
Distinguisher for Shabal’s Permutation Function

Peter Novotney
peternov@microsoft.com

July 15, 2010

Abstract

In this note we consider the Shabal permutation function P as a block
cipher with input Ap,Bp and key C,M and describe a distinguisher with
a data complexity of 223 random inputs with a given difference. If the
attacker can control one chosen bit of Bp, only 221 inputs with a given
difference are required on average. This distinguisher does not appear to
lead directly to an attack on the full Shabal construction.

1 Introduction

The Shabal hash function [4] is a second round candidate in NIST’s SHA-3
hash function competition. Shabal uses a iterated hash mode built around a
keyed permutation function P, which takes as input Ap,Bp and takes as a key
C,M . In this note we will demonstrate that given an unknown key C,M , we
can distinguish the permutation function P with known input differences with
respect to XOR on Ap and Bp. Others have noted various distinguishers in the
Shabal permutation function as well: In [2] the non-ideal behavior of Shabal’s
permutation function using a cube tester is described. Fixed points and key
collisions of the permutation are described in [6]. A related key distinguisher is
given in [3], and [1] presents a distinguisher based on rotational differences. In
[5] the authors of Shabal respond to some of these papers. The distinguisher in
this note seems to add its own unique features to those referenced above.

2 The Shabal Permutation Function

We use a slightly different description of the Shabal permutation function than
given in [4]. The description below retains intermediate values, allowing them
to be uniquely referenced in the differential description in section 3. Our de-
scription assumes the default tunable parameters (p, r) = (3, 12) as defined in
[4].

The Shabal permutation function takes 4 inputs Ap, Bp, C, and M , and
gives as output Ac and Bc. We will consider Ap and Bp as the plaintext and
M and C as the key. Ap contains 12 words and Bp, C and M each contain 16
words, where words are 32 bits. All additions and multiplications are mod 232.
P is given as:

1



First we initialize the intermediate arrays with the input values:

i→ 0 . . . 11

A[i] := Ap[i]

i→ 0 . . . 15

B[i] := Bp[i] ≪ 17

Main computation of the permutation:

i→ 0 . . . 47

ai := 5(A[11 + i] ≪ 15)⊕A[i]

ki := 3(ai ⊕ C[8− i mod 16])⊕M [i mod 16]

bi := B[13 + i]⊕ (B[9 + i] ∧B[6 + i])

fi := ki ⊕ bi

A[12 + i] := fi

B[16 + i] := fi ⊕ (B[i] ≪ 1)

Perform the output whitening on A and copy result to output buffers:

i→ 0 . . . 11

Ac[i] := A[i + 48] + C[i + 3] + C[i + 15] + C[i + 27]

i→ 0 . . . 15

Bc[i] := B[i + 48]

3 The Differential

The differential we analyze has a one bit difference in both Ap and Bp with
respect to XOR and is given below:

∆Ap[10] = 0x80000000h

∆Bp[7] = 0x00002000h

These differences are chosen such that they cancel each other out multiple times
with high probability and remain unaffected as possible by the multiplication
mod232, making it to round 26 of the permutation with a 1-bit difference with
probability 1/8.

3.1 Following the Differential to Round 26

After the initial 17 bit rotations of the B values our differential is of the form

∆A[10] = 0x80000000h

∆B[7] = 0x40000000h

From here we enter the main section of the permutation function. There are
48 total rounds counting from 0, so i = 0...47. The following rounds are those
that involve the words with differences in A or B:

2



• Round 1: b1 = B[14]⊕(B[10]∧B[7]), so ∆b1 = 0 when B[10]∧∆B[7] = 0
which occurs with probability 1/2. Note that we can set one bit in Bp[10]
appropriately so this condition is always met.

• Round 7: B[23] := f7 ⊕ (B[7] ≪ 1) so ∆B[23] = 0x80000000h

• Round 10: we have a10 := 5(A[9] ≪ 15)⊕A[10], so ∆a10 = 0x80000000h.
In the k10 step we multiple by three, but since the difference is in the high-
est order bit we have ∆k10 = 0x80000000h. b10 := B[23]⊕ (B[19]∧B[16])
so ∆b10 = 0x80000000h and therefore the difference cancels at f10 :=
k10 ⊕ b10.

• Round 14: b14 := B[27]⊕ (B[23]∧B[20]) where ∆B[23] = 0x80000000h,
so if ∆B[23]∧B[20] = 0 the difference cancels and we are left with ∆b14 =
0. This occurs with probability 1/2.

• Round 17: b17 := B[30]⊕(B[26]∧B[23]) and again ∆B[23] = 0x80000000h

so if B[26]∧∆B[20] = 0 the difference cancels out and we have ∆b17 = 0.
This occurs with probability 1/2.

• Round 23: B[39] := f23 ⊕ (B[23] ≪ 1) = 0x00000001h.

• Round 26: b26 := B[39]⊕ (B[35]∧B[32]) and we end up with ∆A[38] =
0x00000001h and ∆B[42] = 0x00000001h.

From round 0 to round 26 the overall probability of hitting this one bit difference
in A[38] and B[42] is 1/8 (1/4 if we are free to modify one bit of Bp[10]).

3.2 From Round 26

After round 26 the 1-bit differential begins to diffuse. However, due to there
being only 6 rounds until the creation of the first output word Bc[0] := B[48],
the diffusion does not appear to be sufficient to remove biases in ∆B[48]. Table
1 shows an example differential in ∆B[i + 16] progressing from round i = 26 to
i = 32. The bolded value shows the position of the original 1 bit differential
considering the 15 bit rotation operation that occurs every round. In experi-
mental data described below, this is the bit with the largest bias at the end of
each round.

Example Differential
Round ∆B[i + 16]
i=26 00000000000000000000000000000001

i=27 00000000000001111000000000000000

i=28 11000000000000000000000000111001

i=29 00000010111100000110000000000001

i=30 00110000001110110000111100001000

i=31 10000011110001110110100101111010

i=32 01011100000010110100010110000000

Table 1: Example differential in ∆B[i + 16] for rounds i = 26...32

3



We measure the biases in Bc[0] experimentally by the following procedure:

1. For k = 1 . . . 232:

(a) Generate Random Ap, Bp,M, and C.

(b) Set A
′

p := Ap ⊕ 0x80000000h

Set B
′

p := Bp ⊕ 0x00002000h

(c) Ac, Bc := Shabal-P(Ap, Bp,M,C)

(d) A
′

c, B
′

c := Shabal-P(A
′

p, B
′

p,M,C)

(e) Count value of each bit in ∆Bc[0] := Bc[0]⊕B
′

c[0]

2. Calculate bias of each bit in the 232 samples of ∆Bc[0]

With 232 samples we can see that some bits are significantly biased. The results
for some of the bits with the greatest bias are listed in Table 2.

Bit Bias with Random Input Bias after fixing Bp[10]
21 ≈ 2−13.9 ≈ 2−12.9

22 ≈ 2−13.8 ≈ 2−12.9

23 ≈ 2−14.7 ≈ 2−13.5

24 ≈ 2−14.0 ≈ 2−13.5

25 ≈ 2−12.9 ≈ 2−11.9

26 ≈ 2−11.2 ≈ 2−10.1

Table 2: Selection of Measured Bit Biases in ∆Bc[0]

Given 223 inputs with the given difference, we expect to be able to statistically
distinguish the bias of bit 26. If we can fix the Bp[10] value on the inputs we
can distinguish with 221 inputs.

4 Acknowledgments

Thank you to Anne Canteaut and the Shabal Team for taking the time to
confirm the existance of this distinguisher on the inner permutation of Shabal.

5 Conclusion

This distinguisher shows that one can skip large amounts of the mixing in P
with a high probability given specific differences in the input. However, it
does not seem possible to apply these biases to the full Shabal hash function
since the IV is fixed, and multiple final iterations follow the last message block.
While the difference given in this note was chosen to minimize the effects of
the multiplication (mod 232) in the first 26 rounds, it seems possible that one
could find other differences in Ap,Bp giving greater biases than seen here.

4



References

[1] Gilles Van Assche. A rotational distinguisher on shabal’s keyed permutation
and its impact on the security proofs. Available online, 2010.

[2] Jean-Philippe Aumasson. On the pseudorandomness of shabal’s keyed per-
mutation. Available online, 2009.

[3] Jean-Philippe Aumasson, Atefeh Mashatan, and Willi Meier. More on sha-
bal’s permutation. OFFICIAL COMMENT, 2009.

[4] Emmanuel Bresson, Anne Canteaut, Benot Chevallier-Mames, Christophe
Clavier, Thomas Fuhr, Aline Gouget, Thomas Icart, Jean-Franois Misarsky,
Mara Naya-Plasencia, Pascal Paillier, Thomas Pornin, Jean-Ren Reinhard,
Cline Thuillet, and Marion Videau. Shabal, a submission to nists crypto-
graphic hash algorithm competition. Submission to NIST, 2008.

[5] Emmanuel Bresson, Anne Canteaut, Benot Chevallier-Mames, Christophe
Clavier, Thomas Fuhr, Aline Gouget, Thomas Icart, Jean-Franois Misarsky,
Mara Naya-Plasencia, Pascal Paillier, Thomas Pornin, Jean-Ren Reinhard,
Cline Thuillet, and Marion Videau. Indifferentiability with distinguishers:
Why shabal does not require ideal ciphers. Cryptology ePrint Archive, Re-
port 2009/199, 2009.

[6] Lars R. Knudsen, Krystian Matusiewicz, and Sren S. Thomsen. Observations
on the shabal keyed permutation. OFFICIAL COMMENT, 2009.

5


