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Abstract. We prove that Tandem-DM, one of the two “classical” schenaesurning a blockcipher o2n-bit key

into a double block length hash function, has birthday-tyglésion resistance in the ideal cipher model. A collision
resistance analysis for Tandem-DM achieving a similahbat/-type bound was already proposed by Fleischmann,
Gorski and Lucks at FSE 2009 [3]. As we detail, however, thiedanalysis is wrong, thus leaving the collision
resistance of Tandem-DM as an open problem until now.

1 Introduction

The Tandem-DM compression function is3a-bit to 2n-bit compression function based on two applications of a
blockcipher of2n-bit key andn-bit word length (Fig 1). While Tandem-DM was proposed by Lai and Massey in
1992 [7] the first proof of collision security for Tandem-DIvh the ideal cipher model, as is usual for all such proofs)
was only proposed in 2009 by Fleischmann, Gorski and Luck&Ji¥fortunately, as we detail in Section 3, the “FGL
proof” (as we shall refer to it) has a number of serious flawitvimake it false and nonobvious to repair. The purpose
of this paper is to offer a correct collision resistance gsialof Tandem-DM. We show that, as claimed in [3], Tandem-
DM does indeed have birthday-type collision security (ssitating at leas?!'2%-® queries to break when the output
length is2n = 256 bits). A nice feature of our work is that the analysis is rigkly simple compared to typical results
in this area. In Section 5 we also give a preimage resistamalgsis for Tandem-DM, as the preimage analysis of [3]
suffers from similar flaws as the collision analysis.
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Fig. 1: The Tandem-DM compression function. All wires catrpit values. The top and bottom blockciphers are the sameh Ea
has &2n-bit key andn-bit input/output. The wire marked is an input to the compression function (along wittand B).

RELATED WORK ON 2-CALL CONSTRUCTIONS Another classical scheme for turninga-bit key blockcipher into a
3n-bit to 2n-bit compression function is Abreast-DM, pictured in Rgwhich was proposed by Lai and Massey in the
same paper as Tandem-DM [7]. The collision resistance oéad&trDM was independently resolved by Fleischmann,
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Gorski and Lucks [4] and Lee and Kwon [8], who both showedhoiaty-type collision resistance for Abreast-DM. Be-
fore that, Hirose [5] had given a collision resistance asialfor a general class of compression functions that iredud
Abreast-DM as a special case, but under the assumptiorhthtdp and bottom blockciphers of the diagram be distinct
(this considerably simplifies the analysis). The work byade was further generalized Bzen and Stam [11], who
additionally discuss schemes that are only secure in thetiib@.

Another 3n-bit to 2n-bit compression function making two calls to a blockcipbéRn-bit key was proposed
by Hirose [6], who proved birthday-type collision resistarfor this construction in the ideal cipher model. Hirose’s
construction (Fig3) is simpler than either Abreast-DM or Tandem-DM and inigatar uses a single keying schedule
for the top and bottom blockciphers. It is noteworthy thatlevtidirose introduced his construction over 10 years
after Abreast-DM and Tandem-DM his collision resistancalysis pre-dates similar collision resistance analyses fo
Abreast-DM and Tandem-DM.
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Fig. 2: The Abreast-DM compression function. The emptyleiet bottom left denotes bit complementation.
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Fig. 3: Hirose’s compression function. The bottom left-thavire is not an input; it carries an arbitrary nonzero comista

RELATED WORK ON 1-CALL CONSTRUCTIONS Stam [16] proposed a class of “polynomial-basgd-bit to 2n-bit
compression functions making a single call tdrabit key blockcipher, and subsequently proved [17] birthtigpe
collision resistance for this construction. Lee and Stergbr [9] proved collision resistance for the same comprass
function in the weaker “unpredictable cipher” model. Lu¢k8] proposed a double length hash function usirga
bit to 2n-bit compression function making a single call to a blockeipof2n-bit key, and proved this hash function
collision resistant in the ideal cipher model (see [11] fgeaeralization). However, Lucks’ construction is onlywsec
in the iteration, as the compression function itself isisah insecure.

Earlier, Yi and Lam [19] had proposed3a-bit to 2n-bit compression function making a single call t@=:bit
key blockcipher whose design was somewhat similar to Stpofismomial-based construction but which used a single
integer addition operation instead of several field muttggion operations. However, this construction was brdken
Wagner [18].



CoMPARISON. Of the three well-knowr8n-bit to 2n-bit compression functions making two calls t@a-bit key
blockcipher—those being Tandem-DM, Abreast-DM and Hil®senstruction—the two constructions whose colli-
sion resistance has been successfully resolved (Hirosé\arehst-DM) share the feature that the inputs to the top
and bottom blockcipher are bijectively related. For examfiir Abreast-DM, if the top blockcipher call g1, (A)
then the bottom blockcipher call (for the same inptitB) is E; 4(B), where B denotes bit complementation of
B; thus the inputs to the top and bottom blockciphers areeelal the permutatiom : {0,1}3" — {0,1}3",
7(X||Y]|Z) = Y||Z||X. (Here the lastn bits are the key.) In Hirose’s construction, the inputs ®tthp and bottom
blockciphers are related by the permutatidn {0, 1}°" — {0,1}3", /(X ||Y]|Z) = X @ ||V Z.

By contrast, Tandem-DM exhibits a more subtle relation&f@jween the inputs of the top and bottom blockci-
phers, as anutputof the top blockcipher is used to key the bottom blockcipheés. the presence of this “feedback”
within the construction, it seems, that has complicateartffto prove a collision resistance bound. On the other hand
Tandem-DM still has the agreeable feature that the top attdradlockcipher calls uniquely determine each other
in the following sense: given the key|| L and outputR of the top cipher one can determine the KeyR and the
input B of the bottom cipher, and vice-versa. This contrasts withstrmctions such as MDC-2 which use two calls to
a blockcipher ofz-bit key, and in which the top and bottom blockcipher callsndd uniquely determine each other.
Typically, collision resistance analyses are much hardette latter kind of compression functions. (MDC-2 can
only be proved nontrivially collision resistant in the #ion, and the current best bound@f2:") queries due to
Steinberger [15] is undoubtedly suboptimal.)

We note that the permutatiorsand~’ discussed above share the common feature of haviradl cycle lengths-
all cycles ofr have length 6 and all cycles af have length 2—which constitutes another strong simildrégween
Abreast-DM and Hirose’s scheme. In fact, due to this reabtimpse’s collision resistance proof and the Abreast-
DM collision resistance proof can be seen as special casteafame framework, as noted in [4, 8]. Building on
this observation, Fleischmann et f] defined a general class of compression functions callstlic-DM’ that are
amenable to collision resistance analyses and that inélirdse’s scheme and Abreast-DM as special cases. Similarly
one can define collision-resistant generalizations of €&amdM by isolating those properties of Tandem-DM that are
used in our proof. While defining the most all-encompassiogsiple collision resistant generalization of Tandem-
DM is not the goal of this paper we do briefly discuss these kepgrties and the corresponding collision-resistant
generalizations of Tandem-DM in Section 6, without proo$e€urity.

A secoND PROOFThe proof of collision resistance that we provide in thipgas very slick, but slightly mysterious

in its efficacy because it relies on a subtle trick that cutisaolarge portion of the case analysis that “would have
been there” in a more standard proof. As a pedagogical bamgisto provide some perspective on our proof, we also
show how to prove the collision security of Tandem-DM withthis trick in Appendix A. We note this second, “brute
force” proof yields a slightly weaker bound.

FURTHER POSSIBLE IMPROVEMENTSWe note that our collision resistance has the férg/ (2" — ¢)) rather than
O(q?/(2" — ¢)?). Both bounds reach constant values whes 2(2"), howeverg?/(2" — ¢)? grows slower than
q/(2™ — q) since our bound is (only) “linear birthday” rather than tfig@adratic birthday”. We leave it as an open
problem to prove “quadratic birthday”-type collision r&since for Tandem-DM (as exists for Abreast-DM and Hi-
rose’s scheme). Moreover, it is an open problem to provermege resistance for valuesg@higher thar2™ for either
Abreast-DM, Tandem-DM or Hirose.

VERSION HISTORY After the initial posting of this (our) work, we became awarf another paper by Fleischmann
et al. [2], providing a comprehensive generalization ofrtbarlier works [3, 4]. (In particular, a new, tighter csitbn
resistance claim for Tandem-DM is made.) Unfortunately,ghtoblems in the (FSE'09) FGL proof are not addressed
and actually carry over to this new generalization (in jattr, the crucial “Argument B” of [4] is incorrect), rendieg

the resulting bounds meaningless.

2 Definitions

A blockcipher is a function® : {0,1}™ x {0,1}"* — {0,1}" such thatE (K, ) is a permutation of0,1}" for
eachK € {0,1}™. We callm thekey sizeandn theword sizeof the blockcipher. It is customary to writex (X)



instead ofE (K, X) for K € {0,1}™, X € {0,1}™. The functionE ' (-) denotes the inverse @ (-) (asEx(-) is a
permutation).
Given a blockciphefs : {0,1}2" x {0,1}"™ — {0, 1}" we define the Tandem-DM compression functioh M © :
{0,1}°" — {0,1}*" by
TDMP(A|B|L) = (A& R)|(B & S)

where

R = Epg(4),

In the collision resistance experiment, a computationatipounded adversdryd is given oracle access to a
blockcipherE uniformly sampled among all blockciphers of key lengthand word lengtm. We allow A to query
both E and E~1. After ¢ queries toE, thequery historyof A is the set of tripleQ = {(X;, K;,Y;)}Z, such that
Ek,(X;) =Y; andA's i-th query is eithe ., (X;) or B (Vi) for1 < i < q. We letQ; = {(X}, K,,Y;)}}_, be the
firsti elements of the query history; th@s= Q,. We sayA succeedsr finds a collisiorafter its first; queries if there
exist distinct3n-bit values,A|| B||L, A’'|| B’||L' such thal' DM ¥ (A|B||L) = TDM¥(A’||B'||L’) and such tha®;
contains both the queries necessary to compudd/” (A||B||L) andT DM ¥ (A’||B'||L’). More formally—and see
Fig. 4—we define this event by a predicaiell(Q;), which is true if and only if there exist-bit valuesA, B, L, R,

S, A, B’ L' R, S’ such that

A||B|L # A B'|L (1)
ApR=A®R (2
BaS=BaY )
and such that
(A, B||L, R),(B,L||R,S), (A, B'| L, R), (B', L'| R, §") € Q;. (4)
We denote by
AdVCTOgM(Q)

the maximum chance of an adversary makjmgueries causingoll(Q) to become true. The probability occurs over
the uniform choice o and overA'’s coin tosses, if any. Also note thatis a hidden parameter.

The “XOR-output” of a query X;, K;,Y;) is the quantityX; @ Y;. Another predicate which plays an important
part in both our proof and the FGL proof is the “many queriethilie same XOR-output” predicaer(Q), defined
on a query histon® = {(X;, K;,Y;)}]_, by

Xor(Q) <= max [{i: X;®Y, =2} > a.

Zze{0,1}™

Herea is a free parameter of the analysis which appears in the fatiidion resistance bound. (In [3] this predicate is
named WCKY(Q); in [15] a similar predicate is namé&tlin0(Q).) Without going into details at this point, we mention
that the FGL collision resistance proof—and ours, essintas well—upper boundBr[Coll(Q)] by Pr[Xor(Q)] +
Pr[Coll(Q)A—Xor(Q)]. Alargera. implies a lower value foPr[Xor(Q)] and a higher value fd?r[Coll(Q) A—=Xor(Q)].
The best value ofr can be found numerically for a given valuerofindg. Generally, readers may think afas some
small constant value (e.épr n = 128 andg = 212987, o = 16).

So far, we have described “infrastructure” that is commohdth proofs. We shall now introduce some material
proper to our proof. Note a query histo@ = {(X;, K;,Y;)}{_, does not record whether each trigl&,;, K;,Y;)
was obtained by the adversary through a forward qugry(X;) or a backward querEi}j(Yi). For this, we maintain
two arraysFwd|[-] and Bwd[-] whereFwd[:] = 1 if and only if the adversary’s-th query is a forward query and
Bwd[:] = 1 if and only if the adversary’sth query is a backward query. We then define an additionalipaée

FB(Q) = max [{i:(Yi=Z AFwdfi] = 1)V (X; = Z ABwdli] = 1)}| > o )

4 Our notation for the adversary and one of the Tandem-DM mpaliide, but without too much danger of confusion.



(‘FB’ stands for “Forward Backward”.) Here is the same free parameter as above. Note-th&( Q) implies that

maxzeo,1}» [{1:Yi = Z A Fwd[i] = 1}| < o, (6)
maxzeo,13» [{1: Xi = Z ABwd[i] = 1}| < a. (7

It is really consequences (6) and (7)-6fB(Q) that interest us, though we defiR@(Q) via (5) because this makes
it slightly easier to boun@r[FB(Q)]. We will use the bound

Pr[Coll(Q)] < Pr[Xor(Q)] + Pr[Coll(Q) A =Xor(Q)]
< Pr[Xor(Q)] + Pr[FB(Q)] + Pr[Coll(Q) A =Xor(Q) A =FB(Q)]. (8)
One should thus think of B(Q) and Xor(Q) as bad events whose nonoccurrence helps bound the projpoabili

Coll(Q) occurring. We warn that (8) constitutes a slightly overdifigal encapsulation of our proof’s high-level struc-
ture. We refer to Section 4 for more details.

3 The FGL collision resistance proof

Since the interest of our paper would be substantially dshed (though not nullified, since our proof is much shorter)
if the FGL collision resistance proof were correct, we détare some of our objections to [3]. This material also serve
as a good introduction to our own proof, and will give the eraniore intuition about Tandem-DM.
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Fig. 4: The collision diagram for Tandem-DM. The adversanystrfind blockcipher queries to fit both sides of the diagraghsu
thatA®@ R=A"®R,B® S = B &S andA|BJ||L # A’||B’||L'. More precisely, the adversary must find four queries of
the formEp,(A) = R, Ejr(B) = S, Ep 1/ (A") = R', Ep g/ (B') = S’ such that the above conditions hold. Each query
could either be learned through a forward queryjoor through a backward query (#~!). The four queries in the diagram are
labeled ‘TL, ‘BL, ‘TR’, ‘BR’ for ‘Top Left’, ‘Bottom Left’ , etc.

Starting with ag-query collision-finding adversary, FGL first make the standard assumption thatever makes
a query to which it already knows the answer (this could otearways: A could make the exact same query twice, or
A could query (sayE;(l(Y) after having receivell” as an answer beforehand to a quély(X)). This ensures each
answerA receives comes uniformly at random from a set of size at Bastq (sinceEk (-) is a random permutation
for eachK). Moreover, afterd makesi queries its query history will contain exactiyistinct elements.

Say A succeedst thei-th query ifColl(Q;) holds butColl(Q;_1) andXor(Q;_1) do not hold. By upper bounding
the probability thatA ever succeeds we upper boupi]Coll(Q) A —=Xor(Q)]. (Upper boundin@r[Xor(Q)] is an easy
probability exercise that we overlook for the purposes & froof sketch.) A good analogy is to view as trying
to complete a puzzle where each element of its query histoaypuzzle piece it can use to complete the collision
diagram of Fig 4. We use the expressiond ‘succeeds”, A finds a [puzzle] solution” or A completes a collision”
interchangeably (and we will rarely remind that the comuditi-Xor(Q;_1) must hold forA to succeed). We refer to
the four queries (in any hypothetical puzzle solution @.&ollision)) as ‘TL’, ‘BL, ‘TR’ and ‘BR’; see Fig. 4.

Note the constraintl||B||L # A’||B’||L’ does not imply that the queries TL, BL, TR, BR are all distirfer
example, one could have TL = BR (in which cdsg B||L, R) = (B’,L'|R',S’),s0A =B, B =L, L = R and



R = 5") or TL = BL (in which case we have the dramatic consequendedha B = L = R = S, as is easy to
check). This gives rise to several combinatorially didtrases to consided’s chance of obtaining a solution of each
kind is upper bounded separately, and these probabiliteesdded together to form a final upper bounddmchance

of success. (Oddly, FGL include the cases TL = TR and BL = BRuairtanalysis, while these are impossible since
they imply A||B||L = A’||B'||L’. This oversight, however, does not imply an incorrect pinatself.)

We shall restrict our critique to FGL's analysis of the “gan&case when the queries TL, BL, TR, BR are all
distinct. We note that, in these types of analyses, the genase is usually the hardest to handleAs job typi-
cally grows harder when additional constraints are placedsosolution. (The possibility of reusing the same query
in two different positions of the collision diagram does lemer occasionally prove useful té, depending on the
construction, so all cases must always be considered.) I jgazzle solution in which TL, BL, TR, BR are distinct
a “generic solution”.

If A succeeds in finding a generic solution there is a smallesth that a generic solution can be assembled
from the queries iQ;. Thei-th query is then called the “last query” @fs solution. To upper bound’s chance of
obtaining a generic solution, FGL consider two cases. Tiseé ¢ise is the event thalfs last query can be used in
position TL of the puzzle solution and the second case isvuhntéhatA’s last query can be used in position BL (one
of these two cases must occur). We shall focus on the firstesftitwo cases, which is also the first analyzed in the
order of the FGL proof. We call it the “TL generic” case.

One would typically consider two subcases for the TL genesige (or any other) depending on whetHés last
query is a forward query t& or an inverse query t& !, but FGL lump their analysis into a single argument claiming
that the two types of queries can be handled the same (intffegt,make this claim for every case in their proof, and
never distinguish between forward and backward querieS)td-or clarity, however, we shall restrict ourselves to
considering the case of a forward queryipand discuss how their argument specializes to that caselstlehoose
to specifically consider the forward query case becauséstihibere FGL's analysis seems to be the most problematic.

The task at hand is thus to upper bou#t'd chance of completing a generic solution by making a fodaguery
to E that can be used as query TL of such a solution. The usual apipfor this, and the one used by FGL, is to
consider any given forward quefx, (X;) made byA and to upper bound the probability that the ans¥geto this
query is such that the query history eleméht, K;, Y;) can be used in the desired manner; one then multiplies this
probability by ¢ since A can makey queries total. With foresight on how we wish to use the quBry (X;) it is
convenient to renam&’; as B||L and X; as A4; thus the query isz 1, (A). To proceed, one would typically upper
bound the number of valugs < {0,1}" such that, if we had?z,(A) = R, the query(A, B| L, R) could be used
in position TL of a generic solution together with previolsneents of the query history, and divide this number by
2" — ¢, since the answer to the queB ., (A) will come uniformly at random from a set of size at least— q.

In turn, the standard, formal way of bounding the number chsi’s would be to upper bound the possible number
of query triples(BL, BR, TR) in the query history that could potentially be used with thery £ (A) to form a
generic solution, as the number of such triples is an uppentdéor the number oRR’s. Note such a triple must have
the formBL = (B, L||R, S),BR = (B, L'|R,S"), TR = (A’, B’||L’, R") whereB & S = B’ ® S’ (and note that
A, B andL are fixed here by the last query).

FGL do not adoptthis approach for bounding the number of gdod. Rather, they make the following argument:
take the value of?, whatever it is, that is returned by the quéry 1, (A); because-Xor(Q;_1) there will be at most
a queries TR= (A’, B’|| L/, R') in the query history such that® R = A’ ® R’; as the TR query uniquely determines
the BR query, there are at mastpossibilities for the BR query; now “give the query Bt (B, L||R, S) for free to
the adversary”; then since there are at mopbssibilities for the query BR= (B’, L'||R’, S’) there is chance at most
a/(2™ —q) thatB @ S = B’ @ S’ for one of the queries BR, so total chance at mst(2” — ¢) that the adversary
ever obtains a TL-generic solution with a forward queryréhgeing at mosg queries total.

The fallacy in the above argument can be succinctly summéby pointing out thathe quenBL = (B, L||R, S)
may already be in the query history, in which case there isar@omness left in the valug & S. However, let us
review in detail the argument in two different cases: whendbery BL =(B, L||R, S) is already in the query history
prior to the last query, and when it isn’t. (Note that query &ily depends otk (besidesB and L which are fixed by

5 Neither do we, in fact. Using a careful trick, we manage toargpound the number of gooRt’s by only considering the
possibilities for the query BL rather than by considering plossible triple$BL, TR, BR). In Appendix A, however, we give for
comparison the “brute force” proof which uses the methodppien bounding the number of tripléBL, TR, BR).



the last query), and not on which queries are “chosen” for iRBR.) In the latter case, when BL(®B, L||R, S) is
not yet in the query history at theth query, then4’s last query can in any case not succeed in completing a igener
TL collision since the query BL is missing; thus there is neaé¢o bound anything (and no need even to “give the
query BL for free”). In the case when query BL is already in theery history, on the other hand, all randomness is
lost onceR is revealed. FGL successfully argue that, for a given vafuR,ahere will be at most possibilities for
the pair (TR , BR), but this does not in any way imply then-existencef such queries TR, BR.

Other issues are raised by FGL's casual comment that the @lee= (B, L|| R, S) is simply “given for free” to
the adversary. Indeed, if this query is not yet presentaddied to the query history before or after tita query itself?
Is this query only made after the value Bfis revealed, or is it somehow inserted into the query hisbafpre the
value of R is revealed? The former might be all right; the latter natgsiit would (drastically) alteR’s distribution
conditioned on the query history, i.& would no longer come uniformly at random from a set of siz&" — q.
Most importantly, since this free query becomes part of therg history, one should account for the possibility that
this query(not thei-th query) causes the adversary to succeed (and not nabebgaveing used in position BL of
a generic solution). Indeed, we are forced to give such ttedhe adversary, since we have required the adversary
never to make a query to which it already knows the answersinte the adversary may have wished to subsequently
make this query itself; this means the case analysis shalpplied recursively to the free query, but if the case
analysis requires other queries to be “given for free”, tiverbite our tail and end up giving an astronomical number
of free queries to the adversary (e.g., nearly all possibézigs).

Note also that nothing in the FGL argument precludes theilpitigsthat, when the adversary makesitth query
Ep|(A), there is not some very large number of distinct valuegetsay 2°-5"—for which there exists a triplet
of queries(BL, TR, BR) of the formBL = (B,L||R,S), BR = (B',L/|R’,S’), TR = (4',B'|L’, R") where
Ba S =B @S, and such thaR does not yet appear as the third coordinate of any query igqukey history with
key B||L. Certainly, there being such a large number of valueB dbes not contradictXor(Q;_1). Also certainly,
thei-th query would have chan@®->" /(2" — ¢) of making the adversary succeed if such a large number oésalu
of R existed, and not chaneg/ (2" — ¢). In other words, one can infer something is wrong with the F®gument
because it does not address the main difficulty of the casarat.h

While we singled out the TL generic case for examination,game kinds of problems recur throughout the
FGL case analysis, essentially invalidating the entir@prigloreover, since the FGL proof sidesteps the most crucial
challenges posed by an analysis of Tandem-DM (see the pieparagraph), it leaves little for any subsequent analysis
to build on. We note that the FGL preimage resistance prdééisufrom very similar flaws as the collision resistance
proof, as briefly discussed in Section 5.

4 Main result: collision resistance of Tandem-DM

It will be easier to explain the form of the probability bouindour main theorem if we explain a few high-level ideas
from the proof beforehand. The proof starts by considerimguditrary g-query collision-finding adversaryl for
Tandem-DM. We then construct an adversafyas follows: A" simulatesA, but after each forward quedyy v (U)

made byA, A’ makes the backward queE[;ﬁv(W) if it does not already knowthe answer to this query, and after

each backward querEle(W) made byA, A’ makes the forward quet, - (U) if it does not already knofithe
answer to this query. ('IUo better understand the relatiohedé instructions to Tandem-DM, viéw, V', W as B, L,
R.) Moreover if A ever makes a query to whicl’ already knows the answer from its query histoty,ignores this
query. Thus4d’ never makes a query to which it knows the answer.

Let Q' be the query history oA’ and Q be the query history ofl. ThenQ C Q' and|Q’| < 2¢. SinceQ C O’
we have

Pr[Coll(Q)] < Pr[Coll(Q')] < Pr[Xor(Q')] + Pr[FB(Q')] + Pr[Coll(Q') A ~Xor(Q') A ~FB(Q))].  (9)

Our proof uses the inequality above to bodhdColl(Q)]. Incidentally, we point out that if we construct an adveysar
A’ from A’ the same way!’ is constructed fromd, thenA” and A’ will have the same query history, as is not difficult

® More formally, if its query history does not contain any teipf the form(-, U||V, W).
 More formally, if its query history does not contain any teipf the form(U, V|| W, -).



to see. In other wordgveryforward queryEy |y (U) made byA’ (including its “own” queries) is followed by the
queryEgﬁV(W) unlessA’ already knows this query, and likewisgerybackward quer;E(}ﬁV(W) made byA’ is
followed by the forward quergy i (U) unlessA” already knows the answer to this query. The use of the augment
adversaryd’ may seem superficially similar to Fleischmann etatlea of “giving away a query for free”. However,
it will become clear from our case analysis that we exploét #luded structure of’ entirely differently from the
way Fleischmann et aéxploit their free queries. We also point out that the addatttire of @’ enables the main
“interesting trick” of our analysis, found in case ‘TL Formdof Proposition 3 below.

We can now more easily discuss our main result:

Theorem 1. Let N = 2", g < N/2, N’ = N — 2q and leta be an integer] < « < 2¢. Then

2e¢ \“  4dga  4q
aN’ N’ N’

Advh,(g) < 2N (

The term2N (24) in Theorem 1 is an upper bound f&[Xor(Q')] + Pr[FB(Q')]. In fact Pr[Xor(Q')] <

aN’
N (24)" and Pr[FB(Q')] < N (24)". The two remaining termdga/N’ + 4¢/N’ are an upper bound for
Pr[Coll(Q") A =Xor(Q') A =FB(Q')]. To boundAdv<s,,(q) for a given value of, andg one should optimizer
numerically. For example, for = 128, Theorem 1 yields thahdv$7,,(212%%7) < L usinga = 16. Asymptotically,

Theorem 1 yields the following result:

Corollary 1. lim,, o, AdvSh,, (N/n) = 0.

Proof. Letq = N/n anda = n/logn, where the logarithm takes ba&eSinceN’ > N/2 for n > 4, we have

2eq \“ | 4qa 4 deg\® 8ga 8
AdVCTOEM(q)§2N( q) + 2 +—q<2N(—q) 4o, 5

aN'’ N’ N’ — alN N N
<oN 4delogn $+ 8 §:2 4delogn ﬁJr 8 §
n2 logn n n logn n
The last expression obviously goes to zermas oo. O

In particularlim, .. Adv§p,, (2(79%) = 0 for any fixeds > 0.
The proof of Theorem 1 uses refineme@tdl; (Q), Collz(Q), Colls(Q) of the collision predicat€oll(Q), defined
as follows:

Coll1 (Q) occurs ifQ contains a collision with TL, BL, TR, BR distinct.
Colly(Q) occurs ifQ contains a collision with either TL = BL or TR = BR.
Coll3(Q) occurs ifQ contains a collision with either TL = BR or BL = TR.

For example(Coll,(Q) occurs if there exist values, B, L, R, S, A’, B’, L', R’, S’ such that (1)—(4) hold and such that
(A, B||L,R) = (B, L||R, S). Since BL# BR and TL# TR in any collision, we have the following proposition.

Proposition 1. Coll(Q) = Coll;(Q) V Collz(Q) V Coll3(Q) for any query histong.

In view of proving Theorem 1, le#l be an arbitrary;-query adversary for Tandem-DM, and lét be obtained from
A as outlined above; l&D be the query history oft andQ’ be the query history ofl’. Then by (9) it suffices to show
that

Pr[Xor(Q)] < N (jjg)a

Pr[FB(Q)] < N (jjev",)a

Pr(Coll(Q) A ~Xor(Q') A ~FB(Q)] < “0t 4 14




since the sum of the above probabilities is an upper bounBifi@roll( Q)]. Moreover, by Proposition Br[Coll(Q’) A
—Xor(Q') A =FB(Q’)] can be upper bounded by finding upper bound$fdColl;(Q’) A =Xor(Q") A =FB(Q")] for

1 = 1,2, 3 and taking the sum of these. We now upper bound these vanobalpilities in a series of propositions. For
these propositiong, N and« are as in Theorem 1, an@' is the query history of any adversady as just specified.
We emphasize thd'| < 2¢ and that probabilities are taken over the random cigha@nd over the coins ofl’, if
any (it inherits these froml).

Proposition 2. Pr[Xor(Q')] < N (24) andPr[FB(Q')] < N (22)“,

Proof. Let Q' = {(X/, K/,Y/)}>4, denote the query history of’. Since

27 K2

Pl Xie v/ = 2> o < () (5)

for eachZ € {0,1}", we have

o= (2) () ()

Pr[FB(Q’)] can be bounded similarly. O
Proposition 3. Pr[Coll; (Q") A =Xor(Q’) A =FB(Q’)] < 4qa/N’.

Proof. Let
Success; (Q}) = Coll1 (Q}) A =Coll1 (Q;_1) A —Xor(Q,_;) AN—=FB(Q;_,)

fori = 1...2¢q. ThenPr[Coll;(Q') A —=Xor(Q') A =FB(Q’)] < Zfil Pr[Success; (Q})] andPr[Success; (Q})] <
Pr{Colly (Q))|~Colly (Q}_;) A =Xor(Q} ;) A =FB(Q}_,)].

Fix a value ofi, 1 < i < 2¢. We call thei-th query made byl’ thelast query If Success; (Q}) occurs then either
the adversary (i.e4’) can use its last query as query TL or as query BL of a collisiamhich TL, BL, TR and BR are
distinct, by symmetry. Moreover the last query could eithern forward query or a backward query. This gives rise to
four possible cases, and we bouPiSuccess; (Q})] for each separately. (We note the very first case, ‘TL foriyasd
the case we discussed in Section 3.) For each case, we chdstlpierysuccessfuf this query completes a collision
with TL, BL, TR, BR distinct and where the last query is usethia position stipulated by that case (efgr the case
‘“TL forward’, the last query must be used in position TL).

TL forward: Let the last query b&g 1, (A). Call a valueR goodif there exists a query of the fori3, L[| R, -) in Q'
that was obtained byl’ as a backward query. We note that because of{FB(Q;_,) implies there are at most
goodR’s.

We claim that for the last query to be successful the vdtueturned as an answer to the query must be good.
Indeed, letR be the value returned; then a prerequisite for the query ®ubeessful is that there be a query of the
form (B, L||R,-) in Q}_,. We claim that this query must have been obtained as a badlquery. Indeed, assume
that the queryB, L|| R, -) was obtained as a forward queBy,z(B) by A’. Then, by constructiond’ would have
immediately followed this query by the que@;ﬁL(R) unlessA’ already knew the answer E;JL(R). Either way
A’ would have the queryA, B||L, R) in its query historyprior to thei-th (forward) queryEg| . (A4), a contradiction
since A’ never makes a query to which it knows the answer. Thus thee\&lteturned as an answer to the query
Ep|.(A) must be good for the query to be successful.

Since there are at moat good values of? and sinced’ makes at mos2q queries, the probability that the last
query is successful is therefore at mag{2"™ — 2¢q) = a/N’.

TL backward: Let the last query tié;lllL(R). For the last query to be successful, there must be a (netgssaque)
query BL= (B, L||R,S) € Q,_,, for some value5 € {0,1}". From the conditiorB @& S = B’ @& S’ and from

—Xor(Q;_,) there are at most possibilities for the query BR. As each query BR uniquelyedeiines the query TR,



there are at most possibilities for the query TR as well, and thus at mesgtossibilities for the valuel’ @ R’. Thus
the valueA returned by the last query has chance at mgs{’ that A ® R will be equal toA’ © R’ for one of these
valuesA’ @ R’, and so the last query has chance at mg$t’ of being successful.

BL forward: A 180° rotation of the collision diagram shows this case is symitiétrthe case TL backward. The
chance of success in this case is therefore at mO5t.

BL backward: A180° rotation of the collision diagram shows this case is symimétr the case TL forward. The
chance of success in this case is therefore at mAst .

The chance a forward last query is successful is therefamoat2« /N’ (adding the TL and BL forward cases)
and likewise the chance that a backward last query is suctésat most2a/N’. ThusPr[Success; (Q})] < 2a/N’
for all i and>">%, Pr[Success; (Q})] < 4qa/N’. 0

Proposition 4. Pr[Collz(Q’) A =Xor(Q') A =FB(Q’)] < 2¢/N’.

Proof. Note that when TL=BLB||L = L||R,s0B = L = R; moreoverR = SandA = B,soA=B=L=R=
S. For the adversary to obtain a collision with TL = BL, thenefait must obtain a query of the for(/, U||U, U). The
same argument applies to the case TR = BR. The chance of a guer(U ) or of a queryE[jﬁU(U) being answered
by U is at most 1/N’. Thus, sinc&q queries are made totdty[Collz(Q’)] < 2¢/N’. O

Proposition 5. Pr[Coll3(Q") A =Xor(Q') A =FB(Q’)] < 2qar/N' + 2q/N’.

Proof. Note that in a collision with TL = BR we musthave TEBLandA® R = B® S (sinceB&S =B &S5’ =
A® R, using TL = BR). Say the evefibll;(Q!) occurs if there exist distinct queriéd, B|| L, R), (B, L||R, S) in Q.
such thatd ® R = B & S. With the same argument applied to the case BL = TR, we fallg(Q]) = Coll;(Q)).
Therefore it suffices to shoRr[Coll;(Q’) A —Xor(Q') A =FB(Q’)] < 2ga /N’ + 2q/N’.

The analysis now proceeds rather similarly to Propositidre8

Success; (Q;) = Coll5(Q}) A =Colly(Q}_1) A —Xor(Qi_y) A —=FB(Q}_,).

We havePr[Coll5(Q') A =Xor(Q') A =FB(Q')] < 21211 Pr[Success;(Q%)].

Fix a value ofi, 1 < i < 2¢, and call thei-th query made by4’ the last query If Success;(Q?%) occurs then
either the adversary (i.e1’) can use its last query as query TL or as query BL o€itf;-solution. This gives rise to
four possible cases given that the last query could be ditinerard or backward. In each case, we call the last query
successfuif Success;(Q}) occurs and if the last query can be used in the position ghestby that case (either TL
or BL) in the Coll;-solution.

TL forward: We can use exactly the same analysis as in the'Eassard TL' of Proposition 3. The probability that
the last query is successful is therefore at nagsV’.

TL backward: LetEglllL(R) be the last query. For the last query to be successful, thestpe a (necessarily unique)

query of the form B, L||R, S) € Q;_,, forsomeS € {0, 1}". Since the answef to the last query must be such that
A® R = Bo S (as per the definition ofoll;) and B & S is uniquely determined, the last query has chance at most
1/N’ of success.

BL forward: A 180° rotation of the collision diagram shows this case is symimédr the case TL backward. The
chance of success in this case is therefore at ygst.

BL backward: A180° rotation of the collision diagram shows this case is symimétr the case TL forward. The
chance of success in this case is therefore at mAst .

8 Since for each key there is only one relevant query, thedightV' could be used as well.
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The chance a forward last query is successful is therefon@sat(«+ 1) /N’ (adding the TL and BL forward cases)
and likewise the chance that a backward last query is suctésat most o+ 1) /N’. ThusPr[Success;(Q%)] < (a+
1)/N’ for all i and>" 7%, Pr[Success; (Q})] < 2ga/N’ + 2¢/N'. (In fact, we even haver[Coll3(Q') A -FB(Q')] <
2qga/N' 4+ 2q/N’ since—Xor(Q') was never used in the above.) O

Taking the sum of the bounds of Propositions 3, 4 and 5 onérwhiiaat

Pr(Coll(Q') A ~Xor(Q') A —FB(Q)] < Tt 4 1

However, cases TL forward, BL backward and cases TL forwBkdyackward of Propositions 3 and 5 reference the
same events (the adversary is successful in case TL forwdpdoposition 3 if and only if it is successful in case
TL forward of Proposition 5, and likewise for the BL backwarases), which results in an “overcounting” of the
adversary’s probability of success Bya/N’. A more careful accounting of the adversary’s probabilitysaccess
thus shows

Pr[Coll(Q') A —=Xor(Q') A =FB(Q)] < dqo | 4q

<~ TN (10)

Here we have not established (10) entirely formally, thotigéis the bound we use fdtr[Coll(Q') A —Xor(Q') A
—FB(Q’)] in Theorem 1. Establishing (10) formally would require divig the evenColl(Q) into a different, less
intuitive set of events tha6oll, (Q), Coll2(Q), Coll3(Q), events that are directly based on those that occur in the cas
analyses of Propositions 3-5. (For example, one of thesgewould be the event that the adversary ever obtains a
“good R” through a forward or backward query, as defined for forwandrées in case TL forward of Proposition 3
and implicitly defined (by symmetry) for backward queries#@se BL backward of Proposition 3; another event would
cover the cases TL backward and BL forward of Propositiom8l; so on.) The current form of the proof is our best
compromise between readability and formality. In any ctsedifference betweefya /N’ and6qa /N’ is relatively
minor.

Summing (10) with the bounds of Proposition 2 and using () pWstain

2e ¢ 4ga 4
q>+q q

—~ +-1 (11)

Pr[Coll(Q)] < 2N < Nt

Since (11) holds for an arbitraprquery adversary, this establishes Theorem 1.

5 Preimage Resistance

Ideally we would like to prove a strong bound on the everywlmeimage resistance [12] of Tandem-DM. In this
notion, the adversary first gets to pick a challenge digedtsasequently (using oracle acces#joneeds to find a
preimage.

Unfortunately, Tandem-DM has the particularity that thénp62" is weaker than other range points with respect
to preimage resistance. Indeed, to find a preima@@’b{given a random blockcipher) an adversary can make queries
of the form £y (U) for different values ofU until it finds aU such thatEy;(U) = U; then it is easy to see
that TDME(U||U||U) = 02". The probability (over the choice df) of this attack succeeding ipqueries isl —
(1-1/N)? =~ q/N = gq/2™, since a different key is used for each query. On the othed har shall see that all
nonzero points i{0, 1}2" have much better preimage resistance tha¥, at least forg in the range of interest (i.e.

q = o(N),w(1)). We also note this preimage attack@t is nearly matched by an easily-proved preimage resistance
bound ofg/N’ = q/(2™ — q) for 02* (or any other pointirf{0, 1}2"); the bound follows from the fact that a necessary
condition for inverting)?” is to find a query with XOR outpui™.

One solution for avoiding issues associatetPtois to have the point-to-invert be chosen at random f{omi } 27,
in this case there is chance at moge?" anyway that)?" is the image to invert. However, we find it slightly more
interesting to emphasize that” is the only “bad” point in the range by letting the adversamgase which point to
invert, under the stipulation that the adversary is notvegio to choos®?" (for which we anyway have the above
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q/N' preimage resistance bound which, though worse than thepga resistance bound we shall prove for nonzero
points, is acceptable from a practical standpoint). A matited description of the preimage resistance experiment
can be found below.

We note that Fleischmann et &B] claim to prove preimage resistance of the typgy/ (2" — ¢)?) for Tandem-
DM. Unfortunately, their analysis has similar flaws to thedtlision resistance proof. For example, while examining
the case that the adversary’s last query may be used in thewopf a solution for the preimage, FGL “give for free”
the bottom row query if it is not already in the query hist@myd claim that the two queries (the last query and the free
query) have combined chance of succe&2"™ — ¢)?, sinceA @ R must equat’; andB @ S must equal’s; the issue,
once again, is that if the “free” bottom row query is alreadythe query history, there is no randomness left in the
valueB @ S (whereas if the bottom row query was not in the query histihwy,adversary could not succeed anyway,
S0 in this case there is in fact no need to give it the bottormygiex free). Moreover, Fleischmann et &nore the
possibility that the adversary may use the same query fotojp@nd bottom row in its attack, which is associated
to the issues regardir@f” discussed above; however, since they work in a model whereathge point to invert is
chosen at random, this particular omission would be easgair.

Our preimage resistance experiment will be as follows: areeshryA with oracle access to a randomly sampled
blockcipherE : {0,1}2" x {0,1}" — {0,1}" selects and announces a paiiit]|Cy € {0,1}?", Cy||Cy # 0%,
before making queries tB. The adversary wins afterqueries if its query histor® = {(X;, K;,Y;)}{_, contains
the means of computing a preimage(df||Cs, in the sense that there exist valuésB, L, R, S € {0,1}"™ such that
A® R = Cy, B® S = Cy and such that the queriés,, B||L, R), (B, L||R, S) are in Q. (In this case, we sa@
contains a preimagef C4 ||C>.) We denote by

AdvE70(g)

the maximum advantage of any (probabilistic, computatignenbounded) adversary at this game. We note that here,
too,n is a hidden parameter of the advantage. Moreover, we let

Preim(Q)

be the predicate that is true if and onlydfcontains a preimage @ ||C2, whereC; ||Cs is an elided-but-understood
parameter of the predicate. Th%dv%rgﬁ?(q) is the maximum oPr[Preim(Q)] taken over allj-query adversaries
A, the probability being taken ovét and the coins ofl. We always assume thdtis honest in the sense of choosing a
nonzero valu€’, ||C,. Now our preimage resistance theorem is the following (tiethe definition ofV’ is different
than in Theorem 1):

Theorem 2. Let N = 2",q < N, N' = N — g and leta be an integer] < a < ¢q. Then

o 2
AdvEEN0) <2(-5) + 55

alN’ N’

Proof. The “preimage diagram” for Tandem-DM s the left-hand pantdf Fig 4. While there are no “right-hand
side” queries for the preimage diagram, we keep the lalgeflity, ‘BL for the queries on the left-hand side. That is,
in the preimage resistance game, the adversary’s goal idue & “puzzle” by finding queries TL, BL of the form TL

= (A4,B||L,R), BL = (B, L||R,S) such thatd @ R = C1, B& S = C>. We emphasize at the outset that the case
C:1 = Cy doesnotrequire a separate analysis, and is handled in the same viag eas&”; # Cs.

We start by noting that, in any solution of the preimage diagrthe queries TL, BL are necessarily distinct.
Indeed, as discussed in Proposition 4, when the queries [larB equal they have the for(W/, U||U, U) and the
output of Tandem-DM i9?". We also note that if TL £A4, B||L, R) then BL =(B, L||R, B& C3), and, conversely, if
BL = (B, L||R,S)then TL=(R& C1, B||L, R). Thus the queries TL, BL uniquely determine each other irstfeng
sense thall three coordinates of BL are determined by the query TL, and viosae

As the preimage adversary makes queries we maintain two sequendeés, andWg;, calledwish lists which
are initially empty, as well as two flagkg, andflag,, which are initially zero. For each new quepy, K1 || K2,Y)
learned byA we update the wish lists and the flags as follows:

1. If (X, K1||K2,Y) € Wy, or (X, K1||K2,Y) € WaL thenflag1 «— 1.
2. f XY = C then(K4, Kq||Y, K1 & C5) is added toVgy,.
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3. XY = Cy then(KQ D Cl, X||K17 KQ) is added toVrr.
4. If WrL| > aor [WgL| > a, thenflag, « 1.

We point out that, as long a does not make redundant queries (which we assume it doeshw&lements ofVrr,
are all distinct from one another, as are the elemenf®/gf . Indeed, it is easy to see that each elementaf;,
uniquely determines the quefX, K1|| K>, Y') which caused it to be added ¥y, and likewise fodVg, .

We claimPreim(Q) = flag,. Indeed, if there are two queriésl, B||L, R), (B, L||R,S) in Q such that
A® R =C1, B® S = (5, then one of these two queries was made after the other. Riegsan both cases, we find
that this query was an element of one of the wish lists at tliret pdhen it was learned, thus settifigg, . (The reverse
implicationflag, = Preim(Q) is also true and is trivial.) We thus have

Pr[Preim(Q)] = Pr[flag, = 1] < Pr[flag, = 1] + Pr|flag; = 1 A flag, = 0]. (12)
We can bound eq \o
Prfflag, = 1] < 2 (mv/) : (13)

The proof of (13) is similar to Proposition 2, except that ongts the final union bound which results in the multipli-
cation byN.

Let WishGrantedry, ; be the event that, at any point during the attatkearns a queryX, K| K»,Y’), such that,
at that moment and prior to the updating of the lists for thegrg, thei-th element obVry, is equal to( X, K || K2, Y).
DefineWishGrantedgy, ; in the same way. We then have

Prlflag, = 1 Aflag, = 0] < Z Pr[WishGrantedrr, ;] + Z Pr[WishGrantedpy, ;].
i=1

i=1

However, each wish list element can only be “wished for” obgel, due to the fact thakbix, | x, (-) is a permutation.
ThusPr|[WishGrantedry, ;], Pr[WishGrantedgy, ;] < 1/N’ and so
2a
Pr[flag; = 1 Aflag, = 0] < N (14)
By (13), (14) and (12) we obtain
. eq \* 2«
< _— -
Pr[Preim(Q)] < 2 (aN’) + N
thus establishing the Theorem. O

Here alsop must be optimized numerically for given valuesroaindgq. Forn = 128, for example, Theorem 2
yieldsAdvhp,,(2127:0) < 10736 with o = 35, Advh,,,(21279) < 1073° with o = 95 andAdvi ,,(212799) <

pre

10733 with o = 468. In fact, forn = 128 Theorem 2 gives a non-void upper bound fodv?’'7,,, (¢) for values ofg
up to~ 9128—27%

Theorem 2 should be compared with the trivial preimage tast® bound;/N’ valid for any range point, that
follows from the above-mentioned observation that inwgrta pointC;||Cs in particular implies finding a query
(A, B||L, R) such thatd @ R = C; (there is chance at mosf N’ of this occurring for any query). Firstly,/N’ =
wheng = N/2, whereas the bound of Theorem 2 implies thatfepnstantj < 1, andg = 6N, Advhp,,(q) — 0
asn — oo with anya(n) such thatim,,_.., a(n) = oo andlim,,_.., a(n)/N = 0. Secondlyg/N’ exhibits a linear
growth inq for fixedn, whereas the bound of Theorem 2 pinpoints a much more “sutideshold” of success, located
nearqg ~ N; this is illustrated by the two graphs for the case- 128, shown in Fig. 5.

Using Theorem 2 we can also derive a preimage resistancedifouthe more standard definition of preimage
resistance in which the adversary is given a random poirtérrange to invert. (A third definition, which we do not
consider, samples the point to invert by sampling and etialyia random point in the domain. For further discussion
of these definitions and reductions among them, see [12] Alcbr?g% denote the maximum advantage af-guery
adversary at inverting a random point{f, 1}2", where the probability of inversion is also taken over thed@m
choice of the point, and where “inverting the point” meaiig Bbove, constructing a query history that contains a
preimage of the point. As an easy consequence of Theorem Ravee
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Fig.5: Comparison between Theorem 2 and the trivial bound. fe: 128. The Theorem 2 bound has a very sharp inflection point
located neag = 21282,

Theorem 3. Let N = 2", q < N, N' = N — g and leta be an integer] < a < ¢q. Then

re$ €q \* 20 q
Advrpy () <2 (aN’) TN TN

Here the additional termp/N2N’ accounts for the event that the point to inver0f&. This event happens with
probability1/N?2, in which case the adversary has chance at j@ast of success.

6 A Generalization

In this section we give (without proof) a generalization ahdlem-DM that has the same level of collision resistance
as Tandem-DM and that is subject to the same type of colligsistance analysis as the one we do in this paper.
The main purpose of this section is not to propose a new scfarpetential implementation but rather to shed some
additional light on Tandem-DM and on our proof by showing ethkey features enable our analysis.

Let 7y : {0,1}" x {0,1}" — {0,1}", F» : {0,1}™ x {0,1}™ — {0,1}"™ be functions such thak;(U, -) and
F;(-,U) are permutations of0, 1}™ for any constant/ € {0,1}",7 = 1,2. LetG : {0,1}" x {0,1}" x {0,1}" —
{0,1}™x {0,1}™ x {0, 1}" be a permutation such that the first coordinaté&'sfoutput is determined by the first two
coordinates of its input and such that the last coordinat@'®input is determined by the last two coordinates of its
output (thus ifG(X,Y, Z) = (U, V, W) we can always compui€ from X andY only and always comput& from
V andW only). Moreover letd : {0,1}3" — {0, 1}3" be an arbitrary permutation. Our generalization is thetionc
TDME g, ¢.n - {0,1}*" — {0,1}*" defined by

TDME, p, (Al BIIL) = Fi(X1,Y1)|| F2(X2, Y2)
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where

Xq||Kq||Ky = H(A|B||L)
Y1 = Eg, ik (X1)

Xo||Ko|| K5 = G(Kq, K1, Y1)
Y2 = Eg, |k, (X2)

where the penultimate assignment identifi€s, 1}")2 with {0, 1}3". One may think of the valu&; as R and of
the valueY; asS. We note tha’ DM” = TDMFE o , ; whenG, H are identity functions and’ (X,Y) =
BX,Y)=XaY.

This generalization is also preimage resistant up to theidtt bound of ¢/(2" — ¢). However we do not claim
TDM}%,FQ,G,H enjoys the same kind of preimage resistance as offered lefasDM (under, say, the random-point-
in-the-range model). Indeed, preimage resistance seemgssulbtle to bound than collision resistance, mainly bezaus
of attacks in which TL = BL and because we are not happy to giva termg/ (2" — ¢) for preimage resistance. We

leave the worst-case preimage resistancEB/ 7 1, . ; as an interesting open problem.

7 Conclusion

In this work, we have shown that an earlier work concernirgggcurity of Tandem-DM was incorrect. However,
with a new proof (exploiting new ideas) we have shown thath@ideal-cipher model, Tandem-DM is collision resis-
tant almost up to the birthday bound and (provably) preintagestant essentially up to the birthday bound (leaving
considerable room for improvement for the latter).

On a high level, our proof of collision resistance adheres (by now) standard framework. We first modify the
collision-finding adversary by giving it several “free” qies and subsequently we bound the modified adversary’s
chance of success using a case analysis. This approacis ai@asily bound both the number of free queries and the
probability of a query (free or not) causing a collision.

In contrast, the FGL proof directly uses a case analysis abskgjuently uses free queries within the case analysis.
This ad hoc addition of free queries (and its binding to aipaldr case) is problematic, as it does not allow proper
accounting of the free queries. In particular, if a free gusrfresh it might cause a collision (or other bad event)
elsewhere whereas if the free query has actually been agferebno new randomness can be extracted from it.

Thus, apart from having established the security of Tan@&hwe hope that our work also serves as a useful
reminder to some of the subtleties involved in ICM proofs asd guideline on how to avoid certain pitfalls.
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A A second collision resistance proof: doing without the trck

The collision resistance analysis of Tandem-DM given inti®ect depends on a rather subtle trick—namely, a mod-
ification of the adversary that allows us, later on in the fpraminfer that a particular type of query, if present in the
guery historymust have been made in a particular directidoarward or backward); knowing the query direction then
allows us to conclude that very few queries of the given tygreexist in the query history. This observation dispatches
the most crucial (i.e. difficult) cases of the analysis. Werréhe reader back to Section 4, in particular cases Forward
TL of Proposition 3 and Forward TL of Proposition 5 for moreatis.

In this section we give a more standard collision analysitaofdem-DM that does not use this trick. This analysis
does not modify the adversary in any way (in particular, theeasary will makeg queries, noq) and resorts to
sub-analyses for dealing with difficult cases (i.e. casas\rere previously handled via our trick). Some of the sub-
analyses require sub-sub-analyses of their own; the waeklisus, but straightforward, following the path laid oyt b
previous recursive analyses of this type, in particularahalysis of MDC-2 [15] (such recursive analyses may also
be found in [1,13]). The purpose of presenting a second psaadirely for general interest: it shows “what the proof
looks like” (and in particular its length) when our trick isnsed, and serves as a tutorial and reminder on the use of
recursive analyses. In particular, the collision resistdmound derived from this second proof is of birthday-tyjs,
worse than the bound of Theorem 1: while the adversary onkesyaqueries instead diq, the greater number of
cases considered in the proof yields a weaker bound ovErath = 128, our second theorem gives that an adversary
makingq = 2119-18 queries achieves chanee0.5 of obtaining a collision (Theorem 1 givgs= 2'20-87),

For the proof, we reuse the predicater(Q) of Section 2. Writing the query history a8 = (X;, U;||V;, Y;)?

(i.e. decomposinds; asU;||V;) we also define two predicaté®rKL, XorKR (where KL’ and ‘KR’ stand for ‘Key
Left’ and ‘Key Right’, respectively) as follows:
XorKL(Q) <= max [{i: X; @Y, ®U;,=C} > a,
Cce{0,1}»
XorKR(Q) <= max |[{i: X;®@Y,®V,=C} > .
ce{o,1}»

We emphasize that the parametemhich appears in these definitions is the “samfeas for Xor(Q). We addi-
tionally define five predicateSriplesy ., Triplesg; ), Doublesla|pLjsrr (L, Doubles2} p/ avy oy @Nd
DO”b|e52§||R||L||s'HR/HL/ using two new parametefs > 0 andvy > 0. The definitions for these more complicated
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u Y AGR A R XA QR
U TR U
Ll R sl R/
B B®S / ' B'@S

Fig. 6: Definition ofTripIesj”B”L(Q). ForeveryA, B, L € {0,1}", the evenfrriplesj”B”L(Q) occurs iff there are more than
valuesR € {0, 1}" for which there exists an ordered triple of distinct que(iBs L||R, S), (A", B'| L', R'), (B',L’'||R',S") € Q
suchthatd ® R= A’ ® R’ andB @ S = B’ @ S’, namely more thany valuesR for which the adversary can complete the above
partial collision diagram using distinct queries. The \sire B, L are drawn in bold to indicate that their values are “extdynal
fixed”.

/ / / /

A - R L ADR A - R A AR
B L1 B| L R

B S / ! / !

B S B2 B gl EPNC AL

Fig. 7: Definition of Triplesg, , , (Q). For everyS, R, L € {0,1}", the evenfTriples ., , (Q) occurs iff there are more than
valuesB € {0, 1}" for which there exists an ordered triple of distinct quefids B||L, R), (A’, B'|L', R’), (B’,L'||R’,S") € Q
suchthatd ® R = A’ ® R'andB ® S = B’ @ S’, namely more than valuesB for which the adversary can complete the above
partial collision diagram using distinct queries.

A Y ADR A R Y A'®R
— N TR U
Ll R B L,T
B B / / ’ /
BL S o DS B S @ B'®S

Fig.8: Definition of the eventDoubleslaz|r s/ r |z (Q). For every A, B, L, S, R', L' € {0,1}", the event
Doublesl 452|157 7z’ () Occurs iff the adversary obtains more thasolutions to the above diagram, where a “solution” con-
sists of an ordered pair of (distinct) querigs, L|| R, S), (A, B'||L’,R') € Qsuchthah R = A’ @ R andBdS = B' 9 5.

al Yaon ] Yaon
€U U
Ll R L’l R
/ ’ ’ /
B — S ,>B@S B — S (\B ®S

Fig.9: Definition of the eventDoubIes2j”B”L”A,HB,”L,(Q). For every A, B, L, A', B', L' € {0,1}", the event
DOUbIeszXHBHLHA/HB/HL’(Q) occurs iff the adversary obtains more tharsolutions to the above diagram, where a “solution”
consists of an ordered pair of (distinct) queri&s L|| R, S), (B’, L' |R’,S") € Qsuchthatd®R = A’ R’ andB&S = B'@S’.
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A L R OAEBR A TR R (/A DR
B L1 B’ L’1
B S B®S B’ S B'asS
_9_> #6_

Fig. 10: Definition of the eventDoubles2g, s/ pr/(Q)- FOr every S, R, L, §', R, L' € {0,1}", the event
Doubles2 p 115/ r/ 2 (Q) Occurs iff the adversary obtains more thasolutions to the above diagram, where a “solution” con-
sists of an ordered pair of (distinct) querie$, B||L, R), (A’, B’|L’,R’) € Qsuchthah® R = A’® R andB®S = B ¢ S’.

predicates are given in Figures 6—-10. We note thatElmbles’ events are defined with respect to the paramgter
whereas theTriples’ events are defined with respect{o

The reader may wonder as to the “logic” behind which wirestalel constant in which diagram. Note, say, for
Triples™, that the wiresd, L and B are all those which “would be held constant” if we had fixed eaia forward
query Ep|1.(A) for position TL whose outpulz was not yet known; similarly, foffriples™, the wiresS, R and L
are those which would be held constant if we had fixed a bacd<waeryEL‘H1R(S) for position BL whose outpuB
was not yet known. The wires held constant in the e@niblesl are similarly obtained by fixing a forward query
Ep|1(A) and a backward querELilHR,(S’) of unknown outputs, and so on for the evedtsibles2™, Doubles2 ™.

We further define the existentially quantified versions efth predicates:

Triples™(Q) <= there exist4, B, L € {0,1}" such thafriples} ;- (Q)
Triples™(Q) <= thereexistS, R, L € {0,1}" such thafriplesg 5, (Q)
Doubles1(Q) <= thereexisd, B,L,S’, R', L' € {0,1}" such thaDoublesl 4 g5/ 7z (Q)

Doubles2™(Q) «= thereexist4, B, L, A’, B', L' € {0,1}" such thaDoubIesZXHB”L”A,”B/”L,(Q)
Doubles2™ (Q) <= thereexistS,R,L,S’, R, L' € {0,1}" such thaDoubIesZJSr”R”L”S,”R,HL,(Q).

We finally define the following shorthands:

X(Q) = Xor(Q) V XorKL(Q) V XorKR(Q)
Triples(Q) = Triples™ (Q) V Triples™ (Q)
Doubles2(Q) = Doubles2™(Q) v Doubles2™ (Q)
Doubles(Q) = Doubles1(Q) V Doubles2(Q).
Keeping the predicateSoll; (Q), Coll2(Q) andColl3(Q) as defined in Section 4, we have the following elementary
implications:
Coll(Q) = X(Q) V (Coll1(Q) A =X(Q)) V Collz(Q) V (Colls(Q) A =X(Q))
Coll1 (Q) A =X(Q) = (Triples(Q) A =X(Q)) V (Coll1 (Q) A = Triples(Q) A =X(Q))
Triples(Q) A =X(Q) = (Doubles(Q) A =X(Q)) V (Triples(Q) A =Doubles(Q) A =X(Q))
Doubles(Q) A =X(Q) = (Doubles1(Q) A =X(Q)) V (Doubles2(Q) A =X(Q)).

(The first implication follows from Proposition 1.) Thus, \wave

Pr[Coll(Q)] < Pr[X(Q)] + Pr[Collz(Q)] + Pr[Coll3(Q) A =X(Q)]
+ Pr[Coll; (Q) A =Triples(Q) A =X(Q)] + Pr[Triples(Q) A =Doubles(Q) A =X(Q)]
+ Pr[Doubles1(Q) A =X(Q)] + Pr[Doubles2(Q) A =X(Q)]. (15)
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We now proceed to individually upper bound each of the praibigls in (15). In each of the following propositions,
Q is the query history of a-query adversaryy’ = N — g = 2" — ¢ anda, (3, v are integers such that< o, 8,7 < ¢
anda < ( and such thaty = 0 mod 3 and3 = 0 mod 2. Moreover we leQ, denote the adversary’s query history
after the firsti queries (including the answer of tix¢h query), as usual.

).

Proof. We individually havePr[Xor(Q)] < N (=54 ), Pr[XorKL(Q)] < N (=) andPr[XorKR(Q)] < N (=%)".

Each of these inequalities can be proved as in Proposition 2. O

Proposition 6. Pr[X(Q)] < 3N (=%

Proposition 7. Pr[Collz(Q)] < ¢/N’.
Proof. Same as for Proposition 4 (which does not use the assumpiXegQ), -FB(Q)). O
Proposition 8. Pr[Coll3(Q) A =X(Q)] < ¢(1 + a)/N".

Proof. Recall that, as observed in Proposition(ll3(Q) implies that the adversary obtains two distinct queries
(A,B||L,R), (B, L||R,S) such thatd ® R = B @ S. We letColl;(Q) denote the latter event, and upper bound
Pr[Coll5(Q) A —=X(Q)] instead.

We say the-th query issuccessfuif it can be used either as query TL(&, B||L, R) or BL = (B, L||R, S) of a
Coll;-solution, where the other query of the solution isdn_;. Fixing a value ofi, we upper bound separately the
probability that the-th query can be used in position TL and that it can be usedsitipn BL. We further divide each
case into forward and backward queries, giving four casesitsider:

TL forward: LetEg 1, (A) be thei-th query of the adversary. For this query to be successfih{s case) there must be
aquery(B, L||R, S) in the query history suchth@ & S = R® A. Because-X(Q;_1) = —XorKR(Q;_1), there
at mosta such querie$B, L|| R, S) in the query history, each determining a unique valu&oThus the adversary’s
i-th query has chance of succeeding at nagsy’.

TL backward: Same analysis as case TL backward of Propo&tiwith chance of success at magiv’'.
BL forward: Symmetrical to case TL backward, with chancewafcess at most/N’.
BL backward: Symmetrical to case TL forward, with chanceuafcess at most/N'.

Since each query must be either forward or backward (but otht) bthe chance of success of any given query is at
most(1 + «)/N’, and the overall chance of succesg iqueries is at most(1 + «)/N’. O

Proposition 9. Pr[Coll; (Q) A —Triples(Q) A =X(Q)] < g(a+v)/N".

Proof. By symmetry between the left- and right-hand sides of thisioh diagram, we can divide the evetdll; (Q)
according to whether the last query made by the adversagnmplete aColl,-type collision is used in position TL or
BL. We further divide each of these two cases into forwardlaackward queries. We say the last (&ith”) query of
the adversary isuccessfuf it completes aColl; -type collision.

TL forward: Let Bz 1 (A) be thei-th query of the adversary. For this query to succeed in cetimg aColl;-type
collision at position TL, the answeR be this query must be such that there exists a triple of (aigtiqueries
(B,L||R,S), (A',B'|IL'",R"), (B',L'||R',S") € QsuchthatA® R = A @ R andB® S = B’ ® S'. How-
evever,—Triples(Q;_1) = —|Trip|es+(Qi,1) implies that there are mostsuch valuesk. The chance of success
of thei-th query is therefore at mosy/N'.

TL backward: Same analyis as case TL backward of Propos3tianth chance of success at mostV'.
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BL forward: Symmetrical to case TL backward, with chanceuwafcess at most/N’.
BL backward: Symmetrical to case TL forward, with chanceuwafcess at most/N’.

Since each query is either forward or backward, the chansaatfess of any given query is at mést+ v)/N’, and
the overall chance of successjiiis at mosty(« + v) /N'. O

/3
Proposition 10. Pr[Triples(Q) A —~Doubles(Q) A =X(Q)] < 6N? (%@ﬁ)7 .

Proof. We show

/3
Pr[Triples” (Q) A ~Doubles(Q) A ~X(Q)] < 3N3 (3eqﬁ) "

YN’

A similar analysis gives the same upper boundfo[Triples™ (Q) A —Doubles(Q) A =X (Q)], thus yielding the bound.
We fix arbitrary valuesA, B, L € {0,1}". It suffices to show

v/3
Seqﬁ) (16)

Pr[Triples}, 5 ,(Q) A ~Doubles(Q) A =X(Q)] < 3 ( Y

as the desired bound will then follow by a union bound ade, L.

We let#R(Q;) be the number of valueB € {0, 1}" such that there exists an ordered triple of distinct queries
(B,L||R,S), (A',B'|L',R"), (B',L'||R',S") € Q;suchthatA® R = A’ ® R' andB & S = B’ @ S’. Moreover
we let# Rpr, (Q;) be the number of valueB € {0, 1}" such that a triple of this type existghere the last query made
completing the triple is used in positidL, namely where the first element of the triple is added to theydfistory
after the last two elementgVe similarly define# Rrr (Q;) and# Rpr(Q;). Because

#R(Q) >v = (#RsL(Q) >/3) V (#Rtr(Q) >7/3) V (#Rer(Q) >7/3)

it suffices to show:

v/3
Pr[#RpL(Q) > v/3 A =Doubles(Q) A =X(Q)] < (%) a7)
/3
Pr[#Rtr(Q) > 7/3 A ~Doubles(Q) A -X(Q)] < (iejzﬁ ) ’ (18)
/3
Pr[#Rpr(Q) > /3 A ~Doubles(Q) A =X(Q)] < (iejzﬁ ) ’ (19)
to show
3eql /3
Pr[#R(Q) > v A —=Doubles(Q) A =X(Q)] < 3 (’yN’ > (20)
sincea < g.

We start by proving (17). Note, firstly, thétRp1,(Q;) — #RpL(Q;—1) < 1forall i > 1, because a query in posi-
tion BL uniquely determines the value We now boun®r[#RpL(Q;) — #RpL(Q:—1) = 1], considering two cases
according to whether thieth query is forward or backward. We write ‘BL forward’ andL'Bbackward’ to emphasize
the query is to be used in position BL. We say tka (or last) query isuccessfuf #Rp1,(Q;) — #RpL(Qi—1) = 1.

BL forward: Let E, | z(B) be thei-th query. Then becauseX(Q;_1) there are at most queries(A’, B'|| L', R') €
Q;_1 suchthatd’ ® R' = A® R (recall A is fixed) and each of these queries for position TR uniquelgrdgines a
query for position BR. Thus, there are at magpossibilities for the valué’ @ S’ and thus at most valuessS that
would make the last query successful. The chance of succéssrefore at most/N'.
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BL backward: Since the valuB is fixed, the chance of success in this case is trivially attrh6¥’.

Therefore Pr[#Rp1(Q;) — #Rpr(Q;—1) = 1] < a/N’. Using a similar bound as in Proposition 2 (wittinstead
of 2¢, a/N' instead ofl /N’ and~/3 instead ofx) we thus get (17).

We now prove (18). Here too we haveRTr(Q;) — #Rtr(Qi—1) < 1 for all 7. Indeed, a given value of
A" @ R’ uniquely determinesR, since A is fixed. We boun®Pr[#Rrr(Q;) — #Rrr(Qi—1) = 1] considering
two cases, according to whether thth query is forward or backward. We again say thth query issuccessful

if #R1r(Q;) — #Rrr(Qi—1) = 1.

TR forward: LetEp: 1/ (A’) be thei-th query. Then becauseDoubles2*(Q;_1) there are at most pairs of queries
(B,L||R,S), (B',L'||R',S") € Q;_1suchthad ® R = A’ ® R andB ¢ S = B’ @ S’. Each such pair determines
a unique valug®’, and the output of theth query must be one of these valug'sfor thei-th query to be successful.
Thus thei-th query is successful with chance at mggiv’'.

TR backward: LerE;,lHL/(R’) be thei-th query. Then this query uniquely determines the BR queryniquely de-

termines the valueB’ @ S’ = B & S making at mosty possibilities for the query BL (usingX(Q;_1)). But each
query BL uniquely determines the valudsp R, so the last query has chance at me&N’ of being successful.

Sincea < g we therefore hav®r[#Rrr(Qi) — #Rtr(Qi—1) = 1] < §/N’, and (18) follows by a similar
computation as in Proposition 2 (withinstead of2¢, 5/N’ instead ofl /N’ and~/3 instead of).

We finally prove (19). Once again we ha¥eRpr (Q;) — #Rpr(Q:—1) < 1 because a given query BR uniquely
determines the query TR, which uniquely determines theevdlup R’ = A @ R and hence the valuR. We bound
Pr[#Rpr(Q:) — #Rpr(Qi—1) = 1] using the same method and conventions as above:

BR forward: LetE, |z (B’) be thei-th query. This query uniquely determines the query TR, squedy determines
the values ofk (as A is fixed andA’ & R’ = A @ R) and hence the quetL (asB, L are fixed), and so the value
B @ S is uniquely determined. The chance of success in this cabassat most /N’.

BR backward: LetEg,lllR, (S’) be thei-th query. Because:Doubles1(Q;_1) there are at mosf pairs of queries
(B,L||R,S), (A, B'|L’,R') suchthatd ® R = A’ ® R’ andB & S = B’ & S’. Each such pair of queries uniquely
determines a valug’, and an output of théth query cannot be successful unless it is Bief such a pair. Thus the
i-th query has chance of success at msy’.

Thus we hav®r[#Rpr(Q;) — #Rpr(Qi—1) = 1] < 8/N’, leading to (19) by the same computation as for (18).
This concludes the proof of (20) which is the same as (16) tlansicompletes the proof of the proposition. O

8/2
Proposition 11. Pr[Doubles1(Q) A —X(Q)] < 2N° (%) .

Proof. We fix valuesA, B, L, S, R', L’ € {0,1}™. By a union bound, it suffices to show that

B/2
Qeqa> (21)

Pr[DOUbIeSJ-AHBHLHS/HR/”L’ (Q)] < 2 ( ﬁN/
Let #D(Q;) be the number of pairs of queriéB, L|R, S), (A’, B’||L’,R') € Q; suchthatA ® R = A’ & R’ and

B@ S =B @S Moreover we let#Dgy,(Q;) be the number of such pairs where the queBy L|| R, S) was made
after the query A’, B’||L’, R’), and let# Dty (Q;) be the number of such pairs where the quety;, B’|| L', R’) was

made after the query3, L|| R, S). Since

#D(Q) > = (#DBL(Qi) > 3/2) V (#D1r(Q:) > (/2)
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it suffices to show

2eqo plz
Pr[#DpL(Q) > /2 A =X(Q)] < (51\”) (22)
cao\ P/?
Pil#Dn(Q) > /20 X(Q) < (522 23
in order to show
2eqo A2
Pr[#D(Q) > BN -X(Q)] <2 (51\7’) ) (24)

We show only (22) because the proof of (23) is entirely simiérst note that#Dp1,(Q;) — #Dp1(Qi—1) < 1
for all i because a query BL uniquely fixels® R which uniquely fixesd’ ® R’ and hence uniquely fixe4', whereas
the query BL also fixe8 ¢ S = B’ ¢ S’ and hence uniquely fixeB’; since the valud.’ is already fixed anyway, a
guery BL uniquely determines a query TR (and vice-versa).

We now boun®r[#Dg1(Q;) — #Ds1(Q;—1) = 1], considering separately the cases when itrequery is for-
ward and backward. We label these cases as ‘Forward BL' aackBard BL'. We say that theth query issuccessful
if #Dp1(Q:) — #DBL(Qi—1) = 1.

Forward BL: LetE r(B) be thei-th query. Thend © R = A’ @ R’ is uniquely determined by theth query. In
particular, since-X(Q;_1) implies there are at mostqueries of XOR outpull’ ® R/, there are at most possibilities
for query TR and hence possibilities for the valu®’ ¢ S’. Hence the-th query has chance of success at mgsyY’.

Backward BL: Trivially, sinceB is fixed, thei-th query has chance of success at mgs{’.

In any case, thus, the chance of success of-thequery is at most./N’. The bound (22) then follows from a similar
computation as in Proposition 2 (withinstead of2¢, o/ N’ instead ofl /N’ and3/2 instead ofx).

Together with the (identical) proof of (23), this impliesAj2vhich is equivalent to (21), and thus completes the
proof. O

B/2
Proposition 12. Pr[Doubles2(Q) A =X(Q)] < 4N? (%) )

Proof. We show that

26(])6/2

Pr[Doubles2t(Q) A =X(Q)] < 2N°® ( N

since the same bound can be provedifejDoubles2™ (Q) A =X(Q)] by the same method.
We fix valuesA, B, L, A’, B’, L’ € {0,1}™. By a union bound, it suffices to show that

2eq \ /2
Pr[Doubles2} gy 1 a5 () A 7X(Q)] < 2 (BN’) . (25)

(Indeed, since the constraidt® R = A’ ® R’ is equivalenttaR & R’ = A @ A’, the two valuesA, A’ are only as
relevant as their xoA @ A’, thus removing one factor d¥ from the union bound; formally, we should say that we
“fix a value of the xorA @ A’”, but this is not notationally convenient.)

Overwriting the notation of Proposition 11, we now defia®(Q;) to be the number of pairs of querigB, L|| R, S),
(B',L'||R',S") € Q;suchthatd® R = A’'@ R’ andB® S = B'®S’. We further defingt D1, (Q;) and# Dpr(Q;)
analogously to previous such definitions. Since

#D(Q) > = (#DBL(Qi) > 3/2) V (#Dsr(Q:) > 3/2)
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it suffices to show

Pr[#D 9 n-X(Q)] < [ 24 o 26
(#Du(Q) > 627 X(@)] < ( 332 ) (26)
o\ 572
Pil#Dan(Q) > 527 X(Q) < (558 ) @7
in order to show
2eq B/2
PHAD(Q) > A A -X(Q)] <2 ( : N,) | (28)

We prove only (26) since (27) is analogous. We hég®p1,(Q,) — #Dpr(Qi—1) < 1 for all : because a query
BL uniquely fixesA & R which uniquely fixesd’ & R’ and hence uniquely fixe®’. We now boun®r[#Dp1.(Q;) —
#Dgp1(Q;—1) = 1], considering separately the cases whenittiequery is forward and backward. As usual, we say
that thei-th query issuccessfuf #Dg1,(Q;) — #Dp(Qi—1) = 1.

Forward BL: LetEy z(B) be thei-th query. ThenA © R = A @ R’ is uniquely determined, s&’ is uniquely
determined and hence the query BR is uniquely determinaas Bha@ S’ is uniquely determined and thieh query
has chancé /N’ of success.

Backward BL: SinceB is fixed, thei-th query has chance of success at mgs¢’.

In any case, thus, the chance of success of-thequery is at most/N'. The bound (22) then follows from a similar
computation as in Proposition 2 (withinstead o2¢ and3/2 instead ofw).

Together with the (identical) proof of (27), this impliesBj2vhich is equivalent to (25), and thus completes the
proof. O

Adding together the bounds of Propositions 6—-12, we thuaioltite following Theorem:

Theorem 4. Letl < ¢ < N, N' = N — q. Letq, 3, v be integers between 1 agdsuch thate < 3, 3 = 0 mod 2
andy = 0 mod 3. Then

eq \* | 2q¢ | 2qa  qy
I%KdKQﬂ§3N<aNJ S+
3eqf /3 2eqa A2 2eq A2
N3 =2 2N© 4N [ == .
o (vN’) Ve ) T e

Forn = 128 and witha = 13, 3 = 156 andy = 195 Theorem 4 shows that an adversary making 2''°-18 achieves
chance less than 0.5 of obtaining a collision. MoreovergFém 4 has the same “qualitative” corollary as Theorem 1:

Corollary 2. lim,, o, Advia™(N/n) = 0.

Proof. Letq = N/n, a = 7n/logn (more preciselyy = [7n/logn]), § = 2« andy = 3a, where the logarithm
takes base. SinceN’ > N/2forn > 2, we have

e a 2 2qa
Advihy () <3N (L) + L+ 2 O

aN’ N TN TN

3 2 2

g (3ea8 " +one (2eae 7 LN (24 7
AN AN’ AN’

2eq\"  4q 10qo 3 [ 4eq ¢ 6 [ 2eq ¢ 5 [ 2eq ¢
<3N |— — 4+ — N° | — 2N° [ — AN® | —
<3 (aN) + N + N + 6 N + N + N
7
+




Using the equalityV = n™/1°2" we can show that the last expression goes to zero-asco. For example, the last
term

n 7

n n
Tog n - Togn Tog n
o N6 <_26> — 9. s <_26> —9 <_2f)
n n n7

goes to zero a8 — oo. O
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