Security Reductions of the Second Round SHA-3 Candidates

Elena Andreeva, Bart Mennink and Bart Preneel

Dept. Electrical Engineering, ESAT/COSIC and IBBT Katholieke Universiteit Leuven, Belgium {elena.andreeva, bart.mennink}@esat.kuleuven.be

Abstract. In 2007, the US National Institute for Standards and Technology announced a call for the design of a new cryptographic hash algorithm in response to vulnerabilities identified in existing hash functions, such as MD5 and SHA-1. NIST received many submissions, 51 of which got accepted to the first round. At present, 14 candidates are left in the second round. An important criterion in the selection process is the SHA-3 hash function security and more concretely, the possible security reductions of the hash function to the security of its underlying building blocks. While some of the candidates are supported with firm security reductions, for most of the schemes these results are still incomplete. In this paper, we compare the state of the art provable security reductions of the second round candidates. We discuss all SHA-3 candidates at a high functional level, and analyze and summarize the security reduction results. Surprisingly, we derive some security bounds from the literature, which the hash function designers seem to be unaware of. Additionally, we generalize the well-known proof of collision resistance preservation, such that all SHA-3 candidates with a suffix-free padding are covered.

1 Introduction

Hash functions are a building block for numerous cryptographic applications. In 2004 a series of attacks by Wang et al. [49,50] have exposed security vulnerabilities in the design of the most widely adopted and deployed SHA-1 hash function. As a result, the US National Institute for Standards and Technology (NIST) recommended the replacement of SHA-1 by the SHA-2 hash function family and announced a call for the design of a new SHA-3 hashing algorithm. The SHA-3 hash function must allow for message digests of length 224, 256, 384 and 512 bits, it should be efficient, and most importantly it should provide an adequate level of security. In the current second round, 14 candidate hash functions are still in the race for the selection of the SHA-3 hash function. These candidates are under active evaluation by the cryptographic community. As a result of the performed comparative analysis, several classifications of the SHA-3 candidates, mostly focussed on hardware performance, appeared in the literature [25,48,24,33]. A classification based on the by NIST specified security criteria is however still due.

NIST Security Requirements. NIST specifies a number of security requirements [41] to be satisfied by the future SHA-3 function: (i) at least one variant of the hash function must securely support HMAC and randomized hashing. Furthermore, for all *n*-bit digest values, the hash function must provide (ii) preimage resistance of approximately *n* bits, (iii) second preimage resistance of approximately n - L bits, where the first preimage is of length at most 2^L blocks, (iv) collision resistance of approximately n/2 bits, and (v) all variants must be resistant to the length-extension attack. Finally, (vi) for any $m \leq n$, the hash function specified by taking a fixed subset of *m* bits of the function's output is required to satisfy properties (ii)-(v) with *n* replaced by *m*.

Our Contribution. In this work we provide a survey of the 14 remaining SHA-3 candidates, in which we compare their security reductions. More concretely, we consider preimage, second preimage and collision resistance (security requirements (ii)-(iv)) for the n = 256 and n = 512 variants. Most of our security analysis is realized in the ideal model, where one or more of the underlying

integral building blocks (e.g., the underlying block cipher or permutation(s)) are assumed to be ideal, i.e. random primitives. To argue collision security we extend the standard proof of Merkle-Damgård collision resistance [20,39] to cover *all* SHA-3 candidate hash function with a suffix-free padding (App. A). Notice that the basic Merkle-Damgård proof does not suffice in the presence of a final transformation and/or a chopping.

Our main contribution consists in performing a comparative survey of the existing security results on the 14 hash function candidates and results derivable from earlier works on hash functions, and suggesting possible research directions aimed at resolving some of the identified open problems.

Section 2 briefly covers the notation, and the basic principles of hash function design. In Sect. 3, we consider all candidates from a provable security point of view. We give a high level algorithmic description of each hash function, and discuss the existing security results. All results are summarized in Table 1. We conclude the paper with Sect. 4 and give some final remarks on the security comparison.

2 Preliminaries

For a positive integer value $n \in \mathbb{N}$, we denote by \mathbb{Z}_2^n the set of bit strings of length n, and by $(\mathbb{Z}_2^n)^*$ the set of strings of length a positive multiple of n bits. We denote by \mathbb{Z}_2^* the set of bit strings of arbitrary length. If x, y are two bit strings, their concatenation is denoted by x || y. By |x| we denote the length of a bit string x, and for $m, n \in \mathbb{N}$ we denote by $\langle m \rangle_n$ the encoding of m as an n-bit string. The function $chop_n(x)$ chops off the n rightmost bits of a bit string x.

Throughout, we use a unified notation for all candidates. The value n denotes the output size of the hash function, l the size of the chaining value, and m the number of message bits compressed in one iteration of the compression function. A padded message is always parsed as a sequence of $k \geq 1$ message blocks of length m bits: (M_1, \ldots, M_k) .

2.1 Security Notions

In this section we investigate the security of the hash functions in the 'ideal model' and the more classical 'generic' security.

Security in the ideal model. In the ideal model, a *compressing* function F (either on fixed or arbitrary input lengths) that uses one or more underlying building blocks is viewed insecure if there exists a successful information-theoretic adversary that has only query access to the idealized underlying primitives of F. The complexity of the attack is measured by the number of queries qmade by the adversary. In this work it is clear from the context which of the underlying primitives is assumed to be ideal. The three main security properties required from the SHA-3 hash function are preimage, second preimage and collision resistance. For each of these three notions, with Adv_F^{atk} , where $atk \in \{pre, sec, col\}$, we denote the maximum advantage of an adversary to break the function F under the security notion atk. The advantage is the probability function taken over all random choices of the underlying primitives, and the maximum is taken over all adversaries that make at most q queries to their oracles.

If F outputs bit strings of length n, one expects to find collisions with high probability after approximately $2^{n/2}$ queries (due to the birthday attack). Similarly, preimages can be found with high probability after approximately 2^n queries. Depending on the design of F, one might be able to find second preimages in less queries. More concretely, Kelsey and Schneier [32] describe a second preimage attack on the Merkle-Damgård hash function that requires at most approximately 2^{n-L} queries, where the first preimage is of length at most 2^L blocks. This attack does, however, not

apply to all SHA-3 candidates. In particular, wide-pipe designs remain mostly unaffected due to their increased internal state [32].

Additionally, we consider the indifferentiability of the SHA-3 candidates. The indifferentiability framework introduced by Maurer et al. [38] is an extension of the classical notion of indistinguishability, and ensures that a hash function has no structural defects. We denote the indifferentiability security of a hash function \mathcal{H} by $\mathbf{Adv}_{\mathcal{H}}^{\text{pro}}$, maximized over all adversaries making at most q queries of maximal length $K \geq 0$ message blocks to their oracles. We refer to [19] for a formal definition.

Generic security. The generic collision security in the context of this work deals with analyzing the collision resistance of hash functions in the standard model. A hash function \mathcal{H} is called generically (t, ε) collision resistant if no adversary running in time at most t can find two different messages M, M' such that $\mathcal{H}(M) = \mathcal{H}(M')$ with advantage more than ε . We denote by $\mathbf{Adv}_{\mathcal{H}}^{\text{gcol}}$ the generic collision resistance security of the function \mathcal{H} , maximized over all 'efficient' adversaries. We refer the reader to [44,43,2] for a more formal discussion.

To argue generic collision security of the hash function \mathcal{H} (as domain extenders of fixed input length compression functions) we use the composition result of [20,39] and extend it to a wider class of suffix-free hash functions (App. A). This result concludes the collision security of the hash function \mathcal{H} assuming collision security guarantees from the underlying compression functions. We then translate ideal model collision security results on the compression functions via the latter composition to ideal model collision results on the hash function¹ (expressed by $\mathbf{Adv}_{\mathcal{H}}^{col}$). A generic collision result, however, applies to a wider class of schemes for which no bounds on the collision security of the underlying compression functions is known, e.g. for BLAKE and BMW.

2.2 Compression Function Design Strategies

A common way to build compression functions is to base it on a block cipher [42,15,47], or on a (limited number of) permutation(s) [14,45,46]. Preneel et al. [42] analyzed and categorized 64 block cipher based compression functions. Twelve of them were formally proven secure by Black et al. [15]. These results have been recently generalized by Stam [47]. Interestingly, the latter result allows for obtaining security bounds for some compression functions that do not fit in the PGV-model, like ECHO, Hamsi and SIMD. Throughout, by 'PGVx' we denote the x^{th} type compression function of [42]. We note that PGV1, PGV3 and PGV5 are better known as the Matyas-Meyer-Oseas, the Miyaguchi-Preneel and the Davies-Meyer compression functions, respectively.

In the context of permutation based compression functions, Black et al. [14] analyzed 2l- to lbit compression functions based on *one* l-bit permutation, and proved them insecure. This result has been generalized by Rogaway and Steinberger [45] and Stam [46] to compression functions with arbitrary input and output sizes, and an arbitrary number of underlying permutations. Their bounds indicate the number of queries required to find collisions or preimages for permutation based compression functions.

2.3 Hash Function Design Strategies

In order to allow the hashing of arbitrarily long strings, all SHA-3 candidates employ a specific mode of operation. Central to all designs is the *iterated hash function principle* [35]: on input an initialization vector IV, the iterated hash function \mathcal{H}^f based on the compression function f proceeds

¹ A single exception is the collision result for the hash function Shabal, for which the authors derive a collision bound on the hash function directly based on the ideal behavior of the block cipher underlying their compression function.

a padded message (M_1, \ldots, M_k) as follows:

$$\mathcal{H}^{f}(\mathsf{IV}; M_{1}, \dots, M_{k}) = h_{k}, \text{ where: } h_{0} = \mathsf{IV},$$
$$h_{i} = f(h_{i-1}, M_{i}) \text{ for } i = 1, \dots, k.$$

This principle is also called the plain Merkle-Damgård (MD) design [39,20]. Each of the 14 remaining candidates is based on this design, possibly followed by a final transformation (FT), and/or a chop-function².

The padding function $pad : \mathbb{Z}_2^* \to (\mathbb{Z}_2^m)^*$ is an injective mapping that transforms a message of arbitrary length to a message of length a multiple of m bits (the number of message bits compressed in one compression function iteration). Most of the candidates employ a sufficiently strong padding rule (cf. App. B). Additionally, in some of the designs the message blocks are compressed along with specific counters or tweaks, which may strengthen the padding rule. We distinguish between 'prefix-free' and/or 'suffix-free' padding.

A padding rule is called **suffix-free**, if for any distinct M, M', there exists no bit string X such that pad(M') = X || pad(M). The plain MD design with any suffix-free padding (also called MD-strengthening [35]) preserves collision resistance [39,20]. We generalize this result in Thm. 1 (App. A): informally, this preservation result also holds if the iteration is finalized by a distinct compression function and/or the chop-function. Other security properties, like preimage resistance, are however not preserved in the MD design [2]. It is also proven that the MD design with a suffix-free padding need not necessarily be indifferentiable [19]. However, the MD construction *is* indifferentiable if it ends with a chopping function or a final transformation [19]³.

A padding rule is called **prefix-free**, if for any distinct M, M', there exists no bit string X such that pad(M') = pad(M) || X. It has been proved in [19] that the MD design with prefix-free padding is indifferentiable from a random oracle. Security notions like collision-resistance, are however not preserved in the MD design with prefix-free only padding.

HAIFA design. A concrete design based on the MD principle is the HAIFA construction [12]. In HAIFA the message is padded in a specific way so as to solve some deficiencies of the original MD construction: in the iteration, each message block is accompanied with a fixed (optional) salt of sbits and a (mandatory) counter C_i of t bits. The counter C_i keeps track of the number of message bits hashed so far, and equals 0 by definition if the i^{th} block does not contain any message bits. Partially due to the properties of this counter, the HAIFA padding rule is suffix- and prefix-free. As a consequence, the indifferentiability results of [19] carry over and the construction preserves collision resistance (cf. Thm. 1). Furthermore, the HAIFA construction is proven secure against second preimage attacks if the underlying compression function is assumed to behave like an ideal primitive [16].

Wide-pipe design. In the wide-pipe design [37], the iterated state size is significantly larger than the final hash output: at the end of the iteration, a fraction of the output of a construction is discarded. As proved in [19], the MD construction with an additional chopping at the end is indifferentiable from a random oracle.

Sponge functions. We do not explicitly consider sponge functions [10] as a specific type of construction: all SHA-3 candidates known to be sponge(-like) functions, CubeHash, Fugue, JH, Keccak

² A function g is a final transformation if it differs from f, and is applied to the final state, possibly with the injection of an additional message block. The chop-function is not considered to be (a part of) a final transformation.

³ The indifferentiability results of [19] hold if the underlying compression function is ideal, or if the hash function is based on the PGV5 construction with ideal block cipher.

and Luffa, can be described in terms of the chop-MD construction (possibly with a final transformation before chopping).

3 SHA-3 Hash Function Candidates

In this section, we analyze the security of the 14 remaining SHA-3 candidates in more detail. For simplicity, we only consider the proposals of the SHA-3 candidates that output digests of 256 or 512 bits. Observe that in many candidate SHA-3 hash function families, the algorithms that output 224 and 384 bits are the same as the 256- or 512-bits algorithms, except for an additional chopping at the end. Particularly, the results of [19] and Thm. 1 carry over in most of the cases. The same remark applies to requirement (vi) of NIST.

- **Requirement** (i). All designers claim that their proposal can safely be used in HMAC mode [4] or for randomized hashing [31], and we do not discuss it here;
- **Requirements** (ii)-(iv). Preimage, second preimage and collision resistance of each hash function are discussed in this section. Additionally, we also consider the indifferentiability of the candidates;
- **Requirement** (v). All hash function candidates are secure against the length extension attack, and thus we do not discuss it further.

Below, we examine the SHA-3 candidate hash functions in more detail. Each paragraph contains an informal discussion for each of the second round SHA-3 candidates and their security reduction results. The mathematical descriptions of the (abstracted) designs are given in Fig. 1, and the candidates' padding functions are summarized in App. B. The concrete security results for all current candidate hash functions are summarized in Table 1. More precisely, for each candidate and each security notion, this table includes the security bound, as far as it exists, and the underlying assumption.

3.1. The **BLAKE** hash function [3] is a HAIFA construction. The message blocks are accompanied with a HAIFA-counter, and more generally, the function employs a suffix- and prefix-free padding rule. The compression function f is block cipher based⁴. It moreover employs an injective linear function L, and a linear function L' that XORs the first and second halves of the input.

Security of BLAKE. The compression function of BLAKE shows similarities with the PGV5 compression function [15], but no security results are known for this variation. The mode of operation of BLAKE is based on the HAIFA structure, and as a consequence all security properties regarding this type hold [12]. In particular, the design preserves collision resistance, and is secure against second preimage attacks. Also, the BLAKE hash function is indifferentiable from a random oracle if the underlying compression function is assumed to be ideal, due to the prefix-free padding [19].

3.2. The **Blue Midnight Wish** (BMW) hash function [29] is a chop-MD construction, with a final transformation before chopping. The hash function employs a suffix-free padding rule. The compression function f is block cipher based⁵, and the final transformation g consists of the same compression function with the chaining value processed as a message, and with an initial value as chaining input. The compression function employs a function L which consists of two compression functions with specific properties as specified in [29].

⁴ As observed in [3, Sect. 5], the core part of the compression function can be seen as a permutation keyed by the message, which we view here as a block cipher.

⁵ As observed in [29], the compression function can be seen as a 'generalized' PGV3 construction, where the function f_0 of [29] defines the block cipher keyed with the chaining value.

BLAKE:	
$(n, l, m, s, t) \in \{(256, 256, 512, 128, 64),$	JH:
(512, 512, 1024, 256, 128)	$(n, l, m) \in \{(256, 1024, 512), (512, 1024, 512)\}$
$E: \mathbb{Z}_2^{2i} \times \mathbb{Z}_2^m \to \mathbb{Z}_2^{2i}$ a block cipher	$P: \mathbb{Z}_2^l \to \mathbb{Z}_2^l$ a permutation
$L: \mathbb{Z}_{2}^{l+3+l} \to \mathbb{Z}_{2}^{ll}, L': \mathbb{Z}_{2}^{ll} \to \mathbb{Z}_{2}^{l} \text{ linear functions}$	$f(h, M) = P(h \oplus (0^{i-m} M)) \oplus (M 0^{i-m})$
$f(n, M, S, C) \equiv L'(E_M(L(n, S, C))) \oplus h \oplus (S S)$	JH(M) = h, where:
$BLAKE(M) = h_k$, where:	$(M_1, \ldots, M_k) \leftarrow pad_8(M); h_0 \leftarrow IV$
$(M_1, \ldots, M_k) \leftarrow pad_1(M); h_0 \leftarrow IV$	$h_i \leftarrow f(h_{i-1}, M_i)$ for $i = 1, \dots, k$
$S \in \mathbb{Z}_2^{2}; (C_i)_{i=1}^n$ HAIFA-counter	$[n \leftarrow \operatorname{cnop}_{l-n}[n_k]]$
$n_i \leftarrow f(n_{i-1}, m_i, S, C_i) \text{ for } i = 1, \dots, \kappa$	Keccak:
BMW:	$(n, l, m) \in \{(256, 1600, 1088), (512, 1600, 576)\}$
$(n, l, m) \in \{(256, 512, 512), (512, 1024, 1024)\}$	$P: \mathbb{Z}_2^{\iota} \to \mathbb{Z}_2^{\iota}$ a permutation
$E: \mathbb{Z}_2^m \times \mathbb{Z}_2^r \to \mathbb{Z}_2^m$ a block cipher	$f(h, M) = P(h \oplus (M 0^{e^{-m}}))$
$L: \mathbb{Z}_2 \longrightarrow \mathbb{Z}_2$ a compressing function $f(h, M) = I(h, M, F_{1,1}(M))$	Keccak(M) = h, where:
a(h) = f(V', h)	$(M_1, \ldots, M_k) \leftarrow pad_9(M); h_0 \leftarrow IV$
	$h_i \leftarrow f(n_{i-1}, M_i)$ for $i = 1, \dots, k$
BMW(M) = h, where: $(M_1, \dots, M_n) \leftarrow ppd_n(M); h_0 \leftarrow IV$	$\begin{bmatrix} n & chop_{l-n}[n_k] \end{bmatrix}$
$h_i \leftarrow f(h_{i-1}, M_i)$ for $i = 1, \dots, k$	
$h \leftarrow \operatorname{chop}_{l-n}[g(h_k)]$	$[(n, l, m, w) \in \{(256, 768, 256, 3), (512, 1278, 256, 5)\}$ $P_i \cdot \mathbb{Z}^m \to \mathbb{Z}^m (i = 1,, w)$ permutations
CuboHash	$ \begin{array}{c} I_{i} : \mathbb{Z}_{2} \xrightarrow{\rightarrow} \mathbb{Z}_{2} (i = 1, \dots, w) \text{ permutations} \\ I_{i} : \mathbb{Z}^{wm + m} \xrightarrow{\rightarrow} \mathbb{Z}^{wm} I' : \mathbb{Z}^{wm} \xrightarrow{\rightarrow} \mathbb{Z}^{m} \text{ linear functions} \end{array} $
$(n, l, m) \in \{(256, 1024, 256), (512, 1024, 256)\}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$P: \mathbb{Z}_{2}^{l} \to \mathbb{Z}_{2}^{l}$ a permutation	where $(h'_1,, h'_w) = L(h, M)$
$f(h, \tilde{M}) = \tilde{P}(h \oplus (M \ 0^{l-m}))$	$g(h) = (L'(h) \ L'(f(h, 0^m)))$
$g(h) = P^{10}(h \oplus (0^{992} 1 0^{31}))$	Luffa $(M) = h$, where:
CubeHash $(M) = h$ where:	$(M_1, \ldots, M_k) \leftarrow pad_{10}(M); h_0 \leftarrow IV$
$(M_1, \ldots, M_k) \leftarrow pad_3(M); h_0 \leftarrow IV$	$h_i \leftarrow f(h_{i-1}, M_i)$ for $i = 1, \dots, k$
$h_i \leftarrow f(h_{i-1}, M_i)$ for $i = 1, \dots, k$	$h \leftarrow chop_{512-n}[g(h_k)]$
$h \leftarrow chop_{l-n}[g(h_k)]$	Shabal:
ECHO:	$(n, l, m) \in \{(256, 1408, 512), (512, 1408, 512)\}$
$(n, l, m, s, t) \in \{(256, 512, 1536, 128, 64/128),$	$E: \mathbb{Z}_2^{896} \times \mathbb{Z}_2^{1024} \to \mathbb{Z}_2^{896}$ a block cipher
(512, 1024, 1024, 256, 64/128)	$ \int f(h, C, M) = (y_1, h_3 - M, y_3) $
$E: \mathbb{Z}_{2048}^{2048} \times \mathbb{Z}_{2}^{s+\iota} \to \mathbb{Z}_{2}^{2048}$ a block cipher	where $h \in \mathbb{Z}_2 \to h = (h_1, h_2, h_3) \in \mathbb{Z}_2$
$L: \mathbb{Z}_{2}^{2048} \to \mathbb{Z}_{2}^{l}$ a linear function $f(L, M, S, C) = I(E_{T, T}(L M) \oplus (L M))$	and $(y_1, y_3) = E_{M,h_3}(h_1 \oplus (0^{1-1} C), h_2 + M)$
$f(n, M, S, C) = L(E_{S,C}(n M) \oplus (n M))$	Shabal(M) = h, where:
ECHO(M) = h, where:	$(M_1, \dots, M_k) \leftarrow pad_{11}(M); h_0 \leftarrow IV$
$(M_1, \ldots, M_k) \leftarrow pad_4(M); h_0 \leftarrow IV$	$h_i \leftarrow f(h_{i-1}, \langle i \rangle_{64}, M_i)$ for $i = 1, \dots, k$
$S \in \mathbb{Z}_2^{\sim}; (C_i)_{i=1}^{\sim}$ HAIFA-counter $h \leftarrow f(h) \leftarrow M \in S(C_i)$ for $i = 1$	$\begin{bmatrix} n_{k+1} & j(n_{k+1-1}, n_{0,04}, n_{k}) & \text{if } i = 1, \dots, 0 \\ h \leftarrow chop_{l-n}[h_{k+3}] \end{bmatrix}$
$ \begin{array}{c} n_i \leftarrow f(n_i-1, m_i, s, s_i) \text{ for } i = 1, \dots, n \\ h \leftarrow chop_{l-n}[h_k] \end{array} $	
Fugue	$(n, l, m, s, t) \in \{(256, 256, 512, 256, 64), \dots \}$
$(n \mid m) \in \{(256 \mid 960 \mid 32) \mid (512 \mid 1152 \mid 32)\}$	(512, 512, 1024, 512, 128)}
$P, \tilde{P}: \mathbb{Z}_{l}^{l} \to \mathbb{Z}_{l}^{l}$ permutations	
	$E: \mathbb{Z}_2^l \times \mathbb{Z}_2^{m+s+t} \to \mathbb{Z}_2^l$ a block cipher
$L: \mathbb{Z}_{2}^{l} \times \mathbb{Z}_{2}^{m} \to \mathbb{Z}_{2}^{l}$ a linear function	$ \begin{bmatrix} E : \mathbb{Z}_2^l \times \mathbb{Z}_2^{m+s+t} \to \mathbb{Z}_2^l \text{ a block cipher} \\ f(h, M, S, C) = E_{M,S,C}(h) \oplus h \end{bmatrix} $
$\begin{array}{l} L: \mathbb{Z}_{2}^{l} \times \mathbb{Z}_{2}^{m} \to \mathbb{Z}_{2}^{l} \text{ a linear function} \\ f(h, M) = P(L(h, M)) \end{array}$	$\begin{split} E: \mathbb{Z}_{2}^{l} \times \mathbb{Z}_{2}^{m+s+t} \to \mathbb{Z}_{2}^{l} \text{ a block cipher} \\ f(h, M, S, C) &= E_{M, S, C}(h) \oplus h \\ \\ \hline \\ \hline$
$ \begin{array}{l} \begin{array}{l} & \vdots & z_{1} \\ & z_{2} \\ & z_{1} \\$	$ \begin{split} & E: \mathbb{Z}_2^l \times \mathbb{Z}_2^{m+s+t} \to \mathbb{Z}_2^l \text{ a block cipher} \\ & f(h, M, S, C) = E_{M, S, C}(h) \oplus h \\ \\ & \\ \hline & \\ & \\$
$\begin{array}{l} \begin{array}{l} (z_1,z_2) & = 2 \\ (z_1,z_2) & = 2 \\ (z_1,z_2) & = 2 \\ (z_2,z_2) & = 2 \\ (z_1,z_2) & = 2 \\ $	$\begin{split} E: \mathbb{Z}_2^l \times \mathbb{Z}_2^{m+s+t} \to \mathbb{Z}_2^l \text{ a block cipher} \\ f(h, M, S, C) &= E_{M,S,C}(h) \oplus h \\ \\ \hline \\ & \\ \hline \\ \\ & \\ \hline \\ \\ & \\ \hline \\ \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \hline \\ \\ \\ \hline \\ \\ \\ \hline \\ \hline \\ \\ \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\$
$\begin{split} & (f_1, f_2) = \sum_{j=1}^{l} \sum_{j=1}^{l}$	$\begin{split} E: \mathbb{Z}_{2}^{l} \times \mathbb{Z}_{2}^{m+s+t} &\to \mathbb{Z}_{2}^{l} \text{ a block cipher} \\ f(h, M, S, C) &= E_{M, S, C}(h) \oplus h \\ \\ \mathbf{SHAvite-3}(M) &= h_k, \text{ where:} \\ &(M_1, \dots, M_k) \leftarrow pad_{12}(M); \ h_0 \leftarrow IV \\ &S \in \mathbb{Z}_{2}^{s}: \ (C_i)_{i=1}^k \text{ HAIFA-counter} \\ &h_i \leftarrow f(h_{i-1}, M_i, S, C_i) \text{ for } i = 1, \dots, k \end{split}$
$\begin{split} & (M_{1}) = \sum_{k=1}^{l} \mathbb{Z}_{2}^{m} \rightarrow \mathbb{Z}_{2}^{k} \text{ a linear function} \\ & f(h, M) = P(L(h, M)) \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	$ \begin{split} & E: \mathbb{Z}_{2}^{l} \times \mathbb{Z}_{2}^{m+s+t} \to \mathbb{Z}_{2}^{l} \text{ a block cipher} \\ & f(h, M, S, C) = E_{M, S, C}(h) \oplus h \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$
$\begin{split} & (f_{k}) = \frac{1}{2} \sum_{k=1}^{d-2} \sum_{k=1}^{2} 2^{k} \text{ a linear function} \\ & f(h, M) = P(L(h, M)) \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	$\begin{split} E: \mathbb{Z}_{2}^{l} \times \mathbb{Z}_{2}^{m+s+t} &\to \mathbb{Z}_{2}^{l} \text{ a block cipher} \\ f(h, M, S, C) &= E_{M, S, C}(h) \oplus h \\ \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$
$\begin{split} & (f_{1}, f_{2}) = 2 \sum_{i=1}^{l-2} 2I_{i}^{i} \text{ a linear function} \\ & f(h, M) = P(L(h, M)) \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	$\begin{split} E: \mathbb{Z}_{2}^{l} \times \mathbb{Z}_{2}^{m+s+t} &\to \mathbb{Z}_{2}^{l} \text{ a block cipher} \\ f(h, M, S, C) &= E_{M, S, C}(h) \oplus h \\ \\ \hline SHAvite-3(M) &= h_k, \text{ where:} \\ (M_1, \dots, M_k) &\leftarrow pad_{12}(M); h_0 \leftarrow IV \\ S \in \mathbb{Z}_{2}^{s}; (C_i)_{i=1}^{k} \text{ HAIFA-counter} \\ h_i \leftarrow f(h_{i-1}, M_i, S, C_i) \text{ for } i = 1, \dots, k \\ \hline \\ \hline \mathbf{SIMD:} \\ (n, l, m) \in \{(256, 512, 512), (512, 1024, 1024)\} \\ E, \tilde{E}: \mathbb{Z}_{2}^{l} \times \mathbb{Z}_{2}^{m} \to \mathbb{Z}_{2}^{l} \text{ block ciphers} \\ f(d) \in \mathbb{Z}_{2}^{l} \times \mathbb{Z}_{2}^{m} \to \mathbb{Z}_{2}^{l} \text{ block ciphers} \end{split}$
$\begin{split} & I = \sum_{i=1}^{l} \sum_{j=1}^{2} \sum_{j=1}^{l} \sum_{j=1}^{l} 2l_{j}^{l} \text{ a linear function} \\ & f(h, M) = P(L(h, M)) \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	$\begin{bmatrix} E: \mathbb{Z}_{2}^{l} \times \mathbb{Z}_{2}^{m+s+t} \to \mathbb{Z}_{2}^{l} \text{ a block cipher} \\ f(h, M, S, C) = E_{M, S, C}(h) \oplus h \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
$\begin{aligned} & f_{1} : \mathbb{Z}_{2}^{l} \times \mathbb{Z}_{2}^{m} \to \mathbb{Z}_{2}^{l} \text{ a linear function} \\ & f_{1} : \mathbb{Z}_{2}^{l} \times \mathbb{Z}_{2}^{m} \to \mathbb{Z}_{2}^{l} \text{ a linear function} \\ & f_{1} : \mathbb{Z}_{2}^{l} \times \mathbb{Z}_{2}^{m} \to \mathbb{Z}_{2}^{l} \text{ a linear function} \\ & f_{1} : \mathbb{Z}_{2}^{l} \times \mathbb{Z}_{2}^{l} \text{ b linear function} \\ & f_{1} : \mathbb{Z}_{2}^{l} \to \mathbb{Z}_{2}^{l} \text{ b linear function} \\ & h \leftarrow \text{chop}_{l-n}[\tilde{P}(h_{k})] \end{aligned}$ $\begin{aligned} & \mathbf{Grøstl:} \\ & (n, l, m) \in \{(256, 512, 512), (512, 1024, 1024)\} \\ & P, Q: \mathbb{Z}_{2}^{l} \to \mathbb{Z}_{2}^{l} \text{ permutations} \\ & f(h, M) = P(h \oplus M) \oplus Q(M) \oplus h \\ & g(h) = P(h) \oplus h \end{aligned}$	$\begin{split} E: \mathbb{Z}_{2}^{l} \times \mathbb{Z}_{2}^{m+s+t} &\to \mathbb{Z}_{2}^{l} \text{ a block cipher} \\ f(h, M, S, C) &= E_{M, S, C}(h) \oplus h \\ \\ \text{SHAvite-}3(M) &= h_k, \text{ where:} \\ (M_1, \dots, M_k) &\leftarrow \text{pad}_{12}(M); h_0 \leftarrow \text{IV} \\ S \in \mathbb{Z}_{2}^{s}; (C_i)_{i=1}^{k} \text{ HAIFA-counter} \\ h_i \leftarrow f(h_{i-1}, M_i, S, C_i) \text{ for } i = 1, \dots, k \\ \\ \hline \\ \textbf{SIMD:} \\ (n, l, m) \in \{(256, 512, 512), (512, 1024, 1024)\} \\ E, \tilde{E}: \mathbb{Z}_{2}^{l} \times \mathbb{Z}_{2}^{m} \to \mathbb{Z}_{2}^{l} \text{ block ciphers} \\ f(h, M) &= L(h, E_M(h \oplus M)) \\ g(h, M) &= L(h, \tilde{E}_M(h \oplus M)) \\ \hline \\$
$\begin{aligned} & I: \mathbb{Z}_{2}^{l} \times \mathbb{Z}_{2}^{m} \to \mathbb{Z}_{2}^{l} \text{ a linear function} \\ & f(h, M) = P(L(h, M)) \end{aligned}$ $\begin{aligned} & \text{Fugue}(M) = h, \text{ where:} \\ & (M_{1}, \dots, M_{k}) \leftarrow \text{pad}_{5}(M); \ h_{0} \leftarrow \text{IV} \\ & h_{i} \leftarrow f(h_{i-1}, M_{i}) \text{ for } i = 1, \dots, k \\ & h \leftarrow \text{chop}_{l-n}[\tilde{P}(h_{k})] \end{aligned}$ $\begin{aligned} & \textbf{Grøstl:} \\ & (n, l, m) \in \{(256, 512, 512), (512, 1024, 1024)\} \\ & P, Q: \mathbb{Z}_{2}^{l} \to \mathbb{Z}_{2}^{l} \text{ permutations} \\ & f(h, M) = P(h \oplus M) \oplus Q(M) \oplus h \\ & g(h) = P(h) \oplus h \end{aligned}$	$\begin{split} E: \mathbb{Z}_{2}^{l} \times \mathbb{Z}_{2}^{m+s+t} &\to \mathbb{Z}_{2}^{l} \text{ a block cipher} \\ f(h, M, S, C) &= E_{M, S, C}(h) \oplus h \\ \\ \hline SHAvite-3(M) &= h_k, \text{ where:} \\ (M_1, \dots, M_k) &\leftarrow pal_1(M); h_0 \leftarrow IV \\ S \in \mathbb{Z}_{2}^{s}; (C_i)_{i=1}^k \text{ HAIFA-counter} \\ h_i \leftarrow f(h_{i-1}, M_i, S, C_i) \text{ for } i = 1, \dots, k \\ \hline \\ \hline \mathbf{SIMD:} \\ (n, l, m) \in \{(256, 512, 512), (512, 1024, 1024)\} \\ E, \tilde{E}: \mathbb{Z}_{2}^{l} \times \mathbb{Z}_{2}^{m} \to \mathbb{Z}_{2}^{l} \text{ block ciphers} \\ f(h, M) &= L(h, E_M(h \oplus M)) \\ g(h, M) &= L(h, \tilde{E}_M(h \oplus M)) \\ \hline \\ \hline \\ \mathbf{SIMD}(M) &= h, \text{ where:} \\ (M, M, M) &= M \\ \hline \end{split}$
$\begin{aligned} & f_{i} : \mathbb{Z}_{2}^{l} \times \mathbb{Z}_{2}^{m} \to \mathbb{Z}_{i}^{l} \text{ a linear function} \\ & f_{i} : \mathbb{Z}_{2}^{l} \times \mathbb{Z}_{2}^{m} \to \mathbb{Z}_{i}^{l} \text{ a linear function} \\ & f_{i} : \mathbb{Z}_{2}^{l} \times \mathbb{Z}_{2}^{m} \to \mathbb{Z}_{i}^{l} \text{ a linear function} \\ & f_{i} : \mathbb{Z}_{i}^{l} \times \mathbb{Z}_{i}^{l} \times \mathbb{Z}_{i}^{l} \text{ b linear function} \\ & h_{i} \leftarrow f(h_{i-1}, M_{i}) \text{ for } i = 1, \dots, k \\ & h_{i} \leftarrow f(h_{i-1}, M_{i}) \text{ for } i = 1, \dots, k \\ & h_{i} \leftarrow hop_{l-n}[\tilde{P}(h_{k})] \end{aligned}$ $\begin{aligned} & \mathbf{Grøstl:} \\ & (n, l, m) \in \{(256, 512, 512), (512, 1024, 1024)\} \\ & P, Q : \mathbb{Z}_{2}^{l} \to \mathbb{Z}_{2}^{l} \text{ permutations} \\ & f(h, M) = P(h \oplus M) \oplus Q(M) \oplus h \\ & g(h) = P(h) \oplus h \end{aligned}$ $\begin{aligned} & \mathbf{Grøstl}(M) = h, \text{ where:} \\ & (M) \mapsto e^{-\mathbf{r}d}(M) = k \in \mathbb{N} \end{aligned}$	$\begin{split} & E: \mathbb{Z}_{2}^{l} \times \mathbb{Z}_{2}^{m+s+t} \to \mathbb{Z}_{2}^{l} \text{ a block cipher} \\ & f(h, M, S, C) = E_{M, S, C}(h) \oplus h \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$
$\begin{split} & (f_{1})_{k} = \sum_{i=1}^{l} \mathbb{Z}_{i}^{m} \to \mathbb{Z}_{i}^{l} \text{ a linear function} \\ & f(h, M) = P(L(h, M)) \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	$\begin{split} & E: \mathbb{Z}_{2}^{l} \times \mathbb{Z}_{2}^{m+s+t} \rightarrow \mathbb{Z}_{2}^{l} \text{ a block cipher} \\ & f(h, M, S, C) = E_{M, S, C}(h) \oplus h \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$
$\begin{split} & (1, 2k) = 2k^{-1} 2k^{-1$	$\begin{split} & E: \mathbb{Z}_{2}^{l} \times \mathbb{Z}_{2}^{m+s+t} \rightarrow \mathbb{Z}_{2}^{l} \text{ a block cipher} \\ & f(h,M,S,C) = E_{M,S,C}(h) \oplus h \\ & SHAvite-3(M) = h_k, \text{ where:} \\ & (M_1,\ldots,M_k) \leftarrow pal_1(M); h_0 \leftarrow IV \\ & S \in \mathbb{Z}_{2}^{s}; (C_i)_{i=1}^{k} \text{ HAIFA-counter} \\ & h_i \leftarrow f(h_{i-1},M_i,S,C_i) \text{ for } i=1,\ldots,k \\ \hline \\ & SIMD: \\ & (n,l,m) \in \{(256,512,512),(512,1024,1024)\} \\ & E, \tilde{E}: \mathbb{Z}_{2}^{l} \times \mathbb{Z}_{2}^{m} \rightarrow \mathbb{Z}_{2}^{l} \text{ block ciphers} \\ & f(h,M) = L(h, E_M(h \oplus M)) \\ & g(h,M) = L(h, \tilde{E}_M(h \oplus M)) \\ \hline \\ & SIMD(M) = h, \text{ where:} \\ & (M_1,\ldots,M_k) \leftarrow pal_{13}(M); h_0 \leftarrow IV \\ & h_i \leftarrow g(h_{k-1},M_k) \text{ for } i=1,\ldots,k-1 \\ & h_k \leftarrow g(h_{k-1},M_k) \\ & h \leftarrow chop_{l-n}[h_k] \end{split}$
$\begin{split} & [I : \mathbb{Z}_{2}^{l} \times \mathbb{Z}_{2}^{m} \to \mathbb{Z}_{2}^{l} \text{ a linear function} \\ & f(h, M) = P(L(h, M)) \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	$ \begin{split} & E: \mathbb{Z}_{2}^{l} \times \mathbb{Z}_{2}^{m+s+t} \to \mathbb{Z}_{2}^{l} \text{ a block cipher} \\ & f(h, M, S, C) = E_{M, S, C}(h) \oplus h \\ & SHAvite-3(M) = h_k, \text{ where:} \\ & (M_1, \dots, M_k) \leftarrow pal_{12}(M); h_0 \leftarrow IV \\ & S \in \mathbb{Z}_{2}^{l}; (C_i)_{i=1}^{i} \text{ HAIFA-counter} \\ & h_i \leftarrow f(h_{i-1}, M_i, S, C_i) \text{ for } i = 1, \dots, k \\ \hline \\ \hline \\ & \mathbf{SIMD:} \\ & (n, l, m) \in \{(256, 512, 512), (512, 1024, 1024)\} \\ & E, \tilde{E}: \mathbb{Z}_{2}^{l} \times \mathbb{Z}_{2}^{m} \to \mathbb{Z}_{2}^{l} \text{ block ciphers} \\ & f(h, M) = L(h, E_M(h \oplus M)) \\ & g(h, M) = L(h, \tilde{E}_M(h \oplus M)) \\ \hline \\ & SIMD(M) = h, \text{ where:} \\ & (M_1, \dots, M_k) \leftarrow pal_{13}(M); h_0 \leftarrow IV \\ & h_i \leftarrow f(h_{i-1}, M_i) \text{ for } i = 1, \dots, k-1 \\ & h_k \leftarrow gh_{k-1}, M_k) \\ & h \leftarrow chop_{l-n}[h_k] \\ \hline \\ $
$\begin{aligned} I : \mathbb{Z}_{2}^{l} \mathbb{Z}_{2}^{m} \to \mathbb{Z}_{i}^{l} \text{ a linear function} \\ f(h, M) &= P(L(h, M)) \end{aligned}$ $\begin{aligned} Fugue(M) &= h, \text{ where:} \\ (M_{1}, \dots, M_{k}) \leftarrow pad_{5}(M); h_{0} \leftarrow IV \\ h_{i} \leftarrow f(h_{i-1}, M_{i}) \text{ for } i = 1, \dots, k \\ h \leftarrow chop_{l-n}[\tilde{P}(h_{k})] \end{aligned}$ $\begin{aligned} \overline{\mathbf{Grøstl:}} \\ (n, l, m) \in \{(256, 512, 512), (512, 1024, 1024)\} \\ P, Q : \mathbb{Z}_{i}^{l} \to \mathbb{Z}_{2}^{l} \text{ permutations} \\ f(h, M) &= P(h \oplus M) \oplus Q(M) \oplus h \\ g(h) &= P(h) \oplus h \end{aligned}$ $\begin{aligned} \overline{\mathbf{Grøstl}} \\ \overline{\mathbf{Grøstl}} \\ \mathbf{Grøstl} \\ (M_{1}, \dots, M_{k}) \leftarrow pad_{6}(M); h_{0} \leftarrow IV \\ h_{i} \leftarrow f(h_{i-1}, M_{i}) \text{ for } i = 1, \dots, k \\ h \leftarrow chop_{l-n}[g(h_{k})] \end{aligned}$ $\begin{aligned} \overline{\mathbf{Hamsi:}} \\ (m, l, m) \in \{(256, 256, 32), (512, 512, 64)\} \end{aligned}$	$\begin{split} E: \mathbb{Z}_{2}^{l} \times \mathbb{Z}_{2}^{m+s+t} &\to \mathbb{Z}_{2}^{l} \text{ a block cipher} \\ f(h, M, S, C) &= E_{M, S, C}(h) \oplus h \\ \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$
$\begin{split} & [I_{1}:\mathbb{Z}_{2}^{l} \times \mathbb{Z}_{2}^{m} \to \mathbb{Z}_{1}^{l} \text{ a linear function} \\ & f(h,M) = P(L(h,M)) \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	$\begin{split} & E: \mathbb{Z}_{2}^{l} \times \mathbb{Z}_{2}^{m+s+t} \to \mathbb{Z}_{2}^{l} \text{ a block cipher} \\ & f(h, M, S, C) = E_{M, S, C}(h) \oplus h \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$
$\begin{split} & [I : \mathbb{Z}_{2}^{l} \times \mathbb{Z}_{2}^{m} \to \mathbb{Z}_{2}^{l} \text{ a linear function} \\ & f(h, M) = P(L(h, M)) \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	$\begin{split} & E: \mathbb{Z}_{2}^{l} \times \mathbb{Z}_{2}^{m+s+t} \rightarrow \mathbb{Z}_{2}^{l} \text{ a block cipher} \\ & f(h, M, S, C) = E_{M, S, C}(h) \oplus h \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$
$\begin{split} & (1, 2)_{k=2}^{l-2} \mathbb{Z}_{2}^{m} \to \mathbb{Z}_{2}^{l} \text{ a linear function} \\ & f(h, M) = P(L(h, M)) \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	$\begin{split} & E: \mathbb{Z}_{2}^{l} \times \mathbb{Z}_{2}^{m+s+t} \to \mathbb{Z}_{2}^{l} \text{ a block cipher} \\ & f(h, M, S, C) = E_{M, S, C}(h) \oplus h \\ & SHAvite-3(M) = h_k, \text{ where:} \\ & (M_1, \dots, M_k) \leftarrow pal_1(M); h_0 \leftarrow IV \\ & S \in \mathbb{Z}_{2}^{s}: (C_i)_{i=1}^k \text{ HAIFA-counter} \\ & h_i \leftarrow f(h_{i-1}, M_i, S, C_i) \text{ for } i = 1, \dots, k \\ \hline \\ & SIMD: \\ & (n, l, m) \in \{(256, 512, 512), (512, 1024, 1024)\} \\ & E, \tilde{E}: \mathbb{Z}_{2}^{l} \times \mathbb{Z}_{2}^{m} \to \mathbb{Z}_{2}^{l} \text{ block ciphers} \\ & f(h, M) = L(h, E_M(h \oplus M)) \\ & g(h, M) = L(h, \tilde{E}_M(h \oplus M)) \\ & SIMD(M) = h, \text{ where:} \\ & (M_1, \dots, M_k) \leftarrow pal_{13}(M); h_0 \leftarrow IV \\ & h_i \leftarrow f(h_{i-1}, M_i) \text{ for } i = 1, \dots, k-1 \\ & h_k \leftarrow g(h_{k-1}, M_k) \\ & h \leftarrow chop_{l-n}[h_k] \\ \hline \\ & Skein: \\ & (n, l, m) \in \{(256, 256, 256), (512, 512, 512)\} \\ & E: \mathbb{Z}_2^m \times \mathbb{Z}_{1}^{128} \times \mathbb{Z}_{2}^{l} \to \mathbb{Z}_2^m \text{ a tweakable block cipher} \\ & f(h, M) = E_{h,T}(M) \oplus M \\ \hline \\ & Skein(M) = h, \text{ where:} \\ \hline \end{aligned}$
$\begin{split} & [1, z_{k}^{-1} \times \mathbb{Z}_{2}^{m} \to \mathbb{Z}_{2}^{-1} \text{ a linear function} \\ & f(h, M) = P(L(h, M)) \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	$\begin{split} & E: \mathbb{Z}_{2}^{l} \times \mathbb{Z}_{2}^{m+s+t} \to \mathbb{Z}_{2}^{l} \text{ a block cipher} \\ & f(h, M, S, C) = E_{M, S, C}(h) \oplus h \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$
$\begin{split} & [I : \mathbb{Z}_{2}^{1} \times \mathbb{Z}_{2}^{m} \to \mathbb{Z}_{2}^{1} \text{ a linear function} \\ & f(h, M) = P(L(h, M)) \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	$\begin{split} & E: \mathbb{Z}_{2}^{l} \times \mathbb{Z}_{2}^{m+s+t} \to \mathbb{Z}_{2}^{l} \text{ a block cipher} \\ & f(h, M, S, C) = E_{M, S, C}(h) \oplus h \\ & SHAvite-3(M) = h_k, \text{ where:} \\ & (M_1, \dots, M_k) \leftarrow pad_{12}(M); h_0 \leftarrow IV \\ & S \in \mathbb{Z}_{2}^{l}; (C_i)_{i=1}^{k} \text{ HAIFA-counter} \\ & h_i \leftarrow f(h_{i-1}, M_i, S, C_i) \text{ for } i = 1, \dots, k \\ \hline \\ & SIMD: \\ & (n, l, m) \in \{(256, 512, 512), (512, 1024, 1024)\} \\ & E, \tilde{E}: \mathbb{Z}_{2}^{l} \times \mathbb{Z}_{2}^{m} \to \mathbb{Z}_{2}^{l} \text{ block ciphers} \\ & f(h, M) = L(h, E_M(h \oplus M)) \\ & g(h, M) = L(h, \tilde{E}_M(h \oplus M)) \\ & SIMD(M) = h, \text{ where:} \\ & (M_1, \dots, M_k) \leftarrow pad_{13}(M); h_0 \leftarrow IV \\ & h_i \leftarrow f(h_{i-1}, M_i) \text{ for } i = 1, \dots, k-1 \\ & h_k \leftarrow g(h_{k-1}, M_k) \\ & h \leftarrow chop_{l-n}[h_k] \\ \hline \\ & Skein: \\ & (n, l, m) \in \{(256, 256, 256), (512, 512, 512)\} \\ & E: \mathbb{Z}_i^m \times \mathbb{Z}_{2}^{128} \times \mathbb{Z}_{2}^{l} \to \mathbb{Z}_{2}^{m} \text{ a tweakable block cipher} \\ & f(h, T, M) = E_{h,T}(M) \oplus M \\ \\ & Skein(M) = h, \text{ where:} \\ & (M_1, \dots, M_k) \leftarrow pad_{14}(M); h_0 \leftarrow IV \\ & (T_i)_{i=1}^k \text{ round-specific tweaks} \\ \hline \end{aligned}$
$\begin{split} & [I : \mathbb{Z}_{2}^{1} \times \mathbb{Z}_{2}^{m} \to \mathbb{Z}_{2}^{1} \text{ a linear function} \\ & f(h, M) = P(L(h, M)) \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	$\begin{split} & E: \mathbb{Z}_{2}^{l} \times \mathbb{Z}_{2}^{m+s+t} \to \mathbb{Z}_{2}^{l} \text{ a block cipher} \\ & f(h, M, S, C) = E_{M, S, C}(h) \oplus h \\ & SHAvite-3(M) = h_k, \text{ where:} \\ & (M_1, \dots, M_k) \leftarrow pad_{12}(M); h_0 \leftarrow IV \\ & S \in \mathbb{Z}_{2}^{l}; (C_i)_{i=1}^{i} \text{ HAIFA-counter} \\ & h_i \leftarrow f(h_{i-1}, M_i, S, C_i) \text{ for } i = 1, \dots, k \\ \hline \\ & SIMD: \\ & (n, l, m) \in \{(256, 512, 512), (512, 1024, 1024)\} \\ & E, \tilde{E}: \mathbb{Z}_{2}^{l} \times \mathbb{Z}_{2}^{m} \to \mathbb{Z}_{2}^{l} \text{ block ciphers} \\ & f(h, M) = L(h, E_M(h \oplus M)) \\ & g(h, M) = L(h, \tilde{E}_M(h \oplus M)) \\ & SIMD(M) = h, \text{ where:} \\ & (M_1, \dots, M_k) \leftarrow pad_{13}(M); h_0 \leftarrow IV \\ & h_i \leftarrow f(h_{i-1}, M_i) \text{ for } i = 1, \dots, k - 1 \\ & h_k \leftarrow g(h_{k-1}, M_k) \\ & h \leftarrow chop_{l-n}[h_k] \\ \hline \\ & Skein: \\ & (n, l, m) \in \{(256, 256, 256), (512, 512, 512)\} \\ & E: \mathbb{Z}_2^m \times \mathbb{Z}_{12}^{128} \times \mathbb{Z}_2^l \to \mathbb{Z}_2^m \text{ a tweakable block cipher} \\ & f(h, T, M) = E_{h,T}(M) \oplus M \\ \hline \\ & Skein(M) = h, \text{ where:} \\ & (M_1, \dots, M_k) \leftarrow pad_{14}(M); h_0 \leftarrow IV \\ & (T_i)_{i=1}^k \text{ round-specific tweaks} \\ & h_i \leftarrow f(h_{i-1}, T_i, M_i) \text{ for } i = 1, \dots, k \\ & h_i \leftarrow f(h_{i-1}, T_i, M_i) \text{ for } i = 1, \dots, k \\ \end{cases} $
$\begin{split} & [I : \mathbb{Z}_{2}^{1} \times \mathbb{Z}_{2}^{m} \to \mathbb{Z}_{2}^{1} \text{ a linear function} \\ & f(h, M) = P(L(h, M)) \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	$\begin{split} & E: \mathbb{Z}_{2}^{l} \times \mathbb{Z}_{2}^{m+s+t} \to \mathbb{Z}_{2}^{l} \text{ a block cipher} \\ & f(h, M, S, C) = E_{M, S, C}(h) \oplus h \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$

Fig. 1. The padding rules employed by the functions are summarized in App. B. In all algorithm descriptions, IV denotes an initialization vector, h denotes state values, M denotes message blocks, S denotes a (fixed) salt, C denotes a counter and T denotes a tweak. The functions L, L', Exp underlying BLAKE, BMW, ECHO, Fugue, Hamsi and Luffa, are explained in the corresponding section.

Security of BMW. The compression function of BMW shows similarities with the PGV3 compression function [15], but no security results are known for this variation. Thm. 1 applies to BMW, where the final transformation has no message block as input. Furthermore, albeit no indifferentiability proof for the BMW hash function is known, the results of [19] give some confidence for this: BMW can be seen as a combination of the HMAC construction and the chop-construction, both proven indifferentiable from a random oracle.

3.3. The **CubeHash** hash function [7] is a chop-MD construction, with a final transformation before chopping. The compression function f is permutation based, and the final transformation gconsists of flipping a certain bit in the state and applying 10 more compression function rounds on zero-messages.

Security of CubeHash. The compression function of CubeHash is based on one permutation, and collisions and preimages for the compression function can be found in one query to the permutation [14]. The final transformation of CubeHash consists of ten compression function rounds with zeromessages, preceded by one bit flip in the chaining. As a consequence, throughout the execution of CubeHash, in total at most m + 1 out of l wires of the chaining are affected by message injection. Therefore this construction follows the sponge design with 'rate' m + 1, and 'capacity' l - m - 1, and the indifferentiability result of [8] carries over⁶.

3.4. The **ECHO** hash function [6] is a chop-HAIFA construction. The message blocks are accompanied with a HAIFA-counter, and more generally, the function employs a suffix- and prefix-free padding rule. The compression function f is block cipher based⁷. It moreover employs a linear function L that chops the state in blocks of length l bits, and XORs these.

Security of ECHO. The compression function of ECHO is a 'chopped single call Type-I' compression function in the categorization of [47]. Therefore, the results of [47, Thm. 15] carry over, yielding optimal security bounds for the compression function. Observe that these results can easily be adjusted to obtain bound $\mathbf{Adv}_{\mathsf{chop}\,\circ f}^{\mathrm{col}} = \Theta(q^2/2^n)$. ECHO is a combination of HAIFA and chop-MD, but it is unclear whether all HAIFA security properties hold after chopping. However, Thm. 1 applies to ECHO, and as a consequence we obtain $\mathbf{Adv}_{\mathcal{H}}^{\mathrm{col}} = \Theta(q^2/2^n)$. Furthermore, the ECHO hash function is indifferentiable from a random oracle if the underlying compression function is assumed to be ideal, due to the chopping function at the end [19]. However, the compression function of ECHO is easily differentiable from a random oracle [27].

3.5. The **Fugue** hash function [30] is a chop-MD construction, with a final transformation before chopping. The hash function employs a suffix-free padding rule. The compression function f is permutation based, and the final transformation consists of a permutation \tilde{P} which differs from P in the parametrization. The compression function employs a linear function L for message injection (TIX of [30]).

Security of Fugue. The compression function of Fugue is based on one permutation, and collisions and preimages for the compression function can be found in one query to the permutation [14]. As a consequence, the result of Thm. 1 is irrelevant, even though the padding rule of Fugue is suffix-free. The Fugue hash function borrows characteristics from the sponge design, and ideas from the indifferentiability proof of [8] may carry over. This is, however, not immediately clear due to

⁶ The sponge design requires the last block of a padded message to be non-zero, which is not the case for **CubeHash**. However, in case the squeezing of the sponge takes only one round, this requirement is not needed for the indifferentiability proof.

⁷ As observed in [6], the core part of the compression function can be seen as a permutation keyed by the salt and counter, which we view here as a block cipher. This cipher is AES-based.

the final transformation before chopping.

3.6. The **Grøstl** hash function [28] is a chop-MD construction, with a final transformation before chopping. The hash function employs a suffix-free padding rule. The compression function f is permutation based, and the final transformation g is defined as $g(h) = P(h) \oplus h$.

Security of Grøstl. The compression function of Grøstl is permutation based, and the results of [45,46] apply. Furthermore, the preimage resistance of the compression function is analyzed in [26], and an upper bound for collision resistance can be obtained easily. As a consequence, we obtain tight security bounds on the compression function, $\mathbf{Adv}_{f}^{\text{pre}} = \Theta(q^2/2^l)$ and $\mathbf{Adv}_{f}^{\text{col}} = \Theta(q^4/2^l)$. Thm. 1 applies to Grøstl, where the final transformation has no message block as input. Observe that $\mathsf{chop}_{l-n} \circ g$ is collision resistant with bound $\Theta(q^2/2^n)$, and as a consequence, we obtain $\mathbf{Adv}_{\mathcal{H}}^{\text{col}} = \Theta(q^2/2^n)$. Furthermore, the Grøstl hash function is proven indifferentiable from a random oracle if the underlying permutations are ideal [1].

3.7. The **Hamsi** hash function [34] is a MD construction, with a final transformation before chopping. The hash function employs a suffix-free padding rule. The compression function f is permutation based, but the last round is executed with a compression function g based on a permutation \tilde{P} which differs from P in the parametrization. The compression functions employ a linear code Exp for message injection [34].

Security of Hamsi. The compression function of Hamsi is a 'chopped single call Type-I' compression function in the categorization of [47]. Therefore, the results of [47, Thm. 15] carry over, yielding optimal security bounds for the compression function. Observe that these bounds also apply to the function g. Thm. 1 applies to Hamsi, and as a consequence we obtain $\mathbf{Adv}_{\mathcal{H}}^{col} = \Theta(q^2/2^n)$. Furthermore, albeit no indifferentiability proof for the Hamsi hash function is known, the results of [19] give some confidence for this: Hamsi can be seen as a variation of the NMAC construction, which is proven indifferentiable from a random oracle.

3.8. The **JH** hash function [51] is a chop-MD construction. The hash function employs a suffix-free padding rule. The compression function f is permutation based.

Security of JH. The compression function of JH is based on one permutation, and collisions and preimages for the compression function can be found in one query to the permutation [14]. As a consequence, the result of Thm. 1 is irrelevant, even though the padding rule of JH is suffix-free. The JH hash function is proven indifferentiable from a random oracle if the underlying permutation is assumed to be ideal [11].

3.9. The **Keccak** hash function [9] is a chop-MD construction. The compression function f is permutation based. The hash function output is obtained by chopping off l - n bits of the state⁸. Notice that the parameters of Keccak satisfy l = 2n + m.

Security of Keccak. The compression function of Keccak is based on one permutation, and collisions and preimages for the compression function can be found in one query to the permutation [14]. The Keccak hash function is proven indifferentiable from a random oracle if the underlying permutation is assumed to be ideal [8].

3.10. The **Luffa** hash function [18] is a chop-MD construction, with a final transformation before chopping. The compression function f is permutation based, and the final transformation g is built on this compression function and a linear function L' that chops the state in blocks of length m

 $^{^{8}}$ We notice that sponge functions are designed more general [10], but for Keccak this description suffices.

bits, and XORs these. The compression function employs a linear function L for message injection (MI of [18])⁹. Notice that the state size of Luffa satisfies $l = w \cdot m$.

Security of Luffa. The compression function of Luffa is based on w permutations executed independently. As a consequence, collisions and preimages for the compression function can be found in at most 5 queries to the permutations [14]. The Luffa hash function borrows characteristics from the sponge design, if the permutation P consisting of the w permutations P_i is considered ideal, and ideas from the indifferentiability proof of [8] may carry over. However, for the case of w different permutations P_i this is not immediately clear.

3.11. The **Shabal** hash function [17] is a chop-MD construction. The message blocks are accompanied with a counter, and the last block is iterated three times. In particular, the function employs a suffix- and prefix-free padding rule. The compression function f is block cipher based¹⁰. Notice that the parameters of Shabal satisfy l = 384 + 2m.

Security of Shabal. A bound on the collision resistance of the compression function of Shabal is derived in [17]. Concretely, it is proven that the Shabal compression function is collision resistant up to $q = 2^{(l-m)/2}$ queries. Thm. 1 applies to Shabal. Collision and preimage resistance of Shabal are studied in [17], yielding optimal bounds $\mathbf{Adv}_{H}^{\text{pre}} = \Theta(q/2^n)$ and $\mathbf{Adv}_{H}^{\text{col}} = \Theta(q^2/2^n)$. Furthermore, the same authors prove the Shabal hash function to be indifferentiable from a random oracle if the underlying block cipher is assumed to be ideal [17].

3.12. The **SHAvite-3** hash function [13] is a HAIFA construction. The message blocks are accompanied with a HAIFA-counter, and more generally, the function employs a suffix- and prefix-free padding rule. The compression function f is block cipher based.

Security of SHAvite-3. The compression function of SHAvite-3 is the PGV5 compression function, and the security results of [15] carry over. As a consequence, we obtain optimal security bounds on the compression function. The mode of operation of SHAvite-3 is based on the HAIFA structure, and as a consequence all security properties regarding this type hold [12]. In particular, the design preserves collision resistance, and as a consequence, we obtain $\mathbf{Adv}_{\mathcal{H}}^{col} = \Theta(q^2/2^n)$. Also, the design is secure against second preimage attacks. Finally, the SHAvite-3 hash function is indifferentiable from a random oracle if the underlying compression function is assumed to be ideal, due to the prefix-free padding [19].

3.13. The **SIMD** hash function [36] is a chop-MD construction, with a final transformation before chopping. The hash function employs a suffix-free padding rule. The compression function f is block cipher based, but the last round is executed with a compression function g based on a block cipher \tilde{E} which differs from E in the parametrization. These function employ a quasi-group operation¹¹ L [36].

Security of SIMD. The compression function of SIMD is a 'rate-1 Type-I' compression function in the categorization of [47]. Therefore, the results of [47, Thm. 6] carry over, yielding optimal security bounds for the compression function. Observe that these bounds also apply to the function g. Observe moreover that these results can easily be adjusted to obtain bound $\mathbf{Adv}_{chop\,og}^{col} = \Theta(q^2/2^n)$. Thm. 1 applies to SIMD, and as a consequence we obtain $\mathbf{Adv}_{\mathcal{H}}^{col} = \Theta(q^2/2^n)$. Furthermore, albeit no indifferentiability proof for the SIMD hash function is known, the results of [19] give some confidence for this: SIMD can be seen as a combination of a variation of the NMAC construction, and

⁹ We defined the output transformation in a slightly more complicated but unified way. Essentially, Luffa₂₅₆ simply outputs L'(h). Observe that we implicitly captured the extra compression function call in the adjusted padding.

 $^{^{10}}$ Essentially, it is a permutation tweaked by a 1024-bit key, which we view here as a block cipher.

¹¹ For any of the variables fixed, the function L is a permutation.

the chop-construction, both proven indifferentiable from a random oracle.

3.14. The **Skein** hash function [23] is an MD construction. The message blocks are accompanied with a round-specific tweak¹², and more generally, the function employs a suffix- and prefix-free padding rule. The compression function f is based on a tweakable block cipher.

Security of Skein. The compression function of Skein is the PGV1 compression function, with a difference that a tweak is involved. As claimed in [5], the results of [15] carry over, which in turn results in an security bounds on the compression function. Thm. 1 applies to Skein, and as a consequence we obtain $\mathbf{Adv}_{\mathcal{H}}^{\text{col}} = \Theta(q^2/2^n)$. Furthermore, the Skein hash function is proven indifferentiable from a random oracle if the underlying tweakable block cipher is assumed to be ideal [5]. This proof is based on the preimage-awareness approach [22].

4 Summary and Conclusions

In this survey, we compared the security achieved by the remaining round 2 SHA-3 hash function candidates, when their underlying primitives are assumed to be ideal. The main contribution of this paper is the summary of the security reductions for the hash function candidates in Table 1. Before giving an interpretation of these results, we first make some remarks on the provided classification.

- Assuming ideality of the underlying primitives (permutations or block ciphers) is not realistic. In particular, none of the candidates' primitives is ideal, and some even have identified weaknesses. However, assuming ideality of these primitives gives significantly more confidence in the security of the higher level structure and is the only way to get useful (and comparable) security bounds on the candidate hash functions;
- The fact that different hash functions have different bounds, does not directly imply that one of the functions offers a higher level of security: albeit the underlying structure of the basic primitives is abstracted away (see the previous item), still many differences among the schemes remain (chaining size, message input size, etc.). Moreover, not all bounds are tight.
- Security of the compression function. For the sponge(-like) hash functions, CubeHash, Fugue, JH, Keccak and Luffa, collisions and preimages for the compression function can be found in a constant number of queries. This fact does not have direct implications for the security of the hash function. In fact, the only consequence is that it becomes unreasonable to assume ideality of the compression function in order to prove security at a higher level. Most of the remaining nine candidates are provided with a tight bound for collision and/or preimage resistance of the compression function, merely due to the results of [15,47]. Single exceptions are BLAKE and BMW, for which the results of [47] are not directly applicable. No security results are known for the second preimage resistance of the nine remaining candidates: albeit collision resistance implies second preimage resistance [44], the obtained security bounds would be below the requirements of NIST [41];
- (Second) preimage resistance of the hash function. Most of the hash functions are not provided with a security proof for preimage and second preimage resistance. The MD design does not preserve (second) preimage resistance [2], and hence proving security against these attacks

¹² More formally, the design is based on the UBI (unique block identifier) chaining mode which queries its underlying tweakable block cipher on additional tweaks, that differ in each iteration. The general description of Skein involves a specific final transformation. In the primary proposal of the hash function, however, this final transformation consists of another execution of the compression function, with an output-specific tweak and with message 0^m . As we included this final message block in the padding, the given description of Skein suffices.

could be attempted either by making a different (possibly weaker) assumption on the compression function or by basing it directly on the ideality of the underlying block cipher or permutation(s). We notice that a fruitful direction might be the graph based approach followed by the designers of Shabal [17];

- Collision resistance of the hash function. Except for the sponge(-like) functions, the collision resistance preservation result of Thm. 1 (App. A) applies to all candidates. This theorem results in a bound on the generic collision resistance of the hash function, which, intuitively, means that 'finding collisions for the hash function is at least as hard as finding collisions for (one of) the underlying function(s)'. Together with the collision resistance bounds on the compression functions in the ideal model, the preservation result allows for obtaining a collision resistance bound on the entire hash function. This leads to optimal tight bounds on the collision resistance for ECHO, Grøstl, Hamsi, SHAvite-3, SIMD and Skein. For Shabal, the same bound is proven differently. Again, the graph based approach may be suitable to prove collision resistance of the candidates for which no collision resistance bound is yet obtained;
- Indifferentiability of the hash function. Nine of the candidates are proven indifferentiable from a random oracle, and three of the candidates have a similar construction to the ones proven in [19]. The remaining two, Fugue and Luffa, resemble the sponge construction, but it is not clear whether the proof of [8] carries over. We also note that there exists some differences among the bounds. For instance, for the hash function variant outputting n = 512 bits, the indifferentiability bounds are varying between $O(Kq^3/2^{512})$ and $O((Kq)^2/2^{1024})$. These differences are mainly caused by the fact that the bounds are parameterized by the internal chaining value size l, rather than the output size n (as is the case for bounds on the collision resistance). As a consequence, a higher state size often results in a better indifferentiability bound.

A hash function that is provided with a sound security analysis, is not necessarily a 'good' function, nor is it a 'bad' function if only little security results are known. The quality of the hash function depends further on other criteria not covered in this classification, such as the strength of the basic underlying primitives and software/hardware performance. Yet, security reductions guarantee that the hash function has no severe structural weaknesses, and in particular that the design does not suffer weaknesses that can be trivially exploited by cryptanalysts. Therefore, we see the provided security analysis as a fair comparison of the SHA-3 candidates and an important contribution to the selection of the finalists.

To the best of our knowledge, we included all security results to date. However, we welcome suggestions, remarks or information about provable security results that could improve the quality of this work.

ACKNOWLEDGMENTS. This work has been funded in part by the IAP Program P6/26 BCRYPT of the Belgian State (Belgian Science Policy), and in part by the European Commission through the ICT program under contract ICT-2007-216676 ECRYPT II. The first author is supported by a Ph.D. Fellowship from the Flemish Research Foundation (FWO-Vlaanderen). The second author is supported by a Ph.D. Fellowship from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen).

We would like to thank Praveen Gauravaram for the helpful comments.

References

 E. Andreeva, B. Mennink, and B. Preneel. On the indifferentiability of the Grøstl hash function. In SCN '10, LNCS, Berlin, 2010. Springer-Verlag. To appear. Available at http://eprint.iacr.org/2010/298.

Skein	SIMD	SHAvite-3	Shabal	Luffa	Keccak	Я	Hamsi	Grøstl	Fugue	ECHO	CubeHash	BMW	BLAKE	
MD	chop-(MD+FT)	HAIFA	chop-MD	chop-(MD+FT)	chop-MD	chop-MD	MD+FT	chop-(MD+FT)	chop-(MD+FT)	chop-HAIFA	chop-(MD+FT)	chop-(MD+FT)	HAIFA	type
<u>ح</u>	<u>ح</u>	ح ح	ح ح	X	× ×	< ۲	く 、	く 、	く ~	<u>ح</u>	<i>x</i>	< ۲	ح ح	sf p
(256, 256, 256) or $(512, 512, 512)$	$\begin{array}{c} (256, 512, 512) \text{ or} \\ (512, 1024, 1024) \end{array}$	$\begin{array}{c} (256, 256, 512) \text{ or} \\ (512, 512, 1024) \end{array}$	(256, 1408, 512) or (512, 1408, 512)	$\begin{array}{c} (256, 768, 256) \text{ or} \\ (512, 1278, 256) \end{array}$	$\begin{array}{c} (256, 1600, 1088) \text{ or} \\ (512, 1600, 576) \end{array}$	$\begin{array}{c} (256, 1024, 512) \text{ or} \\ (512, 1024, 512) \end{array}$	$\begin{array}{c} (256, 256, 32) \text{ or} \\ (512, 512, 64) \end{array}$	$\begin{array}{c} (256, 512, 512) \text{ or} \\ (512, 1024, 1024) \end{array}$	$\begin{array}{c} (256, 960, 32) \text{ or} \\ (512, 1152, 32) \end{array}$	(256, 512, 1536) or (512, 1024, 1024)	$\begin{array}{c} (256, 1024, 256) \text{ or} \\ (512, 1024, 256) \end{array}$	$\begin{array}{c} (256, 512, 512) \text{ or} \\ (512, 1024, 1024) \end{array}$	$\begin{array}{c} (256, 256, 512) \text{ or} \\ (512, 512, 1024) \end{array}$	$\mathbf{f} = (n, l, m)$
$\Theta(q/2^n)$ E ideal	$\Theta(q/2^l)$ E ideal	$\Theta(q/2^n)$ E ideal		$\begin{array}{c} \Theta(1) \\ P_i \text{ ideal} \end{array}$	$\begin{array}{c} \Theta(1) \\ P \text{ ideal} \end{array}$	$\begin{array}{c} \Theta(1) \\ P \text{ ideal} \end{array}$	$\Theta(q/2^n)$ P ideal	$\begin{array}{c} \Theta(q^2/2^l) \\ P, Q \text{ ideal} \end{array}$	$\begin{array}{c} \Theta(1) \\ P \text{ ideal} \end{array}$	$\Theta(q/2^l)$ E ideal	$\begin{array}{c} \Theta(1) \\ P \text{ ideal} \end{array}$	PGV3-like E ideal	PGV5-like E ideal	$\mathbf{Adv}_f^{\mathrm{pre}}$
				$\begin{array}{c} \Theta(1) \\ P_i \text{ ideal} \end{array}$	$\begin{array}{c} \Theta(1) \\ P \text{ ideal} \end{array}$	$ \begin{array}{c} \Theta(1) \\ P \text{ ideal} \end{array} $			$\begin{array}{c} \Theta(1) \\ P \text{ ideal} \end{array}$		$\begin{array}{c} \Theta(1) \\ P \text{ ideal} \end{array}$			$\operatorname{Adv}_f^{\operatorname{sec}}$
$\Theta(q^2/2^n)$ E ideal	$\begin{array}{l} \Theta(q^2/2^l) \\ E \text{ ideal} \end{array}$	$\begin{array}{c} \Theta(q^2/2^n) \\ E \text{ ideal} \end{array}$	$O(q^2/2^{l-m})$ E ideal	$\begin{array}{c} \Theta(1) \\ P_i \text{ ideal} \end{array}$	$\begin{array}{c} \Theta(1) \\ P \text{ ideal} \end{array}$	$\begin{array}{c} \Theta(1) \\ P \text{ ideal} \end{array}$	$\Theta(q^2/2^n) \ P ext{ ideal}$	$\Theta(q^4/2^l)$ P, Q ideal	$\begin{array}{c} \Theta(1) \\ P \text{ ideal} \end{array}$	$\Theta(q^2/2^l)$ E ideal	$\begin{array}{c} \Theta(1) \\ P \text{ ideal} \end{array}$	PGV3-like E ideal	PGV5-like E ideal	$\mathbf{Adv}_f^{\mathrm{col}}$
			$\left. egin{array}{c} \Theta(q/2^n) \\ E ext{ ideal} \end{array} ight.$											$\mathbf{Adv}^{\mathrm{pre}}_{\mathcal{H}}$
		$\Theta(q/2^n) \ f \ ext{ideal}$								f ideal			$\Theta(q/2^n)$ f ideal	$\mathbf{Adv}^{\mathrm{sec}}_{\mathcal{H}}$
$\leq \mathbf{Adv}^{\mathrm{gcol}}_{f}$	$\leq \operatorname{Adv}_{f}^{\operatorname{gcol}} + \operatorname{Adv}_{\operatorname{chop}\circ g}^{\operatorname{gcol}}$	$\leq \mathbf{Adv}^{\mathrm{gcol}}_{f}$	$\leq \mathbf{Adv}^{\mathrm{gcol}}_{chop\circf}$	(no sf padding, f insecure)	(no sf padding, f insecure)	(f insecure)	$\leq \operatorname{Adv}_{f}^{\operatorname{gcol}} + \operatorname{Adv}_{g}^{\operatorname{gcol}}$	$\leq \operatorname{\mathbf{Adv}}_{f}^{\operatorname{gcol}} + \operatorname{\mathbf{Adv}}_{\operatorname{chop} \circ g}^{\operatorname{gcol}}$	(f insecure)	$\leq \operatorname{\mathbf{Adv}^{\mathrm{gcol}}_{\mathrm{chop}\circf}}$	(no sf padding, f insecure)	$\leq \mathbf{Adv}^{\mathrm{gcol}}_f + \mathbf{Adv}^{\mathrm{gcol}}_{\mathrm{chop}\circ g}$	$\leq \mathbf{Adv}^{\mathrm{gcol}}_{f}$	$\mathbf{Adv}^{\mathrm{gcol}}_{\mathcal{H}}$
$\Theta(q^2/2^n)$ E ideal (proof by preservation)	$ \begin{array}{l} \Theta(q^2/2^n) \\ E, \tilde{E} \text{ ideal (proof by preservation)} \end{array} $	$\Theta(q^2/2^n)$ E ideal (proof by preservation)	$\Theta(q^2/2^n)$ E ideal				$\Theta(q^2/2^n)$ P, \tilde{P} ideal (proof by preservation)	$\Theta(q^2/2^n)$ P, Q ideal (proof by preservation)		$\Theta(q^2/2^n)$ E ideal (proof by preservation)				$\mathbf{Adv}^{\mathrm{col}}_{\mathcal{H}}$
$O((Kq)^2/2^n) \ E ext{ ideal}$	${ m chopNMAC-like}\ f,g \ { m ideal}$	$O((Kq)^2/2^n)$ E ideal	$\begin{array}{c} O((Kq)^2/2^{l-m}) \\ E \text{ ideal} \end{array}$		$O((Kq)^2/2^{l-m})$ P ideal	$O\left(rac{q^3}{2^{l-m}}+rac{Kq^3}{2^{l-n}} ight)$ $P ext{ ideal}$	NMAC-like f,g ideal	$O((Kq)^4/2^l)$ P, Q ideal		$O((Kq)^2/2^{l-n}) \\ f \text{ ideal}$	$O((Kq)^2/2^{l-m})$ P ideal	$_{f}^{chopHMAC-like}$	$O((Kq)^2/2^n)$ f ideal	$\operatorname{\mathbf{Adv}}_{\mathcal{H}}^{\operatorname{pro}}$

Table 1. A schematic summary of all results. The first column describes the hash function construction, and the second and third column show which hash functions have a suffix-free (sf) or prefix-free (pf) padding. The fourth column summarizes the main parameters n, l, m, which denote the hash function output size, the chaining value size and the message input size, respectively. In the remaining columns, the security bounds are summarized. A green box indicates the existence of a non-trivial upper bound, a red box means that an efficient adversary is known for the security notion, and a yellow box indicates that no result is known, but recent literature gives some confidence in the existence of a non-trivial bound. All other notions and notations and further explained in Sect. 2.

- E. Andreeva, G. Neven, B. Preneel, and T. Shrimpton. Seven-property-preserving iterated hashing: ROX. In ASIACRYPT '07, volume 4833 of LNCS, pages 130–146, Berlin, 2007. Springer-Verlag.
- 3. J.-P. Aumasson, L. Henzen, W. Meier, and R. Phan. SHA-3 proposal BLAKE, 2009.
- M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message authentication. In CRYPTO '96, volume 1109 of LNCS, pages 1–15, Berlin, 1996. Springer-Verlag.
- 5. M. Bellare, T. Kohno, S. Lucks, N. Ferguson, B. Schneier, D. Whiting, J. Callas, and J. Walker. Provable security support for the skein hash family. 2009.
- R. Benadjila, O. Billet, H. Gilbert, G. Macario-Rat, T. Peyrin, M. Robshaw, and Y. Seurin. SHA-3 Proposal: ECHO, 2009.
- 7. D. Bernstein. CubeHash specification, 2009.
- G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. On the indifferentiability of the sponge construction. In EUROCRYPT '08, volume 4965 of LNCS, pages 181–197, Berlin, 2008. Springer-Verlag.
- 9. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. The KECCAK sponge function family, 2009.
- 10. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Sponge functions, ECRYPT Hash Workshop 2007.
- 11. R. Bhattacharyya, A. Mandal, and M. Nandi. Security analysis of the mode of JH hash function. In *FSE '10*, volume 6147 of *LNCS*, Berlin, 2010. Springer-Verlag.
- E. Biham and O. Dunkelman. A framework for iterative hash functions HAIFA. Cryptology ePrint Archive, Report 2007/278, 2007.
- 13. E. Biham and O. Dunkelman. The SHAvite-3 Hash Function, 2009.
- J. Black, M. Cochran, and T. Shrimpton. On the impossibility of highly-efficient blockcipher-based hash functions. In EUROCRYPT '05, volume 3494 of LNCS, pages 526–541, Berlin, 2005. Springer-Verlag.
- J. Black, P. Rogaway, and T. Shrimpton. Black-box analysis of the block-cipher-based hash-function constructions from PGV. In CRYPTO '02, volume 2442 of LNCS, pages 320–335, Berlin, 2002. Springer-Verlag.
- C. Bouillaguet, P.-A. Fouque, A. Shamir, and S. Zimmer. Second preimage attacks on dithered hash functions. Cryptology ePrint Archive, Report 2007/395, 2007.
- E. Bresson, A. Canteaut, B. Chevallier-Mames, C. Clavier, T. Fuhr, A. Gouget, T. Icart, J.-F. Misarsky, M. Naya-Plasencia, P. Paillier, T. Pornin, J.-R. Reinhard, C. Thuillet, and M. Videau. Shabal, a Submission to NIST's Cryptographic Hash Algorithm Competition, 2009.
- 18. C. De Cannière, H. Sato, and D. Watanabe. Hash Function Luffa, 2009.
- J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-Damgård revisited: How to construct a hash function. In CRYPTO '05, volume 3621 of LNCS, pages 430–448, Berlin, 2005. Springer-Verlag.
- I. Damgård. A design principle for hash functions. In CRYPTO '89, volume 435 of LNCS, pages 416–427, Berlin, 1990. Springer-Verlag.
- Y. Dodis and P. Puniya. Getting the best out of existing hash functions; or what if we are stuck with SHA? In ACNS '08, volume 5037 of LNCS, pages 156–173, Berlin, 2008. Springer-Verlag.
- Y. Dodis, T. Ristenpart, and T. Shrimpton. Salvaging merkle-damgård for practical applications. In EURO-CRYPT '09, volume 5479 of LNCS, pages 371–388, Berlin, 2009. Springer-Verlag.
- 23. N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno, J. Callas, and J. Walker. The Skein Hash Function Family, 2009.
- N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno, J. Callas, and J. Walker. Engineering comparison of SHA-3 candidates. http://www.skein-hash.info/sha3-engineering, 2010.
- E. Fleischmann, C. Forler, and M. Gorski. Classification of the SHA-3 candidates. Cryptology ePrint Archive, Report 2008/511, 2008.
- P.-A. Fouque, J. Stern, and S. Zimmer. Cryptanalysis of tweaked versions of SMASH and reparation. In SAC '08, volume 5381 of LNCS, pages 136–150, Berlin, 2009. Springer-Verlag.
- 27. P. Gauravaram and N. Bagheri. ECHO compression function is not indifferentiable from a FIL-RO. 2010.
- 28. P. Gauravaram, L. Knudsen, K. Matusiewicz, F. Mendel, C. Rechberger, M. Schläffer, and S. Thomsen. Grøstl a SHA-3 candidate, 2009.
- D. Gligoroski, V. Klima, S. J. Knapskog, M. El-Hadedy, J. Amundsen, and S. F. Mjølsnes. Cryptographic Hash Function BLUE MIDNIGHT WISH, 2009.
- 30. S. Halevi, W. Hall, and C. Jutla. The Hash Function "Fugue", 2009.
- 31. S. Halevi and H. Krawczyk. Strengthening digital signatures via randomized hashing. In *CRYPTO '06*, volume 4117 of *LNCS*, pages 41–59, Berlin, 2006. Springer-Verlag.
- J. Kelsey and B. Schneier. Second preimages on n-bit hash functions for much less than 2ⁿ work. In EUROCRYPT '05, volume 3494 of LNCS, pages 474–490, Berlin, 2005. Springer-Verlag.
- 33. K. Kobayashi, J. Ikegami, S. Matsuo, K. Sakiyama, and K. Ohta. Evaluation of hardware performance for the SHA-3 candidates using SASEBO-GII. Cryptology ePrint Archive, Report 2010/010, 2010.
- 34. Ö. Küçük. The Hash Function Hamsi, 2009.
- 35. X. Lai and J. Massey. Hash function based on block ciphers. In *EUROCRYPT '92*, volume 658 of *LNCS*, pages 55–70, Berlin, 1992. Springer-Verlag.

- 36. G. Leurent, C. Bouillaguet, and P.-A. Fouque. SIMD is a Message Digest, 2009.
- 37. S. Lucks. A failure-friendly design principle for hash functions. In ASIACRYPT '05, volume 3788 of LNCS, pages 474–494, Berlin, 2005. Springer-Verlag.
- U. Maurer, R. Renner, and C. Holenstein. Indifferentiability, impossibility results on reductions, and applications to the random oracle methodology. In TCC '04, volume 2951 of LNCS, pages 21–39, Berlin, 2004. Springer-Verlag.
- R. Merkle. One way hash functions and DES. In CRYPTO '89, volume 435 of LNCS, pages 428–446, Berlin, 1990. Springer-Verlag.
- M. Nandi. Characterizing padding rules of MD hash functions preserving collision security. In ACISP '09, volume 5594 of LNCS, pages 171–184, Berlin, 2009. Springer-Verlag.
- 41. National Institute for Standards and Technology. Announcing Request for Candidate Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA3) Family, November 2007.
- B. Preneel, R. Govaerts, and J. Vandewalle. Hash functions based on block ciphers: A synthetic approach. In CRYPTO '93, volume 773 of LNCS, pages 368–378, Berlin, 1993. Springer-Verlag.
- P. Rogaway. Formalizing human ignorance. In VIETCRYPT '06, volume 4341 of LNCS, pages 211–228, Berlin, 2006. Springer-Verlag.
- 44. P. Rogaway and T. Shrimpton. Cryptographic hash-function basics: Definitions, implications, and separations for preimage resistance, second-preimage resistance, and collision resistance. In *FSE '04*, volume 3017 of *LNCS*, pages 371–388, Berlin, 2004. Springer-Verlag.
- 45. P. Rogaway and J. Steinberger. Security/efficiency tradeoffs for permutation-based hashing. In *EUROCRYPT* '08, volume 4965 of *LNCS*, pages 220–236, Berlin, 2008. Springer-Verlag.
- M. Stam. Beyond uniformity: Better security/efficiency tradeoffs for compression functions. In CRYPTO '08, volume 5157 of LNCS, pages 397–412, Berlin, 2008. Springer-Verlag.
- 47. M. Stam. Blockcipher-based hashing revisited. In *FSE '09*, volume 5665 of *LNCS*, pages 67–83, Berlin, 2009. Springer-Verlag.
- S. Tillich, M. Feldhofer, M. Kirschbaum, T. Plos, J.-M. Schmidt, and A. Szekely. High-speed hardware implementations of BLAKE, Blue Midnight Wish, CubeHash, ECHO, Fugue, Grøstl, Hamsi, JH, Keccak, Luffa, Shabal, SHAvite-3, SIMD, and Skein. Cryptology ePrint Archive, Report 2009/510, 2009.
- X. Wang, Y. Yin, and H. Yu. Finding collisions in the full SHA-1. In CRYPTO '05, volume 3621 of LNCS, pages 17–36, Berlin, 2005. Springer-Verlag.
- X. Wang and H. Yu. How to break MD5 and other hash functions. In EUROCRYPT '05, volume 3494 of LNCS, pages 19–35, Berlin, 2005. Springer-Verlag.
- 51. H. Wu. The Hash Function JH, 2009.

A Preservation of Collision Resistance

For the purpose of the analysis of the SHA-3 candidates, we generalize the well-known result by Merkle and Damgård. The result of Thm. 1 differs in three cases: we consider any suffix-free padding, the proof allows for different compression functions in one hash function evaluation, and it includes an optional chopping at the end. Related work can, a.o., be found in [39,20,21,40].

Theorem 1. Let $l, m, n \in \mathbb{N}$ such that $l \geq n$. Let $\mathsf{pad} : \mathbb{Z}_2^* \to (\mathbb{Z}_2^m)^*$ be a suffix-free padding and let $f, g : \mathbb{Z}_2^l \times \mathbb{Z}_2^m \to \mathbb{Z}_2^l$ be two compression functions. Consider the hash function $\mathcal{H} : \mathbb{Z}_2^* \to \mathbb{Z}_2^n$ defined as follows (cf. Fig. 2), where $h_0 = \mathsf{IV}$ is the initialization vector:

$$\begin{aligned} \mathcal{H}(M) = h, \ where: \ (M_1, \dots, M_k) = \mathsf{pad}(M), \\ h_i = f(h_{i-1}, M_i) \ for \ i = 1, \dots, k-1, \\ h_k = g(h_{k-1}, M_k), \\ h = \mathsf{chop}_{l-n}(h_k). \end{aligned}$$

Define the function $g': \mathbb{Z}_2^l \times \mathbb{Z}_2^m \to \mathbb{Z}_2^n$ by $g' = \operatorname{chop}_{l-n} \circ g$. Then, the advantage of finding collisions for \mathcal{H} is upper bounded by the advantage of finding collisions for f or g'. Formally, if f is (t_1, ε_1) collision secure, and g' is (t_2, ε_2) collision secure, then \mathcal{H} is (t, ε) collision secure for $\varepsilon = \varepsilon_1 + \varepsilon_2$, and $t = \min\{t_1, t_2\} - 2(K - 1)\tau_f$, where τ_f is the time to evaluate f and K is the maximum length of the messages, in blocks. *Proof.* Suppose \mathcal{A} is a (t, ε) collision finding attacker for \mathcal{H} . We construct collision finding adversaries \mathcal{B}_1 and \mathcal{B}_2 for f and g, respectively, using the following observation.

Let M, M' be two distinct messages such that $\mathcal{H}(M) = \mathcal{H}(M')$. Let (M_1, \ldots, M_k) be the padded message of M, and $(M'_1, \ldots, M'_{k'})$ be the padded message of M'. Define the intermediate state values h_i, h'_i similarly. A collision on M, M' means that $\mathsf{chop}_{l-n}(g(h_{k-1}, M_k)) = \mathsf{chop}_{l-n}(g(h'_{k'-1}, M'_{k'}))$. Now, if $(h_{k-1}, M_k) \neq (h'_{k'-1}, M'_{k'})$ this results in a collision for g'. Assume the contrary, and let $j \in \{1, \ldots, \min\{k, k'\} - 1\}$ be the minimal index such that $(h_{k-j-1}, M_{k-j}) \neq (h'_{k'-j-1}, M'_{k'-j})$. We notice that such index j exists: in case k = k' it exists as $M \neq M'$, and in case $k \neq k'$ it exists as the padding rule is suffix-free. By definition of the index j, we have $h_{k-j} = h'_{k'-j}$, and in particular we obtain a collision for f:

$$f(h_{k-j-1}, M_{k-j}) = h_{k-j} = h'_{k'-j} = f(h'_{k'-j-1}, M'_{k'-j}).$$

Both $\mathcal{B}_1, \mathcal{B}_2$ follow this procedure. If M, M' define a collision for f, \mathcal{B}_1 outputs this collision. Similarly for \mathcal{B}_2 and g'. Both adversaries work in time at most $t + 2(K-1)\tau_f$, from which we deduce $t \ge \min\{t_1, t_2\} - 2(K-1)\tau_f$. The messages M, M' define a collision for f or g'. Thus, we obtain $\varepsilon \le \varepsilon_1 + \varepsilon_2$.

In case the design is based on the compression function f only (but it may still include the chopping), the above result can easily be simplified to $\mathbf{Adv}_{\mathcal{H}}^{\mathrm{gcol}}(\mathcal{A}) \leq \mathbf{Adv}_{f'}^{\mathrm{gcol}}(\mathcal{B}_1)$, where f' is defined by $f' = \mathsf{chop}_{l-n} \circ f$. Observe that this result also holds if l = n, and in particular, the basic theorems of Merkle and Damgård are covered as well. Observe that Thm. 1 can be generalized arbitrarily, e.g. to more different compression functions, but for the purpose of this paper, the mentioned generalization of the Merkle-Damgård structure suffices.

Fig. 2. A generalized Merkle-Damgård structure. f, g are two compression functions, and $chop_{l-n}$ chops off l-n bits of the state.

B Padding Rules

The padding rules of all SHA-3 hash function candidates are summarized. All padding functions output bit strings parsed as sequences of *m*-bit blocks, where *m* is the message block length of the corresponding function. Formally, for each candidate, for $n \in \{256, 512\}$ the padding function pad : $\mathbb{Z}_2^* \to (\mathbb{Z}_2^m)^*$ is defined as follows. For the hash functions BLAKE, ECHO, Shabal, SHAvite-3 and Skein, the complete padding rule of the corresponding hash function is additionally defined by a counter or tweak (as explained in Sect. 3). Particularly, all hash functions employ an injective

padding rule.

 $\mathsf{pad}_1(M) = M \|1\| 0^{-|M| - t - 2 \mod m} \|1\| \langle |M| \rangle_t,$ BLAKE : $\mathsf{pad}_2(M) = M \|1\| 0^{-|M| - 65 \mod m} \|\langle |M| \rangle_{64},$ BMW : $\operatorname{pad}_{3}(M) = M \|1\| 0^{-|M|-1 \mod m},$ CubeHash : $\mathsf{pad}_4(M) = M \|1\| 0^{m-1-(|M|+144 \mod m)} \|\langle n \rangle_{16} \|\langle |M| \rangle_{128},$ ECHO : $\mathsf{pad}_{5}(M) = M \| 0^{-|M| \mod m} \| \langle |M| \rangle_{64},$ Fugue : $\mathsf{pad}_6(M) = M \|1\| 0^{-|M| - 65 \mod l} \|\langle \lceil (|M| + 65)/l \rceil \rangle_{64},$ Grøstl : $\operatorname{pad}_{7}(M) = M \|1\| 0^{-|M|-1 \mod m} \|\langle |M| \rangle_{64},$ Hamsi : $\mathsf{pad}_8(M) = M \|1\| 0^{383 + (-|M| \mod m)} \|\langle |M| \rangle_{128},$ JH : $\mathsf{pad}_9(M) = M \|1\| 0^{-|M|-1 \mod 8} \|\langle n/8 \rangle_8 \|\langle m/8 \rangle_8 \|1\| 0^{-(|M|-(|M| \mod 8))-25 \mod m},$ Keccak : $\operatorname{pad}_{10}(M) = M \|1\| 0^{(-|M|-1 \mod m)+256},$ Luffa : $\mathsf{pad}_{11}(M) = M \|1\| 0^{-|M| - 1 \bmod m},$ Shabal : SHAvite-3 : $pad_{12}(M) = M ||1||0^{-|M|-t-17 \mod m} ||\langle |M| \rangle_t ||\langle n \rangle_{16},$ $\mathsf{pad}_{13}^{12}(M) = M \| \mathbf{0}^{-|M| \bmod m} \| \langle |M| \rangle_m,$ SIMD : $\mathsf{Skein}^{13}: \quad \mathsf{pad}_{14}(M) = M' \| 0^{(-|M'| \bmod m) + m}, \text{where } M' = \begin{cases} M \text{ if } |M| \equiv 0 \bmod 8, \\ M \| 1 \| 0^{-|M| - 1 \bmod 8} \text{ otherwise.} \end{cases}$

¹³ For Skein, the null string λ is padded to $\mathsf{pad}(\lambda) = 0^{2m}$.