
Improved Trace-Driven Cache-Collision Attacks
against Embedded AES Implementations�

Jean-François Gallais1, Ilya Kizhvatov1, and Michael Tunstall2

1 Université du Luxembourg
6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg
{jean-francois.gallais, ilya.kizhvatov}@uni.lu

2 Department of Computer Science, University of Bristol
Merchant Venturers Building, Woodland Road

Bristol BS8 1UB, United Kingdom
tunstall@cs.bris.ac.uk

Abstract. In this paper we present two attacks that exploit cache events,
which are visible in some side channel, to derive a secret key used in
an implementation of AES. The first is an improvement of an adap-
tive chosen plaintext attack presented at ACISP 2006. The second is a
new known plaintext attack that can recover a 128-bit key with approxi-
mately 30 measurements to reduce the number of key hypotheses to 228.
This is comparable to classical Differential Power Analysis; however, our
attacks are able to overcome certain masking techniques. We also show
how to deal with unreliable cache event detection in the real-life mea-
surement scenario and present practical explorations on a 32-bit ARM
microprocessor.

Keywords: Side channel attacks, power analysis, cache attacks, AES

1 Introduction

Fetching data from the random access memory or non-volatile memory in em-
bedded microprocessors can take a significant number of clock cycles and a
processor is unable to perform any further instructions while it waits. The use
of cache memory aims to decrease the cost of memory accesses. Cache memory
is a memory held within the core of the microprocessor that can be accessed
rapidly. When data is accessed the line of data holding this address is moved to
the cache, where the amount of data moved is dictated by the architecture of the
cache. This is based on the assumption that when a certain address is accessed
it is likely that the data around this address is also likely to be accessed in the
near future.

It has been noted that the power consumption of a microprocessor is depen-
dent on the instruction being executed and on any data being manipulated [9, 14].
An attacker can, therefore, observe where functions, and sequences of functions,
� An extended abstract of this paper will appear at WISA 2010. This is the full version.

occur in a power consumption trace. This could, potentially, allow an attacker
to derive information on cryptographic keys if an observed sequence is affected
by the value of the key. It has also been observed that the electromagnetic field
around a microprocessor also has this property [12, 23].

In this paper we consider the effect of a cache on an instantiation of AES.
Given the above observation, cache accesses should be visible in the power con-
sumption or electromagnetic emanations. The location of these cache accesses
during the computation of AES has been shown to reveal information on the
secret key used [4, 11]. In this paper we present an attack that represents a sig-
nificant improvement over the adaptive chosen plaintext trace-driven attack [11]
with a new adaptive algorithm for choosing plaintexts for recovering of 60 bits
of the key from an expected 14.5 acquisitions. We also present a new known-
plaintext attack requiring only 30 traces and an exhaustive search in 228 hy-
potheses. Both attacks can tolerate uncertainties in observing a sequence of
cache events, and a partially preloaded cache, as described in [8]. We described
some experiments on a 32-bit ARM microcontroller, while all the previous works
on trace driven attacks considered simulations of cache accesses [16, 1, 8, 25] or
of the power consumption [4].

We consider the implementation of an AES that would be used in a secure
microprocessor. That is, an implementation that only uses one lookup table to
256 bytes that can be written to RAM as a masked random ordered table. This
would prevent an attacker from being able to apply differential power analy-
sis [17]. This would not be practical in an implementation that uses so-called
T-tables that allow a fast implementation on x86 microprocessors. Previous work
on observing traces of cache events has primarily been involved in attacking im-
plementations that use T-tables [16, 1, 8, 25]. Our approach assumes that lookup
tables used are aligned with the cache, which will be the case for an optimized
implementation, as opposed to the recent work [25] that presented a trace-driven
attack exploiting cache misalignment. We present our attacks for the cache or-
ganized in 16-byte lines, however the attacks are easily adaptable to other cache
line sizes.

The rest of this paper is organized as follows. In Section 2 we describe the
cache mechanism and previous work in analyzing cache access. We present an
improved adaptive attack in Section 3, and extend this to a known plaintext
attack in Section 4. In Section 5 we then present the results of practical ex-
plorations on a 32-bit ARM microcontroller, and explain how to conduct our
attacks where a detected sequence of cache hits and misses may be incorrect.

2 Generalities and Previous Work

2.1 Caching and Performance

The gap between the increased speed at which modern microprocessors treat
data and the comparatively slow latencies required to fetch the data from the
Non-Volatile Memories to the registers raise performance issues. To reduce the

2

“distance” between the CPU and the NVM, i.e. the number of wasted clock
cycles for which the CPU has to wait for the data, the solution is to keep them
quickly accessible in a faster memory. Faster, however, typically means more
expensive, hence this choice affects the size of available fast storage memory,
the so-called cache memory. Examples of embedded devices with cache memory
are the microprocessors of the widespread ARM9 family and of the subsequent
ARM families [2].

Concretely, modern microprocessors typically come with a SRAM cache mem-
ory. When a byte of data must be paged in during the computation, the processor
first looks for in the cache. If present in the cache, this results in a cache hit,
the data is brought to the registers within a single clock cycle without stalling
the pipeline. If not present in the cache, this results in the cache miss, and the
desired data fetched from Non-Volatile Memory (NVM), and the entire line con-
taining the desired data is loaded into the cache. As suggested by the different
technologies used in the cache and main memory, a cache miss typically takes
more clock cycles and consumes more energy than a cache hit.

2.2 Cache-based Attacks against AES

Following the pioneering articles of Kelsey et al. [13] and Page [21], several noto-
rious attacks have been published involving the cache mechanism and targeting
AES. Cache-based attacks fall into three different types. Time-driven attacks
exploit the dependence of the execution time of an algorithm on the cache ac-
cesses. Bernstein described a simple cache-timing attack leading to a complete
key recovery on a remote server [3]. In access-driven attacks presented in [18,
20], an attacker learns which cache lines were accessed during the execution by
pre-loading the cache with the chosen data.

Here, we elaborate on trace-driven attacks. In this type of cache attacks an
adversary derives information from individual cache events from the side-channel
trace of an execution, such as registered power consumption or electromagnetic
emanations. Trace-driven attacks pose a particular threat to embedded devices
since the latter are exposed to a high risk of power or electromagnetic analysis, as
opposed to desktop and server implementations that are a usual target in access-
and time-driven cache attacks (however, a cache-timing attack on embedded AES
implementation was presented recently in [6]).

Previous work on trace-driven attacks was described in [4, 16, 1, 11, 25]. How-
ever, most of these works target an optimized AES implementation that uses
large lookup tables, as described in the original Rijndael proposal [10]. Here we
focus on a conventional 256-byte lookup table since this would often be the choice
in a constrained device, e.g. in a smart card, for the reasons outlined above in
the Introduction. Also, previous works did not tackle the unreliable cache event
detection, at most considering the setting when a lookup table is partially pre-
loaded into the cache [8]. In [4, 16, 1, 8], the effect of cache organization, and in
particular the cache line size, on the attack was considered. Here we develop our
attacks assuming the cache line size is 16 bytes, but they can be easily adapted
to other sizes. Another popular cache line size is 32 bytes; in this case our attack

3

will be more complex (however, the dependency of the attack complexity on the
cache organization is not straightforward, as detailed in [8]).

We also note that there is a similarity between cache attacks and side chan-
nel collision attacks [24, 5], as already observed in [16], hence the name cache-
collision attacks.

2.3 Notation

We denote the most significant nibble of a byte b with b̂. In the same manner,
the least significant nibble of b is denoted qb. We denote the input of the SubByte
function in the first AES round as xi, equal to pi`ki, where pi and ki respectively
represent a byte of plaintext and key in blocks of 16 bytes. We index the bytes
row-wise and not column-wise as in the AES specification [26, 10], i.e. in our
notation p0, p1, p2, p3 is the first row of a 16-bit plaintext. We assume that in an
embedded software AES implementation S-Box lookups are performed row-wise,
and indexing bytes in the order of S-Box computation simplifies description of
our algorithms. We denote addition and multiplication over GFp28q by ` and
respectively.

2.4 Adaptive Chosen Plaintext Attack

In this section we recall the trace-driven cache-collision attack presented in [11].
It uses an adaptive chosen plaintext strategy, i.e. each plaintext is chosen ac-
cording to the result of the analysis done beforehand.

The method presented in [11] targets the AES block cipher with the SubByte
function implemented as a single lookup table. It is assumed that the cache
contains no AES data before the encryption. This can easily be done by resetting
the device. During the AES encryption, the AddRoundKey adds the bytes of the
key K � pk0, k1, . . . , k15q P pF28q16 and the plaintext P � pp0, p1, . . . , p15q P
pF28q16. The state produced is px0, x1, . . . , x15q � pk0`p0, k1`p1, . . . , k15`p15q.
The SubByte function denoted Sp�q is a permutation over F28 and its elements
are pre-computed and stored in Non-Volatile Memory (NVM). It is performed
using a lookup table containing 16 lines with 16 entries, each line being associated
to the most significant nibble of the input byte (as detailed in [26]). Because the
cache is assumed to contain no AES data, the entire line indexed by the upper
nibble of Spx0q is loaded from the NVM to the cache, inducing a first cache miss.
The second lookup, indexed by x1, will be a cache hit with probability 1

16 , as
there is 1 chance over 16 that the values Spx0q and Spx1q belong to the same
line. If a cache hit occurs, then we have :

k̂0 ` p0 � k̂1 ` p1

By rearranging the terms in the equation, we obtain :

k̂0 ` k1 � p̂0 ` p1

4

An attacker can try to search among the 16 possible values for the up-
per nibble of p1 and find the one inducing a cache hit within an expected
number of

°16
i�1

i
16 � 8, 5 acquisitions. Once the correct value for the sec-

ond lookup is found, she can reiterate the process for the 14 other lookups.
She will end up with the trace MHH. . . H and thus with the actual values for
k̂0 ` k1, k̂0 ` k2, . . . , ̂k0 ` k15 which reduces the key search space by 60 bits. Ex-
pected number of plaintexts (traces) is 15 � 8, 5 � 127, 5, the worst-case com-
plexity is 16 � 15 � 240 traces. Algorithm 1 presents this adaptive strategy.

Algorithm 1: Adaptive Chosen Plaintext Trace-Driven Cache-Collision
Attack [11]

Input: AES
Plaintext Ð p0, 0, 0, . . . , 0q
i Ð 1
while i 16 do

CacheTrace Ð AES(Plaintext)
if CacheTrace[i] == Miss then

̂Plaintext[i]++
else

i++
end if

end while
Output: Plaintext=pp0, p1, p2, . . . , p15q

In Section 3 we show how to improve this algorithm to significantly reduce
the number of required traces.

3 Improved Chosen Plaintext Attack

In this section, we show that the adaptive chosen plaintext attack described
in [11] does not optimally exploit the adaptive scenario. We present an improved
adaptive strategy that significantly reduces the number of required plaintexts.

We observe that in Algorithm 1 the plaintexts at each step are chosen inde-
pendently of the plaintexts in the previous steps. More precisely, ignored are the
events located in the cache trace to the right of the current event (for which the
plaintext nibble is being chosen). Below we show that by observing these events
we can drastically reduce the total number of plaintexts required to achieve the
desired trace MHH. . . H.

We make use of the fact that a miss at position i, 0 i 16, indicates that
p̂j ` kj � p̂i ` ki for all j such that 0 ¤ j i and event at position j is a miss.
This means that any plaintext with the particular difference p̂j ` pi between the
nibbles in positions j and i will not lead to the desired trace MHH. . . H. So the

5

plaintexts with this difference can be omitted from the subsequent queries. On
the other hand, if there is a hit at position i, the plaintext nibble in this position
may already be the one which we are searching for, i.e. satisfying p̂0 ` k0 �

p̂i ` ki. So we cannot do better than keeping it for the next query, changing it
only if the event in position i becomes a miss in subsequent queries.

Algorithm 2: Improved Chosen Plaintext Trace-Driven Cache-Collision
Attack

Input: AES
Plaintext Ð t0u16
Constraints Ð t0u16,16

i Ð 1
while i 16 do

Plaintext Ð SelectNextPlaintext(i,Plaintext,Constraints)
CacheTrace Ð AES(Plaintext)
for j from i to 15 do

if CacheTrace[j] == Miss then
for k from 0 to j � 1 do

if CacheTrace[k] == Miss then

Constraints[j][k] ÐÝ Constraints[j][k] Y ̂Plaintext[j]` ̂Plaintext[k]
end if

end for
end if

end for
while (CacheTrace[i] == Hit) AND (i 16) do

i��
end while

end while
Output: Plaintext=tplu

15
l�0

The formal description of our improved strategy is given in Algorithm 2. The
algorithm terminates with a plaintext pp0, p1, . . . , p15q yielding the desired cache
trace MHH. . . H and thus the full chain for k0, . . . , k15 reducing the key search
space by 60 bits. Due to space limitations we omit the details of selecting the next
plaintext based on the constraints, denoting this part as SelectNextPlaintext
routine. In every miss position j (except for the initial miss in position zero), this
routine chooses a plaintext nibble satisfying all the constraints with j preceding
nibbles, or, in case there no such plaintext nibble, the next value of the nibble.

We have simulated this attack with 105 random keys both for the original
Algorithm 1 [11] and our improved Algorithm 2. The results are shown in Fig-
ure 1. The improvement is drastic: on average 14.5 plaintexts for our improved
attack to obtain a 60-bit reduction against 127.5 for the original attack. These
figures are for the case of absolutely reliable cache event detection. In Section 5.3
we show that our improved algorithm has a good error tolerance.

6

0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

0.025

Number of inputs

R
el

at
iv

e
fr

eq
ue

nc
y

(a) Original chosen plaintext attack [11]

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

Number of inputs

R
el

at
iv

e
fr

eq
ue

nc
y

(b) Improved chosen plaintext attack

Fig. 1. Distribution of the number of plaintexts required to obtain a 60-bit reduction
of the key search space.

4 Known Plaintext Attack

The improved attack in Section 3 requires adaptively chosen plaintexts. In this
section, we present a known plaintext trace-driven cache-collision attack on AES-
128 that enables full key recovery. The attack consists of two steps, namely,
analyses of the first and second round cache access patterns.

4.1 Analysis of the First AES Round

We first analyze the cache events occurring in the first encryption round of AES
with a sieve. The inputs to the sieve are N plaintexts and the corresponding
cache traces that are obtained from N acquisitions. In a q-th acquisition, a
plaintext P pqq is a 16-byte array and a cache trace pCT qpqq is the array of the
cache accesses observed in the first round of AES, while encrypting P pqq under
the unknown key K. The output of the sieve is a set of linear equations in the
high nibbles of ki, i P t0, 15u that decreases the entropy of the key search space
by 60 bits.

In our strategy, the unknowns are defined as high nibbles of the XOR-
difference between the first key byte and the 15 other key bytes. Hence, we
aim to recover k̂0 ` ki for which we define the set of possible initial values:
κ0,i � t0, . . . , 15u, 1 ¤ i ¤ 15.

We recall from Sections 2.4 and 3 that the cache events observed in a power
trace allow an attacker to determine whether at a certain lookup the S-Box input
belongs to a previously loaded line of the lookup table or not.

If a cache hit occurs at the i-th lookup, one can state that the high nibble
of the input of the S-box is equal to the high nibble of one and only one of the
previous inputs that caused a cache miss. Hence the following statement holds:

CTi � H ùñ D!j P Γ, k̂i ` pi � k̂j ` pj

7

where Γ denotes the set of indices where a cache miss previously occurred in a
trace.

Similarly, if a cache miss occurs at the i-th lookup, the high nibble of the
input of the S-box is not equal to the high nibble of any of the previous inputs
that caused a cache miss. Thus the statement:

CTi �M ùñ @j P Γ, k̂i ` pi � k̂j ` pj

Since k̂i ` kj � k̂i ` k0 ` k̂0 ` kj , the terms in the above equations and
inequations can be rearranged and we obtain:

CTi � H ùñ D!j P Γ, k̂i ` k0 � p̂i ` pj ` k̂j ` k0

and
CTi �M ùñ @j P Γ, k̂i ` k0 � p̂i ` pj ` k̂j ` k0

Algorithm 3: Known plaintext analysis of the first round
Input: pP pqq, CT pqqq q P r1, N s

κ0,i Ð t0, . . . , 15u, 1 ¤ i ¤ 15
for i Ð 1 to 15 do

q Ð 0
while |κ0,i| ¡ 1 do

q Ð q � 1
κ1 ÐH
for j Ð 0 to i� 1 do

if CT
pqq
j � Miss then

κ1 Ð κ1 Y t
̂

p
pqq
i ` p

pqq
j ` κ0,ju

end if
end for
if CT

pqq
i � Miss then

κ0,i Ð κ0,izκ
1

else if CT
pqq
i � Hit then

κ0,i Ð κ0,i X κ1

end if
end while

end for
Output: κ0,i, i P r1, 15s

The sieve we developed uses the above statements to reduce the possibilities
for k̂i ` k0. This is executed particularly efficiently if the right-hand sides of the
equations are known, while the left-hand sides are the unknowns. This suggests
to fix the lookup i and gain through the analysis of the plaintexts and cache
events indexed from 0 to i the most information available on k̂i ` k0 so that only
one possibility remains for this nibble. This can be achieved for a large enough

8

number of traces (see Figure 2). Once done, one can continue the analysis for the
next values of i until 15. At the end, an attacker is left with only one possibility
for each k̂i ` k0. The sieve is explicitly detailed in Algorithm 3.

To estimate the number of traces required to determine 60 bits, we ran the
sieve for 105 simulated attacks, each with a random key. Figure 2(a) presents the
results of this simulation. On average 19.43 acquisitions are required to reduce
the entropy of the key to 68 bits. We note that this is less than for the original
adaptive chosen plaintext attack of [11].

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Number of inputs

R
el

at
iv

e
fr

eq
ue

nc
y

(a) Misses and hits

0 50 100 150 200
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Number of inputs

R
el

at
iv

e
fr

eq
ue

nc
y

(b) Misses only

Fig. 2. Distribution of the required number of plaintexts to obtain a 60-bit reduction
of the key search space in the known plaintext attack.

Our strategy also works if we do not take into account the information avail-
able from the cache hits, that is, if κ0,i is not modified when a cache hit is ob-
served in a cache trace at the i-th lookup. The resulting analysis is less efficient
than the one of the misses and the hits, as depicted in the plotted distribution
of the number of required inputs (Figure 2(b)). Indeed, the average number of
inputs required to perform a 60-bit reduction of the entropy of the key is in this
case 54.19. However, we explain in Section 5.5 how this ’Misses-only’ analysis
can be useful if we assume a scenario where the cache already contains AES data
before the encryption.

4.2 Analysis of the Second AES Round

After the first round analysis with our sieve we are left with 68 unknown key
bits. In this section we show how to recover these remaining bits by analyzing
the cache events occurring during the second AES encryption round. Our ap-
proach in general resembles that of [11], however we exploit the cache events
much more efficiently. Similar approach was briefly sketched in [1], however they
did not present the analysis for the number of traces required, whereas we per-
form theoretical analysis in Section 4.3. We assume that the round keys are

9

pre-computed and pre-stored, thus no access to the S-Box lookup table occurs
between the encryption rounds3.

The analysis of the second round consists of 3 phases:

1. From the first lookup, recover the following nibbles of the key: k̂0, qk0, qk5, qk7,qk10, qk15, 24 bits in total.
2. From the second lookup, recover the following nibbles of the key: qk1, qk6, qk11,qk12, 16 bits in total.
3. Recover the remaining 28 bits by an exhaustive search over.

These phases re-use the known inputs from the first round analysis (we assume
that a 2-round cache trace is acquired for each input) but in most cases require
additional known inputs.

For simplicity and due to space limitations we will describe the analysis
exploiting misses only, but hits can be exploited similarly, leading to an even
more efficient attack. We describe our algorithm and then analyze its complexity
in terms of required traces and computational workload.

First Lookup of the Second Round. In this step we will exploit the traces of
the form M**. . . *|M, i.e. having a miss in the first lookup of the second round.
This lookup is indexed by

y0 � 2 spx0q ` 3 spx5q ` spx10q ` spx15q ` spk7q ` k0 ` 1.

The fact that this lookup is a miss leads to the following system of inequations:$'&
'%
ŷ0 � x̂j1

. . .

ŷ0 � x̂jL

, j1, . . . , jL P Γ,

where Γ is set of indices of misses observed in the 16 previous lookups (i.e. in
the first round), |Γ | � L. After rearranging the terms the system becomes

̂2 spx0q ` 3 spx5q ` spx10q ` spx15q ` spk7q �

$'&
'%
δ̂j1
. . .

δ̂jL

, j1, . . . , jL P Γ, (1)

where δ̂j are some known values depending on the plaintext bytes and the key
byte nibbles recovered in the first part of the analysis.

We have only 24 unknown bits in the left part of (1) since from the first
round analysis we know the high nibble of the XOR difference between any two
bytes of the key. Solving (1) for a single trace by exhaustive search over 224

3 Meanwhile, the strategy presented here would be straightforward to adapt to an
AES implementation with an on-the-fly key schedule, and a similar strategy can be
applied using xtimes operation of AES MixColumns transform in case the former is
implemented as a lookup table (see [11] for using xtimes in an adaptive attack).

10

candidates for these bits will leave us with some fraction of these candidates.
The next trace will result in a different system of the form (1) and thus further
reduce the amount of candidates. After several traces of the form M**. . . *|M
we will remain with the k0, k5, k10, k15, k7 completely recovered. We perform the
analysis of the required number of traces in Sect. 4.3.

Second Lookup of the Second Round. Having finished with the analysis
of the first lookup, we can exploit traces of the form M**. . . *|*M, i.e. having a
miss in the second lookup of the second round. This lookup is indexed by

y1 � 2 spx1q ` 3 spx6q ` spx11q ` spx12q ` spk7q ` k0 ` k1 ` 1

The fact that this lookup is a miss leads to the following system of inequations
(after rearranging the terms):

̂2 spx1q ` 3 spx6q ` spx11q ` spx12q �

$'&
'%
δ̂j1
. . .

δ̂jR

, j1, . . . , jR P Γ, (2)

where Γ is set of indices of misses observed in the 17 previous lookups (i.e.
in the first round and in the first lookup of the second round), |Γ | � R, and
δ̂j are some known values depending on the plaintext bytes and the previously
recovered nibbles of key bytes. Note that if the first lookup of the second round
is a miss, one of the inequations in (2) emerges from ŷ1 � ŷ0. From the analysis
of the first lookup we already know y0 and thus can consider this inequation
here.

We have only 16 unknown bits in the left part of (2), namely the nibbles qk1,qk6, qk11 and qk12, the rest having been recovered in the previous steps. Solving (2)
for several traces of the form M**. . . *|*M, we will get a single candidate for
these unknown nibbles. Analysis of the required number of traces for this step
is performed in Sect. 4.3.

Brute Force over 228 Key Candidates. After the analysis of the first and
second lookups of the second round the remaining unknown key chunks are qk2,qk3, qk4, qk8, qk9, qk13, qk14. They comprise 28 bits in total and therefore can be
recovered by exhaustive search.

4.3 Theoretical Analysis of the Second Round Attack Complexity

Here we calculate an estimate for the number of traces required for the second
round attack. We note that in the analysis we will implicitly assume that the
inputs to the second round lookups are statistically independent of the inputs to
the first round lookups. Strictly speaking, this is not true, however the statistical
dependency is not significant and so can be omitted for practical reasons.

11

First lookup. We have to remain with 1 candidate out of 224. Let us denote
by F1 an average fraction of candidates left by the system (1) for a given trace
of the form M**. . . *|M. To remain with one candidate out of 224 with N1 traces
of the form M**. . . *|M the following must hold:

224 � FN1
1 ¤ 1,
N1 ¥ logF1

2�24.

Since the left part of (1) can be viewed as a random mapping from a set of 224

elements to a set of 24 elements, the probability for an element out of 224 not to
map to L elements given by the right part is 16�L

16 . Considering L as a random
variable, F1 � E

�
16�L

16

�
� 1� 1

16EL.
So to obtain the number of traces N1 we have to calculate the distribution

for L, i.e. for the average number of lines in cache after 16 lookups given the
condition that 17-th lookup is a miss. Let T denote the (unconditional) number
of S-Box lines in cache after 16 lookups. We can obtain the probability mass
function PrpLq � PrpT � s|CT17 �Mq following Bayes’ law:

PrpT � s|CT17 �Mq �
PrpCT17 �M |T � sq � PrpT � sq

PrpCT17 �Mq
.

For a given s we have

PrpCT17 �M |T � sq �
16� s

16
.

Next,

PrpCT17 �Mq � 16 �
�

15
16

16

�
1
16

�

�
15
16

16

.

The distribution PrpT � sq is a classical allocation problem [15]. We have

PrpT � sq �

�
16

16� s

� s
N

	16

Pr0psq,

where

Pr0psq �
ş

l�0

�
s

l

p�1ql

�
1�

l

s

16

.

Carrying out the numerical computations we obtain EL � 10.0263, therefore
F1 � 0.3734 and the number of required traces of the form M***|M is N �
16.885. The total number of known plaintexts required for the analysis of the
first lookup is then N1{PrpCT17 �Mq � 47.42.

Second lookup. In this case the analysis is similar to the first round. We deal
with the traces M***|*M that lead to systems of the form (2) with 16 unknown
bits. The average fraction remaining after each trace is F2 � 1 � 1

16ER where
R is number of lines in cache after 17 lookups given the condition that 18-th

12

lookup is a miss. Denoting here by T the unconditional number of lines in cache
after 17 lookups, we have

PrpRq � PrpT � s|CT18 �Mq �
PrpCT18 �M |T � sq � PrpT � sq

PrpCT18 �Mq
,

where, as above,

PrpCT18 �M |R � sq �
16� s

16
and

PrpCT18 �Mq � 16 �
�

15
16

17

�
1
16

�

�
15
16

17

.

The distribution PrpT � sq is computed here for 17 lookups similarly to the
above case. Numerical computations yield ER � 10.3579 and F2 � 0.3526. The
number of required traces of the form M***|*M is

N2 ¥ logF2
2�16 � 10.64.

The total number of known plaintexts required for the analysis of the second
lookup is then N2{PrpCT18 � Mq � 31.87. Note that the traces used in the
analysis of the first lookup may be re-used here.

Computational complexity. The first phase of the second round analysis
takes Op224q checks, while the second one takes Op216q checks. The final ex-
haustive search takes at most 228 AES encryptions. The overall second round
analysis complexity is hence about 228 AES encryptions.

As already mentioned earlier, second round attack can exploit hits in a similar
way as described above for misses, which leads to a reduction in the number of
traces. Our estimations for the second round attack exploiting both hits and
misses, done like in Section 4.3, show that an average of 28.15 traces is required
in the analysis of the first lookup, and 19.59 traces (re-using the available ones)
in the analysis of the second lookup.

Thus, for the full AES-128 key recovery we require about 30 known plaintexts
with the corresponding side-channel traces and an exhaustive search of 228. The
attack will work in the same way for AES decryption. In the next section we
demonstrate that our attacks can be performed in a real-life noisy environment.

5 Dealing with Detection Errors

In this section, we address the issue of detecting cache events in a real-life noisy
environment. First, we show a practical example of distinguishing cache events
in a power consumption trace of a 32-bit ARM microcontroller. Then we outline
our general approach of dealing with detection errors and propose error-tolerant
versions of our two attacks presented in Sections 3 and 4.

13

5.1 Practical Explorations

In order to demonstrate that one could observe a series of cache hits and misses
in the power consumption, the AES was implemented on NXP LPC2124 [19],
an ARM7TDMI microprocessor. Though ARM7 family devices do not normally
feature a cache, this particular microprocessor features a Memory Acceleration
Module (MAM). The MAM is in fact a cache that increases the efficiency of
accesses to the flash memory. A series of power consumption traces were ac-
quired during the computation of the SubByte function. Two examples of these
acquisitions are shown in Figure 3.

(a) Power consumption trace showing
cache misses for every memory access.

(b) Power consumption trace showing
a cache hit on second memory access.

Fig. 3. Power consumption during the first three memory accesses of the SubByte

function.

Each trace shows the first three memory accesses required to compute the
SubByte function. In Figure 3(a) one can observe three memory accesses, as
peaks in the power consumption, in the right hand side of the figure. In Fig-
ure 3(b), the power consumption during the same three memory accesses in the
SubByte function is shown. One can see that the second peak in the power con-
sumption is not visible, which corresponds to a cache hit. Note also that the
amount of clock cycles is distinctly different, though not that clear from the
picture as the difference in the power consumption.

From this we can observe that one can distinguish a cache hit from a cache
miss in a straightforward manner. Recording a series of cache hits and misses
could be automated by something as simple as setting a threshold and observing
whether the power consumption passes this threshold.

Unfortunately, our ARM7TDMI microprocessor is not suitable for imple-
menting the attack described in this paper, since the cache (MAM) consists of
one line of 16 bytes. An attack would be possible where cache hits show where
two adjacent memory accesses load the same cache line, but this is beyond the
scope of this paper.

14

5.2 General Approach to Distinguishing Cache Events

We assume that we can measure some statistic in a side-channel trace like the
height of the peak in the cycles corresponding to the table look-up, the value of
the statistic being larger in case of a cache miss and smaller in case of a cache
hit. In Section 5.1 we have shown that this is a sound assumption that holds in
practice. We further assume that the statistic for hits and misses will follow the
distributions that are close to normal (due to the noise that is usually Gaussian).
Distinguishing between hits and misses is then a task of distinguishing between
the two distributions.

A simple distinguishing solution would be in fixing a single threshold for the
value of the statistic, like in practical collision detection of [7]. This will result
in an unavoidable trade-off between Type I and Type II errors. However, in our
algorithms both taking a miss for a hit and a hit for a miss will lead to the
incorrect key recovery. Therefore, our approach is in fixing 2 thresholds tH and
tM , tH ¤ tM . In this setting, we distinguish between three types of events.

1. If the statistic is smaller than tH we consider the event to be a hit.
2. If the statistic is larger than tM , we consider the event to be a miss.
3. If the value of the statistic falls between the thresholds, we consider the event

to be “uncertain”.

We assume that the thresholds tH and tM are chosen such that it is highly
unlikely for a miss to be misinterpreted as a hit and vice versa. We denote the
probability of the “uncertain event” by error probability p. Below we show how
the additional “uncertain” category helps in making our algorithms resistant
to errors when p is non-zero. Obviously, our error-tolerant attacks require more
traces in order to succeed in the presence of errors.

5.3 Error-Tolerant Improved Adaptive Chosen Plaintext Attack

To make our attack of Section 3 error-tolerant, we keep the plaintext nibbles
unchanged if the event is “uncertain” since we cannot do anything better than
wait for another trace. In the forward positions, this means that the errors are
treated just as hits. In the current position, where a hit leads to the desired
equation and thus to proceeding to the next position, in case of an “uncertain”
event we keep the current plaintext nibble and proceed with the next trace.
In fact, Algorithm 2 does not need to be changed: it automatically implements
the described strategy when the cache trace includes 3 event types: Miss, Hit,
Uncertain.

We performed 104 simulated attacks with random keys in the presence of
detection errors. The results show that our Algorithm 2 tolerates errors very
well. For the error probability 0.2 it requires 22.6 traces on average, and for the
the error probability 0.5 – 47.2 traces on average. Note that this is better than
for the original adaptive algorithm of [11] without detection errors.

15

5.4 Error-Tolerant Known Plaintext Attack

The analysis presented in Section 4.1 can also be adapted in order to find the
linear dependencies between the upper nibbles of the key in the presence of
uncertain cache events. The cache traces are now considered as arrays of 16
events, among the misses M, the hits H and the uncertain accesses U (being in
the reality either M or H).

At the i-th lookup, if an uncertain event occurs in the q-th trace, κ0,i is not
modified and the analysis continues for i with the next input.

Then for another lookup i1 ¡ i and the same trace q, κ1 is computed and
eventually will miss the value p̂i1 ` pi ` κ0,i if the uncertain event CT pqq

i was
actually a cache miss. For the uncertain cache accesses in the q-th trace, another
set κ� is computed, containing the value p̂i1 ` pi ` κ0,i involving the uncertain
lookup i.

– If CT pqq
i1 � M , the sieve proceeds with subtracting κ1 from κi1 . Since κ1 is

eventually smaller than it should be, there are no chances of evicting the
correct value for ̂ki1 ` k0 from κ0,i1 .

– If CT pqq
i1 � H, the sieve intersects κi1 with κ1 Y κ�, such that the correct

value, if ever present in κ� will not be evicted from κ0,i1 .
– If CT pqq

i1 � U , no action is performed on κ0,i1 , like previously done at the
i-th lookup in the q-th input.

Our known plaintext strategy for the first AES round analysis in the presence
of uncertain cache events is explicitly written in Algorithm 4. Simulated attacks
were conducted for 104 random keys when the probability of uncertain events is
0.2 and 0.5. The average required numbers of traces are respectively 24.63 and
39.82. Note that for a probability equal to 0.5 the figure is less than that for the
adaptive known plaintext attack reported above in Section 5.3.

The analysis of the second AES round can be adapted to be tolerant to
uncertainties by treating them in the same manner.

5.5 Attacks With Partially Pre-Loaded Cache

Our attacks can tolerate the setting when the cache already contains some S-Box
lines at the beginning of the first AES round in a manner similar to [8]. If the
lookup table is partially loaded in the cache prior to the encryption, the cache
trace will result in having more H than one could have got with a clean cache.

Our adaptive Algorithm 2 from Section 3 straightforwardly tolerates this
setting because it exploits only misses, and a partially preloaded cache means
that some misses will not be observed. This does not lead to an incorrect key
recovery since we will not exclude the correct key hypotheses from our set but
only leave some additional incorrect key hypotheses.

In the case of our known plaintext attack, the claims from Section 4.1 when
a hit occurs at the i-th lookup are no longer true: there does not necessarily
exist an index j P Γ such that x̂i � x̂j . If one applies the sieve described in

16

Algorithm 4: Known plaintext analysis of the first round with uncertain
cache events

Input: pP pqq, CT pqqq q P r1, N s
κ0,i Ð t0, . . . , 15u, 1 ¤ i ¤ 15
for i Ð 1 to 15 do

q Ð 0
while |κ0,i| ¡ 1 do

q Ð q � 1
κ1, κ� Ð H
for j Ð 0 to i� 1 do

if CT
pqq
j � M then

κ1 Ð κ1 Y t
̂

p
pqq
i ` p

pqq
j ` κ0,ju

else if CT
pqq
j � U then

κ� Ð κ � Yt
̂

p
pqq
i ` p

pqq
j ` κ0,ju

end if
end for
if CT

pqq
i � M then

κ0,i Ð κ0,izκ
1

else if CT
pqq
i � H then

κ0,i Ð κ0,i X pκ1 Y κ�q
end if

end while
end for

Output: κ0,i, i P r1, 15s

Section 4.1 to such inputs, when CTi � H, the set κ0,i will be intersected with
a set κ1 possibly not containing the correct value for k̂i ` ko, thus evicting the
latter from κ0,i. However, when CTi �M , one can subtract κ1 from κ0,i because
the former contains only incorrect values for k̂0 ` ki, although κ1 may be smaller
than if the cache did not contain any lines prior to the encryption. This suggests,
in order to avoid a failure in the key recovery, that the sieve should be adapted
as mentioned in Section 4.1, i.e. to perform an action on κ0,i only when misses
occur. The analysis of the second round can exploit misses only in the same
manner to tolerate the partially preloaded cache.

We performed simulated attacks with 104 random keys, when the cache is
filled with 4, 8 and 12 lines of the lookup table, before the encryption starts.
The average numbers of known inputs required for a 60-bit reduction of the key
entropy are respectively 92.03, 158.02 and 271.10. We finally mention that in case
a noisy environment is combined with a partially pre-loaded cache, our solutions
described in Sections 5.4 and 5.5 are perfectly compatible, though requiring a
higher number of inputs.

17

6 Conclusion

In this paper, we describe side channel analysis that can be applied to imple-
mentations of AES on embedded devices featuring a cache mechanism. We have
improved the adaptive chosen plaintext attack described in [11] and presented a
new known plaintext attack that recovers a 128-bit AES key with approximately
30 measurements and with an exhaustive search with 228 remaining hypotheses.
We have shown that both our attacks can tolerate the errors in determining
cache events from a side channel trace that occur in a noisy environment, as well
as the partially pre-loaded cache.

We stress that the complexity of our attacks is comparable to that of the first
order Differential Power Analysis on unprotected software implementations. At
the same time, cache-collision attacks are resistant to Boolean masking in the
case where all S-Boxes share the same random mask, as detailed in [11]. When
such a masking scheme is used, our attacks will outperform higher order DPA
attacks that typically require thousands of traces.

The countermeasures against trace-driven cache-collision attacks have been
discussed in the previous works on the subject [4, 16, 11, 8] and are similar to the
countermeasures against cache attacks in general [22]. They include pre-fetching
the lookup table into the cache prior to encryption and shuffling the order of
table lookup computations.

Acknowledgements

The authors would like to thank the anonymous reviewers from CHES 2010 for
their thorough comments and valuable suggestions. The work described in this
paper has been supported in part by the European Commission IST Programme
under Contract ICT-2007-216676 ECRYPT II and EPSRC grant EP/F039638/1
“Investigation of Power Analysis Attacks”.

References

1. Acıiçmez, O., Koç, Ç.K.: Trace-driven cache attacks on AES (short paper). In:
Ning, P., Qing, S., Li, N. (eds.) ICICS’06. LNCS, vol. 4307, pp. 112–121. Springer,
Heidelberg (2006)

2. ARM Ltd.: Processors. http://www.arm.com/products/processors/ (2010)
3. Bernstein, D.J.: Cache-timing attacks on AES.

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf (2004)
4. Bertoni, G., Zaccaria, V., Breveglieri, L., Monchiero, M., Palermo, G.: AES power

attack based on induced cache miss and countermeasure. In: International Con-
ference on Information Technology: Coding and Computing (ITCC’05). vol. 1, pp.
586–591. IEEE (2005)

5. Bogdanov, A.: Improved side-channel collision attacks on AES. In: Adams, C.,
Miri, A., Wiener, M. (eds.) SAC’07. LNCS, vol. 4876, pp. 84–95. Springer (2007)

6. Bogdanov, A., Eisenbarth, T., Paar, C., Wienecke, M.: Differential cache-collision
timing attacks on AES with applications to embedded CPUs. In: CT-RSA’10.
LNCS, vol. 5985, pp. 235–251. Springer (2010)

18

7. Bogdanov, A., Kizhvatov, I., Pyshkin, A.: Algebraic methods in side-channel col-
lision attacks and practical collision detection. In: Chowdhury, D.R., Rijmen, V.,
Das, A. (eds.) INDOCRYPT’08. LNCS, vol. 5365, pp. 251–265. Springer (2008)

8. Bonneau, J.: Robust final-round cache-trace attacks against AES. Cryptology
ePrint Archive, Report 2006/374 (2006), http://eprint.iacr.org/2006/374

9. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.J. (eds.) Cryptographic Hardware and Embedded Sys-
tems — CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer (2004)

10. Daemen, J., Rijmen, V.: The Design of Rijndael: AES – The Advanced Encryption
Standard. Springer (2002)

11. Fournier, J., Tunstall, M.: Cache based power analysis attacks on AES. In: Bat-
ten, L.M., Safavi-Naini, R. (eds.) ACISP’06. LNCS, vol. 4058, pp. 17–28. Springer
(2006)

12. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results.
In: Koç, C.K., Naccache, D., Paar, C. (eds.) Cryptographic Hardware and Embed-
ded Systems — CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer (2001)

13. Kelsey, J., Schneier, B., Wagner, D., Hall, C.: Side channel cryptanalysis of product
ciphers. Journal of Computer Security 8, 141–158 (2000)

14. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J. (ed.)
Advances in Cryptology — CRYPTO ’99. LNCS, vol. 1666, pp. 388–397. Springer
(1999)

15. Kolchin, V.F., Sevastyanov, B.A., Chistyakov, V.P.: Random Allocations.
V. H. Winston & Sons, Washington, D.C. (1978)

16. Lauradoux, C.: Collision attacks on processors with cache and countermeasures. In:
Wolf, C., Lucks, S., Yau, P.W. (eds.) WEWoRC 2005. Lecture Notes in Informatics,
vol. P-74, pp. 76–85. Gesellschaft für Informatik, Bonn (2005)

17. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer Verlag (2007)

18. Neve, M., Seifert, J.P.: Advances on access-driven cache attacks on AES. In: IN-
DOCRYPT’08. LNCS, vol. 4356, pp. 147–162. Springer (2007)

19. NXP B.V.: LPC2114/2124 single-chip 16/32-bit microcontrollers.
http://www.nxp.com/documents/data sheet/LPC2114 2124.pdf (2007)

20. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: The case
of AES. In: Pointcheval, D. (ed.) CT-RSA’06. LNCS, vol. 3860, pp. 1–20. Springer
(2006)

21. Page, D.: Theoretical use of cache memory as a cryptanalytic side-channel. Tech-
nical report CSTR-02-003, University of Bristol (2002)

22. Page, D.: Defending against cache-based side-channel attacks. Information Security
Technical Report 8(P1), 30–44 (2003)

23. Quisquater, J.J., Samyde, D.: Electromagnetic analysis (EMA): Measures and
counter-measures for smart cards. In: Attali, I., Jensen, T.P. (eds.) Smart Card
Programming and Security, International Conference on Research in Smart Cards
— E-smart 2001. LNCS, vol. 2140, pp. 200–210. Springer (2001)

24. Schramm, K., Leander, G., Felke, P., Paar, C.: A collision-attack on AES: Com-
bining side channel- and differential-attack. In: Joye, M., Quisquater, J.J. (eds.)
CHES’04. LNCS, vol. 3156, pp. 163–175. Springer (2004)

25. Zhao, X.J., Wang, T.: Improved cache trace attack on AES and CLEFIA by con-
sidering cache miss and S-box misalignment. Cryptology ePrint Archive, Report
2010/056 (2010), http://eprint.iacr.org/2010/056

26. FIPS PUB 197: Specification for the Advanced Encryption Standard (2001),
http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf

19

