
Interplay between (Im)perfectness, Synchrony and
Connectivity: The Case of ReliableMessage Trans-
mission

Abhinav Mehta †, Shashank Agrawal †, Kannan Srinathan †

{{abhinav mehta,shashank.agrawal}@research.,srinathan@}iiit.ac.in

ABSTRACT. We consider the distributed setting, where a subset of nodes are under the control of a
malicious adversary with unbounded computational powers. The problem of simulating a directed
reliable channel from a sender S to a receiverR in the absence of a true physical point to point channel
is fundamental to the area of Distributed Computing and is popularly known as “Unconditionally
Reliable Message Transmission” (URMT).
In this work, we distinguish between two variants of URMT -Monte Carlo and Las Vegas. The former
protocols allowR to output an incorrect message with negligibly small probability whereas the latter
only allows R to abort the protocol with a small probability but never output an incorrect message.
We establish a novel hierarchy with respect to the connectivity requirements for URMT protocols
to be possible over directed networks, under two extremes w.r.t timing model: all the edges are
either synchronous or asynchronous. We show that the minimum connectivity requirements for the
existence of Las Vegas URMT protocols over synchronous networks is same as that of Monte Carlo
URMT protocols over asynchronous networks - a surprising equivalence between two very different
models. Furthermore, the higher connectivity requirements for Las Vegas URMT over asynchronous
networksmatch exactly with that of zero-error (perfect) protocols over synchronous networks. While
it is well-known that, in synchronous networks, the minimum connectivity requirements for Monte
Carlo URMT protocols to exist is strictly less than those where for perfect protocols, we establish the
fact that the connectivity requirements for the case of Las Vegas URMT are strictly more than that of
Monte Carlo URMT.
We also show that, for the “easier” randomized variant (ones demanding lesser minimum connec-
tivity requirements compared to the perfect ones) the number of critical edges are higher than that of
the perfect protocols, in the worst case. Hence, establishing an interesting interplay, for the case of
URMT.

1 Introduction

Most of the distributed computing protocols assume that every pair of participating nodes

share a reliable channel which is usually not true, in practice. In the Unconditionally Re-

liable Message Transmission (URMT) problem, two non-faulty players, the sender S and

the receiver R are part of a communication network modeled as a digraph over n play-

ers/nodes influenced by an unbounded adversary that may corrupt some subset of these

n players/nodes. S has a message that he wishes to send to R; the challenge is to design a

protocol such that R correctly obtains S’s message with arbitrarily small error probability,

irrespective of what the adversary (maliciously) does to disrupt the protocol. Note that by

“unconditional”, we mean that the adversary is of unbounded computational power and

therefore modern cryptographic tools for verifying the integrity of the data are irrelevant.

†Center for Security, Theory and Algorithmic Research (C-STAR),
International Institute of Information Technology, Hyderabad, 500032, India.

2

Analogous to randomized sequential algorithms, one may distinguish between two

variants of URMT, namely, Monte Carlo and Las Vegas. In the former variant R outputs the

sender’s message with high probability and may produce an incorrect output with small

probability; in the latter, R outputs the sender’s message with high probability and with

small probability may abort the protocol but in no case does the receiver terminate with an

incorrect output.

2 Model and Definitions

In this section, we present the model we work with followed by rigorous definitions for

(various variants of) URMT.

2.1 Network Model

We model the underlying network as a directed graph N = (V, E), where V is the set of

nodes and E ⊆ V × V is the set of all directed edges in the network. A sender S ∈ V and

a receiver R ∈ V are two distinguished nodes. Such an abstraction is well motivated in

practice because not every communication channel admits bi-directional communication or

we would want not to use certain channels as they are too costly. We assume the secure

channels setting, i.e., all the edges are secure, reliable and authenticated. We assume that

every node can be modeled as an interactive probabilistic Turing Machine and is aware of

the topology of the network of which it is a part i.e. it knowsN . An interaction between a set

of players in known as protocol. Modeling a protocol as a set of interactive Turing machines

is a popular abstraction technique, described at length in [3]. An execution of a protocol is

defined as a run of a protocol with inputs and coin tosses from any subset of participating

nodes.

2.2 Fault Model

Modern cryptography assumes the availability of Public Key Infrastructure (PKI) and dig-

ital signature schemes. However their existence is based on the conjectured hardness of

some problems like integer factorization [16], discrete logarithm [10], lattice based problems

[15] to name a few. It is not reasonable to base security of a real-life system on conjectured

hardness (which might be proven incorrect in the course of time). Also, advent of new

computing paradigms, such as quantum computing has already rendered quite a few of

such techniques ineffective. For instance Shor in [18] showed that integer factorization and

discrete logarithm problems can be solved in polynomial time, given access to a quantum

computer. Hence, it is worthwhile to look at information theoretically secure schemes, which

assume the worst case that the adversary has unbounded computational powers [1, 4].

We model faults in the network by a fictitious centralized entity called the adversary

which has unbounded computing power as done in [11, 1]. A single “snapshot” of faults

in the network can be described as B ⊆ V\{S,R} which means that all the nodes in the

set B are faulty. We assume that S and R are non-faulty, for otherwise reliable message

transmission need not happen. We denote the set of all such B’s by A and refer to it as an

adversary structure. The adversary structure is monotone: if B1 ∈ A then ∀B2 ⊂ B1, B2 ∈ A.

3

We note that A can be uniquely represented by listing the elements in its maximal basis

A = {B | B ∈ A,∄X ∈ A s.t. B ⊂ X}. Abusing the standard notation, we assume that A

itself is a maximal basis. We refer to A as a t-threshold adversary if A = {B | B ⊆ V \ {S,R}
and |B| = t}. We only deal with cases where |A| ≥ 2, since otherwise the problems are

trivial.

We allow Byzantine corruption, i.e., all nodes in the set B ∈ A corrupted by the adver-

sary can deviate arbitrarily from the designated protocol. Adversary may also deviate from

the assigned protocol in one of the following constraint manners:-

1. Fail-stop: A node corrupted in fail-stop fashion may stop sending and receiving mes-

sages at any point of time during an execution of a protocol.

2. Passive: Adversary may eavesdrop on the passively corrupt nodes.

3. Omission: Nodes corrupted in omission fashion may omit (sending or receiving) cer-

tain messages and adversary may eavesdrop on them. Such a corruption is stronger

than both, the passive and the fail-stop corruption.

Note that all three corruptions described above areweaker than that of Byzantine corruption

and are a special case of it.

We consider the case of adaptive adversary – it can choose which nodes to corrupt dur-

ing an execution of a protocol based on its view, as long as the set of nodes corrupted during

the entire execution is a member of A. Results in this paper also hold for the case of static

adversary, one in which adversary chooses which nodes to corrupt in an execution of a pro-

tocol prior to it’s initiation. One may also consider the case of mobile adversary in which at

any given time during an execution of a protocol adversary can corrupt at most onemember

of A. We remark that our results do not hold for the mobile adversary setting.

We assume that the adversary knows the topology of the network as well as the pro-

tocol specification. We further make a conservative assumption that the adversary knows

the message sender S has chosen to send to R. The results we prove in this paper hold good

even if we do not make this assumption, but with a slight change in our definition of URMT

(see [8]).

2.3 Timing Model

Protocols running over directed networks tolerating an adversary rely heavily on the infor-

mation of the timing of the events within the system. We consider two extremes w.r.t timing

model, i.e., all the edges in the network are either synchronous or asynchronous. Former case

is referred to as synchronous networks and the latter as asynchronous networks.

In synchronous networks, a protocol is executed in a sequence of rounds where in each

round, a player can send messages to his out-neighbours, receive the messages sent in that

round by his in-neighbours and performs local computation on the received messages, in

that order. Readers may find rigorous description of the model in [1].

In asynchronous networks, there is no fixed upper bound on the timings of events. In

order to model the computation is such networks, we assume that the adversary is addi-

tionally equipped with the ability to schedule all the messages exchanged over the network

while remaining oblivious to the messages being exchanged. Computation in such net-

works proceed in a sequence of steps, order of which is controlled by the adversary. In each

4

step a single node is active. The node is activated by receiving a message; it then performs

an internal computation, and possibly sends messages on its outgoing channels. For, more

details we refer the readers to [2, 7].

2.4 Reliability

Let the message space be a large finite field 〈F,+, ·〉. By f−1, we denote additive inverse of

any f ∈ F. All the computations are done in this field.

We refer to Las Vegas URMT as URMTLV andMonte Carlo URMT as URMTMC. We may

also use URMT without any subscript to refer to both the variants together. We now for-

mally define what we mean by a protocol being URMTLV or URMTMC . All the probabilities

are taken over the coin tosses of all the participating honest nodes and the adversary.

DEFINITION 1.[(A, δ)-URMTMC] Let δ <
1
2 . We say that a protocol for transmitting mes-

sages in a network N from S to R is (A, δ)-URMTMC if for all valid Byzantine corruptions
of any B ∈ A and ∀m ∈ F, the probability that R outputs m given that S has sent m, is at
least (1− δ). Otherwise R outputs m′ 6= m or does not terminate.

DEFINITION 2.[(A, δ)-URMTLV] Let δ <
1
2 . We say that a protocol for transmitting mes-

sages in a network N from S to R is (A, δ)-URMTLV if for all valid Byzantine corruptions
of any B ∈ A and ∀m ∈ F, the probability that R outputs m given that S has sent m, is at
least (1− δ). Otherwise, R outputs a special symbol ⊥ (/∈ F) or does not terminate.

DEFINITION 3.[A-PRMT] We say that a protocol for transmitting messages in a networkN
from S to R is A-PRMT if for all valid Byzantine corruptions of any B ∈ A and ∀m ∈ F, the
probability that R outputsm when S has sentm is 1.

We refer to (A, δ)-URMT and A-PRMT as (t, δ)-URMT and t-PRMT respectively, when

A is a t-threshold adversary.

2.5 Preliminaries

Following definitions are helpful while we present sufficiency proofs in the subsequent sec-

tions.

DEFINITION 4.[Strong path] A sequence of vertices v1, v2, v3, . . . , vk is said to be a strong
path from v1 to vk in the networkN = (V, E) if for each 1 ≤ i < k, (vi, vi+1) ∈ E . Note that,
a strong path is just a path in its usual sense. Furthermore, we assume that there vacuously
exists a strong path from a node to itself.

DEFINITION 5.[Weak path] A sequence of vertices v1, v2, v3, . . . , vk is said to be a weak path
from v1 to vk in the networkN = (V, E) if for each 1 ≤ i < k, (vi, vi+1) ∈ E or (vi+1, vi) ∈ E .

DEFINITION 6.[Blocked node] A node u along a weak path p is called a blocked node if its
out-degree along p is 0.

5

S

R
v1

v2

v3

v4

(a)
v3

v4

R

s

u

v1

(b)

Figure 1: (a) A weak path between S and R. (b) We view it as a sequence of alternating

blocked nodes and head nodes starting with a head node s (the virtual sender) and ending

in a blocked node R. Nodes s, v1 and v4 are head nodes; u and v3 are blocked nodes such

that there is a strong path from s to u; v1 to u and v3; and v4 to v3 and R.

DEFINITION 7.[Head node] A node y along a weak path p is called a head node if it is an
intermediate node with out-degree 2 or a terminal node with out-degree 1.

Every weak path p between S and R can be viewed as an alternating sequence of

blocked nodes ui’s and head nodes yi’s starting with S as a head node denoted by y0
and ending into R as a blocked denoted by un+1 i.e. ∃ n > 0, path p can be viewed as

y0, u1, y1, u2, y2, . . . , un, yn, un+1 such that each yi has a strong path to ui and ui+1 along p.

The case when S is not a head node (i.e. it is a blocked node) along p, the following de-

scribed simulation within the node S can enusre that a virtual sender s is a head node: (i) S

simulates two nodes, s and u and a directed edge (s,u). (ii) The incoming path to S along p

(which made S a blocked node) is now an incoming path to u.

Analogously, it can always be ensured that R is a blocked node. We elaborate our repre-

sentation of weak path with an example in Figure 1. Such a representation of a weak path

comes handy in giving easy to understand sufficiency proofs.

DEFINITION 8.[Critical edge] In a digraph G for which URMT protocol exists, an edge is
said to be critical if the deletion of that edge renders URMT impossible.

DEFINITION 9.[Authentication function] Let K1,K2,K3 ∈R F × F × F and m ∈ F. Authenti-
cation function χ is defined as χ(m;K1,K2,K3) = (m + K1, (m + K1) · K2 + K3).

The authentication function authenticates any message m ∈ F. We refer to K1, K2 and K3

as keys. If three randomly chosen keys (unknown to the adversary) are established between

two nodes u and v such that ∃ path p from u to v then authentication function is used as

follows: (a) Say, x = m + K1 and y = x · K2 + K3; u sends 〈x, y〉 (a two tuple) to v along

path p. (b) Say node v receives 〈x′, y′〉. v verifies if y′
?
= x′ · K1 + K2. If the verification

passes then x′ = x with probability at least |F|−1
|F| , or otherwise v can deduce with certainty

6

that p is a faulty path. (Proofs for the same appear in [14]). Note that, authentication func-

tion described above ensures that no information regarding m is revealed to the adversary

sitting on the path p. We now describe an alternative authentication function χ defined as

χ(m;K1,K2) = (m,m ·K1 +K2), which when used instead of one described using three keys

meets all the properties described above but one – that is it revealsm to the adversary sitting

on p.

3 Related Work

The problem of PRMT was formulated by Dolev et. al in [6]. They showed that PRMT

tolerating t-threshold adaptive byzantine adversary when underlying network can be ab-

stracted as n synchronous, all bi-directional or all uni-directional channels from S and R

is possible iff n > 2t. f PRMT was formulated by Dolev et. al in [6]. They showed that

PRMT tolerating t-threshold adaptive byzantine adversary when underlying network can

be abstracted as n synchronous, all bi-directional or all uni-directional channels from S and

R is possible iff n > 2t. The problem of URMT was first defined by Franklin et. al. in [8].

They considered the problem of Monte Carlo URMT over undirected networks tolerating

threshold adaptive Byzantine adversary and showed that t-URMT is possible iff t-PRMT

is possible. In [5], Desmedt et. al. gave efficient protocols for URMT (which also achieve

perfect privacy) in directed networks while abstracting the network as a collection of dis-

joint wires between S and R. Arpita et. al, Kannan et. al, and Kannan in [13], [20], and [19]

respectively, generalize the result to the case of threshold adaptive mixed adversary when

underlying network is all bi-directional channels between S and R. A more general setting

is considered in [19, 22, 17], which is also the setting in which we work in this paper, where

the underlying network is abstracted as a directed graph and every node is as powerful as

an interactive probabilistic Turing Machine. The characterization of directed synchronous

networks for the possibility of Monte Carlo URMT tolerating non-threshold adaptive mixed

adversary is done in [19, 22], a simplified characterization in the case of threshold adaptive

Byzantine adversary follows in [17].

To the best of our knowledge there is no literature which deals with URMT over asyn-

chronous networks. We initiate the study in this direction. The theorem presented in this

work, establishing equivalence between the connectivity requirements for the possibility

of synchronous Las Vegas URMT and that of asynchronous Monte Carlo URMT appears

(without proof) as a brief announcement in [12].

Franklin and Wright in [9], Wang and Desmedt in [23], and Desmedt and Wang in [5]

study the problem of Monte Carlo URMT tolerating Byzantine adversary in synchronous

multi-recipient (multi-cast) model. In such a model, a message sent by a node is simulta-

neously received by all it’s neighbours. They assume that all the edges are bi-directional

and all the paths between S to R are disjoint. They refer to it as “multicast line” model.

Srinathan et. al. in [21] consider the problem of Monte Carlo URMT in synchronous di-

rected hyper-graphs tolerating threshold adaptive mixed adversary. Directed hyper-graphs

are strict generalization of the multi-cast line model i.e. edges may be directed and the paths

between S and R need not be disjoint.

7

4 Our Contributions

We initiate and study of exact characterization of URMTLV over synchronous and URMTMC

over asynchronous, directed networks. Though these problems seem unrelated, interest-

ingly, we show that former is possible iff latter is possible. We also initiate the study of

URMTLV in asynchronous (directed) networks and show that in asynchronous networks,

minimum connectivity requirements for it to be possible are no less than that required for

PRMT.

We further improve our insights in the problem by studying on how sparse can a di-

graph that permits URMT be. Specifically, we say that an edge is critical if its removal ren-

ders the graph insufficiently connected for URMT protocols (though before its removal the

connectivity was sufficient). Ironically, it turns out that for perfect protocols, the number of

critical edges is alwaysO(n) where as for the “easier” randomized protocols, we give a fam-

ily of digraphs with Ω(n2) critical edges! We remark that an earlier attempt in [17] to give

such a family of digraphs for the case of URMTMC protocols is incorrect and we correct the

same; we also give similar families of digraphs (with Ω(n2) critical edges) for synchronous
URMTLV (and asynchronous URMTMC) protocols.

5 Organization of paper

We characterize directed networks for the possibility (and impossibility) of (i) Las Vegas

URMT in synchronous networks (ii) Monte Carlo URMT in asynchronous networks (iii) Las

Vegas URMT in asynchronous networks, tolerating a non-threshold adaptive byzantinely

corrupt adversary structure A in Section 6, 7 and 8 respectively. Dealing with arbitrary

sized adversary structure is hard and non-intuitive, so we take the following described two

step approach in each of these sections. We show that, in order to tolerate an adversary

structure A, it is sufficient to tolerate all its two sized subsets. Surprisingly, this turns out

to be true for all three problems of URMT discussed in this paper. We then give a necessary

and sufficient condition for the respective URMT problems tolerating a two-sized adversary

structure to be possible (in principle).

In Section 9, we study the concept of critical edges. We first show that the family of

digraphs over n nodes proposed in [17] for synchronous URMTMC claimed to have Ω(n2)
critical edges has onlyO(n) critical edges. Thenwe present another familywhich has indeed

Ω(n2) critical edges. Further in the section, we give a family of digraphs with Ω(n2) critical
edges w.r.t. the two variants of URMT - synchronous URMTLV and asynchronous URMTMC.

6 Characterizing synchronous networks for (A, δ)-URMTLV

In this section, we deal with the possibility and impossibility of Las Vegas URMT protocols

from a sender S to a receiver R, tolerating an adversary structure A
∗, when the underlying

network can be abstracted as a directed graph, all its edges being synchronous. We refer to

this variant of URMT as (A, δ)-URMTLV , formally defined in Definition 2.

It is easier to deal with fixed size adversary structures. In the following theorem we

show that in the case of synchronous networks, the problem of characterizing networks for

∗adversary model assumed in this work is non-threshold, adaptive and Byzantine, as described earlier

8

(the (im)possibility of) (A, δ)-URMTLV reduces to the problem of characterizing networks

for (B, δ)-URMTLV , where |B| = 2 (similar reductions can be found in [22, 17]).

THEOREM 10. In a directed synchronous networkN , (A, δ)-URMTLV protocol is possible if
and only if for every adversary structure B ⊆ A such that |B| = 2, (B, δ)-URMTLV protocol
is possible.

PROOF. Necessity: Obvious. Sufficiency: We show how to construct a protocol tolerating an

adversary structure of larger size from protocols tolerating adversary structures of smaller

size without increasing the probability of error. Therefore if protocols tolerating adversary

structures of size two are available, we can inductively construct protocol tolerating any

arbitrary sized adversary structure.

Let f ∈ F be any element S intends to send to R. Let A ⊆ A. Consider three ⌈ 2|A|
3 ⌉-

sized subsets of A, namely A1,A2 and A3, such that each element of A occurs in at least

two distinct Ai’s. For i ∈ {1, 2, 3}, let Yi be an (Ai, δ)-URMTLV protocol. Using Yi as sub-

protocol, we first construct Zi which is an (A, δ
2)-URMTLV protocol. This is done by repeat-

ing each Yi sufficiently many times, keeping the S’s input same as f , in order to amplify the

probability of success. We then use Zi’s to construct a protocol Γ which is an (A, δ)-URMTLV

protocol (as proved in the following lemma) as follows:

− For each i ∈ {1, 2, 3}, sub-protocol Zi is run on f .

− R outputs the majority of the outcomes of the three sub-protocols and in case there is

no majority, it outputs ⊥.

LEMMA 11. For the directed synchronous network N , the protocol Γ constructed above is
an (A, δ)-URMTLV protocol.

PROOF. Any set B ∈ A is present in at least two subsets among A1,A2 and A3; say

the two subsets are A2 and A3. Hence the outcome of the two sub-protocols Z2 and Z3 is

correct with at least 1− δ
2 probability each. Since R outputs the majority of the outcomes,

its output is correct if both the sub-protocols produce the correct outcome which happens

with at least (1− δ
2)

2 probability. Hence the error probability is upper bounded by δ − δ2

4 or

δ. Additionally, it is easy to see that Rwould never output an incorrect message.

Having reduced the problem of URMTLV in a synchronous network tolerating an ad-

versary structure to the problem of URMTLV tolerating all its 2-sized subsets, we now pro-

ceed to characterize directed synchronous networks in which URMTLV tolerating adversary

structure B = {B1, B2} is possible (where B1, B2 ∈ A).

THEOREM 12. In a directed synchronous network N , (B, δ)-URMTLV protocol is possible if
and only if for each α ∈ {1, 2}, there exists a weak path qα avoiding nodes in B1 ∪ B2 such
that every node u along the path qα has a strong path to R avoiding all nodes in Bα

† (Paths
q1, q2 need not be distinct.)

We prove the theorem in the following sub-sections.

†We denote 1 = 2 and vice-versa.

9

6.1 Sufficiency

For a directed synchronous networkN , which satisfies the conditions given in Theorem 12,

we show how to construct a protocol Π tolerating the adversary structure B = {B1, B2}. Let
m be the message S intends to send. If either q1 or q2 is a strong path from S to R, S trivially

sends m along that path. When this is not the case, we construct two sub-protocols Π1 and

Π2. For each i ∈ {1, 2}, protocol Πi uses the honest weak path qi. We give a construction

for Π1, and the construction of Π2 follows by symmetry. For convenience of writing the

protocol, we first represent weak path q1 as y0, u1, y1, u2, y2, . . . , un, yn, un+1 as explained in

Chapter 1 (right after the definitions of weak path, head node and blocked node). We denote

S and R interchangeably as y0 and un+1 respectively. Π1 proceeds in the following steps:

1. S sends m to u1 along q1. For 1 ≤ k ≤ n, node yk chooses 3k random keys namely

Kk,1,Kk,2, . . . ,Kk,3k and sends those to uk and uk+1.

2. Node u1 receives m from S and keys K1,1,K1,2,K1,3 from y1, along q1. It calculates

(ψ1,1, φ1,1) = χ(m;K1,1,K1,2,K1,3) and sends those to R along a strong path avoiding B2

in some fixed round ru1 .

For 1 < k ≤ n, uk receives 3
k−1 keys from yk−1 and 3k keys from yk. It authenticates

the keys received from yk−1 with the keys received from yk and sends it to R along a

strong path avoiding B2 in some fixed round ruk . Formally, uk calculates, ∀j 1 ≤ j ≤
3k−1, (ψk,j, φk,j) = χ(Kk−1,j;Kk,3j−2,Kk,3j−1,Kk,3j).

3. R receives {K′
n,1,K

′
n,2, . . . ,K

′
n,3n} from yn along q1. N being a synchronous network, R

knows exactly the round number, say r′uk , in which it will receive messages that uk sent

to it in round ruk . If R does not receive valid messages from uk in round r′uk , it assumes

that B1 is faulty and stops. Else if it receives ∀k ∀j 1 ≤ k ≤ n, 1 ≤ j ≤ 3k−1, (ψ′
k,j, φ

′
k,j),

the protocol proceeds as follows.

for k in n to 2

R verifies ∀j, φ′
k,j

?
= ψ′

k,j · K
′
k,3j−1 + K′

k,3j. If the verification fails for any j, R

concludes that B1 is faulty and stops. Otherwise, R recovers ∀j, K′
k−1,j as ψ′

k,j +

Kk,3j−2
−1.

If at the end of the loop, R has recovered K′
1,1,K

′
1,2,K

′
1,3 then R verifies whether φ′

1,1
?
=

ψ′
1,1 · K

′
1,2 + K′

1,3. If the verification passes, R recovers m1 = ψ′
1,1 + K′

1,1
−1 as the mes-

sage. i

This completes the description of Π1. The protocols Π1 and Π2 are run on network N . R

takes one of the following actions based on the outcomes of these protocols: (a) If R detects

that Bi is corrupt in Πi, it outputs whatever message it recovered from Πi. (b) If R recovers

messages from each of the Πi’s and both the messages are same, it outputs that message. (c)

If messages recovered through Π1 and Π2 are different, it outputs ⊥. This completes Π. In

the following lemma we prove that this is a (B, 1
|F|)-URMTLV protocol.

LEMMA 13. Π, as constructed above, is a (B, 1
|F|)-URMTLV protocol.

PROOF. We analyze the protocol case wise: (a) For some i, R concludes through Πi that

Bi is faulty, and outputs whatever it recovers from Πi. For each i, none of the nodes in Bi

10

participate in the protocol Πi. Hence, if some verification fails during Πi, Bi has to be faulty,

and Πi should recover the correct message m. (b) For each i ∈ {1, 2}, all verifications in Πi

pass. Case (i) mi = mi, R outputs mi. Since one of mi or mi has to be same as m, R’s output

is correct. This happens with ≤ 1
|F| probability.

6.2 Necessity

Adversary’s guess

x

b2

b1

s
∗

r
∗

s
∗

r
∗

b2

b1

s
∗
1

x

r
∗s

∗

b2

b1

x

s
∗
2

x2

(b) Execution E1 (c) Execution E2(a) Network N ∗

m1

m1

m2

m2

Figure 2: (a) The directed network N ∗ (b) Adversary strategy when b1 is faulty (simulates

a sender with input m2, namely s∗1 ; snaps down all the communication with s∗, x, b2). (c)

Adversary strategy when b2 is faulty (simulates a sender with input m1, namely s∗2 ; Simu-

lates node x, namely x2. To complete the simulation of x, adversary feeds x2 with random

elements. ‘adversary’s guess’ is what r∗ sends to x in E1 and coin tosses with respect to all

nodes (described in the lemma 15) are such that r∗ is bound to output m1 in E2.

LetN be a network that does not satisfy the conditions of Theorem 12. We show that in

such a network ({B1, B2}, δ)-URMTLV from S to R is impossible. Without loss of generality,

let us assume that the two sets comprising the adversary structure are disjoint‡. Let the

path q1
§ be not present between S and R in N . Hence, every weak path between S and R

avoiding nodes in B1 ∪ B2 has at least one node w such that every strong path from w to R

passes through B2.

We first consider the simple network N ∗ = (V∗, E ∗) shown in Figure 2(a) consisting

of five nodes s∗, r∗, b1, b2 and x where s∗ is the sender and r∗ is the receiver and show that

({{b1}, {b2}}, δ)-URMTLV from s∗ to r∗ is impossible in Lemma 14. We then show that the

digraph N can be partitioned into disjoint sets whose connectivity properties are similar to

the connectivity between nodes of digraph N ∗ in Lemma 16. We then prove in Lemma 17

that if ({B1, B2}, δ)-URMTLV from S to R is possible in N then ({{b1}, {b2}}, δ)-URMTLV

‡In case B1 ∩ B2 6= φ, adversary strategy to fail any protocol in N includes fail-stopping the nodes in the
intersection.

§The case when the path q2 is not present from S to R can be handled analogously.

11

from s∗ to r∗ is also possible in N ∗, which is a contradiction. Hence, the conditions men-

tioned in Theorem 12 are necessary.

LEMMA 14. In the synchronous networkN ∗, shown in Figure 2(a), ({{b1}, {b2}}, δ)-URMTLV

(δ < 1/2) from s∗ to r∗ is impossible.

PROOF. We assume that a protocol Π∗ exists in N ∗ which is a ({{b1}, {b2}}, δ)-URMTLV

protocol. We describe an adversary strategy S to fail any protocol Π∗ and prove it’s correct-

ness in the following lemma. Adversary chooses any two messages m1,m2 ∈ F, m1 6= m2.

When s∗ intends to send mi, the adversary corrupts the set bi and snaps all communication

with the nodes: bi, x and s∗.

When adversary corrupts b1, it simulates a local copy of s∗ on input m2, say s∗1 . At

the beginning of each round, b1 receives messages from r∗ and from the simulated s∗1 , does

local computation and sends out messages to r∗ and s∗1 . During the same round, s∗1 receives

messages from b1, its state is updated and messages are sent out for the next round.

When adversary corrupts b2, it simulates a local copy of s∗ on input m1 and a local copy

of x, say s∗2 and x2 respectively. It handles the simulated s∗2 and x2 locally in the samemanner

as it handled the simulated s∗1 when b1 was corrupted. For simulation of x to happen, x2 is

to be fed with some input on behalf of r∗, since an edge (r∗, x) ∈ E ∗. Adversary guesses

the messages sent along this edge and feeds those to x2 round by round until the protocol

terminates. Note that the node x has no strong path to r∗ and hence does not have any

influence on R’s output.

For the sake of clarity, a pictorial view of the adversary strategy is shown in the Figure

2(b), (c). We prove that the above strategy fails every protocol Π∗ in the following Lemma.

LEMMA 15. With the adversary strategy S , no protocol Π∗ is a {{b1}, {b2}}-URMTLV pro-
tocol.

PROOF. Before proceeding to the proof we introduce the following notations w.r.t. to an

execution Ei of the protocol Π∗: (a) The vector ~Ci = (cis∗ , c
i
r∗ , c

i
b1
, cib2 , c

i
x) which denotes the

coin tosses input to nodes, where cin denotes the coin tosses of node n. (b) The view of a node

n, viewn(Ei), which comprises of the internal coin tosses cin of node n and the messages it

receives during execution Ei. We now consider the following two executions:

1. There exists an execution E1 of Π∗ such that s∗ chooses to send m1 and r∗ outputs m1

when the random tosses used by s∗1 are denoted by a string r, for otherwise Π∗ won’t

be a {{b1}, {b2}}-URMTLV protocol.

2. Execution E2: s
∗ chooses to send m2. Coin tosses ~C2 of nodes are such that c2b1 = c1b1 ,

c2r∗ = c1r∗ and c2s∗ = r. Coin tosses of s∗2 and x2 are c
1
s∗ and c1x respectively. Messages fed

to x2 by the adversary matches exactly the messages sent by r∗ to x in E1.

For the above mentioned executions E1 and E2, viewr∗(E1) = viewr∗(E2). Hence r∗ halts

with output m1 in execution E2, violating the condition of Π∗ being a URMTLV protocol.

LEMMA 16. The set of nodes V in the network N can be partitioned into 5 disjoint sets
S∗,R∗, B′

1 ⊆ B1, B2 and X′ such that S ∈ S∗, R ∈ R∗ and an edge exists from a node in~L[i] to

a node in~L[j] only if (~l[i],~l[j]) ∈ E ∗ where~L = [S∗,R∗, B′
1, B2,X

′] and~l = [s∗, r∗, b1, b2, x] are

two ordered lists,~l[i] (resp. ~L[i]) denotes the ith element of the list~l (resp. ~L).

12

PROOF. In the networkN , every weak path between S andR avoiding B1 ∪ B2 has at least

one node w such that every strong path from w to R passes through B2.

We partition the non-faulty nodes H = V \ {B1 ∪ B2} into 3 disjoint sets namely: R∗, S∗

and X defined as follows. R∗ = {w | w ∈ H and ∃ a weak path p between w and R s.t all the

nodes in p have a strong path to R avoiding nodes in B2}. S∗ = {w | w ∈ H \ R∗ and w has a

strong path to R avoiding B2}. X = H \ {S∗ ∪ R∗}. Clearly, R ∈ R∗ and S ∈ S∗. Moreover, if

any node w ∈ X has a strong path to R, it passes through some node in B2. We now divide

the set B1 into two disjoint sets namely: B′
1 and BX

1 . B′
1 = {u | u ∈ B1 and u has a strong

path to R avoiding B2}. BX
1 = B1 \ B′

1. We consider two sets X and BX
1 together as a set X′

i.e. X′ = X ∪ BX
1 .

It trivially follows from the definitions above that ∄ (u, v) ∈ E such that u ∈ X′ and

v ∈ S∗ ∪ R∗ ∪ B′
1, otherwise there would be a path from a node in X′ to R avoiding B2. Also,

there cannot exist any directed edge between a node in S∗ and a node in R∗. Note the only

edges missing from N ∗ are (x, s∗), (x, r∗), (x, b1) and (s∗, r∗), (r∗, s∗). Hence, proved.

LEMMA 17. In the directed synchronous networkN = (V, E), ({B1, B2}, δ)-URMTLV is pos-
sible from S to R only if ({{b1}, {b2}}, δ)-URMTLV is possible from s∗ to r∗ in the network
N ∗.

PROOF. We show how a ({B1, B2}, δ)-URMTLV protocol P on N can be simulated on N ∗

to obtain a ({{b1}, {b2}}, δ)-URMTLV protocol. We simulate a virtual network N over N ∗

such thatP when run over the virtualN is a ({{b1}, {b2}}, δ)-URMTLV protocol. Simulation

runs as follows: Node~l[i] simulates all the nodes in the set ~L[i]. Edges in N lie in one of

the following two categories: (i) Those amongst the nodes within a~L[i]. Such edges can be

simulated by~l[i] internally. (ii) Edges from a node in~L[i] to a node in~L[j]. We proved in the

previous lemma that, an edges exists from a node in~L[i] to a node in~L[j] only if there exists

an edge (~l[i],~l[j]) ∈ E ∗. Hence, such an edge can be simulated on edge (~l[i],~l[j]). Now,

protocol P is run on the virtualN which is a ({{b1}, {b2}})-URMTLV protocol from s∗ to r∗

in N ∗.

From Lemma 14 we know that ({{b1}, {b2}}, δ)-URMTLV is impossible from s∗ to r∗ in

the networkN ∗. We arrive at a contradiction. Hence, the conditions mentioned in Theorem

12 are necessary.

7 Characterizing asynchronous networks for (A, δ)-URMTMC

In this section, we deal with the possibility and impossibility of Monte Carlo URMT pro-

tocols from a sender S to a receiver R, tolerating an adversary structure A which is non-

threshold adaptive Byzantine adversary, when the underlying network can be abstracted

as a directed graph, all its edges being asynchronous. We refer to this variant of URMT as

(A, δ)-URMTMC, formally defined in Definition 1.

It is easier to deal with fixed size adversary structures. In the following theorem we

show that in the case of synchronous networks, the problem of characterizing networks for

(the (im)possibility of) (A, δ)-URMTMC reduces to the problem of characterizing networks

for (B, δ)-URMTMC, where |B| = 2 (similar reductions can be found in [22, 17]).

13

THEOREM 18. In a directed asynchronous networkN , (A, δ)-URMTMC protocol is possible
if and only if for every adversary structure B ⊆ A such that |B| = 2, (B, δ)-URMTMC

protocol is possible.

PROOF. Necessity: Obvious. Sufficiency: The proof takes an approach similar to the one

taken in the proof of Theorem 10. However, since the network is asynchronous, the way

we build a protocol tolerating larger sized adversary structure from protocols tolerating

smaller sized ones changes. Let f ∈ F be any element S intends to send to R. Consider A
and its three subsetsA1,A2 andA3 as described in Theorem 10. For i ∈ {1, 2, 3}, let Zi be an

(Ai,
δ
2)-URMTMC protocol which can be constructed easily by repeating (Ai, δ)-URMTMC

sufficiently many times, keeping S’s input same as f , in order to amplify the probability of

success. The protocol η which is an (A, δ)-URMTMC protocol (as proved in the following

lemma) is constructed as follows:

− For each i ∈ {1, 2, 3}, sub-protocols Zi are run in parallel on f .

− R waits until two of the three Zi sub-protocols terminate with same output and out-

puts that as the message.

LEMMA 19. For the directed synchronous networkN , the protocol η constructed above is a
(A, δ)-URMTMC protocol.

PROOF. Any set B ∈ A is present in at least two subsets among A1,A2 and A3; say the

two subsets are A2 and A3. Hence the two sub-protocols Z2 and Z3 terminate with the

correct output with at least 1− δ
2 probability each. As R waits until two of the three Zi sub-

protocols terminate with same output, η fails only if at least one of Z2 and Z3 terminates

with an incorrect message or does not terminate at all. Since this happens with at most

1− (1− δ
2)

2 probability, η is an (A, δ − δ2

4)-URMTMC i.e. an (A, δ)-URMTMC protocol.

Having reduced the problem of URMTMC in an asynchronous network tolerating an

adversary structure to the problem of URMTMC tolerating all its 2-sized subsets, we now

proceed to characterize directed asynchronous network in which URMTMC tolerating ad-

versary structure B = {B1, B2} is possible (where B1, B2 ∈ A).

THEOREM 20. In a directed asynchronous network N , (B, δ)-URMTMC protocol is possible
if and only if for each α ∈ {1, 2}, there exists a weak path qα avoiding nodes in B1 ∪ B2 such
that every node u along the path qα has a strong path to R avoiding all nodes in Bα. (Paths
q1, q2 need not be distinct.)

We give the sufficiency and the necessity proofs in the following sub-sections.

7.1 Sufficiency

The protocol for the sufficiency proof of above theorem is constructed in a manner similar

to the synchronous Las Vegas protocol in Section 6.1. However, there are some important

differences.

For a directed asynchronous network N , which satisfies the conditions given in The-

orem 20, we show how to construct a protocol Π tolerating the adversary structure B =
{B1, B2}. If either q1 or q2 is a strong path from S to R, S trivially sends m along that path

and R is bound to receive it. When this is not the case, we construct two sub-protocols Π1

14

and Π2. For each i ∈ {1, 2}, protocol Πi uses the honest weak path qi. We give a construc-

tion of Π1, and the construction of Π2 follows by symmetry. We represent weak path q1 as

y0, u1, y1, . . . , un, yn, un+1 as explained in Section 2 (right after the definitions of weak path,

head node and blocked node). Π1 proceeds in the following steps:

1. S sends m to u1 along q1. For 1 ≤ k ≤ n, node yk chooses 3k random keys namely

Kk,1,Kk,2, . . . ,Kk,3k and sends those to uk and uk+1.

2. Node u1 waits for m to arrive from S and keys K1,1,K1,2,K1,3 to arrive from y1 along

q1. It calculates (ψ1,1, φ1,1) = χ(m;K1,1,K1,2,K1,3) and sends it to R along a strong path

avoiding B2.

For 1 < k ≤ n, uk waits for 3k−1 keys to arrive from yk−1 and 3k keys to arrive from yk
along q1

¶. It authenticates the keys received from yk−1 with the keys received from yk
and sends it to R along a strong path avoiding B2. Formally, uk calculates

∀j 1 ≤ j ≤ 3k−1 (ψk,j, φk,j) = χ(Kk−1,j;Kk,3j−2,Kk,3j−1,Kk,3j).
3. Rwaits for {K′

n,1,K
′
n,2, . . . ,K

′
n,3n} to arrive from yn. R runs the following loop:

for k in n to 2

R waits until it receives ∀j 1 ≤ j ≤ 3k−1, (ψ′
k,j, φ

′
k,j) from uk

†. If R does receive, it

verifies ∀j, φ′
k,j

?
= ψ′

k,j ·K
′
k,3j−1 +K′

k,3j. If the verification fails for any j, R concludes

that B1 is faulty and stops. Otherwise, R recovers K′
k−1,j as ψ′

k,j + Kk,3j−2
−1, for

every j.

If at the end of the loop, R has recovered K′
1,1,K

′
1,2 and K′

1,3 then R waits to receive

(ψ′
1,1, φ

′
1,1) and verifies if φ′

1,1
?
= ψ′

1,1 · K
′
1,2 + K′

1,3. If the verification passes, R recovers

m1 = ψ′
1,1 + K′

1,1
−1 as the message.

This completes the description of Π1. The protocols Π1 and Π2 are run in parallel in the

asynchronous network N . R takes one of the following actions based on the outcomes of

these protocols: (a) If for any i ∈ {1, 2}, Πi concludes that Bi is faulty, R waits for Πi to

terminate, and outputs mi as message. (b) If for any i ∈ {1, 2}, Πi halts with mi as message,

R outputs that as message without waiting for the protocol Πi to terminate. Above is a

(B, 1
|F|)-URMTMC protocol as proved in the following lemma.

LEMMA 21. Π, as constructed above, is a (B, 1
|F|)-URMTMC protocol.

PROOF. We analyze the protocol case wise: (a) For some i, Πi outputs that Bi is faulty, and

R outputs what it recovers from Πi. None of the nodes in Bi participate in the protocol Πi.

Therefore, some verification fails during Πi only if Bi is faulty. Hence, Πi is bound to ter-

minate with mi = m. (b) For some i, Πi terminates successfully with output mi. Probability

that mi 6= m is at most 1
|F| . Hence, R’s output is correct with probability at least |F|−1

|F| .

¶As weak path q1 comprises only of honest nodes, every ui receives the keys (or message) eventually.
†As these messages are delivered along faulty paths, they may never arrive. However, since Π1 and Π2 are

run in parallel (as mentioned in the sequel) andRwaits for only one of them to terminate, the protocol Π always
terminates.

15

7.2 Necessity

x

b2

b1

s
∗

r
∗

s
∗

r
∗

b2

b1

s
∗
1

x

s
∗

b1

x

(b) Execution E1 (c) Execution E2(a) Network N ∗

m1

m2

r
∗

m2

Figure 3: (a) The directed network N ∗. (b) Adversary strategy when b1 is faulty (simulates

a local copy of sender with input m2 and snaps down communication with s∗ and x; delays

outgoing messages from b2 beyond some threshold time period T). (c) Adversary strategy

when b2 is faulty (b2 fail-stops).

Let N be a network that does not satisfy the condition of 20. We show that in such a

network ({B1, B2}, δ)-URMTMC from S to R is impossible. Without loss of generality, we

assume that the sets B1 and B2 are disjoint and path q1 is not present between S and R in

N (Reasons for the assumptions are clearly stated in Section 6.2). Hence, every weak path

between S and R avoiding B1 ∪ B2 has at least one node w such that every strong path from

w to R passes through B2. We again consider the simple network N ∗ = (V∗, E ∗) shown in

Figure 5(a) consisting of five nodes s∗, r∗, b1, b2 and x where s∗ is the sender and r∗ is the

receiver. However, this time the edges between nodes are asynchronous. We show that

({{b1}, {b2}}, δ)-URMTMC from s∗ to r∗ is impossible in N ∗ in Lemma 22. We then need

to show that the digraph N can be partitioned into disjoint sets whose connectivity prop-

erties are similar to the connectivity between nodes of digraph N ∗, which we have already

proved in Lemma 16. Now, if ({B1, B2}, δ)-URMTMC from S to R is possible in N then

({{b1}, {b2}})-URMTMC from s∗ to r∗ is possible in N ∗, which leads us to a contradiction

(We need not prove this separately as the proof given in Lemma 17 works even when both

N and N ∗ are asynchronous networks). Hence, the conditions mentioned in Theorem 20

are necessary.

LEMMA 22. In the asynchronous networkN ∗, shown in figure 5(a), ({{b1}, {b2}}, δ)-URMTMC

(δ < 1/2) from s∗ to r∗ is impossible.

PROOF. We assume that a protocol Π∗ exists in N ∗ which is a ({{b1}, {b2}}, δ)-URMTMC

protocol from s∗ to r∗. This implies that there exists a finite time instant T such that for

every message m, r∗ outputs m before instant T in at least half of the executions in which s∗

has chosen to send m. We now describe an adversary strategy to fail any such protocol Π∗.

16

Adversary chooses any two messages m1,m2 ∈ F,m1 6= m2 and ensures that the probability

that r∗ outputs m1 given s∗ has sent m1 is <
1
2 . When s∗ intends to send mi, it corrupts the

node bi, for i ∈ {1, 2}. When b2 is corrupt, adversary simply fail-stops it. When b1 is corrupt,

adversary does the following:

− Simulates a local copy of s∗ on input m2, say s∗1 .

− Snaps all it’s communication with the nodes: s∗, x and b2.

− Delays all the outgoing messages from b2 beyond the time instant T. Schedules events

between the rest of the nodes (and simulated nodes) i.e. s∗1 , r
∗, b1 and x as it sched-

ules events between s∗, r∗, b1 and x respectively when s∗’s input is m2 (Note that in

an asynchronous network, the adversary is additionally equipped with the ability to

schedule messages).

We now show that for every execution in which s∗’s input is m2, there is an execution in

which s∗’s input is m1 such that the view at r∗ is same in both the executions. Consider the

following two executions:-

1. Execution E1: s
∗’s input is m2 and coin tosses of s, b1 and r∗ are c1, c2 and c3 respec-

tively. Note that in this execution the coin tosses of x do not affect the output at r∗ as

there is no strong path from x to r∗.

2. Execution E2: s
∗’s input is m1 and coin tosses of s∗1 , b1 and r∗ are c1, c2 and c3 respec-

tively. Note that in such an execution the coin tosses of s∗ and x do not affect the

output at r∗.

For the sake of clarity, a pictorial view of the adversary strategy is shown in the Figure

5(b), (c). It follows that for every such E1 there is a corresponding E2 and Viewr∗(E1) =
Viewr∗(E2). This ensure, the probability that r∗ outputs m2 given s∗ has sent m1 is same as

the probability that r∗ outputsm2 given s∗ has sentm2, which is>
1
2 . Hence, a contradiction.

We now present one of the main results of this paper i.e. synchronous Las Vegas protocols

are possible if and only if asynchronous Monte Carlo protocols.

COROLLARY 23. In a directed network N = (V, E), a synchronous (A, δ)-URMTLV proto-
col exists if and only if a protocol exists for asynchronous (A, δ)-URMTMC.

PROOF. Follows from Theorem 10, 12 and 18, 20.

8 Characterizing asynchronous networks for (A, δ)-URMTLV

In this chapter, we deal with the possibility and impossibility of Las Vegas URMT protocols

from a sender S to a receiverR, tolerating an adversary structure A which is a non-threshold

adaptive Byzantine adversary, when the underlying network can be abstracted as a directed

graph, all its edges being asynchronous.

In the following theoremwe show that in the case of asynchronous networks, the prob-

lem of characterizing networks for (the (im)possibility of) (A, δ)-URMTLV reduces to the

problem of characterizing networks for (B, δ)-URMTLV , where |B| = 2.

THEOREM 24. In a directed asynchronous network N , (A, δ)-URMTLV protocol is possible
if and only if for every adversary structure B ⊆ A such that |B| = 2, (B, δ)-URMTLV protocol
is possible.

17

PROOF. Similar to the proof of Theorem 18, hence omitted.

Having reduced the problem of URMTLV in an asynchronous network tolerating an

adversary structure to the problem of URMTLV tolerating all its 2-sized subsets, we now

proceed to characterize directed asynchronous networks in which URMTLV tolerating ad-

versary structure B = {B1, B2} is possible (where B1, B2 ∈ A).

THEOREM 25. In a directed asynchronous network N , (B, δ)-URMTLV protocol is possible
if and only if there exists a strong path from S to R avoiding nodes in B1 ∪ B2.

PROOF. Sufficiency: Let f be the field element S intends to send. Send f to R along the

strong path avoiding nodes in B1 ∪ B2. Since, the path does not contain any corrupt nodes,

f is eventually received by R.

We give the necessity proof of the above theorem in the following sub-section.

8.1 Necessity

b2

s
∗

r
∗

s
∗

r
∗

b1

s
∗
1

(b) Execution E1 (c) Execution E2

m1

m2

(a) Network N ∗
1

b1

r
∗

m2

s
∗

b1

b2

Figure 4: (a) The directed network N ∗
1 (b) Adversary strategy when b1 is faulty (c) Adver-

sary strategy when b2 is faulty.

The proof in this section is along similar lines to the necessity proofs earlier. Let N be

a network that does not satisfy the condition mentioned in Theorem 25. We first consider

the simple asynchronous network N ∗
1 = (V∗

1 , E
∗
1) with V∗

1 = {s∗, r∗, b1, b2} and E ∗
1 = (V∗

1 ×
V∗
1) \ {(s∗, r∗)} as shown in Figure 4(a) and show that ({{b1}, {b2}})-URMTLV from s∗ to r∗

is impossible in Lemma 26. We then show that the digraph N can be partitioned into four

disjoint sets whose connectivity properties are similar to the connectivity between nodes

of digraph N ∗
1 in Lemma 27. Finally in Lemma 28, we show that if ({B1, B2}), δ)-URMTLV

from S to R is possible in N then ({{b1}, {b2}})-URMTLV from s∗ to r∗ is possible in N ∗
1 ,

which is a contradiction. Hence, the conditions mentioned in Theorem 25 are necessary.

18

LEMMA 26. In the asynchronous network N ∗
1 , ({{b1}, {b2}}, δ)-URMTLV (δ < 1/2) from s∗

to r∗ is impossible.

PROOF. We assume that a protocol Π∗ exists in N ∗
1 which is a ({{b1}, {b2}}, δ)-URMTLV

protocol from s∗ to r∗. This implies that there exists a finite time instant T such that for every

message m, r∗ outputs m before instant T in at least half of the executions in which s∗ has

chosen to send m. We use ~Ci and viewn(Ei) as defined in the proof of Lemma 14.

We now describe an adversary strategy to fail any protocol Π∗. Adversary chooses any

two messages m1,m2 ∈ F, m1 6= m2. When s∗ intends to send mi, the adversary corrupts

the set {bi}, for i ∈ {1, 2}. When b2 is corrupt, adversary fail-stops it. When b1 is corrupt,

adversary does the following:-

− Simulates a local copy of s∗ on input m2, say s∗1 .

− Snaps all its communication with nodes s∗ and b2.

− Delays all outgoing messages from b2 beyond the time instant T. Schedules events

between s∗1 , b1, and r∗ as it does between s∗, b1, and r∗ respectively when s∗’s input is

m2.

We now consider the following two executions of Π∗ with the above mentioned adversary

strategy.

1. Execution E1: s
∗’s input ism1 and r∗ outputsm1. (For Π∗ to be a valid ({{b1}, {b2}}})-

URMTLV protocol, such an execution exists). Let the coin tosses of s∗1 be c.

2. Execution E2: s
∗’s input is m2. Coin tosses ~C2 of nodes are such that c2s∗ = c, c2r∗ = c1r∗ ,

c2b1 = c1b1 .

Above mentioned adversary strategy ensures that viewr∗(E2) = viewr∗(E1). Therefore
r∗ halts with output m1 in E2 which is a contradiction on the existence of Π∗ since Las Vegas

protocols do not allow incorrect output.

We now consider networkN = (V, E) which does not satisfy the conditions of Theorem 25.

LEMMA 27. The set of nodes V in the network N can be partitioned into 4 disjoint sets
S∗, B1, B2 and R∗ such that S ∈ S∗, R ∈ R∗ and an edge exists from a node in~L[i] to a node
in~L[j] only if (~l[i],~l[j]) ∈ E ∗

1 where~L = [S∗, B1, B2,R
∗] and~l = [s∗, b1, b2, r

∗] are two ordered

lists,~l[i] (resp. ~L[i]) denotes the ith element of the list~l (resp. ~L).

PROOF. We partition the non-faulty nodes in H = V \ {B1 ∪ B2} into 2 disjoint sets S∗

and R∗. Let R∗ denote the set of all nodes in H having a strong path to R avoiding nodes in

B1 ∪ B2. Let S
∗ = V \ {R∗ ∪ B1 ∪ B2}. There does not exist a directed edge from a node in

S∗ to a node in R∗ by the definition of R∗. Since, E ∗
1 = (V∗

1 ×V∗
1) \ {(s∗, r∗)}, an edge exists

from a node in~L[i] to a node in~L[j] only if there exists an edge (~l[i],~l[j]) ∈ E ∗
1 .

LEMMA 28. In the directed asynchronous network N = (V, E), ({B1, B2}, δ)-URMTLV is
possible from S to R only if ({{b1}, {b2}}, δ)-URMTLV is possible from s∗ to r∗ in the net-
work N ∗

1 .

PROOF. Proof is on the lines similar to the proof of Lemma 17. We showhow a ({B1, B2}, δ)-
URMTLV protocol P on N can be simulated on N ∗

1 to obtain a ({{b1}, {b2}}, δ)-URMTLV

protocol. We simulate a virtual network N over N ∗
1 such that P when run over the virtual

N is a ({{b1}, {b2}}, δ)-URMTLV protocol. Simulation runs as follows: Node~l[i] simulates

all the nodes in the set~L[i]. Edges in N lie in one of the following two categories: (i) Those

19

amongst the nodes within a ~L[i]. Such edges can be simulated by~l[i] internally. (ii) Edges
from a node in~L[i] to a node in~L[j]. We proved in the previous lemma that, an edges exists

from a node in~L[i] to a node in~L[j] only if there exists an edge (~l[i],~l[j]) ∈ E ∗. Hence, such

an edge can be simulated on edge (~l[i],~l[j]). Now, protocol P is run on the virtual N which

is a ({{b1}, {b2}})-URMTLV protocol from s∗ to r∗ in N ∗
1 .

From Lemma 26 we know that ({{b1}, {b2}}, δ)-URMTLV is impossible from s∗ to r∗

in the network N ∗
1 . Using Lemma 28, we arrive at a contradiction. Hence, the conditions

mentioned in Theorem 25 are necessary.

We now present the second main result of this paper i.e. the minimum connectivity

requirements for the case of asynchronous Las Vegas protocols is same as that of the perfect

protocols.

THEOREM 29. In a directed synchronous (or asynchronous) networkN = (V, E), A-PRMT
from S to R is possible if and only if for all B1, B2 ∈ A there exists a strong path from S to R

avoiding nodes in B1 ∪ B2.

PROOF. Follows from [6].

COROLLARY 30. In a directed network N = (V, E), an asynchronous (A, δ)-URMTLV pro-
tocol exists if and only if a protocol exists for synchronous (or asynchronous) A-PRMT.

PROOF. Follows from Theorem 24, 25 and 29.

9 Critical edges

We say that an edge is critical if its removal renders the graph insufficiently connected for

URMT protocols (though before its removal the connectivity was sufficient). Ironically, it

turns out that for perfect protocols, the number of critical edges is alwaysO(n) where as for

the “easier” randomized protocols (demanding lesser connectivity requirements), we give

a family of digraphs with Ω(n2) critical edges! We remark that an earlier attempt in [17] to

give such a family of digraphs for the case of synchronous Monte Carlo URMT protocols

is incorrect and we correct the same; we also give similar families of digraphs (with Ω(n2)
critical edges) for synchronous Las Vegas (and asynchronous Monte Carlo) protocols. In

this chapter, we only deal with t-threshold adversary.

Characterization of synchronous networks in which (t, δ)-URMTMC is possible follows

from [22]. In [17], Bhavani et. al. proposed a family of graphs(t > 0), Gt = (V, E1 ∪ E2 ∪ E3)
where V =
{S, v1, . . . , vt+1, u1, . . . , ut,R} and E1 =

⋃t+1
1 {(S, vi), (vi,R)}; E2 =

⋃t
i=1{(S, ui), (R, ui)};

E3 =
⋃t

i=1{(ui, v1), . . . , (ui, vt+1)} as shown in Figure 5(a) and claimed that Gt has Ω(n2)
critical edges w.r.t synchronous (t, δ)-URMTMC. In the following theorem, we prove that

this is not the case.

THEOREM 31. Gt has only Θ(n) critical edges w.r.t synchronous (t, δ)-URMTMC.

PROOF. Consider the subgraph G′
t of Gt given by G′

t = (V, E1 ∪ E2 ∪ E ′
3), where E ′

3 =
⋃t

i=1{ui, vi}. According to [17], for (t, δ)-URMTMC to be impossible in G′
t, there exists B1, B2

such that |B1|, |B2| ≤ t and every weak path from S to R avoiding nodes in B1 ∪ B2 must

20

u1

ut

v1

v2

vt+1

u1

u2

u2t−1

u2t

v1

v2

v2t+1

S R S R

(a) Gt (b) Ht

.

.

.

.

.

.

.

.

.

.

.

.

Figure 5: (a) Graph Gt, (b) Graph Ht

have at least one node x such that every strong path from x to R passes through nodes in

B1 and in B2. We first show that no such sets B1, B2 exists for G′
t. If there exists a strong

path from S to R avoiding nodes in B1 ∪ B2, URMTMC is trivially possible. Hence, ∀i 1 ≤
i ≤ t + 1, vi ∈ B1 or vi ∈ B2. As |B1| + |B2| ≤ 2t, at least one ui has to be honest. As this

leaves an honest weak path from S to R i.e. S→ ui ←R with ui having a strong path to R

via vi. For the impossibility of synchronous (t, δ)-URMTMC, node vi must belong to both

B1 and B2. This would imply that another ui′ (i′ 6= i) is honest and hence vi′ must belong

to both B1 and B2. Repeating the inductive arguing for another t − 2 times, we can show

that B1 = B2 = {vα1
, vα2 , . . . , vαt} for some {α1, α2, . . . , αt} ⊂ {1, 2, 3, . . . , t + 1}. But this

leaves a strong honest path from S to R. Hence, no B1, B2 exists such that (B, δ)-URMTMC is

impossible in G′
t i.e. (t, δ)-URMTMC is possible in G′

t. Since G′
t has O(n) edges, this proves

an upper bound of O(n) on the number of critical edges in Gt. Hence, the claim in [17] that

Gt has Ω(n2) critical edges is wrong. Moreover, since deleting any one edge (S, vi) in Gt

leaves only 2t disjoint weak paths between S and R, Gt has Ω(n) critical edges. It therefore
follows that Gt has Θ(n) critical edges.

We now propose a family of graphs with Ω(n2) critical edges. For all t > 0, consider

Ht = (V1,
⋃4

i=1 E
1
i)with V1 = {S, v1, . . . , v2t+1, u1, . . . , u2t,R} and E1

1 =
⋃2t+1

1 {(S, vi), (vi,R)};
E1
2 =

⋃2t
i=1{(S, ui), (R, ui)}; E1

3 =
⋃t

i=1{(u2i−1, u2i))}; E1
4 =

⋃t
i=1{(u2i, v1), . . . , (u2i, v2t+1)}

as shown in Figure 5(b). Here, number of nodes in graph Ht is n = 4t + 3.

THEOREM 32. Ht has Ω(n2) critical edges w.r.t synchronous (2t, δ)-URMTMC.

PROOF. (2t, δ)-URMTMC is possible in Ht (Follows from [17]). Suppose we delete an edge

e = (u2i, vj) ∈ E1
4 . Consider B1 =

⋃2t
k=1{uk} ∪ {vj} − {u2i−1}, B2 =

⋃2t+1
k=1 {vk} − {vj}. Only

honest weak path left is S → u2i−1 ← R. Every strong path from u2i−1 to R passes through

both B1 and B2. This renders ({B1, B2}, δ)-URMTMC impossible, hence (2t, δ)-URMTMC is

21

impossible. Hence, Ht has Ω(|E1
3 |) or Ω(n2) critical edges.

9.1 Critical Edges for asynchronous Monte Carlo and synchronous Las Vegas

In this section, we show existence of a family of digraphs with Ω(n2) critical edges w.r.t

asynchronous (t, δ)-URMTMC and synchronous (t, δ)-URMTLV . Since, characterization of

synchronous networks for the possibility of URMTLV is same as that of asynchronous net-

works for URMTMC(proved in Collorary 23). We can deduce that, any given graph (meeting

the sufficiency conditions) has same number of critical edges w.r.t both the aforementioned

variants. Hence, a family of digraph with Ω(n2) critical edges w.r.t asynchronous (t, δ)-
URMTMC has same number of critical edges w.r.t (t, δ)-URMTLV too. We now propose a

family of digraphs with Ω(n2) critical edges w.r.t asynchronous (t, δ)-URMTMC.

THEOREM 33. Gt has Ω(n2) critical edges w.r.t asynchronous (t, δ)-URMTMC.

PROOF. (t, δ)-URMTMC is possible in asynchronous network Gt (Follows from Theorem

18, 20). Suppose we delete some edge e = (ui, vj) ∈ E3. Consider B1 =
⋃t

k=1{uk} ∪ {vj} −

{ui}, B2 =
⋃t+1

k=1{vk} − {vj}. Only honest weak path left is S → ui ← R. All the strong

paths from ui to R pass through B2. This renders ({B1, B2}, δ)-URMTMC impossible, hence

(t, δ)-URMTMC is impossible. Hence, Ω(|E3|) or Ω(n2) critical edges.

10 Discussion and Open Problems

In this workwe focus on the characterization of networks for possibility and impossibility of

(i) synchronous Las Vegas (ii)asynchronous Monte Carlo (iii)asynchronous Las Vegas proto-

cols. We establish the fact that the minimum connectivity requirements for the possibility of

synchronous Las Vegas is same as asynchronous Monte Carlo and asynchronous Las Vegas

is same as synchronous perfect. It turns out that the minimum connectivity requirements

synchronous Monte Carlo (characterized in [17]) is less than synchronous Las Vegas, which

in turns is less than asynchronous Las Vegas. To summarize, our results establish the fol-

lowing hierarchy with respect to the connectivity requirements,

synchronousURMTMC < synchronousURMTLV = asynchronousURMTMC < asynchronous

URMTLV = synchronous perfect = asynchronous perfect.

It is known, for any graph over n nodes, the number of critical edges for synchronous

perfect protocols tolerating threshold adversary is O(n). We present family of digraphs for

(i) synchronousMonte Carlo (ii) synchronous Las Vegas (iii) asynchronous Las Vegas, proto-

cols with Ω(n2) critical edges. Hence, drawing attention to a surprising interplay between

the randomized versus perfect protocols, that is, randomized protocols demanding lesser

(minimum) connectivity compared to the case of perfect protocols sometimes have higher

number of critical edges.

10.1 Impact on real-life problems

1. Since, the main focus of the work was possibility and impossibility of various pro-

tocols, the protocols presented here remain exponential. We do not even rule out the

22

possibility of exponential lower bounds. Nonetheless, for the case when the size of ad-

versary structure is small, we present the following interesting use-case which exploits

the matching connectivity requirements of synchronous URMTLV and asynchronous

URMTMC. Suppose a hardware vendor has to design a network such that URMTMC

between given two nodes is possible even when the network is asynchronous and de-

ploy hardware for it. Testing of asynchronous networks is a tedious and time consum-

ing job. So, he may rather test if the hardware achieves URMTLV when the network is

synchronous, and be rest assured. This also motivates us to explore more such equiv-

alence (between synchronous Las Vegas and asynchronous Monte Carlo variants of

same problem) w.r.t. other Distributed Computing problems.

2. We initiate the study of URMTLV over directed networks. We show that in the case

of synchronous networks, minimum connectivity requirements obey the following hi-

erarchy, URMTMC < URMTLV < perfect protocols. One advantage of running a Las

Vegas protocol (if it is possible) is that the receiver knows when it has received an in-

correct output. So, if an application demands reliability in Las Vegas sense and it so

turns out that the network is insufficiently connected for perfect protocols, but meets

the sufficiency conditions for the Las Vegas protocols, one might write a Las Vegas

protocol. Such a situation may arise for applications with critical reliability require-

ments. For instance, while communicating the amount of money to be transferred

from a bank account to another, reliability is Las Vegas sense is the appropriate model.

A Monte Carlo protocol is inappropriate for the situation.

10.2 Open Problems

We briefly discuss a few related open problems:

1. There are real life networkswhere only directed hyper-graphs can appropriatelymodel

the underlying network. Hence, it is useful to study the problem of URMT in directed

hyper-graphs under various timing models, fault models, etc. It would be interesting

to see if the equivalence w.r.t respect to matching connectivity requirements, shown

for directed graphs in Corollary 23, 30 extend to the case of directed hyper-graphs as

well.

2. Let N be the underlying network, and A be an adaptive non-threshold byzantine

adversary and S and R be sending and receiving nodes respectively, which are part

of N . Given < N ,S,R,A > as input, a decision problem is to find out whether

synchronous URMTLV (or asynchronous URMTMC) is possible or not. It is a non-

trivial open problem to prove these decision problem to be certain complexity class

hard.

3. As we focused on characterizing directed networks in which URMT is possible, our

protocols are inefficient in the worst case (synchronous Las Vegas and asynchronous

Monte Carlo protocols). It remains open to give efficient protocols or establish lower

bounds. We strongly believe, latter is the case.

4. We considered the problem of reliable uni-cast wherein there is only one receiver. In

general, one may consider the problem of reliable multi-castwherein there are multiple

recipients for the message, the sender sends. The characterization of networks for

23

the (im)possibility of reliable mult-cast is non-trivial because the problem definition

demands all the receivers to agree on the same message when the sender is faulty.

Since, in this work, we only deal with the problems with size of receiver’s set being

one, makes the agreement problem trivial.

5. We only considered adaptive non-threshold byzantine adversary. Characterization

for the case of mobile adversary doesn’t trivially follow from the adaptive case. A mo-

bile adversary is much more powerful and damaging than its corresponding adaptive

counterpart.

We also leave the case of mixed adversary openwhich is well-motivated in practice. In

typical network, certain nodes may be strongly protected and others may be weakly

protected. An adversary may only be able to fail-stop or eavesdrop a strongly pro-

tected node, while he may corrupt a weakly protected node in Byzantine fashion.

Characterization for the case of mixed adversary would be a strict generalization of

the case considered here that is, the case of Byzantine adversary.

References
[1] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness Theorems for Non-cryptographic

Fault-tolerant Distributed Computation. In Proceedings of the 20th Symposium on Theory of Com-
puting (STOC), pages 1–10. ACM Press, 1988.

[2] Michael Ben-Or, Ran Canetti, and Oded Goldreich. Asynchronous secure computation. In
STOC ’93: Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pages
52–61, New York, NY, USA, 1993. ACM.

[3] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols.
In Proceedings of the 42nd Symposium on Foundations of Computer Science (FOCS), pages 136–145.
IEEE, 2001. Full version available at http://eprint.iacr.org/2000/067.

[4] D. Chaum, C. Crepeau, and I. Damgard. Multi-party Unconditionally Secure Protocols. In
Proceedings of 20th Symposium on Theory of Computing (STOC), pages 11–19. ACM Press, 1988.

[5] Y. Desmedt and Y. Wang. Perfectly Secure Message Transmission Revisited. In Proceedings
of Advances in Cryptology EUROCRYPT ’02, volume 2332 of Lecture Notes in Computer Science
(LNCS), pages 502–517. Springer-Verlag, 2002.

[6] D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfectly Secure Message Transmission. Journal
of the Association for Computing Machinery (JACM), 40(1):17–47, January 1993.

[7] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed con-
sensus with one faulty process. J. ACM, 32(2):374–382, 1985.

[8] M. Franklin and R. N. Wright. Secure Communication in Minimal Connectivity Models. In
Proceedings of Advances in Cryptology EUROCRYPT ’98, volume 1403 of Lecture Notes in Computer
Science (LNCS), pages 346–360. Springer-Verlag, 1998.

[9] Matthew K. Franklin and Rebecca N. Wright. Secure communication in minimal connectivity
models. J. Cryptology, 13(1):9–30, 2000.

[10] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete loga-
rithms. In Proceedings of CRYPTO 84 on Advances in cryptology, pages 10–18, New York, NY,
USA, 1985. Springer-Verlag New York, Inc.

[11] M. Hirt and U. Maurer. Player Simulation and General Adversary Structures in Perfect Multi-
party Computation. Journal of Cryptology, 13(1):31–60, April 2000.

[12] Abhinav Mehta, Shashank Agrawal, and Kannan Srinathan. Brief announcement: synchronous
las vegas urmt iff asynchronous monte carlo urmt. In Proceedings of the 24th international confer-
ence on Distributed computing, DISC’10, pages 201–203, Berlin, Heidelberg, 2010. Springer-Verlag.

24

[13] Arpita Patra, Ashish Choudhury, C. Pandu Rangan, and Kannan Srinathan. Uncondition-
ally reliable and secure message transmission in undirected synchronous networks: Pos-
sibility, feasibility and optimality. Cryptology ePrint Archive, Report 2008/141, 2008.
http://eprint.iacr.org/.

[14] T. Rabin andM. Ben-Or. Verifiable secret sharing andmultiparty protocols with honest majority.
In STOC ’89: Proceedings of the twenty-first annual ACM symposium on Theory of computing, pages
73–85, New York, NY, USA, 1989. ACM.

[15] Oded Regev. New lattice based cryptographic constructions. In Proceedings of the thirty-fifth
annual ACM symposium on Theory of computing, STOC ’03, pages 407–416, New York, NY, USA,
2003. ACM.

[16] R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures and Public
Key Cryptosystems. Communications of the ACM, 21:120–126, February 1978.

[17] Bhavani Shankar, Prasant Gopal, Kannan Srinathan, and C. Pandu Rangan. Unconditionally
reliable message transmission in directed networks. In SODA ’08: Proceedings of the nineteenth
annual ACM-SIAM symposium on Discrete algorithms, pages 1048–1055, Philadelphia, PA, USA,
2008. Society for Industrial and Applied Mathematics.

[18] P.W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In Foun-
dations of Computer Science, 1994 Proceedings., 35th Annual Symposium on, pages 124 –134, nov
1994.

[19] Kannan Srinathan. Secure Distributed Communication. PhD thesis, Department of Computer
Science and Engineering, Indian Institute of Technology Madras, Chennai, India, 2006.

[20] Kannan Srinathan, Arpita Patra, Ashish Choudhary, and C. Pandu Rangan. Probabilistic per-
fectly reliable and secure message transmission - possibility, feasibility and optimality. In Pro-
ceedings of the cryptology 8th international conference on Progress in cryptology, INDOCRYPT’07,
pages 101–122, Berlin, Heidelberg, 2007. Springer-Verlag.

[21] Kannan Srinathan, Arpita Patra, Ashish Choudhary, and C. Pandu Rangan. Unconditionally
reliable message transmission in directed hypergraphs. In Proceedings of the 7th International
Conference on Cryptology and Network Security, CANS ’08, pages 285–303, Berlin, Heidelberg,
2008. Springer-Verlag.

[22] Kannan Srinathan and C. Pandu Rangan. Possibility and complexity of probabilistic reliable
communications in directed networks. In Proceedings of 25th ACM Symposium on Principles of
Distributed Computing (PODC’06), 2006.

[23] Y. Wang and Y. Desmedt. Secure Communication in Multicast Channels: The Answer to
Franklin and Wright’s Question. Journal of Cryptology, 14(2):121–135, 2001.

