
Interplay between (Im)perfectness, Synchrony
and Connectivity: The Case of Reliable Message

Transmission

Abhinav Mehta, Shashank Agrawal, and Kannan Srinathan

Center for Security, Theory and Algorithmic Research (C-STAR),
International Institute of Information Technology, Hyderabad, 500032, India.
{abhinav mehta@research.,sagrawal@research.,srinathan@}iiit.ac.in

Abstract. We consider the distributed setting where a subset of nodes
are under the control of a malicious adversary with unbounded compu-
tational power. The problem of simulating a directed reliable channel
from a sender S to a receiver R in the absence of a true physical point to
point channel is fundamental to the area of Distributed Computing and
is popularly known as ‘Unconditionally Reliable Message Transmission’
(URMT).
In this work, we distinguish between two variants of URMT - Monte

Carlo and Las Vegas. The former allows R to output an incorrect mes-
sage with negligibly small probability, whereas the latter only allows R

to abort the protocol with a small probability, but never to output an
incorrect message.
We establish a novel hierarchy with respect to the connectivity require-
ments for URMT protocols to be possible over directed networks, un-
der two extremes w.r.t. timing model: synchronous and asynchronous.
We show that the minimum connectivity requirements for the existence
of Las Vegas URMT protocols over synchronous networks is same as
that of Monte Carlo URMT protocols over asynchronous networks - a
surprising equivalence between two very different models. Furthermore,
the higher connectivity requirements for Las Vegas URMT over asyn-
chronous networks match exactly with that of zero-error (perfect) pro-
tocols over (a)synchronous networks.
We also show that for the ‘easier’ randomized variant (ones having less
minimum connectivity requirements than perfect ones) the number of
critical edges are higher than that of the perfect protocols, in the worst
case. Hence, establishing an interesting interplay for the case of URMT.

1 Introduction

Most of the distributed computing protocols assume that every pair of partici-
pating nodes share a reliable channel, which is usually not true in practice. In
the Unconditionally Reliable Message Transmission (URMT) problem, two non-
faulty players, the sender S and the receiver R, are part of a communication
network modelled as a directed graph over n players/nodes influenced by an un-
bounded adversary that may corrupt some subset of these n players/nodes. S has

a message that it wishes to send to R; the challenge is to design a protocol such
that R correctly obtains S’s message with arbitrarily small error probability, ir-
respective of what the adversary (maliciously) does to disrupt the protocol. Note
that by “unconditional”, we mean that the adversary is of unbounded computa-
tional power and therefore modern cryptographic tools for verifying the integrity
of the data are irrelevant.

Analogous to randomized sequential algorithms, one may distinguish between
two variants of URMT, namely, Monte Carlo and Las Vegas. In the former
variant R outputs the sender’s message with high probability and may produce
an incorrect output with small probability; in the latter, R outputs the sender’s
message with high probability and may abort the protocol with small probability,
but in no case does the receiver terminate with an incorrect output. While Monte
Carlo URMT has been studied in [?,?], we initiate the study of Las Vegas URMT
over directed synchronous networks and characterize the exact gap in the class
of networks over which Las Vegas URMT, as compared to Monte Carlo URMT,
is possible.

We also initiate the study of Monte Carlo URMT protocols over asynchronous
directed networks. Unlike synchronous networks, in which the players have full
information about the timings of the events in the network, in an asynchronous
network, a conservative and more realistic assumption is used, namely that no
time-bounds are known to the players regarding the schedule of various events in
the network. Clearly, Monte Carlo URMT over asynchronous digraphs is harder
to achieve (and indeed requires more network connectivity) than Monte Carlo
URMT over synchronous digraphs. Equally evident is the fact that, over syn-
chronous digraphs, achieving Las Vegas URMT is harder (and again it indeed re-
quires more network connectivity) than achieving Monte Carlo URMT. Though
not seemingly related, interestingly, we prove that the additional requirements
in network connectivity in both the aforementioned cases is exactly the same.

In the sequel, we similarly study the minimum connectivity requirements for
the existence of asynchronous Las Vegas URMT protocols, which interestingly
turn out to be the same as those for the existence of (a)synchronous perfect
protocols.

We further improve our insights in the problem by studying the sparseness
of digraphs which permit URMT. Specifically, we say that an edge is critical
if its removal renders the graph insufficiently connected for URMT protocols
(though before its removal the connectivity was sufficient). While it is known
that for perfect protocols the number of critical edges is always O(n), it turns
out that for the “easier” randomized protocols there exists a family of digraphs
with Ω(n2) critical edges! We remark that an earlier attempt in [?] to give such
a family of digraphs for the case of synchronous Monte Carlo URMT protocols
is incorrect and we correct the same; we also give similar families of digraphs
(with Ω(n2) critical edges) for synchronous Las Vegas (and asynchronous Monte
Carlo) protocols.

1.1 Related Work

In [?], Dolev et al. initiate the study of message transmission protocols which
provide both perfect secrecy and perfect resiliency by abstracting the network as
a collection of n channels (corresponding to vertex-disjoint paths) between two
synchronized non-faulty processors S and R. Franklin et al. [?] show that the
connectivity requirements for Dolev et al.’s problem stay the same even when
privacy is not required and there is a fairly large probability of failure of reliability
(this is the general problem of URMT we have described above). Adopting Dolev
et al.’s network abstraction, Ashish et al. [?] study several variants of message
transmission in asynchronous networks.

While Dolev et al.’s work assumed all the channels between S and R to be
either 1-way (allowing information to flow from S to R only) or 2-way (allowing
information to flow in both directions), which corresponds naturally with undi-
rected networks, in [?] Desmedt and Wang argue that a better way to model
directed networks would be to have some channels in forward direction (from S
to R) and some in backward direction. Several results have been derived in this
model, see [?,?,?].

In [?], Srinathan and Rangan consider a more general setting, which is also
the setting with which we work in this paper, where the underlying network is
abstracted as a directed graph and every node is allowed to perform compu-
tations on messages received, instead of merely forwarding these messages to
other nodes. They provide the minimum connectivity required in a synchronous
network for a Monte Carlo URMT1 protocol tolerating a mixed adversary2 to
exist. In [?], Bhavani et al. obtain a much simpler connectivity requirement for
the particular case of Byzantine adversary.

To the best of our knowledge, asynchronous networks have not been studied
in this model.

1.2 Organization of paper

In the following section, we describe the network, fault and timing model we will
be working with; provide definitions of various URMT problems; describe the two
kinds of paths that exist in a network and their role in the design of protocols;
and discuss a message authentication scheme that we will use extensively in
designing our protocols.

In Sections 3, 4 and 5, we characterize directed networks for the possibility
(and impossibility) of (i) Las Vegas URMT (URMTLV) in synchronous net-
works, (ii) Monte Carlo URMT (URMTMC) in asynchronous networks, and
(iii) URMTLV in asynchronous networks respectively, tolerating a non-threshold
Byzantine adversary. It is hard and non-intuitive to deal with an arbitrary sized
adversary structure, so we take the following two step approach in each of these

1 The problem of PRC is defined in this paper in exactly the same way as we define
Monte Carlo URMT here (the adversary model is different though).

2 A combination of Byzantine and fail-stop faults is considered in this paper.

sections: We first show that in order to tolerate an adversary structure A it is
sufficient to tolerate all its two sized subsets. 3 We then give a necessary and suf-
ficient condition on the connectivity of directed networks so that a protocol for
the respective URMT variant tolerating a two-sized adversary structure exists.

In Section 6, we study the concept of critical edges. We first show that the
family of digraphs over n nodes proposed in [?] for synchronous URMTMC

claimed to have Ω(n2) critical edges has only O(n) critical edges. Then we
present another family which has indeed Ω(n2) critical edges. Further in the
section, we give a family of digraphs with Ω(n2) critical edges w.r.t. the two
variants of URMT - synchronous URMTLV and asynchronous URMTMC .

2 Model and Definitions

Network Model and Protocol: We model the underlying network as a di-
rected graph N = (V, E), where V is the set of nodes and E ⊆ V × V is the set
of directed edges in the network. We assume the secure channels setting, i.e.,
all the edges are secure and authenticated. We also assume that every node is
aware of the topology of the network. A sender S ∈ V and a receiver R ∈ V are
two distinguished nodes in the network.

We assume that every node can be modelled as an interactive probabilistic
Turing Machine. An interaction between a set of nodes in known as protocol.
(This is a popular abstraction technique described at length in [?].) An execution
of a protocol is defined as a run of a protocol with inputs and coin tosses from
participating nodes.

Fault model: We model faults in the network by a fictitious centralized en-
tity called the adversary which has unbounded computing power [?,?]. A sin-
gle “snapshot” of faults in the network can be described as a set of nodes
B ⊆ V \{S,R} 4, which means that all the nodes in B are faulty. We denote
the set of all such B’s by A and refer to it as an adversary structure. The ad-
versary structure is monotone: if B1 ∈ A then ∀B2 ⊂ B1, B2 ∈ A. We note
that A can be uniquely represented by listing the elements in its maximal basis
A = {B | B ∈ A, ∄X ∈ A s.t. B ⊂ X}. Abusing the standard notation, we
assume that A itself is a maximal basis. An adversary structure A is t-threshold
if every member of A is of size t; otherwise it is non-threshold. We only deal with
cases where |A| ≥ 2, since otherwise the problems are trivial.

We allow Byzantine corruption, i.e., all nodes in the set B ∈ A corrupted by
the adversary can deviate arbitrarily from the designated protocol. Additionally,
we allow the adversary to be adaptive – it can choose which nodes to corrupt
during an execution of a protocol based on its view, as long as the set of nodes
corrupted during the entire execution is a member of A.

3 This turns out to be true for all the three variants of URMT discussed in this paper.
4 We assume that S and R are non-faulty, for otherwise reliable message transmission

need not happen.

We assume that the adversary knows the topology of the network as well as
the protocol specification. We further make a conservative assumption that the
adversary knows the message sender S has chosen to send to R. The results we
prove in this paper hold good even if we do not make this assumption, but with
a slight change in our definition of URMT (see [?]).

Timing model: Protocols running over directed networks tolerating an adver-
sary rely heavily on the information of timing of various events within the system.
We consider two extremes w.r.t timing model: all the edges in the network are
either synchronous or asynchronous. Former case is referred to as synchronous
networks and the latter as asynchronous networks.

In synchronous networks, a protocol is executed in a sequence of rounds where
in each round, a player can send messages to his out-neighbours, receive the
messages sent in that round by his in-neighbours and performs local computation
on the received messages, in that order. Readers may find rigorous description
of the model in [?].

In asynchronous networks, there is no fixed upper bound on the timing of
events. In order to model computation in such networks, we assume that the
adversary is additionally equipped with the ability to schedule all the messages
exchanged over the network while remaining oblivious to the messages being
exchanged. Computation in such networks proceed in a sequence of steps, order of
which is controlled by the adversary. In each step a single node is active. The node
is activated by receiving a message; it then performs an internal computation,
and possibly sends messages on its outgoing channels. For more details refer
[?,?].

2.1 Reliability

We refer to Las Vegas URMT as URMTLV and Monte Carlo URMT as URMTMC .
We may also use URMT without any subscript to refer to both the variants to-
gether.

In the definitions that follow, probabilities are taken over the coin tosses of
non-faulty nodes and the adversary. The message space is a large finite field
〈F,+, ·〉 – all computations are done in this field.

Definition 1 ((A, δ)-URMTMC). Let δ < 1

2
. We say that a protocol for trans-

mitting messages in a network N from S to R is (A, δ)-URMTMC if for all valid
Byzantine corruptions of any B ∈ A and ∀m ∈ F, the probability that R outputs
m given that S has sent m, is at least (1− δ). Otherwise R outputs m

′ 6= m or
does not terminate.

Definition 2 ((A, δ)-URMTLV). Let δ < 1

2
. We say that a protocol for trans-

mitting messages in a network N from S to R is (A, δ)-URMTLV if for all valid
Byzantine corruptions of any B ∈ A and ∀m ∈ F, the probability that R outputs
m given that S has sent m, is at least (1 − δ). Otherwise, R outputs a special
symbol ⊥ (/∈ F) or does not terminate.

Definition 3 (A-PRMT). We say that a protocol for transmitting messages
in a network N from S to R is A-PRMT if for all valid Byzantine corruptions
of any B ∈ A and ∀m ∈ F, the probability that R outputs m when S has sent m

is 1.

When A is a t-threshold adversary structure, we refer to (A, δ)-URMT and
A-PRMT as (t, δ)-URMT and t-PRMT respectively.

2.2 Preliminaries

In a directed network, besides the strong paths between sender and receiver,
weak paths are also very useful in designing protocols [?] 5 .

Definition 4 (Strong path). A sequence of nodes v1, v2, v3, . . . , vk is said to
be a strong path from v1 to vk in the network N = (V, E) if for each 1 ≤ i <
k, (vi, vi+1) ∈ E.

We assume that there vacuously exists a strong path from a node to itself.

Definition 5 (Weak path). A sequence of nodes v1, v2, v3, . . . , vk is said to
be a weak path from v1 to vk in the network N = (V, E) if for each 1 ≤ i <
k, (vi, vi+1) ∈ E or (vi+1, vi) ∈ E.

Along any weak path p, there are two special kinds of nodes:

− Blocked node: A node whose out-degree along p is 0.
− Head node: A node whose out-degree along p is 2 if it is an intermediate

node, or 1 if it is a terminal node.

Consider a weak path p between S and R. If S is not a head node (i.e., it
is a blocked node) along p, it can simulate two nodes s and u, and a directed
edge (s,u). The incoming path to S along p (which made S a blocked node)
becomes an incoming path to u, and the virtual sender s now acts as a head
node. Analogously, it can always be ensured that R is a blocked node.

This allows us to view the path p as an alternating sequence of blocked
nodes ui’s and head nodes yi’s starting with S as a head node denoted by y0

and ending with R as a blocked denoted by un+1. In other words, the path p
can be represented as y0, u1, y1, u2, y2, . . . , un, yn, un+1 for some n ≥ 0 such that
y0 has a strong path to u1 along p, and yi (i > 0) has a strong path to ui and
ui+1 along p (see Figure 1). Such a representation of a weak path comes handy
in giving easy to understand sufficiency proofs.

Message Authentication: Following [?], we define an information-theoretically
secure message authentication scheme χ which is used extensively in our proto-
cols. For any message m ∈ F, χ(m;K1,K2,K3) = (m+K1, (m+K1) ·K2 +K3),
where K1,K2,K3 ∈ F and are referred to as keys.

5 Strong paths are usually just referred to as paths. Since we want to distinguish
between two different kinds of paths, we use the adjectives ‘strong’ and ‘weak’ here.

S
v1

(a)

v1

v3

v4

S

(b)

v2 v3 v4 R

u

s R

Fig. 1. (a) A weak path between S and R. (b) We view it as a sequence of alternating
blocked nodes and head nodes starting with a head node s (the virtual sender) and
ending in a blocked node R. Nodes s, v1 and v4 are head nodes; u and v3 are blocked
nodes such that there is a strong path from s to u; v1 to u and v3; and v4 to v3 and R.

If three randomly chosen keys (unknown to the adversary) are established
between two nodes u and v such that there exists a strong path p (possibly
containing some faulty nodes) from u to v, then authentication function is used
as follows: (a) Say x = m + K1 and y = x · K2 + K3; u sends 〈x, y〉 (a two
tuple) to v along path p. (b) Say node v receives 〈x′, y′〉; it verifies whether

y′ ?
= x′ · K1 + K2. If the verification passes then x′ = x with probability at

least |F|−1

|F| , or otherwise v can deduce with certainty that p is a faulty path 6.

Moreover, the view of nodes on the path p does not reveal any information about
the message m.

3 Characterizing synchronous networks for
(A, δ)-URMTLV

In this section, we deal with the possibility and impossibility of Las Vegas URMT
protocols from a sender S to a receiver R tolerating an adversary structure A7,
when the underlying network can be abstracted as a directed graph, all its edges
being synchronous. We refer to this variant of URMT as (A, δ)-URMTLV , which
was formally defined in Definition 2.

Since it is easier to deal with fixed size adversary structures, we first present
the following reduction (similar reductions can be found in [?,?]).

6 Proofs for the same appear in [?].
7 Recall that the adversary is non-threshold, adaptive and Byzantine.

Theorem 1. In a directed synchronous network N , an (A, δ)-URMTLV protocol
exists if and only if for every adversary structure A ⊆ A such that |A| = 2, an
(A, δ)-URMTLV protocol exists.

Proof. Necessity : Obvious. Sufficiency: We show how to construct a protocol tol-
erating an adversary structure of larger size from protocols tolerating adversary
structures of smaller size without increasing the probability of error. Therefore
if protocols tolerating adversary structures of size two are available, we can in-
ductively construct a protocol tolerating an arbitrary sized adversary structure.

Let f ∈ F be any element S intends to send to R. Let A be any subset of A

of size greater than 2. Consider three ⌈ 2|A|
3

⌉-sized subsets of A, namely A1,A2

and A3, such that each element of A occurs in at least two distinct Ai’s. For
i ∈ {1, 2, 3}, let Yi be an (Ai, δ)-URMTLV protocol. We use Yi s as sub-protocols
to construct a protocol Γ which is an (A, δ)-URMTLV protocol (as proved in
the following lemma).

Firstly, by repeating Yi sufficiently many times with the same message, we
can amplify the probability of success to obtain an (Ai,

δ
2
)-URMTLV protocol,

say Zi. The protocol Γ is now constructed as follows:

− For each i ∈ {1, 2, 3}, sub-protocol Zi is run on f .
− R outputs the majority of the outcomes of the three sub-protocols; in case

there is no majority, it outputs ⊥.
⊓⊔

Lemma 1. For the directed synchronous network N , the protocol Γ constructed
above is an (A, δ)-URMTLV protocol.

Proof. Any set B ∈ A is present in at least two subsets among A1,A2 and A3;
say the two subsets are A2 and A3. Hence the outcomes of the two sub-protocols
Z2 and Z3 are correct with at least 1− δ

2
probability each. Since R outputs the

majority of the outcomes, its output is correct if both the sub-protocols produce
the correct outcome which happens with at least (1− δ

2
)2 probability. Hence the

error probability is upper bounded by δ − δ2

4
or δ. Additionally, it is easy to see

that R would never output an incorrect message. ⊓⊔

Having reduced the problem of URMTLV in a synchronous network tolerating
an arbitrary-sized adversary structure to the problem of URMTLV tolerating all
its 2-sized subsets, we now proceed to characterize directed synchronous networks
in which URMTLV tolerating adversary structure A = {B1, B2} is possible
(where B1, B2 ⊆ V \ {S,R}).

Theorem 2. In a directed synchronous network N , (A, δ)-URMTLV protocol
is possible if and only if for each α ∈ {1, 2}, there exists a weak path qα avoiding
nodes in B1 ∪ B2 such that every node u along the path qα has a strong path to
R avoiding all nodes in Bα

8. (Paths q1, q2 need not be distinct.)

We prove the theorem in the following sub-sections.

8 1 = 2 and vice-versa.

3.1 Sufficiency

For a directed synchronous network N , which satisfies the conditions given in
Theorem 2, we show how to construct a protocol Π tolerating the adversary
structure A = {B1, B2}. Let m be the message S intends to send. If either q1 or
q2 is a strong path from S to R, S trivially sends m along that path. When this
is not the case, we construct two sub-protocols Π1 and Π2. For each i ∈ {1, 2},
sub-protocol Πi uses the honest weak path qi. We give a construction for Π1 in
Algorithm 1, and the construction of Π2 follows by symmetry. For convenience
of writing the protocol, we note that the weak path q1 can be represented as
y0, u1, y1, u2, y2, . . . , un, yn, un+1 for some n > 0, where y0 denotes S and un+1

denotes R, as explained in Subsection 2.2.

1. S sends m to u1 along q1. For 1 ≤ k ≤ n, node yk chooses 3k random keys namely
Kk,1, Kk,2, . . . , Kk,3k and sends those to uk and uk+1 along q1.

2. Node u1 receives m from S and keys K1,1, K1,2, K1,3 from y1. It calculates
(ψ1,1, φ1,1) = χ(m; K1,1, K1,2, K1,3) = (m + K1,1, (m + K1,1) · K1,2 + K1,3) and
sends it to R along a strong path avoiding B2.

For 1 < k ≤ n, uk receives 3k−1 keys from yk−1 and 3k keys from yk. It au-

thenticates the keys received from yk−1 with the keys received from yk and sends
them to R along a strong path avoiding B2. Formally, uk calculates (ψk,j , φk,j) =
χ(Kk−1,j ; Kk,3j−2, Kk,3j−1, Kk,3j) for all 1 ≤ j ≤ 3k−1.

3. R receives (ψ′

k,j , φ
′

k,j), 1 ≤ j ≤ 3k−1, from the node uk. If it does not receive a
proper message from uk, it concludes that ‘B1 is faulty’ and stops. Additionally, R

receives {K′

n,1, K
′

n,2, . . . , K
′

n,3n} from yn along q1.

for k in n to 2 do

R verifies whether φ′

k,j

?
= ψ′

k,j · K′

k,3j−1 + K′

k,3j for all 1 ≤ j ≤ 3k−1. If the
verification fails for any j, R concludes that ‘B1 is faulty’ and stops. Otherwise,
R recovers K′

k−1,j as ψ′

k,j − Kk,3j−2 for every j.
end for

If at the end of the loop R has recovered K′

1,1, K
′

1,2, K
′

1,3, it verifies whether φ′

1,1
?
=

ψ′

1,1 · K′

1,2 + K′

1,3. If the verification passes, R recovers m1 = ψ′

1,1 − K′

1,1 as the
message; otherwise, it concludes that ‘B1 is faulty’.

Algorithm 1: Sub-protocol Π1

The sub-protocols Π1 and Π2 are run on the network N . Based on the
outcomes of these protocols, R takes one of the following actions:

− If R detects that Bi is corrupt in Πi, it outputs the message mi it recovered
from Πi.

− If R recovers messages from each of the Πi’s and the messages are same, it
outputs this message.

− If messages recovered through Π1 and Π2 are different, it outputs ⊥.

This completes the description of Π.

Proof of Correctness: Since the weak path q1 does not contain any faulty
node, all the field elements send by the head nodes yis in Step 1 are received
reliably by the blocked nodes uis. Moreover, the adversary does not gain any
information about these elements. If the adversary corrupts B1, it may affect the
outcome of protocol Π1 by changing one of the (ψk,j , φk,j) sent by uk to R along
a path avoiding B2, but not necessarily B1. However, since the adversary has no
knowledge of the keys Kk,3j−1 and Kk,3j , the probability that it can successfully
generate a new tuple which passes the verification at R is atmost 1

|F| . In any

case, a Byzantine corruption of B1 does not affect the outcome of protocol Π2.
Once the protocols Π1 and Π2 have terminated, we see how the decision rule

at R produces the desired outcome with high probability:

− For some i, R concludes through Πi that Bi is faulty, and outputs whatever
it recovers from Πi. For each i, none of the nodes in Bi participate in the
protocol Πi. Hence, if some verification fails during Πi, Bi has to be faulty,
and Πi should recover the correct message m.

− For each i ∈ {1, 2}, all verifications in Πi pass.
• mi = mi, R outputs mi. Since one of mi or mi has to be same as m,

R’s output is correct.
• mi 6= mi. This implies that one of B1 or B2 was corrupt and managed

to change one of the authenticated messages without being detected at
R. Since this happens with atmost 1

|F| probability, R outputs ⊥ with

probability ≤ 1

|F| .

Hence Π is an (A, 1

|F|)-URMTLV protocol.

3.2 Necessity

Let N be a network that does not satisfy the conditions of Theorem 2. We show
that in such a network ({B1, B2}, δ)-URMTLV from S to R is impossible.

Without loss of generality, let us assume that the two sets comprising the
adversary structure are disjoint9. Let the path q1 be not present between S and
R in N 10. Hence, every weak path between S and R avoiding nodes in B1 ∪B2

has at least one node w such that every strong path from w to R passes through
B2. For the sake of contradiction, let us assume that there exists a ({B1, B2}, δ)-
URMTLV protocol π in the network N .

We first consider the simple network N ∗ = (V ∗, E∗) shown in Figure 2(a)
consisting of five nodes s∗, r∗, b1, b2 and x, where s∗ is the sender and r∗ is the
receiver, and show that ({{b1}, {b2}}, δ)-URMTLV from s∗ to r∗ is impossible
in Lemma 2. We then show that the digraph N can be partitioned into dis-
joint sets whose connectivity properties are similar to the connectivity between

9 In case B1 ∩ B2 6= φ, adversary strategy to fail any protocol in N includes fail-

stopping the nodes in the intersection.
10 The case when the path q2 is not present from S to R can be handled analogously.

nodes of digraph N ∗ in Lemma 3. Finally, in Lemma 4, we prove that if a
({B1, B2}, δ)-URMTLV protocol π exists in the network N , a ({{b1}, {b2}}, δ)-
URMTLV protocol π∗ exists in the network N ∗, which is a contradiction. Hence,
the conditions mentioned in Theorem 2 are necessary.

guesss
∗

r
∗

b2

s
∗

b1

s
∗
2

m1

m1

m2

m2

x
x x

b1

b2

s
∗

r
∗

b2

x2

b1

s
∗
1

(a) (b) (c)

r
∗

Fig. 2. (a) The directed network N ∗ (b) Adversary strategy when b1 is faulty (c)
Adversary strategy when b2 is faulty

Lemma 2. In the synchronous network N ∗ shown in Figure 2(a), ({{b1}, {b2}},
δ)-URMTLV from s∗ to r∗ is impossible.

Proof. Observe that the only weak path between s∗ and r∗ avoiding both b1

and b2 is the path formed by the sequence of nodes s∗, x, r∗. Node x is the
only blocked node along this path and every path from it to R passes through
b2 – there is no path that avoids b2. Hence this network does not satisfy the
connectivity requirements of Theorem 2.

For the sake of contradiction, let us assume that a protocol ξ exists in N ∗

which is a ({{b1}, {b2}}, δ)-URMTLV protocol. The protocol ξ is nothing but a
collection of codes for the nodes in the network. Define ξs∗ to be the code that s∗

runs according to ξ, and in general define ξz to be the code that z runs according
to ξ for any z ∈ {s∗, r∗, x, b1, b2}. These codes take different number of inputs
and give different number of outputs depending on the in-degree and out-degree
of the respective nodes. For instance, ξs∗ expects two input messages, one from
ξb1 and one from ξb2 , and gives three output messages, for ξb1 , ξb1 and ξx.

We first describe an adversary strategy S to fail any protocol ξ, and show how
it works afterwards. Adversary chooses any two messages m1,m2 ∈ F, m1 6= m2.

When s∗ intends to send mi, adversary corrupts the node bi
11 and snaps all

communication with the nodes bi, x and s∗.

When adversary corrupts b1, it simulates a system Υ1 consisting of nodes b1

and s∗1 as shown in the large circle in Figure 2(b). In Υ1, the node b1 runs the
code ξ′b1 and s∗1 runs the code ξ′s∗ , where ξ′b1 and ξ′s∗ are same as ξb1 and ξs∗

respectively, except that they always take NULL as input from b2. Also, at the
beginning of the execution, ξ′s∗ (the code running at s∗1) is given the message
m2. The system Υ1 is well defined and would continue to run as long as in every
round ξ′b1 can be provided with the inputs it expects from ξr∗ . To achieve this,
the message which r∗ sends to b2 in round l − 1 is given as input to ξ′b1 in the
round l. Finally, whatever is output by ξ′b1 intended for ξr∗ in the round l is sent
to r∗.

When adversary corrupts b2, it simulates a system Υ2 consisting of nodes b2,
x2 and s∗2 as shown in the large circle in Figure 2(c). In Υ2, the node b2 runs the
code ξ′′b2 , s∗2 runs the code ξ′′s∗ and x2 runs the code ξ′′x , where ξ′′b2 , ξ′′s∗ and ξ′′x
are same as ξb2 , ξs∗ and ξx respectively, except that they always take NULL as
input from b1. Also, at the beginning of the execution, ξ′′s∗ (the code running at
s∗2) is given the message m1. The system Υ2 is well defined and would continue
to run as long as in every round ξ′′b2 and ξ′′x can be provided with the inputs they
expect from ξr∗ . To achieve this, the message which r∗ sends to b2 in round l−1
is given as input to ξ′′b2 in the round l. On the other hand, ξ′′x is given a random
message as input from ξr∗ in every round 12. Finally, whatever is output by ξ′′b2
intended for ξr∗ in the round l is sent to r∗.

With the adversary strategy S, we show how the protocol ξ cannot be a valid
{{b1}, {b2}}-URMTLV protocol. In an execution Ei of the protocol ξ, let the
coin tosses used by a code τ be denoted by ci(τ). We consider two executions of
ξ:

1. Execution E1: s∗ chooses to send m1. Adversary corrupts b1 and simulates
the system Υ1, as described earlier. r∗ outputs m1.

13

2. Execution E2: s∗ chooses to send m2. Adversary corrupts b2 and simulates
the system Υ2. The coin tosses used by various codes in this execution are
such that c2(ξs∗) = c1(ξ

′
s∗), c2(ξ

′′
s∗) = c1(ξs∗), c2(ξ

′′
x) = c1(ξx), c2(ξb1) =

c1(ξ
′
b1

), c2(ξ
′′
b2

) = c1(ξb2), and c2(ξr∗) = c1(ξr∗) 14. Also, the random message
input to ξ′′x in every round (as input from ξr∗) matches exactly with the
message r∗ sends to x in that round.

11 Recall that we have assumed that the adversary knows the message sender chooses
to send to the receiver.

12 Note that, since node x is not corrupt, adversary does not have access to the messages
r∗ sends to x.

13 For ξ to be a valid protocol, such an execution exists.
14 Since x does not have a strong path to r∗, it does not have any effect on the outcome

of the protocol. Hence its coin tosses do not matter.

The coin tosses of r∗ as well as the messages received by it in execution E2

are same as that in E1. Hence r∗ outputs m1 in an execution where s∗ chose to
send message m2, implying that ξ cannot be a valid URMTLV protocol. ⊓⊔

Lemma 3. The set of nodes V in the network N can be partitioned into 5
disjoint sets S∗, R∗, B′

1, B2 and X ′ such that S ∈ S∗, R ∈ R∗ and an edge
exists from a node in L[i] to a node in L[j] only if (l[i], l[j]) ∈ E∗ where L =
[S∗, R∗, B′

1, B2,X
′] and l = [s∗, r∗, b1, b2, x] are two ordered lists, l[i] (resp. L[i])

denotes the ith element of the list l (resp. L).

Proof. In the network N , every weak path between S and R avoiding B1 ∪ B2

has at least one node w such that every strong path from w to R passes through
B2.

We partition the non-faulty nodes H = V \ {B1 ∪ B2} into 3 disjoint sets
R∗, S∗ and X defined as follows: R∗ = {w | w ∈ H and ∃ a weak path p
between w and R s.t all the nodes in p have a strong path to R avoiding nodes
in B2}; S∗ = {w | w ∈ H \R∗ and w has a strong path to R avoiding B2}; and
X = H \ {S∗ ∪R∗}. Clearly, R ∈ R∗ and S ∈ S∗. Moreover, if any node w ∈ X
has a strong path to R, it passes through some node in B2. We now divide the
set B1 into two disjoint sets namely: B′

1 and BX
1 . B′

1 = {u | u ∈ B1 and u has a
strong path to R avoiding B2}. BX

1 = B1 \B′
1. We consider the two sets X and

BX
1 together as a set X ′, i.e., X ′ = X ∪ BX

1 .
It trivially follows from the definitions above that ∄ (u, v) ∈ E such that

u ∈ X ′ and v ∈ S∗ ∪ R∗ ∪ B′
1, otherwise there would be a path from a node

in X ′ to R avoiding B2. Also, there cannot exist any directed edge between a
node in S∗ and a node in R∗. Note that the only edges missing from N ∗ are
(x, s∗), (x, r∗), (x, b1) and (s∗, r∗), (r∗, s∗). ⊓⊔

Lemma 4. If a ({B1, B2}, δ)-URMTLV protocol π exists from S to R in the
network N , a ({{b1}, {b2}}, δ)-URMTLV protocol π∗ exists from s∗ to r∗ in the
network N ∗.

This lemma can be proved using standard simulation techniques, hence we
do not give a proof here.

From Lemma 2 we know that ({{b1}, {b2}}, δ)-URMTLV is impossible from s∗

to r∗ in the network N ∗ – we arrive at a contradiction regarding the existence
of π. Hence, the conditions mentioned in Theorem 2 are necessary.

4 Characterizing asynchronous networks for
(A, δ)-URMTMC

We now study the second variant of URMT – Monte Carlo URMT – in asyn-
chronous networks. We refer to this variant as (A, δ)-URMTMC , formally defined
in Definition 1. In a manner similar to the previous section, we first provide a
reduction that allows us to work with two-sized adversary structures.

Theorem 3. In a directed asynchronous network N , (A, δ)-URMTMC protocol
is possible if and only if for every adversary structure A ⊆ A such that |A| = 2,
(A, δ)-URMTMC protocol is possible.

Proof. Necessity : Obvious. Sufficiency: The proof takes an approach similar to
the one taken in the proof of Theorem 1. However, since the network is asyn-
chronous, the way we build a protocol tolerating larger sized adversary structure
from protocols tolerating smaller sized ones changes.

Let f ∈ F be any element S intends to send to R. Consider A and its three
subsets A1,A2 and A3 as described in Theorem 1. For i ∈ {1, 2, 3}, let Zi be
an (Ai,

δ
2
)-URMTMC protocol which can be constructed easily by repeating an

(Ai, δ)-URMTMC protocol sufficiently many times, keeping S’s input same. The
protocol η which is an (A, δ)-URMTMC protocol (as proved in the following
lemma) is constructed as follows:

− For each i ∈ {1, 2, 3}, sub-protocols Zi are run in parallel on f .
− R waits until two of the three Zi sub-protocols terminate with same output

and outputs that as the message.
⊓⊔

Lemma 5. For the directed asynchronous network N , the protocol η constructed
above is an (A, δ)-URMTMC protocol.

Proof. Any set B ∈ A is present in at least two subsets among A1,A2 and A3;
say the two subsets are A2 and A3. Hence the two sub-protocols Z2 and Z3

terminate with the correct output with at least 1 − δ
2

probability each. As R
waits until two of the three Zi sub-protocols terminate with same output, η fails
only if at least one of Z2 and Z3 terminates with an incorrect message or does
not terminate at all. Since this happens with at most 1− (1− δ

2
)2 probability, η

is an (A, δ − δ2

4
)-URMTMC , i.e., an (A, δ)-URMTMC protocol. ⊓⊔

Having reduced the problem of URMTMC in an asynchronous network tol-
erating an adversary structure to the problem of URMTMC tolerating all its
2-sized subsets, we now proceed to characterize directed asynchronous networks
in which URMTMC tolerating adversary structure A = {B1, B2} is possible
(where B1, B2 ⊆ V \ {S,R}).

Theorem 4. In a directed asynchronous network N , (A, δ)-URMTMC protocol
is possible if and only if for each α ∈ {1, 2}, there exists a weak path qα avoiding
nodes in B1 ∪ B2 such that every node u along the path qα has a strong path to
R avoiding all nodes in Bα. (Paths q1, q2 need not be distinct.)

We give the sufficiency and the necessity proofs in the following sub-sections.

4.1 Sufficiency

The protocol for the sufficiency proof of above theorem is constructed in a man-
ner similar to the synchronous Las Vegas protocol Π in Section 3.1. However,
there are some important differences which will become evident in due course.

For a directed asynchronous network N , which satisfies the conditions given
in Theorem 4, we show how to construct a protocol ζ tolerating the adversary
structure A = {B1, B2}. Let m be the message S intends to send. If either q1 or
q2 is a strong path from S to R, S trivially sends m along that path, and R is
bound to receive it. When this is not the case, we construct two sub-protocols
ζ1 and ζ2. For each i ∈ {1, 2}, sub-protocol ζi uses the honest weak path qi.
As usual, we give a construction of ζ1 in Algorithm 2, and the construction
of ζ2 follows by symmetry. Once again, we note that the weak path q1 can be
represented as y0, u1, y1, . . . , un, yn, un+1 for some n > 0, where y0 denotes S
and un+1 denotes R, as explained in Subsection 2.2.

1. S sends m to u1 along q1. For 1 ≤ k ≤ n, node yk chooses 3k random keys namely
Kk,1, Kk,2, . . . , Kk,3k and sends those to uk and uk+1 along q1.

2. Node u1 waits for m to arrive from S and keys K1,1, K1,2, K1,3 to arrive from y1. It
calculates (ψ1,1, φ1,1) = χ(m; K1,1, K1,2, K1,3) = (m+K1,1, (m+K1,1) ·K1,2 +K1,3)
and sends it to R along a strong path avoiding B2.

For 1 < k ≤ n, uk waits for 3k−1 keys to arrive from yk−1 and 3k keys to arrive from
yk

1 . It authenticates the keys received from yk−1 with the keys received from yk and
sends it to R along a strong path avoiding B2. Formally, uk calculates (ψk,j , φk,j) =
χ(Kk−1,j ; Kk,3j−2, Kk,3j−1, Kk,3j) for all 1 ≤ j ≤ 3k−1.

3. R waits for {K′

n,1, K
′

n,2, . . . , K
′

n,3n} to arrive from yn.

for k in n to 2 do

R waits until it receives ∀j 1 ≤ j ≤ 3k−1, (ψ′

k,j , φ
′

k,j) from uk
2.

If R does receive, it verifies ∀j whether φ′

k,j

?
= ψ′

k,j · K′

k,3j−1 + K′

k,3j . If the
verification fails for any j, R concludes that ‘B1 is faulty’ and stops. Otherwise,
R recovers K′

k−1,j as ψ′

k,j − Kk,3j−2, for every j.
end for

If at the end of the loop R has recovered K′

1,1, K
′

1,2 and K′

1,3, then R waits to

receive (ψ′

1,1, φ
′

1,1) and verifies if φ′

1,1
?
= ψ′

1,1 · K
′

1,2 + K′

1,3. If the verification passes,
R recovers m1 = ψ′

1,1 − K′

1,1 as the message; otherwise it concludes that ‘B1 is
faulty’.

Algorithm 2: Sub-protocol ζ1

The sub-protocols ζ1 and ζ2 are run in parallel in the asynchronous network
N . Based on the outcomes of these protocols, R takes one of the following
actions:

1 As the weak path q1 does not contain any faulty nodes, every uk receives the field
elements eventually.

2 As these field elements are delivered along faulty paths, they may never arrive.
However, since ζ1 and ζ2 are run in parallel (as mentioned in the sequel) and R

waits for only one of them to terminate, the protocol ζ always terminates.

− For some i ∈ {1, 2}, if R detects that Bi is faulty during the run of ζi, it
waits for ζi to terminate and outputs mi as the message.

− For some i, if R recovers mi through ζi, it outputs that as the message
without waiting for the sub-protocol ζi to terminate.

This completes the description of ζ.

Proof of Correctness: We analyse the protocol case wise: (a) For some i,
R detects that Bi is faulty during the run of ζi and outputs what it recovers
from ζi. For each i, none of the nodes in Bi participate in the sub-protocol ζi.
Therefore, some verification fails during ζi only if Bi is faulty. Hence, ζi is bound
to terminate with mi = m. (b) For some i, R recovers mi through ζi. Probability
that mi 6= m is at most 1

|F| . Hence, R’s output is correct with probability at

least |F|−1

|F| . This implies that ζ is an (A, 1

|F|)-URMTMC protocol.

4.2 Necessity

Let N be an asynchronous network that does not satisfy the condition of Theo-
rem 4. We show that in such a network ({B1, B2}, δ)-URMTMC from S to R is
impossible. Without loss of generality, we assume that the sets B1 and B2 are
disjoint and path q1 is not present between S and R in N (reasons for these
assumptions were stated in Section 3.2). Hence, every weak path between S and
R avoiding B1 ∪ B2 has at least one node w such that every strong path from
w to R passes through B2.

We again consider the simple network N ∗ = (V ∗, E∗) shown in Figure 2(a)
consisting of five nodes s∗, r∗, b1, b2 and x, where s∗ is the sender and r∗ is the
receiver. However, this time the edges between nodes are asynchronous. We show
that ({{b1}, {b2}}, δ)-URMTMC from s∗ to r∗ is impossible in N ∗ in Lemma 6.
We then need to show that the digraph N can be partitioned into disjoint sets
whose connectivity properties are similar to the connectivity between nodes of
digraph N ∗, which we have already proved in Lemma 3. Now, if ({B1, B2}, δ)-
URMTMC from S to R is possible in N then ({{b1}, {b2}})-URMTMC from s∗

to r∗ is possible in N ∗ (we need not prove this separately as the proof given
in Lemma 4 works even when both N and N ∗ are asynchronous networks),
which is a contradiction. This shows that no protocol for ({B1, B2}, δ)-URMTMC

can exist in the asynchronous network N . Hence, the conditions mentioned in
Theorem 4 are necessary.

Lemma 6. In the asynchronous network N ∗ shown in Figure 2(a), ({{b1}, {b2}},
δ)-URMTMC (δ < 1/2) from s∗ to r∗ is impossible.

Proof. For the sake of contradiction, let us assume that a protocol τ exists in
N ∗ which is a ({{b1}, {b2}}, δ)-URMTMC protocol from s∗ to r∗. Following the
proof of Lemma 2, we define τz to be the code that node z runs according to τ , for
z ∈ {s∗, r∗, x, b1, b2}. We describe an adversary strategy to fail protocol τ . Firstly,
adversary fixes a schedule D – messages in the network are always exchanged
according to this schedule (since the network is asynchronous, adversary can do

this). It chooses any two messages m1,m2 ∈ F,m1 6= m2. When s∗ intends to
send mi, it corrupts the node bi

15, for i ∈ {1, 2}.
When adversary corrupts b2, it simply fail-stops this node. Since τ is a

URMTMC protocol, when s∗ chooses to send m2 and the node b2 is fail-stopped,
there must exist a finite time instant T such that r∗ outputs m2 before instant T
with probability at least 1/2. Now, when adversary corrupts b1, it delays all the
outgoing messages from b2 beyond the time instant T . Additionally, it simulates
a system Υ consisting of nodes b1 and s∗1 (in a manner similar to the system
Υ1 in Lemma 2). In Υ , the node b1 runs the code τ ′

b1
and s∗1 runs the code τ ′

s∗ ,
where τ ′

b1
and τ ′

s∗ are same as τb1 and τs∗ respectively, except that they always
take NULL as input from b2. Also, at the beginning of the execution, τ ′

s∗ (the
code running at s∗1) is given the message m2. The system Υ is well defined and
would continue to run as long as τ ′

b1
can be provided with the inputs it expects

from τr∗ . To achieve this, the message which r∗ sends to b1 is given as input to
τ ′
b1

. Finally, whatever is output by τ ′
b1

intended for τr∗ is sent to r∗.

Let us see how the adversary strategy described above succeeds. When s∗ chooses
to send message m2, adversary fail-stops b2; this also cuts-off node x from the
network. Therefore, only the messages generated by s∗ and b1 influence the out-
put of r∗. Nonetheless, r∗ outputs m2 before time instant T with probability at
least 1/2. On the other hand, when s∗ chooses to send message m1, adversary
delays all the outgoing messages from b2 beyond the time instant T , and simu-
lates the system Υ as described above. As a result, the nodes s∗, x and b2 are
cut-off from the network till time T . Hence, only the messages generated by s∗1
and b1, which are part of the system Υ , constitute the view of r∗ till time T .
Now, since the code τ ′

s∗ running at s∗1 was given the message m2, the view of r∗

in this case is indistinguishable from the previous case till time T . Therefore, r∗

outputs m2 before time T with probability at least 1/2 in this case as well.
Hence, τ cannot be a valid URMTMC protocol. ⊓⊔

We now state the main result of this paper: synchronous Las Vegas protocols
are possible if and only if asynchronous Monte Carlo protocols are.

Corollary 1. In a directed network N = (V, E), a synchronous (A, δ)-URMTLV

protocol exists if and only if a protocol exists for asynchronous (A, δ)-URMTMC .

Proof. Follows from Theorem 1, 2 and 3, 4. ⊓⊔

5 Characterizing asynchronous networks for
(A, δ)-URMTLV

In this section we come back to the Las Vegas variant of URMT, this time in
asynchronous networks though. As has been the case so far, we can show that
working with a two-sized adversary structure is sufficient.

15 Recall that we have assumed that the adversary knows the message sender chooses
to send to the receiver.

Theorem 5. In a directed asynchronous network N , (A, δ)-URMTLV protocol
is possible if and only if for every adversary structure A ⊆ A such that |A| = 2,
(A, δ)-URMTLV protocol is possible.

Proof. Similar to the proof of Theorem 3, hence omitted. ⊓⊔

For A = {B1, B2}, where B1, B2 ⊆ V \ {S,R}, we have the following char-
acterization.

Theorem 6. In a directed asynchronous network N , (A, δ)-URMTLV protocol
is possible if and only if there exists a strong path from S to R avoiding nodes
in B1 ∪ B2.

Proof. Sufficiency : Let m be the message S intends to send. Send m to R along
the strong path avoiding nodes in B1 ∪B2. Since, the path does not contain any
corrupt nodes, m is eventually received by R. ⊓⊔

We give the necessity proof of the above theorem in the following sub-section.

5.1 Necessity

The proof in this section is along similar lines to the necessity proofs earlier. Let
N be a network that does not satisfy the condition mentioned in Theorem 6.
We first consider the simple asynchronous network N ∗

1 = (V ∗
1 , E∗

1) with V ∗
1 =

{s∗, r∗, b1, b2} and E∗
1 = (V ∗

1 × V ∗
1) \ {(s∗, r∗)} as shown in Figure 3(a) and

show that ({{b1}, {b2}})-URMTLV from s∗ to r∗ is impossible in Lemma 7. We
then show that the digraph N can be partitioned into four disjoint sets whose
connectivity properties are similar to the connectivity between nodes of digraph
N ∗

1 in Lemma 8. Finally in Lemma 9, we show that if ({B1, B2}), δ)-URMTLV

from S to R is possible in N then ({{b1}, {b2}})-URMTLV from s∗ to r∗ is
possible in N ∗

1 , which is a contradiction. Hence, the conditions mentioned in
Theorem 6 are necessary.

Lemma 7. In the asynchronous network N ∗
1 , ({{b1}, {b2}}, δ)-URMTLV from

s∗ to r∗ is impossible.

Proof. We assume that a protocol κ exists in N ∗
1 which is a ({{b1}, {b2}}, δ)-

URMTLV protocol from s∗ to r∗. Once again, following the proof of Lemma 2, we
define κz to be the code that node z runs according to κ, for z ∈ {s∗, r∗, b1, b2}.
Also, in an execution Ei of the protocol κ, let the coin tosses used by a code τ
be denoted by ci(τ).

We describe an adversary strategy to fail any protocol κ. Firstly, adversary
fixes a schedule D – messages in the network are always exchanged according
to this schedule (since the network is asynchronous, adversary can do this). It
chooses any two messages m1,m2 ∈ F, m1 6= m2. When s∗ intends to send mi,
adversary corrupts the node bi, for i ∈ {1, 2}. When adversary corrupts b2, it
simply fail-stops this node. Since κ is a URMTLV protocol, there must exist
an execution where s∗ chooses to send m2, the node b2 is fail-stopped, still r∗

s
∗

r
∗

b1

b2

Fig. 3. The directed network N ∗

1

outputs m2. Let this execution be E2 (according to our naming convention, the
coin tosses of the codes running at s∗ and b1 in this execution are c2(κs∗) and
c2(κb1)), and let the time instant at which r∗ output m2 be T .

Now, when adversary corrupts b1, it delays all the outgoing messages from b2

beyond the time instant T . Additionally, it simulates a system ∆ consisting of
nodes b1 and s∗1. In ∆, the node b1 runs the code κ′

b1
and s∗1 runs the code κ′

s∗ ,
where κ′

b1
and κ′

s∗ are same as κb1 and κs∗ respectively, except that they always
take NULL as input from b2. The code κ′

s∗ is given random messages as input
from κr∗ since the messages sent by r∗ to s∗ are not available to the adversary.
Also, whatever is output by κ′

b1
intended for κr∗ is sent to r∗. Importantly, at

the beginning of the execution, κ′
s∗ (the code running at s∗1) is given the message

m2 as input.

Let us consider an execution E1 where s∗ chooses to send m1 – hence adversary
corrupts b1, the coin tosses of codes running at simulated nodes s∗1 and b1 (in
the system ∆) are c2(κs∗) and c2(κb1) respectively, and the random messages
given to κ′

s∗ (the code running at s∗1) as input from κr∗ match exactly with the
messages r∗ sends to s∗. Since the adversary delays all the outgoing messages
from b2 beyond the time instant T , r∗ fails to distinguish whether it is running
in E1 or E2. Since it outputs m2 at time T in execution E2, it also outputs m2

at time T in execution E1, where s∗ chose to send m1.
Hence, κ is not a valid URMTLV protocol. ⊓⊔

We now consider network N = (V, E) which does not satisfy the conditions of
Theorem 6.

Lemma 8. The set of nodes V in the network N can be partitioned into 4 dis-
joint sets S∗, B1, B2 and R∗ such that S ∈ S∗, R ∈ R∗ and an edge exists from a
node in L[i] to a node in L[j] only if (l[i], l[j]) ∈ E∗

1 , where L = [S∗, B1, B2, R
∗]

and l = [s∗, b1, b2, r
∗] are two ordered lists, l[i] (resp. L[i]) denotes the ith ele-

ment of the list l (resp. L).

Proof. We partition the non-faulty nodes H = V \ {B1 ∪B2} into 2 disjoint sets
S∗ and R∗. Let R∗ denote the set of all nodes in H having a strong path to R
avoiding nodes in B1 ∪B2. Let S∗ = V \ {R∗ ∪B1 ∪B2}. It is clear that R ∈ R∗

and S ∈ S∗. Moreover, any node u ∈ S∗ cannot have an edge to a node in R∗,
otherwise u will become a part of R∗. Since the only edge missing from N ∗

1 is
(s∗, r∗), we are done. ⊓⊔

Lemma 9. In the directed asynchronous network N = (V, E), ({B1, B2}, δ)-
URMTLV is possible from S to R only if ({{b1}, {b2}}, δ)-URMTLV is possible
from s∗ to r∗ in the network N ∗

1 .

Proof. Proof is on the lines similar to the proof of Lemma 4, hence omitted.

From Lemma 7 we know that ({{b1}, {b2}}, δ)-URMTLV is impossible from
s∗ to r∗ in the network N ∗

1 . Using Lemma 9, we arrive at a contradiction. Hence,
the conditions mentioned in Theorem 6 are necessary.

We now present the second main result of this paper: the minimum connectivity
requirements for the case of asynchronous Las Vegas protocols is same as that
for perfect protocols.

Theorem 7. In a directed synchronous (or asynchronous) network N = (V, E),
A-PRMT from S to R is possible if and only if for all B1, B2 ∈ A there exists a
strong path from S to R avoiding nodes in B1 ∪ B2.

Proof. Follows from [?]. ⊓⊔

Corollary 2. In a directed network N = (V, E), an asynchronous (A, δ)-URMTLV

protocol exists if and only if a protocol exists for synchronous (or asynchronous)
A-PRMT.

Proof. Follows from Theorem 5, 6 and 7. ⊓⊔

6 Critical edges

We say that an edge is critical if its removal renders the graph insufficiently con-
nected for a certain kind of protocol, though before its removal the connectivity
was sufficient. While it is known that for perfect protocols the number of critical
edges is always O(n), we give a family of digraphs with Ω(n2) critical edges for
Las Vegas and Monte Carlo variants, which have less connectivity requirements!

In [?], Bhavani et al. proposed a family of digraphs for synchronous (t, δ)-
URMTMC with the same lower bound on the number of critical edges. However,
their claim is incorrect as shown in the following theorem. For convenience,
we first state their family of graphs Gt (t > 0) here: Gt = (V, E1 ∪ E2 ∪ E3)

where V = {S, v1, . . . , vt+1, u1, . . . , ut,R}; E1 =
⋃t+1

1
{(S, vi), (vi,R)}; E2 =

⋃t
i=1

{(S, ui), (R, ui)}; and E3 =
⋃t

i=1
{(ui, v1), . . . , (ui, vt+1)} (see Figure 4(a)).

Theorem 8. Gt has only Θ(n) critical edges w.r.t synchronous (t, δ)-URMTMC .

(b)

.

.

.

.

.

.

.

.

.

.

.

.

(a)

u1

ut

v1

v2

S

u1

v1

v2

u2

R S R

vt+1

u2t−1

u2t

v2t+1

Fig. 4. (a) Graph Gt, (b) Graph Ht

Proof. Consider the subgraph G′
t of Gt given by G′

t = (V, E1 ∪ E2 ∪ E ′
3), where

E ′
3 =

⋃t
i=1

{(ui, vi)}. According to [?], for (t, δ)-URMTMC to be impossible in
G′

t, there exist B1, B2 such that |B1|, |B2| ≤ t, and every weak path from S to
R avoiding nodes in B1∪B2 has at least one node x such that every strong path
from x to R passes through nodes some nodes in B1 as well as some nodes in
B2. We first show that no such sets B1, B2 exist for G′

t.

If there exists a strong path from S to R avoiding nodes in B1∪B2, URMTMC

is trivially possible. Hence, ∀i 1 ≤ i ≤ t + 1, vi ∈ B1 or vi ∈ B2. As |B1| +
|B2| ≤ 2t, at least one ui has to be honest. Hence the path S→ ui ←R is
an honest weak path from S to R, with ui having a strong path to R via vi.
For the impossibility of synchronous (t, δ)-URMTMC , node vi must belong to
both B1 and B2. This would imply that another ui′ (i′ 6= i) is honest and
hence vi′ must belong to both B1 and B2. Repeating the inductive arguing for
another t − 2 times, we can show that B1 = B2 = {vα1

, vα2
, . . . , vαt

} for some
{α1, α2, . . . , αt} ⊂ {1, 2, 3, . . . , t + 1}. But this leaves a strong honest path from
S to R. Hence, no B1, B2 exist such that (t, δ)-URMTMC is impossible in G′

t,
i.e., (t, δ)-URMTMC is possible in G′

t.

Since G′
t has O(n) edges, this proves an upper bound of O(n) on the number

of critical edges in Gt. Hence, the claim in[?] that Gt has Ω(n2) critical edges is
wrong. Moreover, since deleting any one edge (S, vi) in Gt leaves only 2t disjoint
weak paths between S and R, Gt has Ω(n) critical edges. It therefore follows
that Gt has Θ(n) critical edges. ⊓⊔

We now propose a family of graphs with Ω(n2) critical edges. For all t > 0,

consider Ht = (V1,
⋃4

i=1
E1

i) with V1 = {S, v1, . . . , v2t+1, u1, . . . , u2t,R}; E1
1 =

⋃2t+1

1
{(S, vi), (vi,R)}; E1

2 =
⋃2t

i=1
{(S, ui), (R, ui)}; E1

3 =
⋃t

i=1
{(u2i−1, u2i))};

and E1
4 =

⋃t
i=1

{(u2i, v1), . . . , (u2i, v2t+1)}, as shown in Figure 4(b). Here, number
of nodes in graph Ht is n = 4t + 3.

Theorem 9. Ht has Ω(n2) critical edges w.r.t synchronous (2t, δ)-URMTMC .

Proof. (2t, δ)-URMTMC is possible in Ht (follows from [?]). Suppose we delete

an edge e = (u2i, vj) ∈ E1
4 . Consider B1 =

⋃2t
k=1

{uk} ∪ {vj} − {u2i−1}, B2 =
⋃2t+1

k=1
{vk} − {vj}. Only honest weak path left is S → u2i−1 ← R. Every strong

path from u2i−1 to R passes through both B1 and B2. This renders ({B1, B2}, δ)-
URMTMC impossible, hence (2t, δ)-URMTMC is impossible. Therefore, Ht has
Ω(|E1

3 |) or Ω(n2) critical edges.

6.1 Critical Edges for asynchronous Monte Carlo and synchronous
Las Vegas

In this section we show the existence of a family of digraphs with Ω(n2) critical
edges w.r.t asynchronous (t, δ)-URMTMC and synchronous (t, δ)-URMTLV – the
family of digraphs Gt presented in [?] turns out to be the family we desire! Since
the characterization of synchronous networks for the possibility of URMTLV is
same as that of asynchronous networks for URMTMC (proved in Corollary 1),
we can deduce that any given graph (meeting the sufficiency conditions) has
same number of critical edges w.r.t both the aforementioned variants. Hence, a
family of digraph with Ω(n2) critical edges w.r.t asynchronous (t, δ)-URMTMC

has the same bound on critical edges w.r.t synchronous (t, δ)-URMTLV too.

Theorem 10. Gt has Ω(n2) critical edges w.r.t asynchronous (t, δ)-URMTMC

(and synchronous (t, δ)-URMTLV).

Proof. Asynchronous (t, δ)-URMTMC is possible in Gt (follows from Theorem
3, 4). Suppose we delete some edge e = (ui, vj) ∈ E3. Consider B1 =

⋃t
k=1

{uk}∪

{vj}−{ui}, B2 =
⋃t+1

k=1
{vk}−{vj}. Only honest weak path left is S → ui ← R.

All the strong paths from ui to R pass through B2. This renders ({B1, B2}, δ)-
URMTMC impossible, hence (t, δ)-URMTMC is impossible – therefore, Ω(|E3|)
or Ω(n2) critical edges. ⊓⊔

