indifferentiable from a random oracle
if the underlying compression function is assumed to be ideal, due to the prefix-free padding [19].

3.2. The Blue Midnight Wish (BMW) hash function [29] is a chop-MD construction, with a final
transformation before chopping. The hash function employs a suffix-free padding rule. The com-
pression function f is block cipher based5, and the final transformation g consists of the same
compression function with the chaining value processed as a message, and with an initial value as
chaining input. The compression function employs a function L which consists of two compression
functions with specific properties as specified in [29].

4 As observed in [3, Sect. 5], the core part of the compression function can be seen as a permutation keyed by the
message, which we view here as a block cipher.

5 As observed in [29], the compression function can be seen as a ‘generalized’ PGV3 construction, where the function
f0 of [29] defines the block cipher keyed with the chaining value.



BLAKE:
(n, l,m, s, t) ∈ {(256, 256, 512, 128, 64),

(512, 512, 1024, 256, 128)}
E : Z2l

2 × Zm
2 → Z2l

2 a block cipher

L : Zl+s+t
2 → Z2l

2 , L′ : Z2l
2 → Zl

2 linear functions

f(h,M, S, C) = L′(EM (L(h, S, C)))⊕ h⊕ (S‖S)

BLAKE(M) = hk, where:
(M1, . . . ,Mk)← pad1(M); h0 ← IV

S ∈ Zs
2; (Ci)

k
i=1 HAIFA-counter

hi ← f(hi−1,Mi, S, Ci) for i = 1, . . . , k

BMW:
(n, l,m) ∈ {(256, 512, 512), (512, 1024, 1024)}
E : Zm

2 × Zl
2 → Zm

2 a block cipher

L : Zl+m+l
2 → Zl

2 a compressing function
f(h,M) = L(h,M,Eh(M))
g(h) = f(IV′, h)

BMW(M) = h, where:
(M1, . . . ,Mk)← pad2(M); h0 ← IV
hi ← f(hi−1,Mi) for i = 1, . . . , k
h← chopl−n[g(hk)]

CubeHash:
(n, l,m) ∈ {(256, 1024, 256), (512, 1024, 256)}
P : Zl

2 → Zl
2 a permutation

f(h,M) = P (h⊕ (M‖0l−m))

g(h) = P10(h⊕ (0992‖1‖031))

CubeHash(M) = h, where:
(M1, . . . ,Mk)← pad3(M); h0 ← IV
hi ← f(hi−1,Mi) for i = 1, . . . , k
h← chopl−n[g(hk)]

ECHO:
(n, l,m, s, t) ∈ {(256, 512, 1536, 128, 64/128),

(512, 1024, 1024, 256, 64/128)}
E : Z2048

2 × Zs+t
2 → Z2048

2 a block cipher

L : Z2048
2 → Zl

2 a linear function
f(h,M, S, C) = L(ES,C(h‖M)⊕ (h‖M))

ECHO(M) = h, where:
(M1, . . . ,Mk)← pad4(M); h0 ← IV

S ∈ Zs
2; (Ci)

k
i=1 HAIFA-counter

hi ← f(hi−1,Mi, S, Ci) for i = 1, . . . , k
h← chopl−n[hk]

Fugue:
(n, l,m) ∈ {(256, 960, 32), (512, 1152, 32)}
P, P̃ : Zl

2 → Zl
2 permutations

L : Zl
2 × Zm

2 → Zl
2 a linear function

f(h,M) = P (L(h,M))

Fugue(M) = h, where:
(M1, . . . ,Mk)← pad5(M); h0 ← IV
hi ← f(hi−1,Mi) for i = 1, . . . , k

h← chopl−n[P̃ (hk)]

Grøstl:
(n, l,m) ∈ {(256, 512, 512), (512, 1024, 1024)}
P,Q : Zl

2 → Zl
2 permutations

f(h,M) = P (h⊕M)⊕Q(M)⊕ h
g(h) = P (h)⊕ h

Grøstl(M) = h, where:
(M1, . . . ,Mk)← pad6(M); h0 ← IV
hi ← f(hi−1,Mi) for i = 1, . . . , k
h← chopl−n[g(hk)]

Hamsi:
(n, l,m) ∈ {(256, 256, 32), (512, 512, 64)}
P, P̃ : Z2n

2 → Z2n
2 permutations

Exp : Zm
2 → Zn

2 a linear code
f(h,M) = h⊕ chopn[P (Exp(M)‖h)]

g(h,M) = h⊕ chopn[P̃ (Exp(M)‖h)]

Hamsi(M) = h, where:
(M1, . . . ,Mk)← pad7(M); h0 ← IV
hi ← f(hi−1,Mi) for i = 1, . . . , k − 1
h← g(hk−1,Mk)

JH:
(n, l,m) ∈ {(256, 1024, 512), (512, 1024, 512)}
P : Zl

2 → Zl
2 a permutation

f(h,M) = P (h⊕ (0l−m‖M))⊕ (M‖0l−m)

JH(M) = h, where:
(M1, . . . ,Mk)← pad8(M); h0 ← IV
hi ← f(hi−1,Mi) for i = 1, . . . , k
h← chopl−n[hk]

Keccak:
(n, l,m) ∈ {(256, 1600, 1088), (512, 1600, 576)}
P : Zl

2 → Zl
2 a permutation

f(h,M) = P (h⊕ (M‖0l−m))

Keccak(M) = h, where:
(M1, . . . ,Mk)← pad9(M); h0 ← IV
hi ← f(hi−1,Mi) for i = 1, . . . , k
h← chopl−n[hk]

Luffa:
(n, l,m,w) ∈ {(256, 768, 256, 3), (512, 1278, 256, 5)}
Pi : Zm

2 → Zm
2 (i = 1, . . . , w) permutations

L : Zwm+m
2 → Zwm

2 , L′ : Zwm
2 → Zm

2 linear functions

f(h,M) = (P1(h′1)‖ · · · ‖Pw(h′w))
where (h′1, . . . , h

′
w) = L(h,M)

g(h) = (L′(h)‖L′(f(h, 0m)))

Luffa(M) = h, where:
(M1, . . . ,Mk)← pad10(M); h0 ← IV
hi ← f(hi−1,Mi) for i = 1, . . . , k
h← chop512−n[g(hk)]

Shabal:
(n, l,m) ∈ {(256, 1408, 512), (512, 1408, 512)}
E : Z896

2 × Z1024
2 → Z896

2 a block cipher
f(h,C,M) = (y1, h3 −M, y3)

where h ∈ Zl
2 → h = (h1, h2, h3) ∈ Z384+m+m

2
and (y1, y3) = EM,h3

(h1 ⊕ (0320‖C), h2 + M)

Shabal(M) = h, where:
(M1, . . . ,Mk)← pad11(M); h0 ← IV
hi ← f(hi−1, 〈i〉64,Mi) for i = 1, . . . , k
hk+i ← f(hk+i−1, 〈k〉64,Mk) for i = 1, . . . , 3
h← chopl−n[hk+3]

SHAvite-3:
(n, l,m, s, t) ∈ {(256, 256, 512, 256, 64),

(512, 512, 1024, 512, 128)}
E : Zl

2 × Zm+s+t
2 → Zl

2 a block cipher
f(h,M, S, C) = EM,S,C(h)⊕ h

SHAvite-3(M) = hk, where:
(M1, . . . ,Mk)← pad12(M); h0 ← IV

S ∈ Zs
2; (Ci)

k
i=1 HAIFA-counter

hi ← f(hi−1,Mi, S, Ci) for i = 1, . . . , k

SIMD:
(n, l,m) ∈ {(256, 512, 512), (512, 1024, 1024)}
E, Ẽ : Zl

2 × Zm
2 → Zl

2 block ciphers
f(h,M) = L(h,EM (h⊕M))

g(h,M) = L(h, ẼM (h⊕M))

SIMD(M) = h, where:
(M1, . . . ,Mk)← pad13(M); h0 ← IV
hi ← f(hi−1,Mi) for i = 1, . . . , k − 1
hk ← g(hk−1,Mk)
h← chopl−n[hk]

Skein:
(n, l,m) ∈ {(256, 256, 256), (512, 512, 512)}
E : Zm

2 × Z128
2 × Zl

2 → Zm
2 a tweakable block cipher

f(h, T,M) = Eh,T (M)⊕M

Skein(M) = h, where:
(M1, . . . ,Mk)← pad14(M); h0 ← IV

(Ti)
k
i=1 round-specific tweaks

hi ← f(hi−1, Ti,Mi) for i = 1, . . . , k
h← chopl−n[hk]

Fig. 1. The padding rules employed by the functions are summarized in App. B. In all algorithm
descriptions, IV denotes an initialization vector, h denotes state values, M denotes message blocks,
S denotes a (fixed) salt, C denotes a counter and T denotes a tweak. The functions L,L′,Exp
underlying BLAKE, BMW, ECHO, Fugue, Hamsi and Luffa, are explained in the corresponding
section.



Security of BMW. The compression function of BMW shows similarities with the PGV3 com-
pression function [15], but no security results are known for this variation. Thm. 1 applies to BMW,
where the final transformation has no message block as input. Furthermore, albeit no indifferentia-
bility proof for the BMW hash function is known, the results of [19] give some confidence for this:
BMW can be seen as a combination of the HMAC construction and the chop-construction, both
proven indifferentiable from a random oracle.

3.3. The CubeHash hash function [7] is a chop-MD construction, with a final transformation be-
fore chopping. The compression function f is permutation based, and the final transformation g
consists of flipping a certain bit in the state and applying 10 more compression function rounds on
zero-messages.
Security of CubeHash. The compression function of CubeHash is based on one permutation, and
collisions and preimages for the compression function can be found in one query to the permutation
[14]. The final transformation of CubeHash consists of ten compression function rounds with zero-
messages, preceded by one bit flip in the chaining. As a consequence, throughout the execution of
CubeHash, in total at most m + 1 out of l wires of the chaining are affected by message injection.
Therefore this construction follows the sponge design with ‘rate’ m + 1, and ‘capacity’ l −m − 1,
and the indifferentiability result of [8] carries over6.

3.4. The ECHO hash function [6] is a chop-HAIFA construction. The message blocks are accom-
panied with a HAIFA-counter, and more generally, the function employs a suffix- and prefix-free
padding rule. The compression function f is block cipher based7. It moreover employs a linear
function L that chops the state in blocks of length l bits, and XORs these.
Security of ECHO. The compression function of ECHO is a ‘chopped single call Type-I’ com-
pression function in the categorization of [47]. Therefore, the results of [47, Thm. 15] carry over,
yielding optimal security bounds for the compression function. Observe that these results can eas-
ily be adjusted to obtain bound Advcol

chop◦f = Θ(q2/2n). ECHO is a combination of HAIFA and
chop-MD, but it is unclear whether all HAIFA security properties hold after chopping. However,
Thm. 1 applies to ECHO, and as a consequence we obtain Advcol

H = Θ(q2/2n). Furthermore, the
ECHO hash function is indifferentiable from a random oracle if the underlying compression function
is assumed to be ideal, due to the chopping function at the end [19]. However, the compression
function of ECHO is easily differentiable from a random oracle [27].

3.5. The Fugue hash function [30] is a chop-MD construction, with a final transformation before
chopping. The hash function employs a suffix-free padding rule. The compression function f is
permutation based, and the final transformation consists of a permutation P̃ which differs from P
in the parametrization. The compression function employs a linear function L for message injection
(TIX of [30]).
Security of Fugue. The compression function of Fugue is based on one permutation, and collisions
and preimages for the compression function can be found in one query to the permutation [14].
As a consequence, the result of Thm. 1 is irrelevant, even though the padding rule of Fugue is
suffix-free. The Fugue hash function borrows characteristics from the sponge design, and ideas from
the indifferentiability proof of [8] may carry over. This is, however, not immediately clear due to

6 The sponge design requires the last block of a padded message to be non-zero, which is not the case for CubeHash.
However, in case the squeezing of the sponge takes only one round, this requirement is not needed for the indiffer-
entiability proof.

7 As observed in [6], the core part of the compression function can be seen as a permutation keyed by the salt and
counter, which we view here as a block cipher. This cipher is AES-based.



the final transformation before chopping.

3.6. The Grøstl hash function [28] is a chop-MD construction, with a final transformation before
chopping. The hash function employs a suffix-free padding rule. The compression function f is
permutation based, and the final transformation g is defined as g(h) = P (h)⊕ h.
Security of Grøstl. The compression function of Grøstl is permutation based, and the results of
[45,46] apply. Furthermore, the preimage resistance of the compression function is analyzed in [26],
and an upper bound for collision resistance can be obtained easily. As a consequence, we obtain
tight security bounds on the compression function, Advpre

f = Θ(q2/2l) and Advcol
f = Θ(q4/2l).

Thm. 1 applies to Grøstl, where the final transformation has no message block as input. Ob-
serve that chopl−n ◦ g is collision resistant with bound Θ(q2/2n), and as a consequence, we obtain
Advcol

H = Θ(q2/2n). Furthermore, the Grøstl hash function is proven indifferentiable from a random
oracle if the underlying permutations are ideal [1].

3.7. The Hamsi hash function [34] is a MD construction, with a final transformation before chop-
ping. The hash function employs a suffix-free padding rule. The compression function f is permu-
tation based, but the last round is executed with a compression function g based on a permutation
P̃ which differs from P in the parametrization. The compression functions employ a linear code
Exp for message injection [34].
Security of Hamsi. The compression function of Hamsi is a ‘chopped single call Type-I’ compres-
sion function in the categorization of [47]. Therefore, the results of [47, Thm. 15] carry over, yielding
optimal security bounds for the compression function. Observe that these bounds also apply to the
function g. Thm. 1 applies to Hamsi, and as a consequence we obtain Advcol

H = Θ(q2/2n). Further-
more, albeit no indifferentiability proof for the Hamsi hash function is known, the results of [19]
give some confidence for this: Hamsi can be seen as a variation of the NMAC construction, which
is proven indifferentiable from a random oracle.

3.8. The JH hash function [51] is a chop-MD construction. The hash function employs a suffix-free
padding rule. The compression function f is permutation based.
Security of JH. The compression function of JH is based on one permutation, and collisions and
preimages for the compression function can be found in one query to the permutation [14]. As a
consequence, the result of Thm. 1 is irrelevant, even though the padding rule of JH is suffix-free.
The JH hash function is proven indifferentiable from a random oracle if the underlying permutation
is assumed to be ideal [11].

3.9. The Keccak hash function [9] is a chop-MD construction. The compression function f is per-
mutation based. The hash function output is obtained by chopping off l − n bits of the state8.
Notice that the parameters of Keccak satisfy l = 2n+m.
Security of Keccak. The compression function of Keccak is based on one permutation, and col-
lisions and preimages for the compression function can be found in one query to the permutation
[14]. The Keccak hash function is proven indifferentiable from a random oracle if the underlying
permutation is assumed to be ideal [8].

3.10. The Luffa hash function [18] is a chop-MD construction, with a final transformation before
chopping. The compression function f is permutation based, and the final transformation g is built
on this compression function and a linear function L′ that chops the state in blocks of length m

8 We notice that sponge functions are designed more general [10], but for Keccak this description suffices.



bits, and XORs these. The compression function employs a linear function L for message injection
(MI of [18])9. Notice that the state size of Luffa satisfies l = w ·m.
Security of Luffa. The compression function of Luffa is based on w permutations executed inde-
pendently. As a consequence, collisions and preimages for the compression function can be found
in at most 5 queries to the permutations [14]. The Luffa hash function borrows characteristics from
the sponge design, if the permutation P consisting of the w permutations Pi is considered ideal, and
ideas from the indifferentiability proof of [8] may carry over. However, for the case of w different
permutations Pi this is not immediately clear.

3.11. The Shabal hash function [17] is a chop-MD construction. The message blocks are accompa-
nied with a counter, and the last block is iterated three times. In particular, the function employs
a suffix- and prefix-free padding rule. The compression function f is block cipher based10. Notice
that the parameters of Shabal satisfy l = 384 + 2m.
Security of Shabal. A bound on the collision resistance of the compression function of Shabal is
derived in [17]. Concretely, it is proven that the Shabal compression function is collision resistant up
to q = 2(l−m)/2 queries. Thm. 1 applies to Shabal. Collision and preimage resistance of Shabal are
studied in [17], yielding optimal bounds Advpre

H = Θ(q/2n) and Advcol
H = Θ(q2/2n). Furthermore,

the same authors prove the Shabal hash function to be indifferentiable from a random oracle if the
underlying block cipher is assumed to be ideal [17].

3.12. The SHAvite-3 hash function [13] is a HAIFA construction. The message blocks are accom-
panied with a HAIFA-counter, and more generally, the function employs a suffix- and prefix-free
padding rule. The compression function f is block cipher based.
Security of SHAvite-3. The compression function of SHAvite-3 is the PGV5 compression function,
and the security results of [15] carry over. As a consequence, we obtain optimal security bounds on
the compression function. The mode of operation of SHAvite-3 is based on the HAIFA structure,
and as a consequence all security properties regarding this type hold [12]. In particular, the design
preserves collision resistance, and as a consequence, we obtain Advcol

H = Θ(q2/2n). Also, the design
is secure against second preimage attacks. Finally, the SHAvite-3 hash function is indifferentiable
from a random oracle if the underlying compression function is assumed to be ideal, due to the
prefix-free padding [19].

3.13. The SIMD hash function [36] is a chop-MD construction, with a final transformation before
chopping. The hash function employs a suffix-free padding rule. The compression function f is block
cipher based, but the last round is executed with a compression function g based on a block cipher
Ẽ which differs from E in the parametrization. These function employ a quasi-group operation11

L [36].
Security of SIMD. The compression function of SIMD is a ‘rate-1 Type-I’ compression function in
the categorization of [47]. Therefore, the results of [47, Thm. 6] carry over, yielding optimal secu-
rity bounds for the compression function. Observe that these bounds also apply to the function g.
Observe moreover that these results can easily be adjusted to obtain bound Advcol

chop◦g = Θ(q2/2n).

Thm. 1 applies to SIMD, and as a consequence we obtain Advcol
H = Θ(q2/2n). Furthermore, albeit

no indifferentiability proof for the SIMD hash function is known, the results of [19] give some con-
fidence for this: SIMD can be seen as a combination of a variation of the NMAC construction, and

9 We defined the output transformation in a slightly more complicated but unified way. Essentially, Luffa256 simply
outputs L′(h). Observe that we implicitly captured the extra compression function call in the adjusted padding.

10 Essentially, it is a permutation tweaked by a 1024-bit key, which we view here as a block cipher.
11 For any of the variables fixed, the function L is a permutation.



the chop-construction, both proven indifferentiable from a random oracle.

3.14. The Skein hash function [23] is an MD construction. The message blocks are accompanied
with a round-specific tweak12, and more generally, the function employs a suffix- and prefix-free
padding rule. The compression function f is based on a tweakable block cipher.
Security of Skein. The compression function of Skein is the PGV1 compression function, with
a difference that a tweak is involved. As claimed in [5], the results of [15] carry over, which in
turn results in an security bounds on the compression function. Thm. 1 applies to Skein, and
as a consequence we obtain Advcol

H = Θ(q2/2n). Furthermore, the Skein hash function is proven
indifferentiable from a random oracle if the underlying tweakable block cipher is assumed to be
ideal [5]. This proof is based on the preimage-awareness approach [22].

4 Summary and Conclusions

In this survey, we compared the security achieved by the remaining round 2 SHA-3 hash function
candidates, when their underlying primitives are assumed to be ideal. The main contribution of this
paper is the summary of the security reductions for the hash function candidates in Table 1. Before
giving an interpretation of these results, we first make some remarks on the provided classification.

– Assuming ideality of the underlying primitives (permutations or block ciphers) is not realistic. In
particular, none of the candidates’ primitives is ideal, and some even have identified weaknesses.
However, assuming ideality of these primitives gives significantly more confidence in the security
of the higher level structure and is the only way to get useful (and comparable) security bounds
on the candidate hash functions;

– The fact that different hash functions have different bounds, does not directly imply that one
of the functions offers a higher level of security: albeit the underlying structure of the basic
primitives is abstracted away (see the previous item), still many differences among the schemes
remain (chaining size, message input size, etc.). Moreover, not all bounds are tight.

Security of the compression function. For the sponge(-like) hash functions, CubeHash, Fugue,
JH, Keccak and Luffa, collisions and preimages for the compression function can be found in a
constant number of queries. This fact does not have direct implications for the security of the
hash function. In fact, the only consequence is that it becomes unreasonable to assume ideality
of the compression function in order to prove security at a higher level. Most of the remaining
nine candidates are provided with a tight bound for collision and/or preimage resistance of
the compression function, merely due to the results of [15,47]. Single exceptions are BLAKE
and BMW, for which the results of [47] are not directly applicable. No security results are
known for the second preimage resistance of the nine remaining candidates: albeit collision
resistance implies second preimage resistance [44], the obtained security bounds would be below
the requirements of NIST [41];

(Second) preimage resistance of the hash function. Most of the hash functions are not pro-
vided with a security proof for preimage and second preimage resistance. The MD design does
not preserve (second) preimage resistance [2], and hence proving security against these attacks

12 More formally, the design is based on the UBI (unique block identifier) chaining mode which queries its underlying
tweakable block cipher on additional tweaks, that differ in each iteration. The general description of Skein involves
a specific final transformation. In the primary proposal of the hash function, however, this final transformation
consists of another execution of the compression function, with an output-specific tweak and with message 0m. As
we included this final message block in the padding, the given description of Skein suffices.



could be attempted either by making a different (possibly weaker) assumption on the com-
pression function or by basing it directly on the ideality of the underlying block cipher or
permutation(s). We notice that a fruitful direction might be the graph based approach followed
by the designers of Shabal [17];

Collision resistance of the hash function. Except for the sponge(-like) functions, the collision
resistance preservation result of Thm. 1 (App. A) applies to all candidates. This theorem results
in a bound on the generic collision resistance of the hash function, which, intuitively, means
that ‘finding collisions for the hash function is at least as hard as finding collisions for (one of)
the underlying function(s)’. Together with the collision resistance bounds on the compression
functions in the ideal model, the preservation result allows for obtaining a collision resistance
bound on the entire hash function. This leads to optimal tight bounds on the collision resistance
for ECHO, Grøstl, Hamsi, SHAvite-3, SIMD and Skein. For Shabal, the same bound is proven
differently. Again, the graph based approach may be suitable to prove collision resistance of the
candidates for which no collision resistance bound is yet obtained;

Indifferentiability of the hash function. Nine of the candidates are proven indifferentiable
from a random oracle, and three of the candidates have a similar construction to the ones
proven in [19]. The remaining two, Fugue and Luffa, resemble the sponge construction, but it is
not clear whether the proof of [8] carries over. We also note that there exists some differences
among the bounds. For instance, for the hash function variant outputting n = 512 bits, the
indifferentiability bounds are varying between O(Kq3/2512) and O((Kq)2/21024). These differ-
ences are mainly caused by the fact that the bounds are parameterized by the internal chaining
value size l, rather than the output size n (as is the case for bounds on the collision resistance).
As a consequence, a higher state size often results in a better indifferentiability bound.

A hash function that is provided with a sound security analysis, is not necessarily a ‘good’ function,
nor is it a ‘bad’ function if only little security results are known. The quality of the hash function
depends further on other criteria not covered in this classification, such as the strength of the basic
underlying primitives and software/hardware performance. Yet, security reductions guarantee that
the hash function has no severe structural weaknesses, and in particular that the design does not
suffer weaknesses that can be trivially exploited by cryptanalysts. Therefore, we see the provided
security analysis as a fair comparison of the SHA-3 candidates and an important contribution to
the selection of the finalists.

To the best of our knowledge, we included all security results to date. However, we welcome sug-
gestions, remarks or information about provable security results that could improve the quality of
this work.
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A Preservation of Collision Resistance

For the purpose of the analysis of the SHA-3 candidates, we generalize the well-known result by
Merkle and Damg̊ard. The result of Thm. 1 differs in three cases: we consider any suffix-free padding,
the proof allows for different compression functions in one hash function evaluation, and it includes
an optional chopping at the end. Related work can, a.o., be found in [39,20,21,40].

Theorem 1. Let l,m, n ∈ N such that l ≥ n. Let pad : Z∗2 → (Zm2 )∗ be a suffix-free padding and
let f, g : Zl2 × Zm2 → Zl2 be two compression functions. Consider the hash function H : Z∗2 → Zn2
defined as follows (cf. Fig. 2), where h0 = IV is the initialization vector:

H(M) = h, where: (M1, . . . ,Mk) = pad(M),

hi = f(hi−1,Mi) for i = 1, . . . , k − 1,

hk = g(hk−1,Mk),

h = chopl−n(hk).

Define the function g′ : Zl2×Zm2 → Zn2 by g′ = chopl−n ◦g. Then, the advantage of finding collisions
for H is upper bounded by the advantage of finding collisions for f or g′. Formally, if f is (t1, ε1)
collision secure, and g′ is (t2, ε2) collision secure, then H is (t, ε) collision secure for ε = ε1 + ε2,
and t = min{t1, t2}− 2(K − 1)τf , where τf is the time to evaluate f and K is the maximum length
of the messages, in blocks.



Proof. Suppose A is a (t, ε) collision finding attacker for H. We construct collision finding adver-
saries B1 and B2 for f and g, respectively, using the following observation.
Let M,M ′ be two distinct messages such that H(M) = H(M ′). Let (M1, . . . ,Mk) be the padded
message of M , and (M ′1, . . . ,M

′
k′) be the padded message of M ′. Define the intermediate state values

hi, h
′
i similarly. A collision on M,M ′ means that chopl−n

(
g(hk−1,Mk)

)
= chopl−n

(
g(h′k′−1,M

′
k′)
)
.

Now, if (hk−1,Mk) 6= (h′k′−1,M
′
k′) this results in a collision for g′. Assume the contrary, and let

j ∈ {1, . . . ,min{k, k′}− 1} be the minimal index such that (hk−j−1,Mk−j) 6= (h′k′−j−1,M
′
k′−j). We

notice that such index j exists: in case k = k′ it exists as M 6= M ′, and in case k 6= k′ it exists as
the padding rule is suffix-free. By definition of the index j, we have hk−j = h′k′−j , and in particular
we obtain a collision for f :

f(hk−j−1,Mk−j) = hk−j = h′k′−j = f(h′k′−j−1,M
′
k′−j).

Both B1,B2 follow this procedure. If M,M ′ define a collision for f , B1 outputs this collision.
Similarly for B2 and g′. Both adversaries work in time at most t + 2(K − 1)τf , from which we
deduce t ≥ min{t1, t2} − 2(K − 1)τf . The messages M,M ′ define a collision for f or g′. Thus, we
obtain ε ≤ ε1 + ε2. ut

In case the design is based on the compression function f only (but it may still include the chopping),

the above result can easily be simplified to Advgcol
H (A) ≤ Advgcol

f ′ (B1), where f ′ is defined by
f ′ = chopl−n ◦ f . Observe that this result also holds if l = n, and in particular, the basic theorems
of Merkle and Damg̊ard are covered as well. Observe that Thm. 1 can be generalized arbitrarily,
e.g. to more different compression functions, but for the purpose of this paper, the mentioned
generalization of the Merkle-Damg̊ard structure suffices.

Fig. 2. A generalized Merkle-Damg̊ard structure. f, g are two compression functions, and chopl−n
chops off l − n bits of the state.

B Padding Rules

The padding rules of all SHA-3 hash function candidates are summarized. All padding functions
output bit strings parsed as sequences of m-bit blocks, where m is the message block length of
the corresponding function. Formally, for each candidate, for n ∈ {256, 512} the padding function
pad : Z∗2 → (Zm2 )∗ is defined as follows. For the hash functions BLAKE, ECHO, Shabal, SHAvite-3
and Skein, the complete padding rule of the corresponding hash function is additionally defined by
a counter or tweak (as explained in Sect. 3). Particularly, all hash functions employ an injective



padding rule.

BLAKE : pad1(M) = M‖1‖0−|M |−t−2 mod m‖1‖〈|M |〉t,
BMW : pad2(M) = M‖1‖0−|M |−65 mod m‖〈|M |〉64,

CubeHash : pad3(M) = M‖1‖0−|M |−1 mod m,

ECHO : pad4(M) = M‖1‖0m−1−(|M |+144 mod m)‖〈n〉16‖〈|M |〉128,

Fugue : pad5(M) = M‖0−|M | mod m‖〈|M |〉64,

Grøstl : pad6(M) = M‖1‖0−|M |−65 mod l‖〈d(|M |+ 65)/le〉64,

Hamsi : pad7(M) = M‖1‖0−|M |−1 mod m‖〈|M |〉64,

JH : pad8(M) = M‖1‖0383+(−|M | mod m)‖〈|M |〉128,

Keccak : pad9(M) = M‖1‖0−|M |−1 mod 8‖〈n/8〉8‖〈m/8〉8‖1‖0−(|M |−(|M | mod 8))−25 mod m,

Luffa : pad10(M) = M‖1‖0(−|M |−1 mod m)+256,

Shabal : pad11(M) = M‖1‖0−|M |−1 mod m,

SHAvite-3 : pad12(M) = M‖1‖0−|M |−t−17 mod m‖〈|M |〉t‖〈n〉16,

SIMD : pad13(M) = M‖0−|M | mod m‖〈|M |〉m,

Skein13 : pad14(M) = M ′‖0(−|M ′| mod m)+m,where M ′ =

{
M if |M | ≡ 0 mod 8,

M‖1‖0−|M |−1 mod 8 otherwise.

13 For Skein, the null string λ is padded to pad(λ) = 02m.
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