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Abstract

This paper introduce generalizes the Huff curves x(ay2 − 1) =
y(bx2 − 1) which contains Huff’s model ax(y2 − 1) = by(x2 − 1) as a
special case. It is shown that every elliptic curve over the finite field
with three points of order 2 is isomorphic to a general Huff curve. Some
fast explicit formulae for general Huff curves in projective coordinates
are presented. These explicit formulae for addition and doubling are
almost as fast in the general case as they are for the Huff curves in
[8]. Finally, the number of isomorphism classes of general Huff curves
defined over the finite field Fq is enumerated.

Keywords: elliptic curve, Huff curve, isomorphism classes, scalar multi-
plication, cryptography

1 Introduction

The elliptic curve cryptosystem was independently proposed by Koblitz [9]
and Miller [11] which relies on the difficulty of discrete logarithmic prob-
lem that in the group of rational points on an elliptic curve. One of the
main operations and challenges in elliptic curve cryptosystem is the scalar
multiplication. The speed of scalar multiplication plays an important role
in the efficiency of the whole system. Elliptic curves can be represented
in different forms. To obtain faster scalar multiplications, various forms of
elliptic curves have been extensively studied in the last two decades. Some
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important elliptic curve families include Jacobi intersections, Edward curves,
Jacobi quartics, Hessian curves etc.. Detail of previous works can be found
in [1, 3, 8]. Recently, Joye, Tibouchi, and Vergnaud [8] revisit a model for
elliptic curves over Q introduced by Huff[7] in 1948. They presented fast
explicit formulae for point addition and doubling on Huff curves. They also
addresses in [8] the problem of the efficient evaluation of pairings over Huff
curves such as completeness and independence of the curve parameters.

In order to study the elliptic curve cryptosystem, one need first to answer
how many curves there are up to isomorphism, because two isomorphic ellip-
tic curves are the same in the point of cryptographic view. So it is natural to
count the isomorphism classes of some kinds of elliptic curves. Some formu-
lae about counting the number of the isomorphism classes of general elliptic
curves over a finite field can be found in literatures, such as [13, 10, 12, 5].

In this paper we introduce generalized Huff curves x(ay2−1) = y(bx2−1)
which contains Huff curves ax(y2 − 1) = by(x2 − 1) as a special case. We
show that every elliptic curve over the finite field with three points of order 2
is isomorphic to a general Huff curve. Some fast explicit formulae for general
Huff curve in projective coordinates are presented. These explicit formulae
for addition and doubling are almost as fast in the general case as they are
for the Huff curve. Finally, the number of isomorphism classes of general
Huff curve and Huff curve defined over the finite field Fq is enumerated.

2 Huff’s model curves

In [8], Joye, Tibouchi, and Vergnaud develop an elliptic curve model intro-
duced by Huff[7] in 1948 to study a diophantine problem. The Huff’s model
for elliptic curves is given by equation ax(y2− 1) = by(x2− 1). They present
addition formula on Huff curves. Using (0, 0, 1) as neutral element, the ad-
dition formula denoted by

(x1, y1) + (x2, y2) = (
(x1 + x2)(1 + x1x2)

(1 + x1x2)(1− y1y2)
,

(y1 + y2)(1 + x1x2)

(1− x1x2)(1 + y1y2)
)

in affine coordinates. Moreover, this addition law is unified, that is it can
be used to double a point. Actually, curve families ax(y2 − 1) = by(x2 − 1)
are included in curve families x(ay2 − 1) = y(bx2 − 1). We call the curve
x(ay2 − 1) = y(bx2 − 1) general Huff curve. For the general Huff curve
Ha,b : x(ay2 − 1) = y(bx2 − 1), if a = µ2 and b = ν2 are square elements
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of a field K, let x′ = νx and y′ = µy, then µx′(y′2 − 1) = νy′(x′2 − 1).
That is, curve families ax(y2 − 1) = by(x2 − 1) are the part of curve families
x(ay2 − 1) = y(bx2 − 1) with a, b are square elements of field K. Note that
Ha,b : x(ay2 − 1) = y(bx2 − 1) is a smooth elliptic curve if ab(a − b) 6= 0.
Let F (X, Y, Z) := aXY 2 − bX2Y −XZ2 + Y Z2, then the Hessian of curve
F (X, Y, Z) = 0 is

H(F ) =

∣∣∣∣∣∣
FXX FXY FXZ
FY X FY Y FY Z
FZX FZY FZZ

∣∣∣∣∣∣ = 8

∣∣∣∣∣∣
−bY (aY − bX) Z

(aY − bX) aX −Z
Z −Z (X − Y )

∣∣∣∣∣∣
where FXY is the second partial derivative of the polynomial F with respect
to X and Y . Since general Huff curve is smooth, the inflection points of F
are the intersections points of F and H(F ). Hence, it is clearly, (0, 0, 1) is
inflection point and no inflection points with Z = 0.

Theorem 2.1. Let K be a field of characteristic 6= 2, let a, b ∈ K with a 6= b.
Then curve

Ha,b : X(aY 2 − Z2) = Y (bX2 − Z2)

is isomorphic to the elliptic curve

V 2W = U(U + aW )(U + bW )

via the change of variables ϕ(X, Y, Z) = (U, V,W ), where

U = bX − aY, V = (b− a)Z, W = Y −X.

The inverse change is ψ(U, V,W ) = (X, Y, Z), where

X = U + aW, Y = U + bW, Z = V.

Proof. From U = bX − aY, V = (b − a)Z, W = Y −X, we have V 2W =
(b − a)2(Y − X)Z2 and U(U + aW )(U + bW ) = (b − a)2XY (bX − aY ).
Therefore, V 2W = U(U +aW )(U + bW ) since X(aY 2−Z2) = Y (bX2−Z2).

On the other hand, since V 2W = U(U + aW )(U + bW ), X = U +
aW, Y = U + bW, Z = V , we have W = X−Y

a−b and U = aY−bX
a−b , therefore,

Z2(X−Y ) = XY (aY −bX), that is X(aY 2−Z2) = Y (bX2−Z2). Obviously,
the maps ϕ and ψ are mutually inverse to each other.
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For affine edition, Huff curve x(ay2 − 1) = y(bx2 − 1) isomorphic to
y2 = x(x + a)(x + b) over K. In [6], Theorem 3 proposed that an elliptic
curve E over an algebraic number field K contains a copy of Z/2Z × Z/2Z
if and only if E admits one of the normal forms y2 = x(x− a)(x− b), where
a, b ∈ K and ab(a− b) 6= 0. And E over an algebraic number field K contains
a copy of Z/2Z × Z/4Z if and only if E admits one of the normal forms
y2 = x(x2 + 2(a2 + 1)x+ (a2 − 1)2)), where a ∈ K and a 6= 0,±1.

Noting that y2 = x(x2+2(a2+1)x+(a2−1)2)) = x(x+(a+1)2)(x+(a−1)2).
Therefore, E contains a copy of Z/2Z×Z/4Z if and only if E admits one of
the normal forms y2 = x(x+ t2)(x+(t+2)2), where t ∈ K and a 6= 0,−1,−2.

For any a, b ∈ K with a 6= b, let u =
2

b− a
and t =

2a

b− a
, then

t

u
= a

and
t+ 2

u
= b. Since y2 = x(x + t2)(x + (t + 2)2) is isomorphic to (

y

u3
)2 =

x

u2
(
x

u2
+ (

t

u
)2)(

x

u2
+ (

t+ 2

u
)2), hence, isomorphic to y2 = x(x + a2)(x + b2).

Therefore, E contains a copy of Z/2Z× Z/4Z if and only if E is isomorphic
over K to a Huff curve ax(y2 − 1) = by(x2 − 1). Thus we give another proof
of Theorem 2 in [8]. Note that the j-invariant of x(ay2 − 1) = y(bx2 − 1)

is j = 28 (a2 − ab+ b2)3

a2b2(a− b)2
, and the j-invariant of ax(y2 − 1) = by(x2 − 1) is

j = 28 (a4 − a2b2 + b4)3

a4b4(a2 − b2)2
.

2.1 Huff curve and twisted Jaconi intersections curve

Twisted Jacobi intersection form elliptic curve introduced in [4]. A twisted
Jacobi intersection form elliptic curve over field K is defined by affine equa-
tions au2 + v2 = 1, bu2 + w2 = 1 or projective equations aU2 + V 2 =
Z2, bU2 +W 2 = Z2, where a, b ∈ K with ab(a− b) 6= 0. In [4], they proved
that a twisted Jacobi intersection form curve Ea,b : au2+v2 = 1, bu2+w2 = 1
with ab(a − b) 6= 0 is a smooth curve and isomorphic to an elliptic curve
y2 = x(x − a)(x − b) over K. However, every elliptic curve over K having
three K-rational points of order 2 is isomorphic to a twisted Jacobi intersec-
tions curve. Since Huff curve Ha,b : x(ay2 − 1) = y(bx2 − 1) isomorphic to
y2 = x(x+a)(x+b) over K, therefore, Huff curve Ha,b : x(ay2−1) = y(bx2−1)
isomorphic to a twisted Jacobi intersections curve−au2+v2 = 1, −bu2+w2 =
1. Similarly, curve ax(y2 − 1) = by(x2 − 1) isomorphic to a twisted Jacobi
intersections curve −a2u2 + v2 = 1, − b2u2 +w2 = 1. Actually, as proposed
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in [8], Huff[7] considered rational distance sets S with some form. Such a
point must then satisfy the equations x2 + a2 = u2 and x2 + b2 = v2 with
u, v ∈ Q. The system of associated homogeneous equations x2 + a2z2 = u2

and x2 + b2z2 = v2 defines a curve of genus 1 in P3. This homogeneous
equations is just a twisted Jaconi intersections curve

−a2z2 + u2 = x2,−b2z2 + v2 = x2.

It is smooth if and only if a2 6= b2 and ab 6= 0 according to Theorem 1 in [4].

3 Enumeration Isomorphism Classes

Let E be an elliptic curve over a field K given by a Weierstrass equation

E : Y 2 = X3 + a2X
2 + a4X + a6

with a2, a4, a6 ∈ K.
An admissible change of variables defined over an extension field L/K in

a Weierstrass equation is one of the form

X ′ = u2X + r and Y ′ = u3Y

with u, r ∈ L and u 6= 0. The elliptic curves E1/K and E2/K are said to
be isomorphic over L denote by E1

∼=L E2 if there is an admissible change of
variables defined over L transforming E1 to E2.
Let E1/K : Y 2 = X3+a2X

2+a4X+a6 and E2/K : Y 2 = X3+a
′
2X

2+a
′
4X+a

′
6

be two elliptic curves defined over K. It is well known E1
∼=L E2 if and only

if there exists u, r ∈ L and u 6= 0 satisfy the following equations
u2a

′
2 = a2 + 3r,

u4a
′
4 = a4 + 2ra2 + 3r2,

u6a
′
6 = a6 + ra4 + r2a2 + r3.

(1)

Nott that E1 and E2 are isomorphic over K if and only if j(E1) = j(E2).
If K = Fq be a finite field, the statement is not true. we have only j(E1) =
j(E2) if E1 and E2 are isomorphic over Fq. The reader is referred to [14] for
more results on the isomorphism of elliptic curves.

The Legendre elliptic curve over K is definned as

Eλ : y2 = x(x− 1)(x− λ)
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where λ ∈ K. It is clear that the Legendre elliptic curve Eλ is nonsingular for
λ 6= 0, 1. The points O, (0, 0), (1, 0), and (λ, 0) are all the 2-division points,

that is, the points of order 2. The j-invariant of Eλ is j(Eλ) = 28 (λ
2−λ+1)3

λ2(λ−1)2 .

It is well known [14] that two Legendre curves Eλ : y2 = x(x− 1)(x− λ)
and Eµ : y2 = x(x− 1)(x−µ) are isomorphic over Fq if and only if they have
the same j-invariant, or

µ ∈
{
λ,

1

λ
, 1− λ, 1

1− λ
,

λ

λ− 1
,
λ− 1

λ

}
.

Hence, for which the map λ 7→ j(Lλ) is exactly six-to-one unless λ ∈
{−1, 2, 1

2
}, the map is three-to-one, or λ2 − λ + 1 = 0, for which the map is

two-to-one. Note that λ2−λ+ 1 = 0 has a root in Fq if and only if F∗q has an
element of order 3, which is equivalent to q ≡ 1 or 7 (mod 12). Therefore, we
have that the number of Fq-isomorphism classes of Legendre elliptic curves
is q−2−3−2

6
+ 1 + 1 = q+5

6
when q ≡ 1, 7 (mod 12), and is q−2−3

6
+ 1 = q+1

6

when q ≡ 5, 11 (mod 12). Then, we have the following theorem.

Theorem 3.1. Suppose Fq is a finite field with q elements and char(Fq) 6= 2.
Let N̄q denote the number of Fq-isomorphism classes of Huff curves Ha,b :
x(ay2−1) = y(bx2−1)(which is the same for curves ax(y2−1) = by(x2−1))
defined over Fq with ab(a− b) 6= 0. Then

N̄q =


q + 5

6
, if q ≡ 1, 7 (mod 12),

q + 1

6
, if q ≡ 5, 11 (mod 12).

3.1 Fq-isomorphism classes of ax(y2 − 1) = by(x2 − 1)

Since ax(y2 − 1) = by(x2 − 1) is Fq-isomorphic to y2 = x(x + a2)(x + b2), it
is Fq-isomorphic to y2 = x(x− 1)(x− (1− t2)) by (x, y)→ (x/a2 + 1, y/a3)
where t = b/a.

Lemma 3.2. The elliptic curves families ax(y2− 1) = by(x2− 1) with a, b ∈
Fq and ab(a− b) 6= 0 (or curves y2 = x(x− 1)(x− (1− t2)) with t ∈ Fq and
t 6= 0, 1) are equivalent to curves families y2 = x(x− 1)(x− λ) with an least
one of λ, 1− λ be a square element up to Fq-isomorphism.

The following lemma can be gotten easily.
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Lemma 3.3. Suppose that Fq is a finite field with char(Fq) > 3. Let N(s, t)

be the number of a ∈ Fq with
(
a
q

)
= s and

(
1−a
q

)
= t. Then

N(−1,−1) =


q − 1

4
, if q ≡ 1(mod 4),

q + 1

4
, if q ≡ 3(mod 4).

In first, assuming that q ≡ 3(mod 4). According to [5], we can divide the
Legendre elliptic curves Eλ : y2 = x(x − 1)(x − λ) with λ 6= 0, 1, into the
following 4 disjoint sets H1, H2, H3 and H4, where

H1 =
{
y2 = x(x− 1)(x− b)|

(
b
q

)
=
(

1−b
q

)
= 1
}
,

H2 =
{
y2 = x(x− 1)(x− b)|

(
b
q

)
= 1,

(
1−b
q

)
= −1

}
,

H3 =
{
y2 = x(x− 1)(x− b)|

(
b
q

)
= −1,

(
1−b
q

)
= 1
}
,

H4 =
{
y2 = x(x− 1)(x− b)|

(
b
q

)
= −1,

(
1−b
q

)
= −1

}
.

From Lemma 3.3, we get that |H1| = q−5
4

and |H2| = |H3| = |H4| = q−1
4

.
Therefore, We know from [5] the Legendre curves from the 3 distinct sets

H1, H2 ∪ H3 and H4 can not be Fq-isomorphic to each other. let Nq,H4 be
the number of Fq-isomorphism classes of Legendre elliptic curves H4. Then
we have ([5])

Nq,H4 =


q − 1

8
, if q ≡ 1, 17 (mod 24),

q + 3

8
, if q ≡ 5, 13 (mod 24).

Secondly, assuming that q ≡ 1(mod 4). The number of Legendre curves
Eλ : y2 = x(x− 1)(x− λ) with b and 1− b are non-square elements equal to
q + 1

4
. From [5], the number of curves isomorphic to a given curves with b

and 1− b are non-square elements equal to 3 if j-invariant j 6= 0, otherwise
equal to 2. And j = 0 occurred only at q ≡ 7(mod 12). Therefore, the
number of Fq-isomorphism classes equal to

(
q + 1

4
− 2)/3 + 1 =

q + 5

12
, if q ≡ 7 (mod 12),

(
q + 1

4
)/3 =

q + 1

12
, if q ≡ 11 (mod 12).
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Combining above results, we have the following enumeration result.

Theorem 3.4. Suppose Fq is the finite field with q elements and char(Fq) >
3. Let Nq be the number of Fq-isomorphism classes of ax(y2−1) = by(x2−1)
defined over Fq with ab(a− b) 6= 0. Then

Nq =



q + 5

12
, if q ≡ 7 (mod 12),

q + 1

12
, if q ≡ 11 (mod 12),

q − 1

8
, if q ≡ 1, 17 (mod 24),

q + 3

8
, if q ≡ 5, 13 (mod 24).

3.2 Fq-isomorphism classes of x(ay2 − 1) = y(bx2 − 1)

It is sufficient to enumeration Fq-isomorphism classes of elliptic curve families
Ba,b : y2 = x(x−a)(x−b). For any elliptic curve y2 = x3+ax+b defined over
Fq, the number of elliptic curves which is Fq isomorphic to y2 = x3 + ax+ b
equal to([10]) 

q − 1

6
, if a = 0 and q ≡ 1 ( mod 3),

q − 1

4
, if b = 0 and q ≡ 1 ( mod 4),

q − 1

2
, otherwise.

Let E be an elliptic curve with at least one order 2 point then by move this
point to (0, 0) it can be changed to the form Ea,b : y2 = x3 + ax2 + bx. The

j-invariant of Ea,b is
256(a2 − 3b)3

b2(a2 − 4b)
. Note that j(Ea,b) = 0 if and only if

a2 = 3b, And j(Ea,b) = 1728 if and only if a(9b−2a2) = 0 for Ea,b isomorphic
to elliptic curve y2 = x2 − (a2 − 3b)x + (1/2)a(9b − 2a2). Every order 2
point admit this a change, hence, the number of elliptic curves which is Fq
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isomorphic to it equal to

have only a order 2 point


q − 1

6
, if j = 0 and q ≡ 1 ( mod 3),

q − 1

4
, if j = 1728 and q ≡ 1 ( mod 4),

q − 1

2
, otherwise.

have three order 2 points


q − 1

2
, if j = 0 and q ≡ 1 ( mod 3),

3(q − 1)

4
, if j = 1728 and q ≡ 1 ( mod 4),

3(q − 1)

2
, otherwise.

The number of elliptic curves with three order 2 points equal to
(q − 1)(q − 2)

2
for it admit the normal forms y2 = x(x− a)(x− b). Hence, the number of el-

liptic curves with only one order 2 points equal to q(q−1)− (q − 1)(q − 2)

2
−

(q − 1) =
q(q − 1)

2
. The number of elliptic curves Ea,b : y2 = x3 + ax2 + bx

with j(Ea,b) = 0 equal to q − 1 for j(Ea,b) = 0 if and only if a2 = 3b. Thus,
if it possess three order 2 points then

1 =

(
a2 − 4b

q

)
=

(
−b
q

)
=

(
−3

q

)
.

Hence, the number of elliptic curves Ea,b : y2 = x3 + ax2 + bx possess three
order 2 points with j(Ea,b) = 0 equal to (q − 1) if q ≡ 1 ( mod 3), and equal
to 0 if q ≡ 2 ( mod 3). Similarly, j(Ea,b) = 1728 if and only if a(9b−2a2) = 0.
And then b = 2(a/3)2. Therefore, the number of elliptic curves Ea,b : y2 =
x3 +ax2 + bx with j(Ea,b) = 1728 equal to (q− 1) + (q− 1) = 2(q− 1). Thus,
if it possess three order 2 points then a2 − 4b is a square element in Fq. For
9b = 2a2 then a2 − 4b = b/2 = (a/3)2. Hence, the number of elliptic curves
Ea,b : y2 = x3 + ax2 + bx possess three order 2 points with j(Ea,b) = 1728

equal to
3(q − 1)

2
. Thus, the number of elliptic curves Ea,b : y2 = x3+ax2+bx

possess three order 2 points with j(Ea,b) 6= 0, 1728 equal to
(q − 1)(q − 7)

2
, if q ≡ 1 ( mod 3),

(q − 1)(q − 5)

2
, if q ≡ 2 ( mod 3).
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By the above argument, The number of Fq-isomorphism classes of elliptic
curve families Ba,b : y2 = x(x− a)(x− b). defined over Fq equal to

q − 1
q − 1

2

+

3(q − 1)

2
3(q − 1)

4

+

(q − 1)(q − 7)

2
3(q − 1)

2

=
q + 5

3

if q ≡ 1 ( mod 12). By similarly computation, we have the following theorem

Theorem 3.5. Suppose Fq is the finite field with q elements and char(Fq) >
3. Let Nq be the number of Fq-isomorphism classes of x(ay2−1) = y(bx2−1)
defined over Fq with ab(a− b) 6= 0. Then

Nq =



q + 5

3
, if q ≡ 1 ( mod 12),

q + 1

3
, if q ≡ 5 ( mod 12),

q + 2

3
, if q ≡ 7 ( mod 12),

q − 2

3
, if q ≡ 11 ( mod 12).

4 Arithmetic on Huff’s Curves

Let C be a nonsingular cubic curve defined over a field K, and let O be a
point on C(K). For any two points P and Q, the line through P and Q
meets the cubic curve C at one more point, denoted PQ. With point O
as zero element and the chord-tangent composition PQ we can defined the
group law P +Q by P +Q = O(PQ) on C(K) makes C(K) into an abelian
group with O as zero element and −P = P (OO). If O be an inflection point
then −P = PO and OO = O.
The Addition Law on x(ay2 − 1) = y(bx2 − 1).
Let the line joining P = (x1, y1) and Q = (x2, y2) is y = y1+λ(x−x1) = λx+
µ, where λ is slope of the line. Substituting this expression for y into the Huff
equation x(ay2−1) = y(bx2−1), we get x(a(λx+µ)2−1) = (λx+µ)(bx2−1),
that is

(aλ2 − bλ)x3 + (2aλµ− bµ)x2 + (aµ2 + λ− 1)x+ µ = 0.
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Let PQ = (x3, y3) then x1 +x2 +x3 = −2aλµ− bµ
aλ2 − bλ

. Hence, −x3 = x1 +x2 +

[2a(y2 − y1)− b(x2 − x1)](x2y1 − x1y2)
(y2 − y1)(a(y2 − y1)− b(x2 − x1))

. Noting that

(a(y2 − y1)− b(x2 − x1))(x2 + x1)y1y2
= (a(x1y2 + x1y2 − x2y1 − x1y1)− bx22 + bx21) y1y2
= (ax2y

2
2 − bx2y2)y1 − (ax1y

2
1 − bx21y1)y2 + a(x1y2 − x2y1)y1y2

= (x2 − y2)y1 − (x1 − y1)y2 + a(x1y2 − x2y1)y1y2
= (x1y2 − x2y1)(ay1y2 − 1).

Thus

−x3 = x1 + x2 −
a(x1 + x2)y1y2
ay1y2 − 1

+
(a(y2 − y1)− b(x2 − x1))(x2 + x1)y1y2

(y1 − y2)(ay1y2 − 1)

= x1 + x2 +
x1y2 − x2y1
y1 − y2

− a(x1 + x2)y1y2
ay1y2 − 1

=
x1y1 − x2y2
y1 − y2

− a(x1 + x2)y1y2
ay1y2 − 1

.

(2)
Noting that

(y1 − y2) (ax1x2(y1 + y2) + (x1 + x2))
= (ax1y

2
1 + y1)x2 − (ax2y

2
2 + y2)x1 + (x1y1 − x2y2)

= (bx21y1 + x1)x2 − (bx2y
2
2 + x2)x1 + (x1y1 − x2y2)

= bx1x2((x1y1 − x2y2)) + (x1y1 − x2y2)
= (x1y1 − x2y2)(bx1x2 + 1).

Thus
x1y1 − x2y2
y1 − y2

=
ax1x2(y1 + y2) + (x1 + x2)

bx1x2 + 1
. Therefore, from formula (2)

we get

−x3 =
ax1x2(y1 + y2) + (x1 + x2)

bx1x2 + 1
− a(x1 + x2)y1y2

ay1y2 − 1

=
(ax1x2(y1 + y2) + (x1 + x2))(ay1y2 − 1)− a(x1 + x2)y1y2(bx1x2 + 1)

(bx1x2 + 1)(ay1y2 − 1)
.

(3)
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For

(ax1x2(y1 + y2) + (x1 + x2))(ay1y2 − 1)− a(x1 + x2)y1y2(bx1x2 + 1)
= a2x1x2(y1 + y2)y1y2 − ax1x2(y1 + y2)− (x1 + x2)− ab(x1 + x2)x1x2y1y2
= a(ax1y

2
1x2y2 + ax2y

2
2x1y1 − bx21y1x2y2 − bx22y2x1y1)− ax1x2(y1 + y2)− (x1 + x2)

= a((x1 − y1)x2y2 + (x2 − y2)x1y1)− ax1x2(y1 + y2)− (x1 + x2)
= −ax2y1y2 − ax1y1y2 − (x1 + x2)
= −(x1 + x2)(1 + ay1y2).

(4)

Therefore, x3 =
(x1 + x2)(ay1y2 + 1)

(bx1x2 + 1)(ay1y2 − 1)
. Similarly, by symmetry, we have

y3 =
(y1 + y2)(bx1x2 + 1)

(bx1x2 − 1)(ay1y2 + 1)
.

we can claim that the third point of intersection (x3, y3) of the tangent line
at P has coordinates

x3 =
2x1(ay

2
1 + 1)

(bx21 + 1)(ay21 − 1)
, y3 =

2y1(bx
2
1 + 1)

(bx21 − 1)(ay21 + 1)
.

Noting that the slope of the tangent line at P is λP =
ay21 − 2bx1y1 − 1

bx21 − 2ax1y1 − 1
.

To prove the claim we need only check

ay21 − 2bx1y1 − 1

bx21 − 2ax1y1 − 1
=

2y1(bx
2
1 + 1)

(bx21 − 1)(ay21 + 1)
− y1

2x1(ay
2
1 + 1)

(bx21 + 1)(ay21 − 1)
− x1

.
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From the right of the above formula we get

2y1(bx
2
1 + 1)− y1(bx21 − 1)(ay21 + 1)

2x1(ay21 + 1)− x1(bx21 + 1)(ay21 − 1)

(bx21 + 1)(ay21 − 1)

(bx21 − 1)(ay21 + 1)

=
y1(bx

2
1 + ay21 − abx21y21 + 3)

x1(bx21 + ay21 − abx21y21 + 3)

(bx21 + 1)(ay21 − 1)

(bx21 − 1)(ay21 + 1)

=
y1(bx

2
1 + 1)(ay21 − 1)

x1(bx21 − 1)(ay21 + 1)
=

(ay21 − 1)(−y1(bx21 + 1))

(bx21 − 1)(−x1(ay21 + 1))

=
(ay21 − 1)(y1(bx

2
1 − 1)− 2bx21y1)

(bx21 − 1)(x1(ay21 − 1)− 2ax1y21)
=

(ay21 − 1)(x1(ay
2
1 − 1)− 2bx21y1)

(bx21 − 1)(y1(bx21 − 1)− 2ax1y21)

=
(ay21 − 1)(x1(ay

2
1 − 2bx1y1 − 1))

(bx21 − 1)(y1(bx21 − 2ax1y1 − 1))
=
x1(ay

2
1 − 1)(ay21 − 2bx1y1 − 1)

y1(bx21 − 1)(bx21 − 2ax1y1 − 1)

=
ay21 − 2bx1y1 − 1

bx21 − 2ax1y1 − 1
= λP .

Let Ha,b be a Huff curve X(aY 2 − Z2) = Y (bX2 − Z2). We know that
(0, 0, 1) is a inflection point from section 2, points (1, 0, 0), (0, 1, 0) and (a, b, 0)
are exactly three infinite points. For any two points P = (X1, Y1, Z1) and
Q = (X2, Y2, Z2), Then the third point of intersection (U3, V3,W3) of the line
joining P and Q has coordinates

U3 = (X1Z2 +X2Z1)(bX1X2 − Z1Z2)(aY1Y2 + Z1Z2)
2,

V3 = (Y1Z2 + Y2Z1)(aY1Y2 − Z1Z2)(bX1X2 + Z1Z2)
2,

W3 = (b2X2
1X

2
2 − Z2

1Z
2
2)(a2Y 2

1 Y
2
2 − Z2

1Z
2
2).

Let point O = (1, 0, 0) as neutral element, then for any point P =
(X1, Y1, Z1) withX1Y1Z1 6= 0 on the curve, the pointOP = (−Z2

1 , bX1Y1, bX1Z1).
OO = (0, 0, 1), O(a, b, 0) = (0, 1, 0), O(0, 1, 0) = (a, b, 0) and O(0, 0, 1) =
(1, 0, 0). −(X1, Y1, Z1) = (X1, Y1,−Z1). Hence, assuming that P + Q =
(X3, Y3, Z3), then

X3 = (bX1X2 − Z1Z2)(bX1X2 + Z1Z2)(Z1Z2 − aY1Y2),
Y3 = b(X1Z2 +X2Z1)(bX1X2 + Z1Z2)(Y1Z2 + Y2Z1),
Z3 = b(X1Z2 +X2Z1)(bX1X2 − Z1Z2)(aY1Y2 + Z1Z2).

(5)
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The affine addition formula is

(x1, y1) + (x2, y2) =

(
(bx1x2 + 1)(1− ay1y2)
b(x1 + x2)(1 + ay1y2)

,
(y1 + y2)(bx1x2 + 1)

(1 + ay1y2)(bx1x2 − 1)

)
.

Similarly, let point O = (0, 1, 0) as neutral element, then for any point
P = (X1, Y1, Z1) withX1Y1Z1 6= 0 on the curve, the pointOP = (aX1Y1,−Z2

1 , aY1Z1).
OO = (0, 0, 1), O(a, b, 0) = (1, 0, 0), O(1, 0, 0) = (a, b, 0), O(0, 0, 1) = (0, 1, 0).
−(X1, Y1, Z1) = (X1, Y1,−Z1). Hence, assuming that P + Q = (X3, Y3, Z3),
then 

X3 = a(X1Z2 +X2Z1)(Y1Z2 + Y2Z1)(aY1Y2 + Z1Z2),
Y3 = (Z1Z2 − bX1X2)(aY1Y2 − Z1Z2)(aY1Y2 + Z1Z2),
Z3 = a(bX1X2 + Z1Z2)(aY1Y2 − Z1Z2)(Y1Z2 + Y2Z1).

(6)

The affine addition formula is

(x1, y1) + (x2, y2) =

(
(x1 + x2)(1 + ay1y2)

(1 + bx1x2)(ay1y2 − 1)
,
(1− bx1x2)(1 + ay1y2)

a(y1 + y2)(bx1x2 + 1)

)
.

Similarly, let point O = (0, 0, 1) as neutral element, then for any point
P = (X1, Y1, Z1) withX1Y1Z1 6= 0 on the curve, the pointOP = (aX1Y1,−Z2

1 , aY1Z1).
OO = (0, 0, 1). −(X1, Y1, Z1) = (X1, Y1,−Z1). Hence, assuming that P +
Q = (X3, Y3, Z3), then

X3 = (X1Z2 +X2Z1)(aY1Y2 + Z1Z2)
2(Z1Z2 − bX1X2),

Y3 = (Y1Z2 + Y2Z1)(bX1X2 + Z1Z2)
2(Z1Z2 − aY1Y2),

Z3 = (b2X2
1X

2
2 − Z2

1Z
2
2)(a2Y 2

1 Y
2
2 − Z2

1Z
2
2).

(7)

The affine addition formula is

(x1, y1) + (x2, y2) =

(
(x1 + x2)(ay1y2 + 1)

(1 + bx1x2)(1− ay1y2)
,

(y1 + y2)(1 + bx1x2)

(1 + ay1y2)(1− bx1x2)

)
.

The Addition Law on ax(y2 − 1) = by(x2 − 1). Let us see the curve
aX(Y 2 − Z2) = bY (X2 − Z2). For any two points P = (X1, Y1, Z1) and
Q = (X2, Y2, Z2) on curve, Then the third point of intersection (U3, V3,W3)
of the line joining P and Q has coordinates( [8])

U3 = (X1Z2 +X2Z1)(X1X2 − Z1Z2)(Y1Y2 + Z1Z2)
2,

V3 = (Y1Z2 + Y2Z1)(Y1Y2 − Z1Z2)(X1X2 + Z1Z2)
2,

W3 = (X2
1X

2
2 − Z2

1Z
2
2)(Y 2

1 Y
2
2 − Z2

1Z
2
2).
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Let point O = (1, 0, 0) as neutral element, then for any point P =
(X1, Y1, Z1) withX1Y1Z1 6= 0 on the curve, the pointOP = (−Z2

1 , X1Y1, X1Z1).
OO = (0, 0, 1), O(a, b, 0) = (0, 1, 0), O(0, 1, 0) = (a, b, 0) and O(0, 0, 1) =
(1, 0, 0). −(X1, Y1, Z1) = (X1, Y1,−Z1). Hence, let P + Q = (X3, Y3, Z3)
then 

X3 = (X1X2 − Z1Z2)(X1X2 + Z1Z2)(Z1Z2 − Y1Y2),
Y3 = (X1Z2 +X2Z1)(X1X2 + Z1Z2)(Y1Z2 + Y2Z1),
Z3 = (X1Z2 +X2Z1)(X1X2 − Z1Z2)(Z1Z2 + Y1Y2).

(8)

Similarly, let point O = (0, 1, 0) as neutral element, then for any point
P = (X1, Y1, Z1) withX1Y1Z1 6= 0 on the curve, the pointOP = (X1Y1,−Z2

1 , Y1Z1).
OO = (0, 0, 1), O(a, b, 0) = (1, 0, 0), O(1, 0, 0) = (a, b, 0), O(0, 0, 1) = (0, 1, 0).
−(X1, Y1, Z1) = (X1, Y1,−Z1). Hence, let P +Q = (X3, Y3, Z3) then([8])

X3 = (X1Z2 +X2Z1)(Y1Z2 + Y2Z1)(Y1Y2 + Z1Z2),
Y3 = (X1X2 − Z1Z2)(Z1Z2 − Y1Y2)(Y1Y2 + Z1Z2),
Z3 = (X1X2 + Z1Z2)(Y1Y2 − Z1Z2)(Y1Z2 + Y2Z1).

(9)

If choose point O = (0, 0, 1) as neutral element, let P +Q = (X3, Y3, Z3)
then([8])

X3 = (X1Z2 +X2Z1)(Y1Y2 + Z1Z2)
2(Z1Z2 −X1X2),

Y3 = (Y1Z2 + Y2Z1)(X1X2 + Z1Z2)
2(Z1Z2 − Y1Y2),

Z3 = (Z2
1Z

2
2 −X2

1X
2
2 )(Z2

1Z
2
2 − Y 2

1 Y
2
2 ).

(10)

4.1 Algorithms

Note that formula (5) and (6) are symmetry, we only think over the formula
(5) in algorithms.
Addition on X(aY 2 − Z2) = Y (bX2 − Z2). By formula (5), the following
algorithm compute (X3 : Y3 : Z3) = (X1 : Y1 : Z1) + (X2 : Y2 : Z2) in 11M +
3D costs, i.e., 11 field multiplications and 3D are constant multiplications
by a, b and 1/b.

A = X1X2; B = Y1Y2; D = Z1Z2; E = bA; F = aB;
G = (X1 + Z1)(X2 + Z2)− A−D;
H = (Y1 + Z1)(Y2 + Z2)−B −D;
X3 = (1/b) · (E +D)(E −D)(D − F );
Y3 = GH(E +D);
Z3 = G(E −D)(F +D).
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By formula (7), the following algorithm compute (X3 : Y3 : Z3) = (X1 :
Y1 : Z1) + (X2 : Y2 : Z2) in 12M + 2D. 2D are constant multiplications a
and b.

A = X1X2; B = Y1Y2; D = Z1Z2; E = bA; F = aB;
G = (X1 + Z1)(X2 + Z2)− A−D;
H = (Y1 + Z1)(Y2 + Z2)−B −D;
L = (D − E)(D + F ); M = (D + E)(D − F );
X3 = GL(D + F ); Y3 = HM(D + E); Z3 = LM.

Doubling on X(aY 2 − Z2) = Y (bX2 − Z2). By formula (5), the following
algorithm compute (X3 : Y3 : Z3) = 2(X1 : Y1 : Z1) in 6M + 5S + 3D. 3D
are constant multiplications a, b and 1/b.

A = X2
1 ; B = Y 2

1 ; C = Z2
1 ; D = bA; E = aB;

F = (X1 + Z1)
2 − A− C;

G = (Y1 + Z1)
2 −B − C;

X3 = (D − C)(D + C)(C − E);
Y3 = FG(C +D);
Z3 = F (D − C)(C + E).

By formula (7), the following algorithm compute (X3 : Y3 : Z3) = 2(X1 :
Y1 : Z1) in 7M + 5S + 2D. 2D are constant multiplications by a and b.

A = X2
1 ; B = Y 2

1 ; C = Z2
1 ; D = bA; E = aB;

F = (X1 + Z1)
2 − A− C;

G = (Y1 + Z1)
2 −B − C;

L = (E + C)(C −D); M = (C +D)(C − E);
X3 = LF (C + E); Y3 = GM(C +D); Z3 = LM.

From [8], the costs of addition and doubling on aX(Y 2−Z2) = bY (X2−Z2)
are 11M and 7M + 5S, respectively. Therefore, the addition in general Huff
curves X(aY 2 − Z2) = Y (bX2 − Z2) are almost as fast as that in the curves
aX(Y 2 − Z2) = bY (X2 − Z2), but them possess more curves.

Tripling on X(aY 2 − Z2) = Y (bX2 − Z2).
We can get the tripling formula from addition formula when using O =
(1, 0, 0) as neutral element. Assuming that (X3 : Y3 : Z3) = 3(X1 : Y1 : Z1),
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then

X3 = X1(abX
2
1Y

2
1 − aY 2

1 Z
2
1 − bX2

1Z
2
1 − 3Z4

1)(abX2
1Y

2
1 + 3aY 2

1 Z
2
1 + Z4

1 − bX2
1Z

2
1)2;

Y3 = Y1(abX
2
1Y

2
1 − aY 2

1 Z
2
1 − bX2

1Z
2
1 − 3Z4

1)(abX2
1Y

2
1 + 3bX2

1Z
2
1 + Z4

1 − aY 2
1 Z

2
1)2;

Z3 = Z1(abX
2
1Y

2
1 + 3aY 2

1 Z
2
1 + Z4

1 − bX2
1Z

2
1)(abX2

1Y
2
1 + 3bX2

1Z
2
1 + Z4

1 − aY 2
1 Z

2
1)

· (3abX2
1Y

2
1 + aY 2

1 Z
2
1 + bX2

1Z
2
1 − Z4

1).

The algorithm compute (X3 : Y3 : Z3) = 3(X1 : Y1 : Z1) cost 10M + 6S by
using temporary variable X2

1 , Y
2
1 , Z

2
1 , Z

4
1 , X

2
1Y

2
1 , Y1Z

2
1 , X1Z

2
1 .

Similarly, We can also get the tripling formula from addition formula when
using O = (0, 0, 1) as neutral element. Assuming that (X3 : Y3 : Z3) = 3(X1 :
Y1 : Z1), then

X3 = X1(Z
4
1 − bX2

1Z
2
1 + 3aY 2

1 Z
2
1 + abX2

1Y
2
1 )2(3Z4

1 + bX2
1Z

2
1 + aY 2

1 Z
2
1 − abX2

1Y
2
1 );

Y3 = Y1(Z
4
1 + 3bX2

1Z
2
1 − aY 2

1 Z
2
1 + abX2

1Y
2
1 )2(3Z4

1 + bX2
1Z

2
1 + aY 2

1 Z
2
1 − abX2

1Y
2
1 );

Z3 = Z1(Z
4
1 + 3bX2

1Z
2
1 − aY 2

1 Z
2
1 + abX2

1Y
2
1 )(Z4

1 − bX2
1Z

2
1 − aY 2

1 Z
2
1 − 3abX2

1Y
2
1 )

· (Z4
1 − bX2

1Z
2
1 + 3aY 2

1 Z
2
1 + abX2

1Y
2
1 ).

Tripling on X(aY 2−Z2) = Y (bX2−Z2). We can get the tripling formula
from addition formula when using O = (0, 0, 1) as neutral element. Assuming
that (X3 : Y3 : Z3) = 3(X1 : Y1 : Z1), then

X3 = X1(Z
4
1 −X2

1Z
2
1 + 3Y 2

1 Z
2
1 +X2

1Y
2
1 )2(3Z4

1 +X2
1Z

2
1 + Y 2

1 Z
2
1 −X2

1Y
2
1 );

Y3 = Y1(Z
4
1 + 3X1Z1 − Y 2

1 Z
2
1 +X2

1Y
2
1 )2(3Z4

1 +X2
1Z

2
1 + Y 2

1 Z
2
1 −X2

1Y
2
1 );

Z3 = Z1(Z
4
1 + 3X1Z1 − Y 2

1 Z
2
1 +X2

1Y
2
1 )(Z4

1 −X2
1Z

2
1 − Y 2

1 Z
2
1 − 3X2

1Y
2
1 )

· (Z4
1 −X2

1Z
2
1 + 3Y 2

1 Z
2
1 +X2

1Y
2
1 ).

The algorithm compute (X3 : Y3 : Z3) = 3(X1 : Y1 : Z1) cost 10M + 6S + 3D
by using temporary variable X2

1 , Y
2
1 , Z

2
1 , Z

4
1 , X

2
1Y

2
1 , Y1Z

2
1 , X1Z

2
1 .
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