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Abstract. We give a simple example that there is no symbolic theory for exclusive
or (XOR) that is computationally sound.

1 Introduction

There are two main approaches on how to model and verify the security of protocols. In
the computational approach, protocol machines are modeled as computational entities
(e.g., Turing machines) that send and receive bitstrings. Cryptographic operations on
these bitstrings are modeled as algorithms on bitstrings; the adversary is allowed to
perform any polynomial-time computation. In the symbolic approach, messages are not
modeled as bitstrings, but as terms over a suitable algebra. The constructors in this
algebra model the various available cryptographic operations (such as encryption). The
adversary is limited to perform certain well-defined symbolic operations on the terms in
his knowledge (e.g., an adversary can derive a plaintext m if and only if he knows the
key k and the ciphertext enc(k,m)).

Obviously, the cryptographic approach is much closer to reality. The assumption that
the adversary will restrict himself to a small set of symbolic operations is not realistic.
Yet, there is a big advantage to the symbolic approach. Due to the simple rules that
govern the behavior of the adversary, security proofs in a symbolic model tend to be
much simpler than in the computational model. In many cases, symbolic security proofs
can be found by automated tools while in the computational case, only error-prone,
hand-written proofs based on complexity-theoretic reductions are known.

To get the best of both worlds, Abadi and Rogaway [AR02] suggested to study the
computational soundness of symbolic models. We call a symbolic model computationally
sound if the following holds: For any protocol that is secure in the symbolic model, the
same protocol is also secure in the computational model. Abadi and Rogaway also gave a
first computational soundness result for symbolic models for symmetric encryption; their
result was, however, limited to passive adversaries. Subsequent work generalized their
approach to deal with active adversaries. There are computational soundness results in
the active case for public key encryption (Backes, Pfitzmann, and Waidner [BPW03];
Micciancio and Warinschi [MW04]), for signatures (Backes, Pfitzmann, and Waidner
[BPW03]; Cortier and Warinschi [CW05]), for hash functions (in the random oracle
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model; Cortier, Kremer, Küsters, and Warinschi [CKKW06]), and for zero-knowledge
proofs (Backes and Unruh [BU08]).

Yet, an example for a primitive that so-far has defied computational soundness results
is the exclusive-or (XOR).1 Backes and Pfitzmann [BP05] even show that with a common
proof technique, no computational soundness result for XOR can be obtained. That
proof technique is based on the idea that there needs to be a parsing function that maps
bitstrings to corresponding symbolic terms; at the time, it was the only known technique.
Since then, however, it was noticed that the parsing function could be implemented
lazily in the following sense: If a particular bitstring cannot be parsed, parsing can
be delayed until enough information is known (Backes, Hofheinz, and Unruh [BHU09]).
The impossibility proof of Backes and Pfitzmann does not apply to proofs based on lazy
parsing.

We give a simple example that shows that we cannot expect to get computationally
sound symbolic models for XOR. Our example does not only apply to standard symbolic
models of XOR (which usually model the commutativity, the associativity, and the
cancellation property of XOR), instead, it applies to any “reasonable” symbolic model
of XOR. (We discuss what we mean by “reasonable” in the next section.) Our proof
is, instead, only based on the assumption that in the computational model, the XOR
operation is indeed implemented as a bitwise XOR. We believe this to be a reasonable
assumption since otherwise the operation would not be called XOR.

2 The impossibility of computationally sound XOR

In this section, we give an example why computationally sound XOR is impossible. Our
example works for essentially all (reasonable) symbolic models. Yet, we do not try to
give a precise definition of what a symbolic model is and what the class of reasonable
symbolic models is. This is due to the fact that our example is quite simple, and we
believe that directly checking whether our example applies to a specific setting would
be at least as simple as checking whether an abstract definition of “reasonable symbolic
models” is fulfilled.

Informally, we assume the following conditions to be fulfilled by the symbolic model:

• The symbolic model contains a binary operation XOR (written ⊕ in the following).
We do not impose any conditions on the symbolic modeling of ⊕. In particular, we
do not assume that ⊕ is associative, commutative, or has the cancellation property
x⊕ x = 0.

• We assume the existence of an infinite set of nonces that can occur within terms.
The intuitive meaning of such nonces is that of randomly chosen values. We assume
that protocols can use as many different nonces as needed.

1The XOR of two bitstrings is assumed to be implemented computationally as the bitwise XOR of
these bitstrings. We do not specify what happens if two bitstrings of different length are XORed; this
case will not occur in our analysis.
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• We assume an equality relation = on terms with the following property: If a nonce
C does not occur in a term t, then t 6= C.

This is our strongest assumption, but it is justified by the following observation:
Since each nonce symbol N represents a random value, the theory should not make
a distinction between the different nonce symbols. In particular, for any terms t1, t2,
and any permutation σ on the set of all nonces, we expect to have that t1 = t2
iff t1σ = t2σ. Assume now that t = C for some t, C with C not occurring in t.
Fix an arbitrary nonce C∗ not occurring in t and fix a permutation σ such that
σ(C) = C∗ and σ(N) = N for all nonces N occuring in t. Then from t = C we
have t = tσ = Cσ = C∗. Hence C = t = C∗. Thus, all nonces not occurring in t
would be considered equal; the set of nonces would effectively collapse to a finite
set.

We consider the following (single-party) protocol π:

• First, π sends a fresh nonce C to the adversary.

• Then, whenever π is queried by the adversary,2 π sends a fresh nonce Ni to the
adversary. Let N denote the set of all nonces Ni sent to the adversary.

• The protocol π expects a list of nonces M1, . . . ,Mt from the adversary.3 The
number t is not fixed; the adversary can send as many nonces Mi as he wishes.

• The protocol π tests whether the following holds: M1, . . . ,Mt ∈ N and M1 ⊕ · · · ⊕
Mt = C.4 If the test succeeds, π becomes insecure. (E.g., π might leak some
secret nonce, raise some bad events, etc., depending on what security means in our
particular setting.)

We first claim that the protocol π is secure in reasonable symbolic models. By
protocol construction, C is different from all Ni. Thus M1, . . . ,Mt ∈ N implies that C
does not occur in M1 ⊕ · · · ⊕Mt. Hence M1 ⊕ · · · ⊕Mt 6= C. Thus the test in the last
protocol step never succeeds, and the protocol is secure.

In the computational model, however, π will be insecure. To see this, we need the
following lemma:

Lemma 1 Let C,N1, . . . , N3n be independently and uniformly chosen bitstrings of
length n. Then with overwhelming probability in n, there is a subset {M1, . . . ,Mt} of
{N1, . . . , N3n} such that M1 ⊕ · · · ⊕ Mt = C (where ⊕ denotes the bitwise XOR). The
set {M1, . . . ,Mt} can be efficiently computed given C,N1, . . . , N3n.

2How the adversary queries π depends on the precise protocol model. Typically, the adversary would
query π simply by sending a fixed message to π.

3If our symbolic model does not permit to encode lists, this can instead be implemented by sending
each Mi in a separate message.

4If ⊕ is not associative, we interpret M1 ⊕ · · · ⊕Mt as (. . . ((M1 ⊕M2)⊕M3) · · · ⊕Mt−1)⊕Mt.
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Given this lemma, it is straightforward to attack π in the computational setting: Let n be
the length of the nonces. Then the adversary request 3n nonces N1, . . . , N3n, computes
M1, . . . ,Mt as in Lemma 1 and sends them to π. Then the test performed by π succeeds,
and π becomes insecure.

Thus, the protocol π is symbolically secure with respect to any reasonable symbolic
model, but not computationally secure. Hence, we cannot expect to get a computational
soundness result for XOR (unless we restrict the class of allowed protocols such that π
is excluded; see also the discussion in the next section).

Proof of Lemma 1. An n-bit string can be seen as an element of the vector space
V := GF(2)n. The addition in this vector space is ⊕. Let Si := span{N1, . . . , Ni}. We
first show that with overwhelming probability, S3n = V . For this, we use the following
notation: We call i ∈ {1, . . . , 3n} good if Ni /∈ Si−1 or Si−1 = V . Conditioned on fixed
values for N1, . . . , Ni−1, we distinguish two cases: If Si−1 = V , then Ni is good with
probability 1. If Si−1 6= V , then Si−1 is a proper subspace of V , hence |Si−1| ≤ |V |/2.
Since Ni is uniformly chosen from V and independent of N1, . . . , Ni−1, we haveNi /∈ Si−1

with probability at least 1

2
. Let Gi := 1 if Ni is good and Gi := 0 otherwise. We then

have that Pr[Gi = 1|N1 = n1, . . . , Ni−1 = ni−1] ≥
1

2
for all ni ∈ V and hence, since Gi

only depends on N1, . . . , Ni−1, we have Pr[Gi = 1|G1 = gi, . . . , Gi−1 = gi−1] ≥
1

2
for all

gi ∈ {0, 1}. Let X1, . . . ,X3n be independently and uniformly chosen from {0, 1}. Then
Pr[Gi = 1|G1 = gi, . . . , Gi−1 = gi−1] ≥

1

2
= Pr[Xi = 1|X1 = gi, . . . ,Xi−1 = gi−1] for all

gi. (Intuitively, this means that, in the same situation, Gi is at least as likely to equal 1
as Xi is.) Hence, Pr[

∑
i
Gi ≥ n] ≥ Pr[

∑
i
Xi ≥ n]. From the Chernoff bound it follows

that Pr[
∑

i
Xi ≥ n] is overwhelming in n (the expected value of

∑
i
Xi is

3

2
n). Hence

Pr[
∑

i
Gi ≥ n] is overwhelming in n, too. Thus, with overwhelming probability, we have

that at least n indices i are good.
Furthermore, we claim that if at least n indices i are good, we have that S3n = V .

Assume this was not the case, i.e., S3n 6= V . Then also Si−1 ⊆ S3n 6= V . Thus, by
definition of “good”, for all good i, we have that Ni /∈ Si−1. Hence dimSi > dimSi−1 for
each good i. Thus dimS3n ≥ n = dimV which contradicts the fact that S3n is a proper
subspace of V . Thus, if at least n indices i are good, S3n = V . Since with overwhelming
probability at least n indices i are good, we have that S3n = V with overwhelming
probability.

In the case that span{N1, . . . , N3n} = S3n = V , and since C ∈ V , we have that
there is, by definition of the span, a linear combination a1N1 ⊕ · · · ⊕ a3nN3n = C with
ai ∈ GF(2). This linear combination can be efficiently found by Gaussian elimination.
Let M1, . . . ,Mt be those Ni with ai = 1. Then M1⊕· · ·⊕Mt = a1N1⊕· · ·⊕a3nN3n = C
and {M1, . . . ,Mt} ⊆ {N1, . . . , N3n}.

Thus, summarizing, with overwhelming probability we have that S3n = V , and in this
case, there are M1, . . . ,Mt with M1 ⊕ · · · ⊕Mt = C and {M1, . . . ,Mt} ⊆ {N1, . . . , N3n}.
These Mi can be efficiently computed. �
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3 Discussion

Restricting the protocols. Our counterexample is based on the assumption that we
have a protocol model that is powerful enough to express the protocol π described in the
preceding section. In particular, this protocol needs to be able to send an unbounded
number of nonces, it needs to check whether a given list of nonces is a subset of another
list, and it needs to compute the XOR over a list of nonces (this essentially corresponds to
a fold operation over a list). Thus, it might be possible that we can derive computational
soundness results for XOR if we restrict the class of protocols to, say, protocols that send
a constant number of messages and do not contain loops. Yet, models containing only
XOR are probably not very useful. If we aim at symbolic models that do not only model
XOR but also, say, signatures, we can design the following variant π′ of the protocol π.
The protocol π′ sends only a constant number of messages, and it does not need to keep
any state except for a globally shared long-term key pair. We do assume, however, that
an arbitrary number of instances of π′ can run concurrently.

• We assume a signing key pair shared by all instances of π′. Furthermore, we fix
constants c, n.

• When π′ receives a message m from the adversary, we distinguish the following
cases:

– m = c. Then π′ picks a fresh nonce C and sends (C, σ) where σ is a signature
on (c, C).

– m = n. Then π′ picks a fresh nonce N and sends (N,σ) where σ is a signature
on (n, N).

– m = (n,m1,m2, σ1, σ2) where σi is a signature on (n,mi) for i = 1, 2. Then π
computes m′ := m1⊕m2 and sends (m′, σ′) where σ′ is a signature on (n,m′).

– m = (n,m1, c, c2, σ1, σ2). If m1 = c2 and σ1 is a signature on (n,m1) and σ2
is a signature on (c, c2), then π′ becomes insecure.

Observe that here, the adversary can obtain signatures on (n,m) where m is an arbitrary
term build from ⊕ and from nonces N chosen by (different instances of) π′. Furthermore,
the adversary can obtain a signature on (c, C) where C is a nonce distinct from the
nonces N . In the symbolic setting, C will not occur in any of the terms m such that
the adversary knows a signature on (n,m). Hence, the adversary cannot send a message
(n,m1, c, c2, σ1, σ2) that passes the test in the last case of π′, so π′ is secure in the symbolic
setting.

In the computational setting, however, the adversary can get nonces N1, . . . , N3n

with signatures on (n, Ni) from 3n instances of π′. Then the adversary uses another
instance to get a signature σ2 on (c, C) for some C. By Lemma 1, the adversary can find
a subset M1, . . . ,Mt of the nonces Ni such that M1 ⊕ · · · ⊕Mt = C. Then the adversary
uses t−1 further instances of π′ to obtain signatures on (n,mi) with mi = M1⊕· · ·⊕Mi

for i = 2, . . . , t. Note that mt = C. Thus the adversary now has a signature σ1 on (n, C).
Finally, the adversary sends (n, C, c, C, σ1 , σ2) and the protocol becomes insecure.
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We stress that the counterexample π′ still does not exclude that there could be small
classes of protocols for which computational soundness results for XOR might be possible.
We believe, however, that in order not to contain π′, that class would have to be very
restrictive indeed.

Passive adversaries. Our counterexample is based on the assumption that the adver-
sary is active. In fact, in the passive setting, computational soundness results for XOR
are known (Kremer and Mazaré [KM07]).

On dynamic symbolic models. We have claimed that all reasonable symbolic mod-
els have the property that t 6= C whenever the nonce C does not occur in t. We have
based this claim on the fact that due to symmetry reasons, t = C would imply t = C ′

and hence C = C ′ for all C ′. One possible way out of this might be to use “dynamic
symbolic models”. The idea would be that the equality = is not fully defined from the
very start. Instead, the adversary may, during runtime, create new equality rules t = u.
For example, after seeing N1, . . . , Ns, C, the adversary could pick a subset M1, . . . ,Mt

of N1, . . . , Ns and add the equality rule M1 ⊕ · · · ⊕Mt = C. Of course, the rules that
the adversary can add must be subject to suitable restrictions. For example, it must be
ensured that the adversary can never add rules that make all nonces equal, or rules that
make a nonce known to the adversary equal to a key that is supposed to be unknown
to the adversary. We do not know whether this approach is viable, and it seems that it
would lead to a very complex symbolic model.

Other computational implementations. We have assumed that ⊕ is indeed im-
plemented as a bitwise XOR. Furthermore, we have assumed that nonces are uniformly
random bitstrings (in particular, they contain no type-tagging or similar headers). We
believe that the second assumption can be relaxed; for this, Lemma 1 needs to be ex-
tended to the case where the nonces are chosen with respect to a particular nonuniform
distribution. It is an interesting question whether Lemma 1 actually holds for any dis-
tribution of nonces. The assumption that ⊕ is implemented as a bitwise XOR seems
necessary for our proof. If, e.g., ⊕ would be the multiplication in some cyclic group
in which each element is self-inverse, it might be computationally infeasible to find Mi

such that M1 ⊕ · · · ⊕Mt = C. Although such an operation ⊕ would not merit the name
“XOR” any more, such an operation might still be useful as a computationally sound
replacement for XOR in existing protocols.

Other cryptographic primitives. Although our counterexample only touches the
computational soundness of XOR, it may serve as a warning. There are many crypto-
graphic primitives that have a strong algebraic structure, e.g., homomorphic encryption
or many blind signature schemes. A symbolic analysis of protocols based on such prim-
itives may be subject to similar problems as the protocol π. Thus, before trusting a
symbolic security analysis for protocols based on such primitives, we strongly advocate
to study the computational soundness of these primitives.
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