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Abstract In this paper, we focus on the problem of constructing secret shar-
ing schemes realizing disjunctive hierarchical access structures. We propose
two schemes for this problem. The first scheme gives a perfect solution with an
overwhelming probability, while the solutions provided by the second scheme,
which is an extension of the first one, is always perfect. Moreover, both schemes
are ideal. The proposed schemes are based on simple linear algebra and are
easy to understand and implement.
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1 Introduction

A secret sharing scheme defines a method to assign shares for a secret among a
set of participants such that only qualified subsets of participants can recover
the secret. A secret sharing scheme is said to be perfect if a non-qualified
subset gains no information about the secret. The set of authorized subsets,
conventionally denoted by Γ , is called the access structure. An access structure
is called monotone if for all subsets W ∈ Γ , W ⊂ W ′ requires W ′ ∈ Γ . Ito et
al. [5] showed that there exists a perfect secret sharing scheme realizing any
monotone access structure. A secret sharing scheme is called ideal if the size
of the set that the share of any participant belongs to is equal to the size of
the set that the secret is taken from.

A specific access structure form is threshold access structures, in which
the secret is recoverable by a coalition if and only if the size of that coalition
reaches the threshold value. The threshold secret sharing schemes introduced
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by Shamir [6] and Blakley [2] are very useful schemes, and these can also be
used for constructing schemes that realize more than just basic threshold secret
sharing. One of these more advanced structures is the disjunctive hierarchical
access structure introduced by Simmons [7]. In a hierarchical access structure,
each participant is assigned a level and each level is assigned a threshold. Con-
trary to the basic threshold access structures, participants in such a scheme are
not all equivalent. A participant from a higher level can take place in a coali-
tion of a lower level, but not vice versa. The secret is recoverable if and only
if the number of participants from a particular level meets the corresponding
threshold value.

In this paper, we propose two ideal secret sharing schemes for disjunctive
hierarchical access structures. The first scheme is the basic one and it is perfect
with an overwhelming probability. The second scheme is an extension of the
first one, and it is always guaranteed to be perfect.

In the rest of the paper, all values and computations are in Zp for some
large prime p, and vectors are denoted as row matrices, unless otherwise is
stated.

2 Background

In this section, we give an overview of threshold secret sharing and hierarchical
access structures.

2.1 Threshold Secret Sharing

Let U denote the set of all participants. The access structure of a threshold
secret sharing scheme is defined as

Γ = {W ⊂ U : |W | ≥ t}

where t is the threshold value.

Blakley secret sharing [2] is one of the best-known threshold secret sharing
schemes, which is based on linear algebra. The dealer selects a random vector
X in Zt

p, for some prime p, whose first coordinate is equal to the secret. The
dealer also selects a random vector Au = (au,1, au,2, ..., au,t) ∈ Zt

p for each

participant u, and gives yu = AuX
T as a share to u. In other words, the

dealer assigns a hyperplane equation,

au,1x1 + au,2x2 + . . .+ au,txt = yu

to each participant u. The Au vector is made public, and yu is the secret share
of user u. In this paper, we will represent the hyperplane of a participant u by
(Au, yu).
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For A denoting the t× t coefficient matrix
Au1

Au2

...
Aut


formed by a t-member coalition {u1, u2, . . . , ut}, and y denoting the column
vector (yu1

, yu1
, . . . yut

)T , this coalition can recover the secret by solving the
linear system

Ax = y,

provided that A is nonsingular.
Shamir secret sharing is another popular threshold secret sharing scheme.

In this scheme, the dealer selects a random degree t − 1 polynomial f(x),
such that the secret is f(0), i.e. the constant term of the polynomial. For
each participant u, the dealer selects a random non-zero xu and gives f(xu)
as the private share to u. xu is made public. When any coalition of size t is
present, they can calculate the polynomial by Lagrange interpolation and find
the secret f(0).

Shamir secret sharing can be seen as a special case of Blakley secret shar-
ing where the dealer generates the Au vector as au,i = ri−1u for some value
ru. Note that the coefficient matrix formed by a qualified subset is always a
Vandermonde matrix, hence is guaranteed to be nonsingular. Shamir secret
sharing is always perfect.

2.2 Hierarchical Access Structures

Let U be the set of all participants, and let m nested subsets Li, 1 ≤ i ≤ m be
the levels of a hierarchy satisfying Li ⊂ Lj if i < j and Lm = U . The access
structure is defined as

Γ = {W ⊂ U : |W ∩ Li| ≥ ti for some i, 1 ≤ i ≤ m}

where 0 < t1 < t2 < ... < tm−1 < tm are the threshold values of the levels.
Brickell [3] proposed several schemes for hierarchical access structures. The

main scheme is based on Shamir secret sharing scheme: The dealer determines
a Shamir polynomial of degree tm−1. Let the coefficients be ai, 0 ≤ i ≤ tm−1,
and the secret is a0. For each level i, the dealer defines Shamir polynomials
fi(x) =

∑ti−1
j=0 ajx

j where ti is the threshold value for the ith level. Note that
the secret is the same for all polynomials. The drawback of this scheme is that
the nonsingularity of the coefficient matrix is not guaranteed, so the dealer
needs to check exponentially many matrices.

Ghodosi et al. [4] studied compartmented and hierarchical access struc-
tures, and they proposed a Shamir based secret sharing scheme for hierarchical
access structures: For each level i, the dealer selects a polynomial fi(x). These
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polynomials are selected such that for a participant u ∈ Li, fj(xu) = yu for all
i ≤ j ≤ m. In this way, u can participate in qualified coalitions of level j for
i ≤ j ≤ m. The degrees of the polynomials are defined recursively: the degree
of fi+1(x) depends on not only thresholds ti, but also on the degree of fi(x)
and |Li+1 − Li|. Because of this, the scheme is not dynamic. A new partici-
pant cannot be added to any level, except the last level, without changing the
existing participants’ shares.

Belenkiy [1] proposed another scheme for hierarchical access structures.
In this scheme, the dealer selects a degree tm − 1 polynomial f(x) with the
secret s as the coefficient of xtm−1 term, and gives values on this polynomial
to the participants in the last level of the hierarchy. For the other levels, the
dealer takes multiple derivatives of f(x) and uses resulting polynomials for
assigning values to the participants. For a user u with identity xu in the ith
level, the dealer computes fi(x) = f (tm−ti)(x) and gives fi(xu) as its share to
u. Note that all polynomials fi(x) contains the secret as a coefficient. When
any ti participants from the ith level are present, they have ti equations with
ti unknowns (coefficients), and find the secret.

More recently, conjunctive hierarchical access structures and schemes real-
izing such access structures have been introduced by Tassa [8] and Tassa and
Dyn [9].

3 Proposed Schemes

In this section, we propose two secret sharing schemes for disjunctive hierar-
chical access structures. The first scheme, which is almost surely perfect, is
based on Blakley secret sharing. The second scheme is an extension of the first
one such that it is always perfect.

3.1 Basic Scheme

3.1.1 Share Generation

The dealer selects m random points X1, X2, ..., Xm over Ztm
p . The selection of

these points are subject to two conditions:

– The first coordinate of all points are equal to the secret.
– The points are affinely independent.

Let Ci denote the set difference Li−Li−1, with C1 = L1. For a participant
u ∈ Ci, the dealer finds a hyperplane (Au, yu) passing through Xj for all
i ≤ j ≤ m. Au is made public and yu is the private share of u.

For each point Xi, the last tm − ti coordinates are made public. Only the
first ti coordinates, including the secret, are private. Hence, to solve the private
coordinates of Xi, a coalition needs to have ti hyperplanes passing through
Xi.



5

The reason of the first condition of the selection of points is clear; qualified
coalitions of all levels should compute the same secret. For the second condi-
tion, assume Xi1 , Xi2 , Xi3 are affinely dependent for some i1 < i2 < i3. Then
a hyperplane (Au, yu) assigned to u ∈ Ci2 will pass through Xi1 too, which is
not desired.

3.1.2 Reconstruction

When any ti participants from Li come together, they will have ti hyperplanes
passing through Xi. Since only the first ti coordinates of Xi are private, they
will compute Xi by solving the ti × ti linear system they have and find the
secret s = xi,1.

3.1.3 Perfectness

A secret sharing scheme is said to be perfect if

– an unqualified subset gains no information about the secret, and
– a qualified subset can compute the secret.

We show that the proposed scheme is perfect with an overwhelming prob-
ability in the following lemmas and theorems.

Lemma 1 For 1 ≤ i < j ≤ m, we have tj − ti ≥ j − i.

Proof We have ti < ti+1 < ... < tj−1 < tj . So

tj − tj−1 ≥ 1

tj−1 − tj−2 ≥ 1

...

ti+2 − ti+1 ≥ 1

ti+1 − ti ≥ 1

Adding up the inequalities proves the desired result.

Lemma 2 In the share generation phase, the degree of freedom of the linear
system XjA

T
u = yu, for i ≤ j ≤ m, which the dealer needs to solve for Au and

yu for user u ∈ Ci, is at least ti.

Proof In the linear system,

XiA
T
u = yu

Xi+1A
T
u = yu

...

XmA
T
u = yu

we have tm + 1 unknowns to solve in Au and yu.
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The number of linear equations is m−i+1. Therefore, the degree of freedom
is at least (tm + 1)− (m− i+ 1). By Lemma 1, we have tm− ti ≥ m− i; hence
the degree of freedom is at least ti.

In the following theorems, for a given subset W , li denotes |W ∩ Li| and
ci denotes |W ∩ Ci|.

Theorem 1 Let W be an unqualified user set of size l, and let PW denote the
probability of W not being able to construct the secret. We have,

PW ≥ (1− 1

p
)l.

Proof We will first develop the linear system W has on each level i, 1 ≤ i ≤ m,
and then develop the system over all levels.

W has li equations regarding Xi, for 1 ≤ i ≤ m. For u ∈ Li, if the
hyperplane assigned to u is (Au, yu), we have

AuX
T
i = yu (1)

Since the last tm − ti coordinates of Xi are public, this can be written as

A
′

uX
′T
i = y(i)u (2)

where X
′

i denotes the 1 × ti private section of Xi, A
′

u is the corresponding,
first ti coefficients in Au, and

y(i)u = yu −
tm∑

j=ti+1

ajxi,j (3)

for Au = (a1, a2, . . . , atm). W has li such equations for each 1 ≤ i ≤ m. When
these equations are written in matrix form, W has

A(i)X
′T
i = Yi, (4)

for 1 ≤ i ≤ m, where the li × ti matrix A(i) is formed by the A
′

u row vectors

in (2), and the li × 1 column vector Yi is formed by the y
(i)
u values in (3).

Let Di denote the first column of A(i), and Ei denote the remaining li ×
(ti−1) part of A(i). Hence A(i) = [Di Ei]. Similarly, X

′

i = [s Vi], for s denoting

the secret and Vi denoting the last ti − 1 coordinates of X
′

i . Then, (4) can be
written as

[Di Ei][s Vi]
T = Yi.

When all equations are combined into a single system, we get:


D1 E1 0 0 . . . 0
D2 0 E2 0 . . . 0
. . . . . . . . . . . . . . . . . .
Dm 0 . . . . . . 0 Em



s
V1
V2
...
Vm

 =


Y1
Y2
...
Ym
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The coalition W can compute the secret s if and only if the rows of the
coefficient matrix above span the unit vector (1, 0, . . . , 0). That requires the E
matrix

E =


E1 0 0 . . . 0
0 E2 0 . . . 0
. . . . . . . . . . . . . . .
0 . . . . . . 0 Em


to have linearly dependent rows (i.e. is not full-rank). If E is not full-rank,
then Ei is not full-rank for some i.

Therefore, W can find the secret only if Ei is not full-rank for some i. If
Ei matrices are all full-rank, then W cannot find the secret. The probability
of all Ei matrices being full-rank is bounded from below by (1 − 1

p )l, as we

show in Appendix A.1. Hence, PW ≥ (1− 1
p )l.

Theorem 2 Given that an unqualified set W cannot find the secret, W gains
no information about the secret.

Proof Assume an unqualified set W satisfies |W ∩Li| = ti − 1 for some i. Let
the share of a participant v /∈W , v ∈ Li, be yv. W has ti equations regarding
Xi, and one of them is AvX

T
i = yv. When they solve the system of equations,

they will have s = k1yv +k2 for some k1, k2 ∈ Zp, k1 6= 0. Hence, all values are
possible for the secret for an unknown yv. The situation is more clear when
|W ∩ Li| < ti − 1.

Theorem 3 For a qualified subset W , let i be the smallest integer satisfying
li ≥ ti, and let P̄W denote the probability of W being able to construct the
secret. We have

P̄W ≥
(

1− 1

p2

)li−1
(

1− 1

p

)ci

. (5)

Proof We have lj < tj , for j < i, and li ≥ ti. We will consider only the first
li participants of W that are in Li and take li = ti, for the sake of simplicity.
As in (4), W has the linear system

A(i)X
′T
i = Yi

with A(i) being of size ti×ti this time. W can compute the secret if A(i) is non-
singular. The probability that A(i) is nonsingular is related to the probability
we computed in Appendix A.1 for Theorem 1. Following a similar methodol-
ogy, we compute the desired bound (5) for P̄W in Appendix A.2.

As a final remark for the basic scheme, we would like to note that for m = 1
(i.e., when there is only one level of users), the scheme we have proposed here
becomes identical to the Blakley threshold secret sharing scheme.
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3.2 Extended Scheme

The second scheme extends the basic scheme by adding new dimensions to the
space worked in: The dealer chooses m points over Zt

p, where t = tm +m− 1,
instead of over Ztm

p . In this way, the coordinates used to solve the final linear
system to recover the secret will be separate from the coordinates solved to
arrange that the hyperplane of a user in level i passes through the points
Xi, . . . , Xm. Moreover, the hyperplane coefficients for the coordinates used to
solve the final linear system are generated in a Vandermonde-like fashion so
that the final system will always be nonsingular.

3.2.1 Share Generation

The dealer selects m random points over Zt
p, where the ith point is represented

as Xi = (xi,1, xi,2, . . . , xi,t), according to the following conditions:

– The first coordinate of every point Xi, 1 ≤ i ≤ m, is equal to the secret;
i.e. xi,1 = s, for all 1 ≤ i ≤ m.

– The points are affinely independent.
– For X denoting the m ×m matrix containing the last m − 1 coordinates

of the selected points and −1 as its rows,

X =


x1,tm+1 x1,tm+2 . . . x1,T −1
x2,tm+1 x2,tm+2 . . . x2,T −1
. . . . . . . . . . . . . . .

xm,tm+1 xm,tm+2 . . . xm,T −1

 (6)

the matrix X is nonsingular.

As in the basic scheme, the dealer publishes the last t − ti coordinates of
each Xi, 1 ≤ i ≤ m; and the first ti coordinates, including the secret, are kept
private.

Also just as in the basic scheme, for a participant u ∈ Ci, the dealer finds
a hyperplane (Au, yu) passing through Xj for all i ≤ j ≤ m. The difference is
that, the dealer will select a random value ru ∈ Z∗p and set au,j = (ru)j−1 for
1 ≤ j ≤ tm, for Au = (au,1, au,2, . . . , au,t). Then yu and the remaining m − 1
coordinates of Au will be selected such that

AuXj = yu (7)

for i ≤ j ≤ m. Note that the number of equations in this linear system is at
most m, and the number of unknowns is m.

The motivation for the first two conditions of selecting the Xi points is
the same as that of the basic scheme, and the third condition is needed to
guarantee the existence of a solution in (7) for the last m − 1 coordinates of
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Au and yu: Assume u ∈ Ci; then the dealer needs to solve the system,


Xi

Xi+1

...
Xm

AT
u =


yu
yu
...
yu


to generate the hyperplane (Au, yu) for user u. The dealer selects the random
ru ∈ Zp and sets the first tm coordinates of Au as au,j = (ru)j−1, 1 ≤ j ≤ tm.
Then the system becomes


X
′

i

X
′

i+1
...

X
′

m

A′Tu −

yu
yu
...
yu

 =


bu,i
bu,i+1

...
bu,m


where X

′

j and A
′

u denote the last m−1 coordinates of Xj and Au respectively,

and bu,k = −
∑tm

j=1 xk,jr
j−1
u for i ≤ k ≤ m. By including yu in the vector of

unknowns, the dealer has the linear system,


X
′

i −1

X
′

i+1 −1
...

...

X
′

m −1


︸ ︷︷ ︸

X′

[
A
′T
u

yu

]
=


bu,i
bu,i+1

...
bu,m

 (8)

Note that X ′ is a submatrix of X in (6), and it is just equal to X for i = 1.
Hence, we have the third condition in the selection of the Xi points during the
share generation phase in order to guarantee that the system (8) always has
a solution for A′u and yu.

3.2.2 Reconstruction

The reconstruction of the secret is the same as that of the basic scheme.
Additionally, if desired, Lagrange interpolation can also be used as in Shamir
secret sharing: Assume a qualified subset W satisfying |W ∩Li| ≥ ti for some i
is present. Let f(z) denote the degree ti − 1 polynomial,

∑ti
j=1 xi,jz

j−1. Since
the last t − ti coordinates of Xi are public, each participant u ∈ W can
compute f(ru) as yu −

∑t
j=ti+1 xi,jau,j . Since the coalition W has ti points

on polynomial f , they can compute f(0) = xi,1 = s.
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3.2.3 Perfectness

As explained in Section 3.2.2, a qualified set will have ti points over a degree
ti−1 polynomial. Just like in Shamir secret sharing, the coefficient matrix will
be a Vandermonde matrix, which is always nonsingular. A qualified subset will
always be able to compute the secret uniquely.

When a non-qualified subset W is present, the Ei matrices defined in
Section 3.1.3 will be truncated Vandermonde matrices, with fewer rows than
columns, so they are always full-rank. Hence, a non-qualified subset will not be
able to find the secret. As in the basic scheme, all values in Zp will be equally
likely for the secret.

We would also like to note that the extended scheme reduces to the Shamir
threshold secret sharing scheme when there is only one level, i.e. m = 1.

4 Conclusion

In both schemes, a single hyperplane is assigned to a user u ∈ Ci which passes
through m − i + 1 given points. Since there is a single hyperplane equation
and a single secret share yu per user, the scheme is ideal.

In the extended scheme, instead of choosing the points from a tm dimen-
sional space, we added new dimensions to be used in solving the hyperplane
coefficients and increased the number of dimensions to tm +m− 1. By adding
these new dimensions, for each user u ∈ U , the dealer can set the first tm
entries of Au such that the coefficient matrix formed by a qualified subset
of participants is always a Vandermonde matrix. This guarantees that the
extended scheme is always perfect.

Note that the affine independence condition for the selection of the points
in both schemes can be dropped, since the participants will not know that the
points are affinely dependent even if they are. So, even in that case, all values
of the secret are equally likely for an unqualified subset.
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A Lower Bounds for Theorems 1 and 3

Let P
(p)
(m,n)

, for m ≤ n, denote the probability of a randomly generated m× n matrix over

Zp to be full-rank. We have the following lower bound regarding P
(p)
(m,n)

:

Lemma 3

P
(p)
(m,n)

≥
(

1−
1

p

)m

.

Proof The first row of a full-rank matrix can be anything except for all zeros; so we have
pn − 1 possible choices for the first row. The second row cannot be a scalar multiple of the
first row; so we have pn − p possible choices for the second row. In general, the ith row
cannot be a linear combination of the first i− 1 rows; so we have pn − pi−1 possible choices
for the ith row. Therefore, the proportion of full-rank matrices among all m×n matrices is,

P
(p)
(m,n)

=
(pn − 1)(pn − p) . . . (pn − pm−1)

(pn)m

=
pn − 1

pn
pn − p

pn
. . .

pn − pm−1

pn

≥
(
pn − pm−1

pn

)m

≥
(
pn − pn−1

pn

)m

=

(
1−

1

p

)m

.

Let M be an m× n matrix over Zp, for m ≤ n, such that the first m1 rows of M are given
to be linearly independent and the remaining m2 = m−m1 rows are generated randomly.

Let P
(p)
(m1,m2,n)

denote the probability that all the rows of M are linearly independent. We

have the following lower bound for P
(p)
(m1,m2,n)

:

Lemma 4

P
(p)
(m1,m2,n)

≥
(

1−
1

pn−m+1

)m2

.

Proof For the selection of the (m1 + j)th row, 1 ≤ j ≤ m2, there are pn−pm1+j−1 possible
choices given that the previous (m1 + j − 1) rows are linearly independent. Therefore the
proportion of the full-rank M matrices, given the first m1 rows are linearly independent, is

P
(p)
(m1,m2,n)

=

m2∏
j=1

pn − p(m1+j−1)

pn

≥
(
pn − p(m−1)

pn

)m2

=

(
1−

1

pn−m+1

)m2

.

Note that Lemma 3 is a special case of Lemma 4 for m1 = 0 and m2 = m.
In the following discussion, Ci = Li − Li−1, with C1 = L1. For a given subset W , we

take li = |W ∩ Li| and ci = |W ∩ Ci|.
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A.1 A Lower Bound for Theorem 1

Let W be an unqualified set of size l, hence lm = l. Let Qi denote the probability of all Ej

matrices obtained by W , for 1 ≤ j ≤ i, being full-rank. We have the following lower bound
regarding Qi:

Lemma 5

Qi ≥
(

1−
1

p

)li

.

Proof For the first level, note that the degree of freedom in generation of the hyperplane
for a user u ∈ C1 is at least t1 by Lemma 2; and the rows of A(1) are of size t1; therefore,
A(1) is completely random. Since E1 is a submatrix of A(1), it is completely random too.
Then by Lemma 3, we have,

Q1 = P
(p)
(l1,t1−1)

≥
(

1−
1

p

)l1

=

(
1−

1

p

)c1

. (9)

For i ≥ 2, first note that u ∈ W ∩ Li−1 implies u ∈ W ∩ Li. We can assume that the
first li−1 rows of Ei come from W ∩ Li−1, and Ei contains Ei−1 as its upper-left corner
submatrix. For Ri denoting the probability that Ei is full-rank given that Ei−1 is full-rank,
we have,

Qi = Qi−1Ri. (10)

To calculate Ri, note that the degree of freedom in generation of the hyperplane for a
user u ∈ Ci is at least ti, by Lemma 2, and the rows of A(i) are of size ti too. Therefore, the
rows of A(i), hence the rows of Ei, that come from Ci (i.e. those after Ei−1) are completely
random. So we have,

Ri = P
(p)
(li−1,ci,ti−1)

≥
(

1−
1

p(ti−li)

)ci

.

Since we always have li < ti for an unqualified set W , we have,

Ri ≥
(

1−
1

p

)ci

(11)

By substituting (11) in (10) recursively with the base case (9) for Q1, and by the fact

that
∑i

j=1 cj = li, we get,

Qi ≥
(

1−
1

p

)li

.

For the particular case i = m, we have the result needed in Theorem 1:

Qm ≥
(

1−
1

p

)lm

=

(
1−

1

p

)l

.

A.2 A Lower Bound for Theorem 3

Let W be a qualified set of users W . As given in (4), Section 3.1.3, W has a linear system

of equations A(j)X
′T
j = Yj for each level j. Let Q′j denote the probability of all A(k),

1 ≤ k ≤ j, to be full-rank for a given j. For i being the smallest integer satisfying li ≥ ti,
we have the following lower bound regarding Q′i:
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Lemma 6 For a qualified set of users W , and i denoting the smallest integer satisfying
li ≥ ti in W , we have

Q′i ≥
(

1−
1

p2

)li−1
(

1−
1

p

)ci

.

Proof As stated in the proof of Lemma 5, the matrix A(1) is completely random. Then,

Q′1 = P
(p)
(l1,t1)

≥
(

1−
1

p

)l1

=

(
1−

1

p

)c1

. (12)

As in the proof of Lemma 5, again, A(j−1) can be seen as the upper-left corner submatrix
of A(j). For Rj denoting the probability that A(j) is full-rank given that A(j−1) is full-rank,
we have,

Q′j = Q′j−1Rj . (13)

By Lemma 2, the degree of freedom in generation of the hyperplane for a user u ∈ Cj is at

least tj , which is equal to the size of the rows of A(j). Therefore, the rows of A(j) that come

from Cj (i.e. those after A(j−1)) are completely random. Hence,

Rj = P
(p)
(lj−1,cj ,tj)

≥
(

1−
1

p(tj−lj+1)

)cj

.

For levels j < i, we have lj < tj . Therefore,

Rj ≥
(

1−
1

p2

)cj

. (14)

For level i, we have li = ti, and therefore,

Ri ≥
(

1−
1

p

)ci

. (15)

By substituting (15) and (14) in (13) with the base case (12), and by the fact that∑i−1
j=1 cj = li−1, we get,

Q′i ≥
(

1−
1

p2

)li−1
(

1−
1

p

)ci

.


