
Interplay between (Im)perfectness, Synchrony and
Connectivity: The Case of ReliableMessage Trans-
mission

Abhinav Mehta †, Shashank Agrawal †, Kannan Srinathan †

{{abhinav mehta,shashank.agrawal}@research.,srinathan@}iiit.ac.in

ABSTRACT. For unconditionally reliable message transmission (URMT) in synchronous directed
networks of n nodes, a subset of which may be Byzantine faulty, it is well-known that the mini-
mum connectivity requirements for zero-error (perfect) protocols to exist is strictly higher than those
where a negligible yet non-zero error probability is allowed (Monte Carlo protocols) [9]. In this work,
we study the minimum connectivity requirements for the existence of (a) Las Vegas protocols in syn-
chronous networks, (b) asynchronous Monte Carlo protocols and (c) asynchronous Las Vegas proto-
cols for URMT.
Interestingly, we prove that in any network, synchronous Las Vegas URMT protocol exists if and only
if asynchronous Monte Carlo URMT protocol exists too. We further show another interesting result
that asynchronous Las Vegas URMT protocols exist if and only if synchronous perfect protocols
exist. In a nutshell, our results establish the following hierarchy with respect to the connectivity
requirements for URMT protocols (in the following, P stands for perfect, MC stands for Monte Carlo,
LV stands for Las Vegas, S denotes synchronous and A denotes asynchronous; it is known that SMC
< SP = AP):

SMC < SLV = AMC < ALV = SP = AP

1 Introduction

In the unconditionally reliablemessage transmission (URMT) problem, two non-faulty play-

ers, the sender S and the receiver R are part of a communication network modelled as a

digraph over n players/nodes influenced by an unbounded active adversary that may cor-

rupt some subset of these n players/nodes. S has a message that he wishes to send to R;

the challenge is to design a protocol such that R correctly obtains S’s message with arbitrar-

ily small error probability, irrespective of what the adversary (maliciously) does to disrupt

the protocol. Note that by “unconditional”, we mean that the adversary is of unbounded

computational power and therefore modern cryptographic tools for verifying the integrity

of the data are irrelevant.

Analogous to randomized sequential algorithms, one may distinguish between two

variants of URMT, namely, Monte Carlo and Las Vegas. In the former variant R outputs the

sender’s message with high probability and may produce an incorrect output with small

probability; in the latter, R outputs the sender’s message with high probability and with

small probability may abort the protocol but in no case does the receiver terminate with an

incorrect output. While Monte Carlo URMT has been studied in [8, 9], we initiate the study

of Las Vegas URMT over directed synchronous networks and characterize the exact gap in

†Center for Security, Theory and Algorithmic Research (C-STAR),
International Institute of Information Technology, Hyderabad, 500032, India.

2

the class of networks over which Las Vegas URMT, as compared to Monte Carlo URMT, is

possible.

Most of the distributed computing protocols assume that every pair of participating

nodes share a reliable channel which with small probability may abort the protocol but in

no case does the receiver terminates with an incorrect output. While Monte Carlo URMT

has been studied in [8], we initiate the study of Las Vegas URMT over directed synchronous

networks and characterize the exact gap in the class of networks over which Las Vegas

URMT, as compared to Monte Carlo URMT, is possible.

We also initiate the study of Monte Carlo URMT protocols over asynchronous directed

networks. Unlike synchronous networks, in which the players have full information about

the timings of the events in the network, in an asynchronous network, a conservative and

more realistic assumption is used, namely that no time-bounds are known to the players

regarding the schedule of various events in the network. Clearly, Monte Carlo URMT over

asynchronous digraphs is harder to achieve (and indeed requires more network connectiv-

ity) than Monte Carlo URMT over synchronous digraphs. Equally evident is the fact that

achieving Las Vegas URMT is harder (and again it indeed requires more network connectiv-

ity) than achieving Monte Carlo URMT, over synchronous digraphs. Though not seemingly

related, interestingly, we prove that the additional requirements in network connectivity in

both the aforementioned cases is exactly the same.

In the sequel, we similarly study the minimum connectivity requirements for the exis-

tence of asynchronous Las Vegas URMT protocols, which interestingly turns out to be the

same as those for the existence of synchronous perfect protocols.

We further improve our insights in the problem by studying on how sparse can a di-

graph that permits URMT be. Specifically, we say that an edge is critical if its removal

renders the graph insufficiently connected for URMT protocols (though before its removal

the connectivity was sufficient). Ironically, it turns out that for perfect protocols, the number

of critical edges is always O(n) where as for the “easier” randomized protocols, we give a

family of digraphs with Ω(n2) critical edges! We remark that an earlier attempt in [8] to

give such a family of digraphs for the case of synchronous Monte Carlo URMT protocols

is incorrect and we correct the same; we also give similar families of digraphs (with Ω(n2)
critical edges) for synchronous Las Vegas (and asynchronous Monte Carlo) protocols.

1.1 Related Work

The problem of URMTwas first defined by Franklin et. al. in [4]. They consider the problem

of Monte Carlo URMT over undirected networks tolerating threshold Byzantine adversary

and show that URMT is possible iff PRMT is possible. In [2], Desmedt et. al. give efficient

protocols for URMT (which also achieve perfect privacy) in directed networks by abstract-

ing the network as a collection of disjoint wires between S and R.

A more general setting is considered in [9, 8], which is also the setting with which

we work in this paper, where the underlying network is abstracted as a directed graph

and every node is as powerful as probabilistic Turing Machine. Such an abstraction is well

motivated in practice because not every communication channel admits bi-directional com-

munication and intermediate nodes are usually not mere routers, but can compute too. The

3

characterization of directed synchronous networks for the possibility of Monte Carlo URMT

tolerating non-threshold mixed adversary is done in [9], a simplified characterization in the case

of threshold Byzantine adversary follows in [8].

The theorem establishing equivalence between the connectivity requirements for the

possibility of synchronous Las Vegas URMT and that of asynchronous Monte Carlo URMT

appears without proof as a brief announcement in the proceedings of DISC 2010 [6]. De-

tailed proofs of this result appear in this paper (alongwith several other important results).

1.2 Organization of paper

We characterize directed networks for the possibility of (i) Las Vegas variant of URMT in

synchronous networks (ii) Monte Carlo variant of URMT in asynchronous networks (iii)

Las Vegas variant of URMT in asynchronous networks, tolerating a non-threshold Byzan-

tine adversary A in Section 3, 4 and 5 respectively. Dealing with arbitrary sized adversary

structure is hard and non-intuitive, so we take the following mentioned two step approach

in each of these sections. We first prove that in order to tolerate an adversary structure A

it is sufficient to tolerate all its two sized subsets. We then give a necessary and sufficient

condition for the respective variant of URMT to be possible tolerating a two-sized adversary

structure. In Section 6, we study the concept of critical edges. In Theorem 31, we prove that

the family of digraphs over n nodes proposed in [8] for synchronous Monte Carlo URMT

claimed to have Ω(n2) critical edges has only O(n) critical edges. Theorem 32 presents

another family which has indeed Ω(n2) critical edges. Further, in Theorem 33, we give a

family of digraphs with Ω(n2) critical edges w.r.t. the two variants of URMT studied in this

paper - synchronous Las Vegas and asynchronous Monte Carlo.

2 Model and Definitions

We model the underlying network in which a sender S and a receiver R are two distin-

guished nodes as a directed graph N = (V, E), where V is the set of nodes and E ⊆ V ×V

is the set of all directed edges in the network. We assume the secure channels setting, i.e.,

all the edges are secure, reliable and authenticated. We assume that every node is a proba-

bilistic Turing Machine and the topology of the network is known to every node.

Following [5], we model faults in the network by a fictitious centralized entity called

the adversary which has unbounded computing power. A single “snapshot” of faults in the

network can be described as B ⊆ V\{S,R}∗ which means that the nodes in the set B are

faulty. We denote the set of all such B’s by A and refer to it as an adversary structure. We

allow Byzantine corruption, i.e., all nodes in the set B ∈ A corrupted by the adversary can

deviate arbitrarily from the designated protocol. Sometimes the adversarymay only fail-stop

a corrupted node in which case the node stops sending and receiving any messages.

The adversary structure is monotone: if B1 ∈ A then ∀B2 ⊂ B1, B2 ∈ A. We note that

A can be uniquely represented by listing the elements in its maximal basis A = {B | B ∈
A,∄X ∈ A s.t. B ⊂ X}. Abusing the standard notation, we assume that A itself is a

∗Problem of reliable communication makes sense only when the sending node S and the receiving node R
are non-faulty, for otherwise reliable communication need not happen.

4

maximal basis. We refer to A as a t-threshold adversary if A = {B | B ⊆ V \ {S,R} and

|B| = t}. We only deal with cases where |A| ≥ 2, since otherwise the problems are trivial.

We allow the adversary to be adaptive – it can choose which nodes to corrupt during the

execution of a protocol based on its view, as long as the set of nodes corrupted during the

entire execution is a member of A. We assume that the adversary knows the topology of the

network as well as the protocol specification. We further assume that it knows the message

sender S has chosen to send to R †.

Protocols running over directed networks tolerating an adversary rely on the informa-

tion of timing of the events in the system. We consider two extremes w.r.t timing model, i.e.,

either all the edges in the network are synchronous or asynchronous. In the former a protocol

is executed in a sequence of rounds where in each round, a player can send messages to his

out-neighbours, receive the messages sent in that round by his in-neighbours and perform

some computation on the received messages, in that order. In the latter case (when the net-

work is asynchronous), there is no fixed upper bound on the timings of events. To model

asynchrony in the network we assume that the adversary is additionally equipped with the

ability to schedule all the messages exchanged over the network while remaining oblivious

to the messages being exchanged [1].

Let the message space be a large finite field 〈F,+, ·〉. All the computations are done in

this field. In this paper we refer to Las Vegas URMT as URMTLV and Monte Carlo URMT as

URMTMC. We may also use URMT without any subscript to refer to both the variants to-

gether. We now formally define what we mean by a protocol being URMTLV or URMTMC

protocol. All the probabilities are taken over the coin tosses of all the nodes and the adver-

sary.

DEFINITION 1.[(A, δ)-URMTMC] Let δ <
1
2 . We say that a protocol for transmitting mes-

sages in a networkN from S toR is (A, δ)-URMTMC if for all valid Byzantine corruptions of
any B ∈ A and ∀m ∈ F, the probability that R outputsm given that S has sentm, is at least
(1− δ). Otherwise R outputs m′ 6= m or does not terminate. If the network is synchronous,
R is bound to terminate with certainty.

DEFINITION 2.[(A, δ)-URMTLV] Let δ <
1
2 . We say that a protocol for transmitting mes-

sages in a network N from S to R is (A, δ)-URMTLV if for all valid Byzantine corruptions
of any B ∈ A and ∀m ∈ F, the probability that R outputs m given that S has sent m, is at
least (1− δ). Otherwise, R outputs a special symbol ⊥ (/∈ F) or does not terminate.

DEFINITION 3.[A-PRMT] We say that a protocol for transmitting messages in a networkN
from S to R is A-PRMT if for all valid Byzantine corruptions of any B ∈ A and ∀m ∈ F, the
probability that R outputsm when S has sentm is 1.

We refer to (A, δ)-URMT (resp. A-PRMT) as a (t, δ)-URMT (resp. t-PRMT) when A is a

t-threshold adversary.

†If we do not make this assumption, the results we prove in this paper still hold but with a slight change in
our definition of URMT (see [4]).

5

DEFINITION 4.[Strong path] A sequence of vertices v1, v2, v3, . . . , vk is said to be a strong
path from v1 to vk in the network N = (V, E) if for each 1 ≤ i < k, (vi, vi+1) ∈ E . Further-
more, we assume that there vacuously exists a strong path from a node to itself.

DEFINITION 5.[Weak path] A sequence of vertices v1, v2, v3, . . . , vk is said to be a weak path
from v1 to vk in the networkN = (V, E) if for each 1 ≤ i < k, (vi, vi+1) ∈ E or (vi+1, vi) ∈ E .

DEFINITION 6.[Blocked node] A node u along a weak path p is called a blocked node if its
out-degree along p is 0.

DEFINITION 7.[Head node] A node y along a weak path p is called a head node if it is an
intermediate node with out-degree 2 or a terminal node with out-degree 1.

Every weak path p between S and R can be viewed as an alternating sequence of

blocked nodes ui’s and head nodes yi’s starting with S as a head node denoted by y0
and ending into R as a blocked denoted by un+1 i.e. ∃ n > 0, path p can be viewed as

y0, u1, y1, u2, y2, . . . , un, yn, un+1 such that each yi has a strong path to ui and ui+1 along p.

The case when S is not a head node (i.e. it is a blocked node) along p, the following de-

scribed simulation within the node S can enusre that a virtual sender s is a head node: (i) S

simulates two nodes, s and u and a directed edge (s,u). (ii) The incoming path to S along p

(which made S a blocked node) is now an incoming path to u.

Analogously, it can always be ensured that R is a blocked node. We elaborate our repre-

sentation of weak path with an example in Figure 1. Such a representation of a weak path

comes handy in giving easy to understand sufficiency proofs.

S

R
v1

v2

v3

v4

(a)
v3

v4

R

s

u

v1

(b)

Figure 1: (a) A weak path between S and R. (b) We view it as a sequence of alternating

blocked nodes and head nodes starting with a head node s (the virtual sender) and ending

in a blocked node R. Nodes s, v1 and v4 are head nodes; u and v3 are blocked nodes such

that there is a strong path from s to u; v1 to u and v3; and v4 to v3 and R.

DEFINITION 8.[Critical edge] In a digraph G for which URMT protocol exists, an edge is
said to be critical if the deletion of that edge renders URMT impossible.

6

DEFINITION 9.[Authentication function] Let K1,K2,K3 ∈R F × F × F and m ∈ F. Authenti-
cation function χ is defined as χ(m;K1,K2,K3) = (m + K1, (m + K1) · K2 + K3).

The authentication function authenticates any message m ∈ F. We refer to K1, K2 and K3

as keys. If three randomly choosen keys (unknown to the adversary) are established between

two nodes u and v such that ∃ a path p from u to v then authentication function is used as

follows: (a) Say, x = m+ K1 and y = x · K2 + K3; u sends 〈x, y〉 (a two tuple) to v along path

p. (b) Say node v receives 〈x′, y′〉. v verifies if y′
?
= x′ · K1 + K2. If the verification passes

then x′ = x with probability at least |F|−1
|F| , or otherwise v can deduce with certainty that p

is a faulty path. (Proofs for the same appear in [7]).

3 Characterizing synchronous networks for (A, δ)-URMTLV

In the following theorem we show that in the case of synchronous networks, the problem of

characterizing networks for (the (im)possibility of) (A, δ)-URMTLV reduces to the problem

of characterizing networks for (B, δ)-URMTLV , where |B| = 2 (similar reductions can be

found in [9, 8]).

THEOREM 10. In a directed synchronous networkN , (A, δ)-URMTLV protocol is possible if
and only if for every adversary structure B ⊆ A such that |B| = 2, (B, δ)-URMTLV protocol
is possible.

PROOF. Necessity: Obvious. Sufficiency: We show how to construct a protocol tolerating an

adversary structure of larger size from protocols tolerating adversary structures of smaller

size without increasing the probability of error. Therefore if protocols tolerating adversary

structures of size two are available, we can inductively construct protocol tolerating any

arbitrary sized adversary structure.

Let f ∈ F be any element S intends to send to R. Let A ⊆ A. Consider three ⌈ 2|A|
3 ⌉-

sized subsets ofA, namelyA1,A2 andA3, such that each element ofA occurs in at least two

distinctAi’s. For i ∈ {1, 2, 3}, let Υi be a (Ai, δ)-URMTLV protocol. Using Υi as sub-protocol,

we first construct Zi which is a (A, δ
2)-URMTLV protocol. This is done by repeating each Υi

sufficiently many times, keeping the S’s input same as f , in order to amplify the probability

of success. We then use Zi’s to construct a protocol Γ which is an (A, δ)-URMTLV protocol

(as proved in the following lemma) as follows:

− For each i ∈ {1, 2, 3}, sub-protocol Zi is run on f .

− R outputs the majority of the outcomes of the three sub-protocols and in case there is

no majority, it outputs ⊥.

LEMMA 11. For the directed synchronous network N , the protocol Γ constructed above is
an (A, δ)-URMTLV protocol.

PROOF. Any set B ∈ A is present in at least two subsets among A1,A2 and A3; say

the two subsets are A2 and A3. Hence the outcome of the two sub-protocols Z2 and Z3 is

correct with at least 1− δ
2 probability each. Since R outputs the majority of the outcomes,

its output is correct if both the sub-protocols produce the correct outcome which happens

7

with at least (1− δ
2)

2 probability. Hence the error probability is upper bounded by δ − δ2

4 or

δ. Additionally, it is easy to see that Rwould never output an incorrect message.

Having reduced the problem of URMTLV in a synchronous network tolerating an ad-

versary structure to the problem of URMTLV tolerating all its 2-sized subsets, we now pro-

ceed to characterize directed synchronous networks in which URMTLV tolerating adversary

structure B = {B1, B2} is possible (where B1, B2 ∈ A).

THEOREM 12. In a directed synchronous network N , (B, δ)-URMTLV protocol is possible if
and only if for each α ∈ {1, 2}, there exists a weak path qα avoiding nodes in B1 ∪ B2 such
that every node u along the path qα has a strong path to R avoiding all nodes in Bα

‡ (Paths
q1, q2 need not be distinct.)

We prove the theorem in the following sub-sections.

3.1 Sufficiency

For a directed synchronous networkN , which satisfies the conditions given in Theorem 12,

we show how to construct a protocol Π tolerating the adversary structure B = {B1, B2}. Let
m be the message S intends to send. If either q1 or q2 is a strong path from S to R, S trivially

sends m along that path. When this is not the case, we construct two sub-protocols Π1 and

Π2. For each i ∈ {1, 2}, protocol Πi uses the honest weak path qi. We give a construction

for Π1, and the construction of Π2 follows by symmetry. For convenience of writing the

protocol, we first represent weak path q1 as y0, u1, y1, u2, y2, . . . , un, yn, un+1 as explained in

Section 2 (right after the definitions of weak path, head node and blocked node). We denote

S and R interchangeably as y0 and un+1 respectively. Π1 proceeds in the following steps:

1. S sends m to u1 along q1. For 1 ≤ k ≤ n, node yk chooses 3k random keys namely

Kk,1,Kk,2, . . . ,Kk,3k and sends those to uk and uk+1.

2. Node u1 receives m from S and keys K1,1,K1,2,K1,3 from y1. It calculates (ψ1,1, φ1,1) =
χ(m;K1,1,K1,2,K1,3) and sends those toR along a strong path avoiding B2 in some fixed

round ru1 .

For 1 < k ≤ n, uk receives 3
k−1 keys from yk−1 and 3k keys from yk. It authenticates

the keys received from yk−1 with the keys received from yk and sends it to R along a

strong path avoiding B2 in some fixed round ruk . Formally, uk calculates, ∀j 1 ≤ j ≤
3k−1, (ψk,j, φk,j) = χ(Kk−1,j;Kk,3j−2,Kk,3j−1,Kk,3j).

3. R receives {K′
n,1,K

′
n,2, . . . ,K

′
n,3n} from yn. N being a synchronous network, R knows

exactly the round number, say r′uk , in which it will receive messages that uk sent to it

in round ruk . If R does not receive valid messages from uk in round r′uk , it assumes that

B1 is faulty and stops. Else if it receives ∀k ∀j 1 ≤ k ≤ n, 1 ≤ j ≤ 3k−1, (ψ′
k,j, φ

′
k,j), the

protocol proceeds as follows.

for k in n to 2

R verifies ∀j, φ′
k,j

?
= ψ′

k,j · K
′
k,3j−1 + K′

k,3j. If the verification fails for any j, R

concludes that B1 is faulty and stops. Otherwise, R recovers ∀j, K′
k−1,j as ψ′

k,j +

Kk,3j−2
−1.

‡We denote 1 = 2 and vice-versa.

8

If at the end of the loop, R has recovered K′
1,1,K

′
1,2,K

′
1,3 then R verifies whether φ′

1,1
?
=

ψ′
1,1 · K

′
1,2 + K′

1,3. If the verification passes, R recovers m1 = ψ′
1,1 + K′

1,1
−1 as the mes-

sage.

This completes the description of Π1. The protocols Π1 and Π2 are run on network N . R

takes one of the following actions based on the outcomes of these protocols: (a) If R detects

that Bi is corrupt in Πi, it outputs whatever message it recovered from Πi. (b) If R recovers

messages from each of the Πi’s and both the messages are same, it outputs that message. (c)

If messages recovered through Π1 and Π2 are different, it outputs ⊥. This completes Π. In

the following lemma we prove that this is a (B, 1
|F|)-URMTLV protocol.

LEMMA 13. Π, as constructed above, is a (B, 1
|F|)-URMTLV protocol.

PROOF. We analyse the protocol case wise: (a) For some i, R concludes through Πi that

Bi is faulty, and outputs whatever it recovers from Πi. For each i, none of the nodes in Bi

participate in the protocol Πi. Hence, if some verification fails during Πi, Bi has to be faulty,

and Πi should recover the correct message m. (b) For each i ∈ {1, 2}, all verifications in Πi

pass. Case (i) mi = mi, R outputs mi. Since one of mi or mi has to be same as m, R’s output

is correct. This happens with ≤ 1
|F| probability.

3.2 Necessity

Adversary’s guess

x

b2

b1

s
∗

r
∗

s
∗

r
∗

b2

b1

s
∗
1

x

r
∗s

∗

b2

b1

x

s
∗
2

x2

(b) Execution E1 (c) Execution E2(a) Network N ∗

m1

m1

m2

m2

Figure 2: (a) The directed network N ∗ (b) Adversary strategy when b1 is faulty (c) Adver-

sary strategy when b2 is faulty. To complete the simulation of x, adversary feeds x2 with

random elements. Execution E2 is one in which ‘Adversary’s guess’ is what r∗ sends to x in

E1 and coin tosses with respect to all players (described in the Lemma 15) are such that r∗ is

bound to output m1 in E2.

LetN be a network that does not satisfy the conditions of Theorem 12. We show that in

such a network ({B1, B2}, δ)-URMTLV from S to R is impossible. Without loss of generality,

9

let us assume that the two sets comprising the adversary structure are disjoint†. Let the

path q1
§ be not present between S and R in N . Hence, every weak path between S and R

avoiding nodes in B1 ∪ B2 has at least one node w such that every strong path from w to R

passes through B2.

We first consider the simple network N ∗ = (V∗, E ∗) shown in Figure 2(a) consisting

of five nodes s∗, r∗, b1, b2 and x where s∗ is the sender and r∗ is the receiver and show that

({{b1}, {b2}}, δ)-URMTLV from s∗ to r∗ is impossible in Lemma 14. We then show that the

digraph N can be partitioned into disjoint sets whose connectivity properties are similar to

the connectivity between nodes of digraph N ∗ in Lemma 16. We then prove in Lemma 17

that if ({B1, B2}, δ)-URMTLV from S to R is possible in N then ({{b1}, {b2}}, δ)-URMTLV

from s∗ to r∗ is also possible in N ∗, which is a contradiction. Hence, the conditions men-

tioned in Theorem 12 are necessary.

LEMMA 14. In the synchronous networkN ∗, shown in Figure 2(a), ({{b1}, {b2}}, δ)-URMTLV

(δ < 1/2) from s∗ to r∗ is impossible.

PROOF. We assume that a protocol Π∗ exists in N ∗ which is a ({{b1}, {b2}}, δ)-URMTLV

protocol. We describe an adversary strategy S to fail any protocol Π∗ and prove it’s correct-

ness in the following lemma. Adversary chooses any two messages m1,m2 ∈ F, m1 6= m2.

When s∗ intends to send mi, the adversary corrupts the set bi and snaps all communication

with the nodes: bi, x and s∗.

When adversary corrupts b1, it simulates a local copy of s∗ on input m2, say s∗1 . At

the beginning of each round, b1 receives messages from r∗ and from the simulated s∗1 , does

local computation and sends out messages to r∗ and s∗1 . During the same round, s∗1 receives

messages from b1, its state is updated and messages are sent out for the next round.

When adversary corrupts b2, it simulates a local copy of s∗ on input m1 and a local copy

of x, say s∗2 and x2 respectively. It handles the simulated s∗2 and x2 locally in the samemanner

as it handled the simulated s∗1 when b1 was corrupted. For simulation of x to happen, x2 is

to be fed with some input on behalf of r∗, since an edge (r∗, x) ∈ E ∗. Adversary guesses

the messages sent along this edge and feeds those to x2 round by round until the protocol

terminates. Note that the node x has no strong path to r∗ and hence does not have any

influence on R’s output.

For the sake of clarity, a pictorial view of the adversary strategy is shown in the Figure

2(b), (c). We prove that the above strategy fails every protocol Π∗ in the following Lemma.

LEMMA 15. With the adversary strategy S , no protocol Π∗ is a {{b1}, {b2}}-URMTLV pro-
tocol.

PROOF. Before proceeding to the proof we introduce the following notations w.r.t. to an

execution Ei of the protocol Π∗: (a) The vector ~Ci = (cis∗ , c
i
r∗ , c

i
b1
, cib2 , c

i
x) which denotes the

coin tosses input to nodes, where cin denotes the coin tosses of node n. (b) The view of a node

†In case B1 ∩ B2 6= φ, adversary strategy to fail any protocol in N includes fail-stoping the nodes in the
intersection.

§The case when the path q2 is not present from S to R can be handled analogously.

10

n, viewn(Ei), which comprises of the internal coin tosses cin of node n and the messages it

receives during execution Ei. We now consider the following two executions:

1. There exists an execution E1 of Π∗ such that s∗ chooses to send m1 and r∗ outputs m1

when the random tosses used by s∗1 are denoted by a string r, for otherwise Π∗ won’t

be a {{b1}, {b2}}-URMTLV protocol.

2. Execution E2: s
∗ chooses to send m2. Coin tosses ~C2 of nodes are such that c2b1 = c1b1 ,

c2r∗ = c1r∗ and c2s∗ = r. Coin tosses of s∗2 and x2 are c
1
s∗ and c1x respectively. Messages fed

to x2 by the adversary matches exactly the messages sent by r∗ to x in E1.

For the above mentioned executions E1 and E2, viewr∗(E1) = viewr∗(E2). Hence r∗ halts

with output m1 in execution E2, violating the condition of Π∗ being a URMTLV protocol.

LEMMA 16. The set of nodes V in the network N can be partitioned into 5 disjoint sets
S∗,R∗, B′

1 ⊆ B1, B2 and X′ such that S ∈ S∗, R ∈ R∗ and an edge exists from a node in~L[i] to

a node in~L[j] only if (~l[i],~l[j]) ∈ E ∗ where~L = [S∗,R∗, B′
1, B2,X

′] and~l = [s∗, r∗, b1, b2, x] are

two ordered lists,~l[i] (resp. ~L[i]) denotes the ith element of the list~l (resp. ~L).

PROOF. In the networkN , every weak path between S andR avoiding B1 ∪ B2 has at least

one node w such that every strong path from w to R passes through B2.

We partition the non-faulty nodes H = V \ {B1 ∪ B2} into 3 disjoint sets namely: R∗, S∗

and X defined as follows. R∗ = {w | w ∈ H and ∃ a weak path p between w and R s.t all the

nodes in p have a strong path to R avoiding nodes in B2}. S∗ = {w | w ∈ H \ R∗ and w has

a strong path to R avoiding B2}. X = H \ {S∗ ∪ R∗}. Clearly, R ∈ R∗ and S ∈ S∗. Moreover,

if any node w ∈ X has a strong path to R, it passes through some node in B2.

We now divide the set B1 into two disjoint sets namely: B′
1 and BX

1 . B
′
1 = {u | u ∈ B1

and u has a strong path to R avoiding B2}. BX
1 = B1 \ B′

1. We consider two sets X and BX
1

together as a set X′ i.e. X′ = X ∪ BX
1 .

It trivially follows from the definitions above that ∄ (u, v) ∈ E such that u ∈ X′ and

v ∈ S∗ ∪ R∗ ∪ B′
1, otherwise there would be a path from a node in X′ to R avoiding B2. Also,

there cannot exist any directed edge between a node in S∗ and a node in R∗. Note the only

edges missing from N ∗ are (x, s∗), (x, r∗), (x, b1) and (s∗, r∗), (r∗, s∗). Hence, proved.

LEMMA 17. In the directed synchronous networkN = (V, E), ({B1, B2}, δ)-URMTLV is pos-
sible from S to R only if ({{b1}, {b2}}, δ)-URMTLV is possible from s∗ to r∗ in the network
N ∗

1 .

PROOF. We show how a ({B1, B2}, δ)-URMTLV protocol P on N can be simulated on N ∗

to obtain a ({{b1}, {b2}}, δ)-URMTLV protocol. We simulate a virtual network N over N ∗

such thatP when run over the virtualN is a ({{b1}, {b2}}, δ)-URMTLV protocol. Simulation

runs as follows: Node~l[i] simulates all the nodes in the set ~L[i]. Edges in N lie in one of

the following two categories: (i) Those amongst the nodes within a~L[i]. Such edges can be

simulated by~l[i] internally. (ii) Edges from a node in~L[i] to a node in~L[j]. We proved in the

previous lemma that, an edges exists from a node in~L[i] to a node in~L[j] only if there exists

an edge (~l[i],~l[j]) ∈ E ∗. Hence, such an edge can be simulated on edge (~l[i],~l[j]). Now,

protocol P is run on the virtualN which is a ({{b1}, {b2}})-URMTLV protocol from s∗ to r∗

in N ∗.

11

4 Characterizing asynchronous networks for (A, δ)-URMTMC

In the following theoremwe show that in the case of asynchronous networks, the problem of

characterizing networks for (the (im)possibility of) (A, δ)-URMTMC reduces to the problem

of characterizing networks for (B, δ)-URMTMC, where |B| = 2.

THEOREM 18. In a directed asynchronous networkN , (A, δ)-URMTMC protocol is possible
if and only if for every adversary structure B ⊆ A such that |B| = 2, (B, δ)-URMTMC

protocol is possible.

The proof takes an approach similar to the one taken in the proof of Theorem 10. How-

ever, since the network is asynchronous, the way we build a protocol tolerating larger sized

adversary structure from protocols tolerating smaller sized ones changes.

PROOF. Necessity: Obvious. Sufficiency: The proof takes an approach similar to the one

taken in the proof of Theorem 10. However, since the network is asynchronous, the way

we build a protocol tolerating larger sized adversary structure from protocols tolerating

smaller sized ones changes. Let f ∈ F be any element S intends to send to R: Consider A
and its three subsets A1,A2 and A3 as described in Theorem 10. For i ∈ {1, 2, 3}, let ζi be

a (Ai,
δ
2)-URMTMC protocol which can be constructed easily by repeating (Ai, δ)-URMTMC

sufficiently many times, keeping S’s input same as f , in order to amplify the probability of

success. The protocol η which is an (A, δ)-URMTMC protocol (as proved in the following

lemma) is constructed as follows:

− For each i ∈ {1, 2, 3}, sub-protocols ζi are run in parallel on f .

− Rwaits until two of the three ζi sub-protocols terminate with same output and outputs

that as the message.

LEMMA 19. For the directed synchronous networkN , the protocol η constructed above is a
(A, δ)-URMTMC protocol.

PROOF. Any set B ∈ A is present in at least two subsets among A1,A2 and A3; say

the two subsets are A2 and A3. Hence the two sub-protocols ζ2 and ζ3 terminate with the

correct output with at least 1− δ
2 probability each. As R waits until two of the three ζi sub-

protocols terminate with same output, η fails only if at least one of ζ2 and ζ3 terminates

with an incorrect message or does not terminate at all. Since this happens with atmost

1− (1− δ
2)

2 probability, η is an (A, δ − δ2

4)-URMTMC i.e. an (A, δ)-URMTMC protocol.

Having reduced the problem of URMTMC in an asynchronous network tolerating an

adversary structure to the problem of URMTMC tolerating all its 2-sized subsets, we now

proceed to characterize directed asynchronous network in which URMTMC tolerating ad-

versary structure B = {B1, B2} is possible (where B1, B2 ∈ A).

THEOREM 20. In a directed asynchronous network N , (B, δ)-URMTMC protocol is possible
if and only if for each α ∈ {1, 2}, there exists a weak path qα avoiding nodes in B1 ∪ B2 such
that every node u along the path qα has a strong path to R avoiding all nodes in Bα. (Paths
q1, q2 need not be distinct.)

We give the sufficiency and the necessity proofs in the following sub-sections.

12

4.1 Sufficiency

The protocol for the sufficiency proof of above theorem is constructed in a manner similar

to the synchronous Las Vegas protocol in Section 3.1. However, there are some important

differences.

For a directed asynchronous network N , which satisfies the conditions given in The-

orem 20, we show how to construct a protocol Π tolerating the adversary structure B =
{B1, B2}. If either q1 or q2 is a strong path from S to R, S trivially sends m along that path

and R is bound to receive it. When this is not the case, we construct two sub-protocols Π1

and Π2. For each i ∈ {1, 2}, protocol Πi uses the honest weak path qi. We give a construc-

tion of Π1, and the construction of Π2 follows by symmetry. We represent weak path q1 as

y0, u1, y1, . . . , un, yn, un+1 (as done in Section 3.1). Π1 proceeds in the following steps:

1. S sends m to u1 along q1. For 1 ≤ k ≤ n, node yk chooses 3k random keys namely

Kk,1,Kk,2, . . . ,Kk,3k and sends those to uk and uk+1.

2. Node u1 waits for m to arrive from S and keys K1,1,K1,2,K1,3 to arrive from y1. It calcu-

lates (ψ1,1, φ1,1) = χ(m;K1,1,K1,2,K1,3) and sends it to R along a strong path avoiding

B2.

For 1 < k ≤ n, uk waits for 3k−1 keys to arrive from yk−1 and 3k keys to arrive from

yk
¶. It authenticates the keys received from yk−1 with the keys received from yk and

sends it to R along a strong path avoiding B2. Formally, uk calculates ∀j 1 ≤ j ≤
3k−1 (ψk,j, φk,j) = χ(Kk−1,j;Kk,3j−2,Kk,3j−1,Kk,3j).

3. Rwaits for {K′
n,1,K

′
n,2, . . . ,K

′
n,3n} to arrive from yn. R runs the following loop:

for k in n to 2

R waits until it receives ∀j 1 ≤ j ≤ 3k−1, (ψ′
k,j, φ

′
k,j) from uk

†. If R does receive, it

verifies ∀j, φ′
k,j

?
= ψ′

k,j ·K
′
k,3j−1 +K′

k,3j. If the verification fails for any j, R concludes

that B1 is faulty and stops. Otherwise, R recovers K′
k−1,j as ψ′

k,j + Kk,3j−2
−1, for

every j.

If at the end of the loop, R has recovered K′
1,1,K

′
1,2 and K′

1,3 then R waits to receive

(ψ′
1,1, φ

′
1,1) and verifies if φ′

1,1
?
= ψ′

1,1 · K
′
1,2 + K′

1,3. If the verification passes, R recovers

m1 = ψ′
1,1 + K′

1,1
−1 as the message.

This completes the description of Π1. The protocols Π1 and Π2 are run in parallel in the

asynchronous network N . R takes one of the following actions based on the outcomes of

these protocols: (a) If for any i ∈ {1, 2}, Πi concludes that Bi is faulty, R waits for Πi to

terminate, and outputs mi as message. (b) If for any i ∈ {1, 2}, Πi halts with mi as message,

R outputs that as message without waiting for the protocol Πi to terminate. Above is a

(B, 1
|F|)-URMTMC protocol as proved in the following lemma.

¶As the communication between ui’s and yi’s occurs along the honest weak path q1, every ui receives the
keys (or message) eventually.

†As these messages are delivered along faulty paths, they may never arrive. However, since Π1 and Π2 are
run in parallel (as mentioned in the sequel) andRwaits for only one of them to terminate, the protocol Π always
terminates.

13

LEMMA 21. Π, as constructed above, is a (B, 1
|F|)-URMTMC protocol.

PROOF. We analyze the protocol case wise: (a) For some i, Πi outputs that Bi is faulty, and

R outputs what it recovers from Πi. None of the nodes in Bi participate in the protocol Πi.

Therefore, some verification fails during Πi only if Bi is faulty. Hence, Πi is bound to ter-

minate with mi = m. (b) For some i, Πi terminates successfully with output mi. Probability

that mi 6= m is at most 1
|F| . Hence, R’s output is correct with probability at least |F|−1

|F| .

4.2 Necessity

Let N be a network that does not satisfy the condition of 20. We show that in such a net-

work ({B1, B2}, δ)-URMTMC from S to R is impossible. Without loss of generality, we as-

sume that the sets B1 and B2 are disjoint and path q1 is not present between S and R in N
(Reasons for the assumptions are clearly stated in Section 3.2). Hence, every weak path be-

tween S and R avoiding B1 ∪ B2 has at least one node w such that every strong path from

w to R passes through B2. We again consider the simple network N ∗ = (V∗, E ∗) shown in

Figure 2(a) consisting of five nodes s∗, r∗, b1, b2 and x where s∗ is the sender and r∗ is the

receiver. However, this time the edges between nodes are asynchronous. We show that

({{b1}, {b2}}, δ)-URMTMC from s∗ to r∗ is impossible in N ∗ in Lemma 22. We then need

to show that the digraph N can be partitioned into disjoint sets whose connectivity prop-

erties are similar to the connectivity between nodes of digraph N ∗, which we have already

proved in Lemma 16. Now, if ({B1, B2}, δ)-URMTMC from S to R is possible in N then

({{b1}, {b2}})-URMTMC from s∗ to r∗ is possible in N ∗, which leads us to a contradiction

(We need not prove this separately as the proof given in Lemma 17 works even when both

N and N ∗ are asynchronous networks). Hence, the conditions mentioned in Theorem 20

are necessary.

LEMMA 22. In the asynchronous networkN ∗, shown in figure 2(a), ({{b1}, {b2}}, δ)-URMTMC

(δ < 1/2) from s∗ to r∗ is impossible.

PROOF. We assume that a protocol Π∗ exists in N ∗ which is a ({{b1}, {b2}}, δ)-URMTMC

protocol from s∗ to r∗. This implies that there exists a finite time instant T such that for

every message m, r∗ outputs m before instant T in at least half of the executions in which s∗

has chosen to send m. We now describe an adversary strategy to fail any such protocol Π∗.

Adversary chooses any two messages m1,m2 ∈ F,m1 6= m2 and ensures that the probability

that r∗ outputs m1 given s∗ has sent m1 is <
1
2 . When s∗ intends to send mi, it corrupts the

node bi, for i ∈ {1, 2}. When b2 is corrupt, adversary simply fail-stops it. When b1 is corrupt,

adversary does the following:

− Simulates a local copy of s∗ on input m2, say s∗1 .

− Snaps all it’s communication with the nodes: s∗, x and b2.

− Delays all the outgoing messages from b2 beyond the time instant T. Schedules events

between the rest of the nodes (and simulated nodes) i.e. s∗1 , r
∗, b1 and x as it sched-

ules events between s∗, r∗, b1 and x respectively when s∗’s input is m2 (Note that in

an asynchronous network, the adversary is additionally equipped with the ability to

schedule messages).

14

We now show that for every execution in which s∗’s input is m2, there is an execution

in which s∗’s input is m1 such that the view at r∗ is same in both the executions. Consider

the following two executions:-

1. Execution E1: s
∗’s input is m2 and coin tosses of s, b1 and r∗ are c1, c2 and c3 respec-

tively. Note that in this execution the coin tosses of x does not affect the output at r∗

as there is no strong path from x to r∗.

2. Execution E2: s
∗’s input is m1 and coin tosses of s∗1 , b1 and r∗ are c1, c2 and c3 respec-

tively. Note that in such an execution the coin tosses of s∗ and x does not affect the

output at r∗.

It follows that for every such E1 there is a corresponding E2 and Viewr∗(E1) = Viewr∗(E2).
This ensure, the probability that r∗ outputsm2 given s∗ has sentm1 is same as the probability

that r∗ outputs m2 given s∗ has sent m2, which is >
1
2 . Hence, a contradiction.

COROLLARY 23. In a directed network N = (V, E), a synchronous (A, δ)-URMTLV proto-
col exists if and only if a protocol exists for asynchronous (A, δ)-URMTMC.

PROOF. Follows from Theorem 10, 12 and 18, 20.

5 Characterizing asynchronous networks for (A, δ)-URMTLV

In the following theoremwe show that in the case of asynchronous networks, the problem of

characterizing networks for (the (im)possibility of) (A, δ)-URMTLV reduces to the problem

of characterizing networks for (B, δ)-URMTLV , where |B| = 2.

THEOREM 24. In a directed asynchronous network N , (A, δ)-URMTLV protocol is possible
if and only if for every adversary structure B ⊆ A such that |B| = 2, (B, δ)-URMTLV protocol
is possible.

PROOF. Similar to the proof of Theorem 18, hence omitted.

Having reduced the problem of URMTLV in an asynchronous network tolerating an

adversary structure to the problem of URMTLV tolerating all its 2-sized subsets, we now

proceed to characterize directed asynchronous networks in which URMTLV tolerating ad-

versary structure B = {B1, B2} is possible (where B1, B2 ∈ A).

THEOREM 25. In a directed asynchronous network N , (B, δ)-URMTLV protocol is possible
if and only if there exists a strong path from S to R avoiding nodes in B1 ∪ B2.

PROOF. Sufficiency: Let f be the field element S intends to send. Send f to R along the

strong path avoiding nodes in B1 ∪ B2. Since, the path does not contain any corrupt nodes,

f is eventually received by R.

We give the necessity proof of the above theorem in the following sub-section.

5.1 Necessity

The proof in this section is along similar lines to the necessity proofs earlier. Let N be a

network that does not satisfy the condition mentioned in Theorem 25. We first consider the

15

b2

s
∗

r
∗

s
∗

r
∗

b1

s
∗
1

(b) Execution E1 (c) Execution E2

m1

m2

(a) Network N ∗
1

b1

r
∗

m2

s
∗

b1

b2

Figure 3: (a) The directed network N ∗
1 (b) Adversary strategy when b1 is faulty (c) Adver-

sary strategy when b2 is faulty.

simple asynchronous network N ∗
1 = (V∗

1 , E
∗
1) with V∗

1 = {s∗, r∗, b1, b2} and E ∗
1 = (V∗

1 ×
V∗
1) \ {(s∗, r∗)} as shown in Figure 3(a) and show that ({{b1}, {b2}})-URMTLV from s∗ to r∗

is impossible in Lemma 26. We then show that the digraph N can be partitioned into four

disjoint sets whose connectivity properties are similar to the connectivity between nodes

of digraph N ∗
1 in Lemma 27. Finally in Lemma 28, we show that if ({B1, B2}), δ)-URMTLV

from S to R is possible in N then ({{b1}, {b2}})-URMTLV from s∗ to r∗ is possible in N ∗
1 ,

which is a contradiction. Hence, the conditions mentioned in Theorem 25 are necessary.

LEMMA 26. In the asynchronous network N ∗
1 , ({{b1}, {b2}}, δ)-URMTLV (δ < 1/2) from s∗

to r∗ is impossible.

PROOF. We assume that a protocol Π∗ exists in N ∗
1 which is a ({{b1}, {b2}}, δ)-URMTLV

protocol from s∗ to r∗. This implies that there exists a finite time instant T such that for every

message m, r∗ outputs m before instant T in at least half of the executions in which s∗ has

chosen to send m. We use ~Ci and viewn(Ei) as defined in the proof of Lemma 14.

We now describe an adversary strategy to fail any protocol Π∗. Adversary chooses any

two messages m1,m2 ∈ F, m1 6= m2. When s∗ intends to send mi, the adversary corrupts

the set {bi}, for i ∈ {1, 2}. When b2 is corrupt, adversary fail-stops it. When b1 is corrupt,

adversary does the following:-

− Simulates a local copy of s∗ on input m2, say s∗1 .

− Snaps all its communication with nodes s∗ and b2.

− Delays all outgoing messages from b2 beyond the time instant T. Schedules events

between s∗1 , b1, and r∗ as it does between s∗, b1, and r∗ respectively when s∗’s input is

m2.

We now consider the following two executions of Π∗ with the above mentioned adversary

strategy.

1. Execution E1: s
∗’s input ism1 and r∗ outputsm1. (For Π∗ to be a valid ({{b1}, {b2}}})-

URMTLV protocol, such an execution exists). Let the coin tosses of s∗1 be c.

16

2. Execution E2: s
∗’s input is m2. Coin tosses ~C2 of nodes are such that c2s∗ = c, c2r∗ = c1r∗ ,

c2b1 = c1b1 .

Above mentioned adversary strategy ensures that viewr∗(E2) = viewr∗(E1). Therefore
r∗ halts with output m1 in E2 which is a contradiction on the existence of Π∗ since Las Vegas

protocols do not allow incorrect output.

We now consider networkN = (V, E) which does not satisfy the conditions of Theorem 25.

LEMMA 27. The set of nodes V in the network N can be partitioned into 4 disjoint sets
S∗, B1, B2 and R∗ such that S ∈ S∗, R ∈ R∗ and an edge exists from a node in~L[i] to a node
in~L[j] only if (~l[i],~l[j]) ∈ E ∗

1 where~L = [S∗, B1, B2,R
∗] and~l = [s∗, b1, b2, r

∗] are two ordered

lists,~l[i] (resp. ~L[i]) denotes the ith element of the list~l (resp. ~L).

PROOF. We partition the non-faulty nodes in H = V \ {B1 ∪ B2} into 2 disjoint sets S∗

and R∗. Let R∗ denote the set of all nodes in H having a strong path to R avoiding nodes in

B1 ∪ B2. Let S
∗ = V \ {R∗ ∪ B1 ∪ B2}. There does not exist a directed edge from a node in

S∗ to a node in R∗ by the definition of R∗. Since, E ∗
1 = (V∗

1 ×V∗
1) \ {(s∗, r∗)}, an edge exists

from a node in~L[i] to a node in~L[j] only if there exists an edge (~l[i],~l[j]) ∈ E ∗
1 .

LEMMA 28. In the directed asynchronous network N = (V, E), ({B1, B2}, δ)-URMTLV is
possible from S to R only if ({{b1}, {b2}}, δ)-URMTLV is possible from s∗ to r∗ in the net-
work N ∗

1 .

PROOF. Similar to the proof of Lemma 17, hence omitted.

THEOREM 29. In a directed synchronous (or asynchronous) networkN = (V, E), A-PRMT
from S to R is possible if and only if for all B1, B2 ∈ A there exists a strong path from S to R

avoiding nodes in B1 ∪ B2.

PROOF. Follows from [3].

COROLLARY 30. In a directed network N = (V, E), an asynchronous (A, δ)-URMTLV pro-
tocol exists if and only if a protocol exists for synchronous (or asynchronous) A-PRMT.

PROOF. Follows from Theorem 24, 25 and 29.

6 Critical edges

In [8], Bhavani et. al. proposed a family of graphs(t > 0), Gt = (V, E1 ∪ E2 ∪ E3) where V =
{S, v1, . . . , vt+1, u1, . . . , ut,R} and E1 =

⋃t+1
1 {(S, vi), (vi,R)}; E2 =

⋃t
i=1{(S, ui), (R, ui)};

E3 =
⋃t

i=1{(ui, v1), . . . , (ui, vt+1)} as shown in Figure 4(a) and claimed that Gt has Ω(n2)
critical edges w.r.t synchronous (t, δ)-URMTMC. In the following theorem, we prove that

this is not the case.

17

u1

ut

v1

v2

vt+1

u1

u2

u2t−1

u2t

v1

v2

v2t+1

S R S R

(a) Gt (b) Ht

.

.

.

.

.

.

.

.

.

.

.

.

Figure 4: (a) Graph Gt, (b) Graph Ht

THEOREM 31. Gt has only Θ(n) critical edges w.r.t synchronous (t, δ)-URMTMC.

PROOF. Consider the subgraph G′
t of Gt given by G′

t = (V, E1 ∪ E2 ∪ E ′
3), where E ′

3 =
⋃t

i=1{ui, vi}. According to [8], for (t, δ)-URMTMC to be impossible in G′
t, there exists B1, B2

such that |B1|, |B2| ≤ t and every weak path from S to R avoiding nodes in B1 ∪ B2 must

have at least one node x such that every strong path from x to R passes through nodes in B1

and in B2. We first show that no such sets B1, B2 exists for G
′
t.

If there exists a strong path from S to R avoiding nodes in B1 ∪ B2, URMTMC is trivially

possible. Hence, ∀i 1 ≤ i ≤ t + 1, vi ∈ B1 or vi ∈ B2. As |B1| + |B2| ≤ 2t, at least one ui has

to be honest. As this leaves an honest weak path from S to R i.e. S→ ui ←R with ui having

a strong path to R via vi. For the impossibility of synchronous (t, δ)-URMTMC, node vi must

belong to both B1 and B2. This would imply that another ui′ (i′ 6= i) is honest and hence vi′

must belong to both B1 and B2. Repeating the inductive arguing for another t− 2 times, we

can show that B1 = B2 = {vα1
, vα2 , . . . , vαt} for some {α1, α2, . . . , αt} ⊂ {1, 2, 3, . . . , t + 1}.

But this leaves a strong honest path from S to R. Hence, no B1, B2 exists such that (B, δ)-
URMTMC is impossible in G′

t i.e. (t, δ)-URMTMC is possible in G′
t.

Since G′
t has O(n) edges, this proves an upper bound of O(n) on the number of critical

edges in Gt. Hence, the claim in [8] that Gt has Ω(n2) critical edges is wrong. Moreover,

since deleting any one edge (S, vi) in Gt leaves only 2t disjoint weak paths between S and

R, Gt has Ω(n) critical edges. It therefore follows that Gt has Θ(n) critical edges.

We now propose a family of graphs with Ω(n2) critical edges. For all t > 0, consider

Ht = (V1,
⋃4

i=1 E
1
i)with V1 = {S, v1, . . . , v2t+1, u1, . . . , u2t,R} and E1

1 =
⋃2t+1

1 {(S, vi), (vi,R)};
E1
2 =

⋃2t
i=1{(S, ui), (R, ui)}; E1

3 =
⋃t

i=1{(u2i−1, u2i))}; E1
4 =

⋃t
i=1{(u2i, v1), . . . , (u2i, v2t+1)}

as shown in Figure 4(b). Here, number of nodes in graph Ht is n = 4t + 3.

18

THEOREM 32. Ht has Ω(n2) critical edges w.r.t synchronous (2t, δ)-URMTMC.

PROOF. (2t, δ)-URMTMC is possible in Ht (Follows from [8]). Suppose we delete an edge

e = (u2i, vj) ∈ E1
4 . Consider B1 =

⋃2t
k=1{uk} ∪ {vj} − {u2i−1}, B2 =

⋃2t+1
k=1 {vk} − {vj}. Only

honest weak path left is S → u2i−1 ← R. Every strong path from u2i−1 to R passes through

both B1 and B2. This renders ({B1, B2}, δ)-URMTMC impossible, hence (2t, δ)-URMTMC is

impossible. Hence, Ht has Ω(|E1
3 |) or Ω(n2) critical edges.

We now give a family of digraphs with Ω(n2) critical edges w.r.t asynchronous (t, δ)-
URMTMC and (t, δ)-URMTLV .

THEOREM 33. Gt has Ω(n2) critical edges w.r.t asynchronous (t, δ)-URMTMC and syn-
chronous (t, δ)-URMTLV .

PROOF. (t, δ)-URMTMC is possible in asynchronous network Gt (Follows from Theorem

18, 20). Suppose we delete some edge e = (ui, vj) ∈ E3. Consider B1 =
⋃t

k=1{uk} ∪ {vj} −

{ui}, B2 =
⋃t+1

k=1{vk} − {vj}. Only honest weak path left is S → ui ← R. All the strong

paths from ui to R pass through B2. This renders ({B1, B2}, δ)-URMTMC impossible, hence

(t, δ)-URMTMC is impossible. Hence, Ω(|E3|) or Ω(n2) critical edges. Since, asynchronous

(t, δ)-URMTMC is possible if and only if synchronous (t, δ)-URMTLV is possible (Follows

from Theorem 23), the result proved above holds for the synchronous (t, δ)-URMTLV case

too.

7 Discussion and Open Problems

Note that in this work we focus on the characterization of networks for possibility and

impossibility of protocols. The protocols we gave in the sufficiency proofs have commu-

nication complexity exponential in the number of blocked nodes involved. Nonetheless, if

the number of blocked nodes is small, we have the following interesting use-case which ex-

ploits the matching connectivity requirements of synchronous Las Vegas and asynchronous

Monte Carlo URMT. Suppose a hardware vendor has to design a network such that Monte

Carlo URMT between given two nodes is possible even when the network is asynchronous

and deploy hardware for it. Testing of asynchronous networks is a tedious and time con-

suming job. So, he may rather test if the hardware achieves Las Vegas URMT when the

network is synchronous, and be rest assured.

We briefly discuss a few related open problems: (a) There are real life networks where

only directed hypergraphs can appropriately abstract the underlying network. Hence, it is

useful to study the problem of URMT in directed hypergraphs under various timingmodels,

fault models, etc. It would be interesting to see if the equivalence shown above for directed

graphs in corollary 23, 30 extend to the case of directed hypergraphs as well. (b) Given a

network N , a sender S, a receiver R and an adversary A, the decision problem of finding

out whether URMTLV is not possible is trivially in the complexity class NP. It is non-trivial

to prove this decision problem to be certain complexity class hard. (c) As we focused on

characterizing directed networks in which URMT is possible in this paper, our protocols are

inefficient in the worst case. It remains open to give efficient protocols or establish lower

bounds. We strongly believe that the latter is the case. (d) In this paper we considered the

19

problem of reliable unicast wherein there is only one receiver. In general, one may consider

the problem of reliable multicast wherein there are multiple recipients for the message the

sender sends. The characterization of networks for the (im)possibility of reliable multicast

is non-trivial because the problem definition demands all the receivers to agree on the same

message when the sender is faulty which is trivial when there is only one receiver i.e. the

case of unicast but non-trivial when number of receivers are more than 1.

References
[1] Michael Ben-Or, Ran Canetti, and Oded Goldreich. Asynchronous secure computation. In STOC

’93: Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pages 52–61,
New York, NY, USA, 1993. ACM.

[2] Y. Desmedt and Y. Wang. Perfectly Secure Message Transmission Revisited. In Proceedings of
Advances in Cryptology EUROCRYPT ’02, volume 2332 of Lecture Notes in Computer Science (LNCS),
pages 502–517. Springer-Verlag, 2002.

[3] Danny Dolev, Cynthia Dwork, Orli Waarts, and Moti Yung. Perfectly secure message transmis-
sion. J. ACM, 40(1):17–47, 1993.

[4] M. Franklin and R. N. Wright. Secure Communication in Minimal Connectivity Models. In
Proceedings of Advances in Cryptology EUROCRYPT ’98, volume 1403 of Lecture Notes in Computer
Science (LNCS), pages 346–360. Springer-Verlag, 1998.

[5] M. Hirt and U. Maurer. Player Simulation and General Adversary Structures in Perfect Multi-
party Computation. Journal of Cryptology, 13(1):31–60, April 2000.

[6] Abhinav Mehta, Shashank Agrawal, and Kannan Srinathan. Brief announcement: Synchronous
Las Vegas URMT Iff Asynchronous Monte Carlo URMT. In Nancy A. Lynch and Alexander A.
Shvartsman, editors, DISC, volume 6343 of Lecture Notes in Computer Science, pages 201–203.
Springer, 2010.

[7] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest majority.
In STOC ’89: Proceedings of the twenty-first annual ACM symposium on Theory of computing, pages
73–85, New York, NY, USA, 1989. ACM.

[8] Bhavani Shankar, Prasant Gopal, Kannan Srinathan, and C. Pandu Rangan. Unconditionally
reliable message transmission in directed networks. In SODA ’08: Proceedings of the nineteenth
annual ACM-SIAM symposium on Discrete algorithms, pages 1048–1055, Philadelphia, PA, USA,
2008. Society for Industrial and Applied Mathematics.

[9] Kannan Srinathan and C. Pandu Rangan. Possibility and complexity of probabilistic reliable
communications in directed networks. In Proceedings of 25th ACM Symposium on Principles of
Distributed Computing (PODC’06), 2006.

