
The collision security of Tandem-DM
in the ideal cipher model

Jooyoung Lee1, Martijn Stam2, and John Steinberger3⋆

1 The Attached Institute of Electronics and Telecommunications Research Institute, Daejeon, Korea,jlee05@ensec.re.kr
2 École Polytechnique Fédérale de Lausanne, Switzerland,martijn.stam@epfl.ch

3 Institute of Theoretical Computer Science, Tsinghua University, Beijing, China,jpsteinb@gmail.com

Abstract. We prove that Tandem-DM, one of the two “classical” schemes for turning a blockcipher of2n-bit key
into a double block length hash function, has birthday-typecollision resistance in the ideal cipher model. A collision
resistance analysis for Tandem-DM achieving a similar birthday-type bound was already proposed by Fleischmann,
Gorski and Lucks at FSE 2009 [3]. As we detail, however, the latter analysis is wrong, thus leaving the collision
resistance of Tandem-DM as an open problem until now.

1 Introduction

The Tandem-DM compression function is a3n-bit to 2n-bit compression function based on two applications of a
blockcipher of2n-bit key andn-bit word length (Fig. 1). While Tandem-DM was proposed by Lai and Massey in
1992 [7] the first proof of collision security for Tandem-DM (in the ideal cipher model, as is usual for all such proofs)
was only proposed in 2009 by Fleischmann, Gorski and Lucks [3]. Unfortunately, as we detail in Section 3, the “FGL
proof” (as we shall refer to it) has a number of serious flaws which make it false and nonobvious to repair. The purpose
of this paper is to offer a correct collision resistance analysis of Tandem-DM. We show that, as claimed in [3], Tandem-
DM does indeed have birthday-type collision security (necessitating at least2120.8 queries to break when the output
length is2n = 256 bits). A nice feature of our work is that the analysis is relatively simple compared to typical results
in this area. In Section 5 we also give a preimage resistance analysis for Tandem-DM, as the preimage analysis of [3]
suffers from similar flaws as the collision analysis.

B

B L

A R

R

S B⊕S

A⊕R

Fig. 1: The Tandem-DM compression function. All wires carryn-bit values. The top and bottom blockciphers are the same. Each
has a2n-bit key andn-bit input/output. The wire markedL is an input to the compression function (along withA andB).

RELATED WORK ON 2-CALL CONSTRUCTIONS. Another classical scheme for turning a2n-bit key blockcipher into a
3n-bit to 2n-bit compression function is Abreast-DM, pictured in Fig. 2, which was proposed by Lai and Massey in the
same paper as Tandem-DM [7]. The collision resistance of Abreast-DM was independently resolved by Fleischmann,

⋆ Supported by the National Natural Science Foundation of China Grant 60553001 and by the National Basic Research Program
of China Grant 2007CB807900, 2007CB807901.

Gorski and Lucks [4] and Lee and Kwon [8], who both showed birthday-type collision resistance for Abreast-DM. Be-
fore that, Hirose [5] had given a collision resistance analysis for a general class of compression functions that included
Abreast-DM as a special case, but under the assumption that the top and bottom blockciphers of the diagram be distinct
(this considerably simplifies the analysis). The work by Hirose was further generalized byÖzen and Stam [11], who
additionally discuss schemes that are only secure in the iteration.

Another3n-bit to 2n-bit compression function making two calls to a blockcipherof 2n-bit key was proposed
by Hirose [6], who proved birthday-type collision resistance for this construction in the ideal cipher model. Hirose’s
construction (Fig. 3) is simpler than either Abreast-DM or Tandem-DM and in particular uses a single keying schedule
for the top and bottom blockciphers. It is noteworthy that while Hirose introduced his construction over 10 years
after Abreast-DM and Tandem-DM his collision resistance analysis pre-dates similar collision resistance analyses for
Abreast-DM and Tandem-DM.

Fig. 2: The Abreast-DM compression function. The empty circle at bottom left denotes bit complementation.

c

Fig. 3: Hirose’s compression function. The bottom left-hand wire is not an input; it carries an arbitrary nonzero constant c.

RELATED WORK ON 1-CALL CONSTRUCTIONS. Stam [16] proposed a class of “polynomial-based”3n-bit to 2n-bit
compression functions making a single call to a2n-bit key blockcipher, and subsequently proved [17] birthday-type
collision resistance for this construction. Lee and Steinberger [9] proved collision resistance for the same compression
function in the weaker “unpredictable cipher” model. Lucks[10] proposed a double length hash function using a3n-
bit to 2n-bit compression function making a single call to a blockcipher of2n-bit key, and proved this hash function
collision resistant in the ideal cipher model (see [11] for ageneralization). However, Lucks’ construction is only secure
in the iteration, as the compression function itself is collision insecure.

Earlier, Yi and Lam [19] had proposed a3n-bit to 2n-bit compression function making a single call to a2n-bit
key blockcipher whose design was somewhat similar to Stam’spolynomial-based construction but which used a single
integer addition operation instead of several field multiplication operations. However, this construction was brokenby
Wagner [18].

2

COMPARISON. Of the three well-known3n-bit to 2n-bit compression functions making two calls to a2n-bit key
blockcipher—those being Tandem-DM, Abreast-DM and Hirose’s construction—the two constructions whose colli-
sion resistance has been successfully resolved (Hirose andAbreast-DM) share the feature that the inputs to the top
and bottom blockcipher are bijectively related. For example, for Abreast-DM, if the top blockcipher call isEB‖L(A)

then the bottom blockcipher call (for the same inputA‖B) is EL‖A(B), whereB denotes bit complementation of
B; thus the inputs to the top and bottom blockciphers are related by the permutationπ : {0, 1}3n → {0, 1}3n,
π(X‖Y ‖Z) = Y ‖Z‖X . (Here the last2n bits are the key.) In Hirose’s construction, the inputs to the top and bottom
blockciphers are related by the permutationπ′ : {0, 1}3n → {0, 1}3n, π′(X‖Y ‖Z) = X ⊕ c‖Y ‖Z.

By contrast, Tandem-DM exhibits a more subtle relationshipbetween the inputs of the top and bottom blockci-
phers, as anoutputof the top blockcipher is used to key the bottom blockcipher.It is the presence of this “feedback”
within the construction, it seems, that has complicated efforts to prove a collision resistance bound. On the other hand,
Tandem-DM still has the agreeable feature that the top and bottom blockcipher calls uniquely determine each other
in the following sense: given the keyB‖L and outputR of the top cipher one can determine the keyL‖R and the
inputB of the bottom cipher, and vice-versa. This contrasts with constructions such as MDC-2 which use two calls to
a blockcipher ofn-bit key, and in which the top and bottom blockcipher calls donot uniquely determine each other.
Typically, collision resistance analyses are much harder for the latter kind of compression functions. (MDC-2 can
only be proved nontrivially collision resistant in the iteration, and the current best bound ofO(2

3
5

n) queries due to
Steinberger [15] is undoubtedly suboptimal.)

We note that the permutationsπ andπ′ discussed above share the common feature of havingsmall cycle lengths—
all cycles ofπ have length 6 and all cycles ofπ′ have length 2—which constitutes another strong similaritybetween
Abreast-DM and Hirose’s scheme. In fact, due to this reason,Hirose’s collision resistance proof and the Abreast-
DM collision resistance proof can be seen as special cases ofthe same framework, as noted in [4, 8]. Building on
this observation, Fleischmann et al. [4] defined a general class of compression functions called ‘Cyclic-DM’ that are
amenable to collision resistance analyses and that includeHirose’s scheme and Abreast-DM as special cases. Similarly,
one can define collision-resistant generalizations of Tandem-DM by isolating those properties of Tandem-DM that are
used in our proof. While defining the most all-encompassing possible collision resistant generalization of Tandem-
DM is not the goal of this paper we do briefly discuss these key properties and the corresponding collision-resistant
generalizations of Tandem-DM in Section 6, without proof ofsecurity.

A SECOND PROOF. The proof of collision resistance that we provide in this paper is very slick, but slightly mysterious
in its efficacy because it relies on a subtle trick that cuts out a large portion of the case analysis that “would have
been there” in a more standard proof. As a pedagogical bonus,and to provide some perspective on our proof, we also
show how to prove the collision security of Tandem-DM without this trick in Appendix A. We note this second, “brute
force” proof yields a slightly weaker bound.

FURTHER POSSIBLE IMPROVEMENTS. We note that our collision resistance has the formÕ(q/(2n − q)) rather than
Õ(q2/(2n − q)2). Both bounds reach constant values whenq = Ω(2n), howeverq2/(2n − q)2 grows slower than
q/(2n − q) since our bound is (only) “linear birthday” rather than true“quadratic birthday”. We leave it as an open
problem to prove “quadratic birthday”-type collision resistance for Tandem-DM (as exists for Abreast-DM and Hi-
rose’s scheme). Moreover, it is an open problem to prove preimage resistance for values ofq higher than2n for either
Abreast-DM, Tandem-DM or Hirose.

VERSION HISTORY. After the initial posting of this (our) work, we became aware of another paper by Fleischmann
et al. [2], providing a comprehensive generalization of their earlier works [3,4]. (In particular, a new, tighter collision
resistance claim for Tandem-DM is made.) Unfortunately, the problems in the (FSE’09) FGL proof are not addressed
and actually carry over to this new generalization (in particular, the crucial “Argument B” of [4] is incorrect), rendering
the resulting bounds meaningless.

2 Definitions

A blockcipher is a functionE : {0, 1}m × {0, 1}n → {0, 1}n such thatE(K, ·) is a permutation of{0, 1}n for
eachK ∈ {0, 1}m. We callm thekey sizeandn theword sizeof the blockcipher. It is customary to writeEK(X)

3

instead ofE(K, X) for K ∈ {0, 1}m, X ∈ {0, 1}n. The functionE−1
K (·) denotes the inverse ofEK(·) (asEK(·) is a

permutation).
Given a blockcipherE : {0, 1}2n×{0, 1}n → {0, 1}n we define the Tandem-DM compression functionTDME :

{0, 1}3n → {0, 1}2n by
TDME(A‖B‖L) = (A⊕R)‖(B ⊕ S)

where

R = EB‖L(A),

S = EL‖R(B).

In the collision resistance experiment, a computationallyunbounded adversary4 A is given oracle access to a
blockcipherE uniformly sampled among all blockciphers of key length2n and word lengthn. We allowA to query
bothE andE−1. After q queries toE, thequery historyof A is the set of triplesQ = {(Xi, Ki, Yi)}

q
i=1 such that

EKi
(Xi) = Yi andA’s i-th query is eitherEKi

(Xi) orE−1
Ki

(Yi) for 1 ≤ i ≤ q. We letQi = {(Xj , Kj, Yj)}
i
j=1 be the

first i elements of the query history; thusQ = Qq. We sayA succeedsor finds a collisionafter its firsti queries if there
exist distinct3n-bit values,A‖B‖L, A′‖B′‖L′ such thatTDME(A‖B‖L) = TDME(A′‖B′‖L′) and such thatQi

contains both the queries necessary to computeTDME(A‖B‖L) andTDME(A′‖B′‖L′). More formally—and see
Fig. 4—we define this event by a predicateColl(Qi), which is true if and only if there existn-bit valuesA, B, L, R,
S, A′, B′, L′, R′, S′ such that

A‖B‖L 6= A′‖B′‖L′ (1)

A⊕R = A′ ⊕R′ (2)

B ⊕ S = B′ ⊕ S′ (3)

and such that

(A, B‖L, R), (B, L‖R, S), (A′, B′‖L′, R′), (B′, L′‖R′, S′) ∈ Qi. (4)

We denote by
Adv

coll
TDM (q)

the maximum chance of an adversary makingq queries causingColl(Q) to become true. The probability occurs over
the uniform choice ofE and overA’s coin tosses, if any. Also note thatn is a hidden parameter.

The “XOR-output” of a query(Xi, Ki, Yi) is the quantityXi ⊕ Yi. Another predicate which plays an important
part in both our proof and the FGL proof is the “many queries with the same XOR-output” predicateXor(Q), defined
on a query historyQ = {(Xi, Ki, Yi)}

q
i=1 by

Xor(Q) ⇐⇒ max
Z∈{0,1}n

|{i : Xi ⊕ Yi = Z}| > α.

Hereα is a free parameter of the analysis which appears in the final collision resistance bound. (In [3] this predicate is
named LUCKY(Q); in [15] a similar predicate is namedWin0(Q).) Without going into details at this point, we mention
that the FGL collision resistance proof—and ours, essentially, as well—upper boundsPr[Coll(Q)] by Pr[Xor(Q)] +
Pr[Coll(Q)∧¬Xor(Q)]. A largerα implies a lower value forPr[Xor(Q)] and a higher value forPr[Coll(Q)∧¬Xor(Q)].
The best value ofα can be found numerically for a given value ofn andq. Generally, readers may think ofα as some
small constant value (e.g. for n = 128 andq = 2120.87, α = 16).

So far, we have described “infrastructure” that is common toboth proofs. We shall now introduce some material
proper to our proof. Note a query historyQ = {(Xi, Ki, Yi)}

q
i=1 does not record whether each triple(Xi, Ki, Yi)

was obtained by the adversary through a forward queryEKi
(Xi) or a backward queryE−1

Ki
(Yi). For this, we maintain

two arraysFwd[·] andBwd[·] whereFwd[i] = 1 if and only if the adversary’si-th query is a forward query and
Bwd[i] = 1 if and only if the adversary’si-th query is a backward query. We then define an additional predicate

FB(Q) ⇐⇒ max
Z∈{0,1}n

|{i : (Yi = Z ∧ Fwd[i] = 1) ∨ (Xi = Z ∧ Bwd[i] = 1)}| > α. (5)

4 Our notation for the adversary and one of the Tandem-DM inputs collide, but without too much danger of confusion.

4

(‘FB’ stands for “Forward Backward”.) Hereα is the same free parameter as above. Note that¬FB(Q) implies that

maxZ∈{0,1}n |{i : Yi = Z ∧ Fwd[i] = 1}| ≤ α, (6)

maxZ∈{0,1}n |{i : Xi = Z ∧ Bwd[i] = 1}| ≤ α. (7)

It is really consequences (6) and (7) of¬FB(Q) that interest us, though we defineFB(Q) via (5) because this makes
it slightly easier to boundPr[FB(Q)]. We will use the bound

Pr[Coll(Q)] ≤ Pr[Xor(Q)] + Pr[Coll(Q) ∧ ¬Xor(Q)]

≤ Pr[Xor(Q)] + Pr[FB(Q)] + Pr[Coll(Q) ∧ ¬Xor(Q) ∧ ¬FB(Q)]. (8)

One should thus think ofFB(Q) andXor(Q) as bad events whose nonoccurrence helps bound the probability of
Coll(Q) occurring. We warn that (8) constitutes a slightly oversimplified encapsulation of our proof’s high-level struc-
ture. We refer to Section 4 for more details.

3 The FGL collision resistance proof

Since the interest of our paper would be substantially diminished (though not nullified, since our proof is much shorter)
if the FGL collision resistance proof were correct, we detail here some of our objections to [3]. This material also serves
as a good introduction to our own proof, and will give the reader more intuition about Tandem-DM.

TL

BL
B

B L

A R

R

S B⊕S

A⊕R
TR

BR
B′

B′ L′

A′ R′

R′

S′ B′⊕S′

A′⊕R′

Fig. 4: The collision diagram for Tandem-DM. The adversary must find blockcipher queries to fit both sides of the diagram such
thatA ⊕ R = A′ ⊕ R′, B ⊕ S = B′ ⊕ S′ andA‖B‖L 6= A′‖B′‖L′. More precisely, the adversary must find four queries of
the formEB‖L(A) = R, EL‖R(B) = S, EB′‖L′(A′) = R′, EL′‖R′(B′) = S′ such that the above conditions hold. Each query
could either be learned through a forward query (toE) or through a backward query (toE−1). The four queries in the diagram are
labeled ‘TL’, ‘BL’, ‘TR’, ‘BR’ for ‘Top Left’, ‘Bottom Left’ , etc.

Starting with aq-query collision-finding adversaryA, FGL first make the standard assumption thatA never makes
a query to which it already knows the answer (this could occurtwo ways:A could make the exact same query twice, or
A could query (say)E−1

K (Y) after having receivedY as an answer beforehand to a queryEK(X)). This ensures each
answerA receives comes uniformly at random from a set of size at least2n− q (sinceEK(·) is a random permutation
for eachK). Moreover, afterA makesi queries its query history will contain exactlyi distinct elements.

SayA succeedsat thei-th query ifColl(Qi) holds butColl(Qi−1) andXor(Qi−1) do not hold. By upper bounding
the probability thatA ever succeeds we upper boundPr[Coll(Q)∧¬Xor(Q)]. (Upper boundingPr[Xor(Q)] is an easy
probability exercise that we overlook for the purposes of this proof sketch.) A good analogy is to viewA as trying
to complete a puzzle where each element of its query history is a puzzle piece it can use to complete the collision
diagram of Fig. 4. We use the expressions “A succeeds”, “A finds a [puzzle] solution” or “A completes a collision”
interchangeably (and we will rarely remind that the condition¬Xor(Qi−1) must hold forA to succeed). We refer to
the four queries (in any hypothetical puzzle solution (a.k.a. collision)) as ‘TL’, ‘BL’, ‘TR’ and ‘BR’; see Fig. 4.

Note the constraintA‖B‖L 6= A′‖B′‖L′ does not imply that the queries TL, BL, TR, BR are all distinct. For
example, one could have TL = BR (in which case(A, B‖L, R) = (B′, L′‖R′, S′), soA = B′, B = L′, L = R′ and

5

R = S′) or TL = BL (in which case we have the dramatic consequence that A = B = L = R = S, as is easy to
check). This gives rise to several combinatorially distinct cases to consider;A’s chance of obtaining a solution of each
kind is upper bounded separately, and these probabilities are added together to form a final upper bound onA’s chance
of success. (Oddly, FGL include the cases TL = TR and BL = BR in their analysis, while these are impossible since
they implyA‖B‖L = A′‖B′‖L′. This oversight, however, does not imply an incorrect proofin itself.)

We shall restrict our critique to FGL’s analysis of the “generic” case when the queries TL, BL, TR, BR are all
distinct. We note that, in these types of analyses, the generic case is usually the hardest to handle asA’s job typi-
cally grows harder when additional constraints are placed on its solution. (The possibility of reusing the same query
in two different positions of the collision diagram does however occasionally prove useful toA, depending on the
construction, so all cases must always be considered.) We call a puzzle solution in which TL, BL, TR, BR are distinct
a “generic solution”.

If A succeeds in finding a generic solution there is a smallesti such that a generic solution can be assembled
from the queries inQi. Thei-th query is then called the “last query” ofA’s solution. To upper boundA’s chance of
obtaining a generic solution, FGL consider two cases. The first case is the event thatA’s last query can be used in
position TL of the puzzle solution and the second case is the event thatA’s last query can be used in position BL (one
of these two cases must occur). We shall focus on the first of these two cases, which is also the first analyzed in the
order of the FGL proof. We call it the “TL generic” case.

One would typically consider two subcases for the TL genericcase (or any other) depending on whetherA’s last
query is a forward query toE or an inverse query toE−1, but FGL lump their analysis into a single argument claiming
that the two types of queries can be handled the same (in fact,they make this claim for every case in their proof, and
never distinguish between forward and backward queries toE). For clarity, however, we shall restrict ourselves to
considering the case of a forward query toE, and discuss how their argument specializes to that case. Wealso choose
to specifically consider the forward query case because thisis where FGL’s analysis seems to be the most problematic.

The task at hand is thus to upper boundA’s chance of completing a generic solution by making a forward query
to E that can be used as query TL of such a solution. The usual approach for this, and the one used by FGL, is to
consider any given forward queryEKi

(Xi) made byA and to upper bound the probability that the answerYi to this
query is such that the query history element(Xi, Ki, Yi) can be used in the desired manner; one then multiplies this
probability byq sinceA can makeq queries total. With foresight on how we wish to use the queryEKi

(Xi) it is
convenient to renameKi asB‖L andXi asA; thus the query isEB‖L(A). To proceed, one would typically upper
bound the number of valuesR ∈ {0, 1}n such that, if we hadEB‖L(A) = R, the query(A, B‖L, R) could be used
in position TL of a generic solution together with previous elements of the query history, and divide this number by
2n − q, since the answer to the queryEB‖L(A) will come uniformly at random from a set of size at least2n − q.
In turn, the standard, formal way of bounding the number of such R’s would be to upper bound the possible number
of query triples(BL, BR, TR) in the query history that could potentially be used with the queryEB‖L(A) to form a
generic solution, as the number of such triples is an upper bound for the number ofR’s. Note such a triple must have
the formBL = (B, L‖R, S), BR = (B′, L′‖R′, S′), TR = (A′, B′‖L′, R′) whereB ⊕ S = B′ ⊕ S′ (and note that
A, B andL are fixed here by the last query).

FGL do not adopt5 this approach for bounding the number of goodR’s. Rather, they make the following argument:
take the value ofR, whatever it is, that is returned by the queryEB‖L(A); because¬Xor(Qi−1) there will be at most
α queries TR= (A′, B′‖L′, R′) in the query history such thatA⊕R = A′⊕R′; as the TR query uniquely determines
the BR query, there are at mostα possibilities for the BR query; now “give the query BL= (B, L‖R, S) for free to
the adversary”; then since there are at mostα possibilities for the query BR= (B′, L′‖R′, S′) there is chance at most
α/(2n − q) thatB ⊕ S = B′ ⊕ S′ for one of the queries BR, so total chance at mostqα/(2n − q) that the adversary
ever obtains a TL-generic solution with a forward query, there being at mostq queries total.

The fallacy in the above argument can be succinctly summarized by pointing out thatthe queryBL = (B, L‖R, S)
may already be in the query history, in which case there is no randomness left in the valueB ⊕ S. However, let us
review in detail the argument in two different cases: when the query BL =(B, L‖R, S) is already in the query history
prior to the last query, and when it isn’t. (Note that query BLonly depends onR (besidesB andL which are fixed by

5 Neither do we, in fact. Using a careful trick, we manage to upper bound the number of goodR’s by only considering the
possibilities for the query BL rather than by considering the possible triples(BL, TR, BR). In Appendix A, however, we give for
comparison the “brute force” proof which uses the method of upper bounding the number of triples(BL, TR, BR).

6

the last query), and not on which queries are “chosen” for TR and BR.) In the latter case, when BL =(B, L‖R, S) is
not yet in the query history at thei-th query, thenA’s last query can in any case not succeed in completing a generic
TL collision since the query BL is missing; thus there is no need to bound anything (and no need even to “give the
query BL for free”). In the case when query BL is already in thequery history, on the other hand, all randomness is
lost onceR is revealed. FGL successfully argue that, for a given value of R, there will be at mostα possibilities for
the pair (TR , BR), but this does not in any way imply thenon-existenceof such queries TR, BR.

Other issues are raised by FGL’s casual comment that the query BL = (B, L‖R, S) is simply “given for free” to
the adversary. Indeed, if this query is not yet present, is itadded to the query history before or after thei-th query itself?
Is this query only made after the value ofR is revealed, or is it somehow inserted into the query historybefore the
value ofR is revealed? The former might be all right; the latter not, since it would (drastically) alterR’s distribution
conditioned on the query history, i.e.R would no longer come uniformly at random from a set of size≥ 2n − q.
Most importantly, since this free query becomes part of the query history, one should account for the possibility that
this query(not thei-th query) causes the adversary to succeed (and not necessarily by being used in position BL of
a generic solution). Indeed, we are forced to give such credit to the adversary, since we have required the adversary
never to make a query to which it already knows the answer, andsince the adversary may have wished to subsequently
make this query itself; this means the case analysis should be applied recursively to the free query, but if the case
analysis requires other queries to be “given for free”, thenwe bite our tail and end up giving an astronomical number
of free queries to the adversary (e.g., nearly all possible queries).

Note also that nothing in the FGL argument precludes the possibility that, when the adversary makes itsi-th query
EB‖L(A), there is not some very large number of distinct values ofR—say20.5n—for which there exists a triplet
of queries(BL, TR, BR) of the formBL = (B, L‖R, S), BR = (B′, L′‖R′, S′), TR = (A′, B′‖L′, R′) where
B ⊕ S = B′ ⊕ S′, and such thatR does not yet appear as the third coordinate of any query in thequery history with
keyB‖L. Certainly, there being such a large number of values ofR does not contradict¬Xor(Qi−1). Also certainly,
the i-th query would have chance20.5n/(2n − q) of making the adversary succeed if such a large number of values
of R existed, and not chanceα/(2n − q). In other words, one can infer something is wrong with the FGLargument
because it does not address the main difficulty of the case at hand.

While we singled out the TL generic case for examination, thesame kinds of problems recur throughout the
FGL case analysis, essentially invalidating the entire proof. Moreover, since the FGL proof sidesteps the most crucial
challenges posed by an analysis of Tandem-DM (see the previous paragraph), it leaves little for any subsequent analysis
to build on. We note that the FGL preimage resistance proof suffers from very similar flaws as the collision resistance
proof, as briefly discussed in Section 5.

4 Main result: collision resistance of Tandem-DM

It will be easier to explain the form of the probability boundin our main theorem if we explain a few high-level ideas
from the proof beforehand. The proof starts by considering an arbitraryq-query collision-finding adversaryA for
Tandem-DM. We then construct an adversaryA′ as follows:A′ simulatesA, but after each forward queryEV ‖W (U)

made byA, A′ makes the backward queryE−1
U‖V (W) if it does not already know6 the answer to this query, and after

each backward queryE−1
U‖V (W) made byA, A′ makes the forward queryEV ‖W (U) if it does not already know7 the

answer to this query. (To better understand the relation of these instructions to Tandem-DM, viewU , V , W asB, L,
R.) Moreover ifA ever makes a query to whichA′ already knows the answer from its query history,A′ ignores this
query. ThusA′ never makes a query to which it knows the answer.

LetQ′ be the query history ofA′ andQ be the query history ofA. ThenQ ⊆ Q′ and|Q′| ≤ 2q. SinceQ ⊆ Q′

we have

Pr[Coll(Q)] ≤ Pr[Coll(Q′)] ≤ Pr[Xor(Q′)] + Pr[FB(Q′)] + Pr[Coll(Q′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)]. (9)

Our proof uses the inequality above to boundPr[Coll(Q)]. Incidentally, we point out that if we construct an adversary
A′′ fromA′ the same wayA′ is constructed fromA, thenA′′ andA′ will have the same query history, as is not difficult

6 More formally, if its query history does not contain any triple of the form(·, U‖V, W).
7 More formally, if its query history does not contain any triple of the form(U, V ‖W, ·).

7

to see. In other words,everyforward queryEV ‖W (U) made byA′ (including its “own” queries) is followed by the
queryE−1

U‖V (W) unlessA′ already knows this query, and likewiseeverybackward queryE−1
U‖V (W) made byA′ is

followed by the forward queryEV ‖W (U) unlessA′ already knows the answer to this query. The use of the augmented
adversaryA′ may seem superficially similar to Fleischmann et al.’s idea of “giving away a query for free”. However,
it will become clear from our case analysis that we exploit the added structure ofQ′ entirely differently from the
way Fleischmann et al. exploit their free queries. We also point out that the added structure ofQ′ enables the main
“interesting trick” of our analysis, found in case ‘TL Forward’ of Proposition 3 below.

We can now more easily discuss our main result:

Theorem 1. LetN = 2n, q < N/2, N ′ = N − 2q and letα be an integer,1 ≤ α ≤ 2q. Then

Adv
coll
TDM (q) ≤ 2N

(

2eq

αN ′

)α

+
4qα

N ′
+

4q

N ′
.

The term2N
(

2eq
αN ′

)α
in Theorem 1 is an upper bound forPr[Xor(Q′)] + Pr[FB(Q′)]. In fact Pr[Xor(Q′)] ≤

N
(

2eq
αN ′

)α
and Pr[FB(Q′)] ≤ N

(

2eq
αN ′

)α
. The two remaining terms4qα/N ′ + 4q/N ′ are an upper bound for

Pr[Coll(Q′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)]. To boundAdv
coll
TDM (q) for a given value ofn andq one should optimizeα

numerically. For example, forn = 128, Theorem 1 yields thatAdv
coll
TDM (2120.87) < 1

2 usingα = 16. Asymptotically,
Theorem 1 yields the following result:

Corollary 1. limn→∞ Adv
coll
TDM (N/n) = 0.

Proof. Let q = N/n andα = n/ log n, where the logarithm takes base2. SinceN ′ > N/2 for n > 4, we have

Adv
coll
TDM (q) ≤ 2N

(

2eq

αN ′

)α

+
4qα

N ′
+

4q

N ′
≤ 2N

(

4eq

αN

)α

+
8qα

N
+

8q

N

≤ 2N

(

4e logn

n2

)
n

log n

+
8

log n
+

8

n
= 2

(

4e logn

n

)
n

log n

+
8

log n
+

8

n
.

The last expression obviously goes to zero asn→∞. ⊓⊔

In particular,limn→∞ Adv
coll
TDM

(

2(1−ε)n
)

= 0 for any fixedε > 0.
The proof of Theorem 1 uses refinementsColl1(Q), Coll2(Q), Coll3(Q) of the collision predicateColl(Q), defined

as follows:

Coll1(Q) occurs ifQ contains a collision with TL, BL, TR, BR distinct.
Coll2(Q) occurs ifQ contains a collision with either TL = BL or TR = BR.
Coll3(Q) occurs ifQ contains a collision with either TL = BR or BL = TR.

For example,Coll2(Q) occurs if there exist valuesA, B, L, R, S, A′, B′, L′, R′, S′ such that (1)–(4) hold and such that
(A, B‖L, R) = (B, L‖R, S). Since BL 6= BR and TL 6= TR in any collision, we have the following proposition.

Proposition 1. Coll(Q) =⇒ Coll1(Q) ∨ Coll2(Q) ∨ Coll3(Q) for any query historyQ.

In view of proving Theorem 1, letA be an arbitraryq-query adversary for Tandem-DM, and letA′ be obtained from
A as outlined above; letQ be the query history ofA andQ′ be the query history ofA′. Then by (9) it suffices to show
that

Pr[Xor(Q′)] ≤ N

(

2eq

αN ′

)α

Pr[FB(Q′)] ≤ N

(

2eq

αN ′

)α

Pr[Coll(Q′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)] ≤
4qα

N ′
+

4q

N ′

8

since the sum of the above probabilities is an upper bound forPr[Coll(Q)]. Moreover, by Proposition 1,Pr[Coll(Q′)∧
¬Xor(Q′) ∧ ¬FB(Q′)] can be upper bounded by finding upper bounds forPr[Colli(Q

′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)] for
i = 1, 2, 3 and taking the sum of these. We now upper bound these various probabilities in a series of propositions. For
these propositionsq, N andα are as in Theorem 1, andQ′ is the query history of any adversaryA′ as just specified.
We emphasize that|Q′| ≤ 2q and that probabilities are taken over the random cipherE and over the coins ofA′, if
any (it inherits these fromA).

Proposition 2. Pr[Xor(Q′)] ≤ N
(

2eq
αN ′

)α
andPr[FB(Q′)] ≤ N

(

2eq
αN ′

)α
.

Proof. LetQ′ = {(X ′
i, K

′
i, Y

′
i)}2q

i=1 denote the query history ofA′. Since

Pr[|{i : X ′
i ⊕ Y ′

i = Z}| > α] ≤

(

2q

α

) (

1

N ′

)α

,

for eachZ ∈ {0, 1}n, we have

Pr[Xor(Q′)] ≤ N

(

2q

α

) (

1

N ′

)α

≤ N

(

2eq

αN ′

)α

.

Pr[FB(Q′)] can be bounded similarly. ⊓⊔

Proposition 3. Pr[Coll1(Q
′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)] ≤ 4qα/N ′.

Proof. Let
Success1(Q

′
i) = Coll1(Q

′
i) ∧ ¬Coll1(Q

′
i−1) ∧ ¬Xor(Q′

i−1) ∧ ¬FB(Q′
i−1)

for i = 1 . . . 2q. ThenPr[Coll1(Q
′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)] ≤

∑2q
i=1 Pr[Success1(Q

′
i)] andPr[Success1(Q

′
i)] ≤

Pr[Coll1(Q
′
i)|¬Coll1(Q

′
i−1) ∧ ¬Xor(Q′

i−1) ∧ ¬FB(Q′
i−1)].

Fix a value ofi, 1 ≤ i ≤ 2q. We call thei-th query made byA′ the last query. If Success1(Q
′
i) occurs then either

the adversary (i.e. A′) can use its last query as query TL or as query BL of a collisionin which TL, BL, TR and BR are
distinct, by symmetry. Moreover the last query could eitherbe a forward query or a backward query. This gives rise to
four possible cases, and we boundPr[Success1(Q

′
i)] for each separately. (We note the very first case, ‘TL forward’, is

the case we discussed in Section 3.) For each case, we call thelast querysuccessfulif this query completes a collision
with TL, BL, TR, BR distinct and where the last query is used inthe position stipulated by that case (e.g., for the case
‘TL forward’, the last query must be used in position TL).

TL forward: Let the last query beEB‖L(A). Call a valueR goodif there exists a query of the form(B, L‖R, ·) in Q′

that was obtained byA′ as a backward query. We note that because of (7),¬FB(Q′
i−1) implies there are at mostα

goodR’s.
We claim that for the last query to be successful the valueR returned as an answer to the query must be good.

Indeed, letR be the value returned; then a prerequisite for the query to besuccessful is that there be a query of the
form (B, L‖R, ·) in Q′

i−1. We claim that this query must have been obtained as a backward query. Indeed, assume
that the query(B, L‖R, ·) was obtained as a forward queryEL‖R(B) by A′. Then, by construction,A′ would have
immediately followed this query by the queryE−1

B‖L(R) unlessA′ already knew the answer toE−1
B‖L(R). Either way

A′ would have the query(A, B‖L, R) in its query historyprior to thei-th (forward) queryEB‖L(A), a contradiction
sinceA′ never makes a query to which it knows the answer. Thus the value R returned as an answer to the query
EB‖L(A) must be good for the query to be successful.

Since there are at mostα good values ofR and sinceA′ makes at most2q queries, the probability that the last
query is successful is therefore at mostα/(2n − 2q) = α/N ′.

TL backward: Let the last query beE−1
B‖L(R). For the last query to be successful, there must be a (necessarily unique)

query BL = (B, L‖R, S) ∈ Q′
i−1, for some valueS ∈ {0, 1}n. From the conditionB ⊕ S = B′ ⊕ S′ and from

¬Xor(Q′
i−1) there are at mostα possibilities for the query BR. As each query BR uniquely determines the query TR,

9

there are at mostα possibilities for the query TR as well, and thus at mostα possibilities for the valueA′ ⊕R′. Thus
the valueA returned by the last query has chance at mostα/N ′ thatA⊕ R will be equal toA′ ⊕ R′ for one of these
valuesA′ ⊕R′, and so the last query has chance at mostα/N ′ of being successful.

BL forward: A 180◦ rotation of the collision diagram shows this case is symmetric to the case TL backward. The
chance of success in this case is therefore at mostα/N ′.

BL backward: A180◦ rotation of the collision diagram shows this case is symmetric to the case TL forward. The
chance of success in this case is therefore at mostα/N ′.

The chance a forward last query is successful is therefore atmost2α/N ′ (adding the TL and BL forward cases)
and likewise the chance that a backward last query is successful is at most2α/N ′. ThusPr[Success1(Q

′
i)] ≤ 2α/N ′

for all i and
∑2q

i=1 Pr[Success1(Q
′
i)] ≤ 4qα/N ′. ⊓⊔

Proposition 4. Pr[Coll2(Q
′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)] ≤ 2q/N ′.

Proof. Note that when TL = BL,B‖L = L‖R, soB = L = R; moreoverR = S andA = B, soA = B = L = R =
S. For the adversary to obtain a collision with TL = BL, therefore, it must obtain a query of the form(U, U‖U, U). The
same argument applies to the case TR = BR. The chance of a queryEU‖U (U) or of a queryE−1

U‖U (U) being answered

by U is at most8 1/N ′. Thus, since2q queries are made total,Pr[Coll2(Q
′)] ≤ 2q/N ′. ⊓⊔

Proposition 5. Pr[Coll3(Q
′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)] ≤ 2qα/N ′ + 2q/N ′.

Proof. Note that in a collision with TL = BR we must have TL6= BL andA⊕R = B⊕S (sinceB⊕S = B′⊕S′ =
A⊕R, using TL = BR). Say the eventColl′3(Q

′
i) occurs if there exist distinct queries(A, B‖L, R), (B, L‖R, S) inQ′

i

such thatA⊕R = B⊕S. With the same argument applied to the case BL = TR, we haveColl3(Q
′
i) =⇒ Coll′3(Q

′
i).

Therefore it suffices to showPr[Coll′3(Q
′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)] ≤ 2qα/N ′ + 2q/N ′.

The analysis now proceeds rather similarly to Proposition 3. Let

Success′3(Q
′
i) = Coll′3(Q

′
i) ∧ ¬Coll′3(Q

′
i−1) ∧ ¬Xor(Q′

i−1) ∧ ¬FB(Q′
i−1).

We havePr[Coll′3(Q
′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)] ≤

∑2q
i=1 Pr[Success′3(Q

′
i)].

Fix a value ofi, 1 ≤ i ≤ 2q, and call thei-th query made byA′ the last query. If Success′3(Q
′
i) occurs then

either the adversary (i.e. A′) can use its last query as query TL or as query BL of itsColl′3-solution. This gives rise to
four possible cases given that the last query could be eitherforward or backward. In each case, we call the last query
successfulif Success′3(Q

′
i) occurs and if the last query can be used in the position prescribed by that case (either TL

or BL) in theColl′3-solution.

TL forward: We can use exactly the same analysis as in the case‘Forward TL’ of Proposition 3. The probability that
the last query is successful is therefore at mostα/N ′.

TL backward: LetE−1
B‖L(R) be the last query. For the last query to be successful, there must be a (necessarily unique)

query of the form(B, L‖R, S) ∈ Q′
i−1, for someS ∈ {0, 1}n. Since the answerA to the last query must be such that

A⊕ R = B ⊕ S (as per the definition ofColl′3) andB ⊕ S is uniquely determined, the last query has chance at most
1/N ′ of success.

BL forward: A 180◦ rotation of the collision diagram shows this case is symmetric to the case TL backward. The
chance of success in this case is therefore at most1/N ′.

BL backward: A180◦ rotation of the collision diagram shows this case is symmetric to the case TL forward. The
chance of success in this case is therefore at mostα/N ′.

8 Since for each key there is only one relevant query, the tighter1/N could be used as well.

10

The chance a forward last query is successful is therefore atmost(α+1)/N ′ (adding the TL and BL forward cases)
and likewise the chance that a backward last query is successful is at most(α+1)/N ′. ThusPr[Success′3(Q

′
i)] ≤ (α+

1)/N ′ for all i and
∑2q

i=1 Pr[Success1(Q
′
i)] ≤ 2qα/N ′ + 2q/N ′. (In fact, we even havePr[Coll3(Q

′) ∧ ¬FB(Q′)] ≤
2qα/N ′ + 2q/N ′ since¬Xor(Q′) was never used in the above.) ⊓⊔

Taking the sum of the bounds of Propositions 3, 4 and 5 one obtains that

Pr[Coll(Q′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)] ≤
6qα

N ′
+

4q

N ′
.

However, cases TL forward, BL backward and cases TL forward,BL backward of Propositions 3 and 5 reference the
same events (the adversary is successful in case TL forward of Proposition 3 if and only if it is successful in case
TL forward of Proposition 5, and likewise for the BL backwardcases), which results in an “overcounting” of the
adversary’s probability of success by2qα/N ′. A more careful accounting of the adversary’s probability of success
thus shows

Pr[Coll(Q′) ∧ ¬Xor(Q′) ∧ ¬FB(Q′)] ≤
4qα

N ′
+

4q

N ′
. (10)

Here we have not established (10) entirely formally, thoughthis is the bound we use forPr[Coll(Q′) ∧ ¬Xor(Q′) ∧
¬FB(Q′)] in Theorem 1. Establishing (10) formally would require dividing the eventColl(Q) into a different, less
intuitive set of events thanColl1(Q), Coll2(Q), Coll3(Q), events that are directly based on those that occur in the case
analyses of Propositions 3–5. (For example, one of these events would be the event that the adversary ever obtains a
“good R” through a forward or backward query, as defined for forward queries in case TL forward of Proposition 3
and implicitly defined (by symmetry) for backward queries incase BL backward of Proposition 3; another event would
cover the cases TL backward and BL forward of Proposition 5; and so on.) The current form of the proof is our best
compromise between readability and formality. In any case,the difference between4qα/N ′ and6qα/N ′ is relatively
minor.

Summing (10) with the bounds of Proposition 2 and using (9), we obtain

Pr[Coll(Q)] ≤ 2N

(

2eq

αN ′

)α

+
4qα

N ′
+

4q

N ′
. (11)

Since (11) holds for an arbitraryq-query adversaryA, this establishes Theorem 1.

5 Preimage Resistance

Ideally we would like to prove a strong bound on the everywhere preimage resistance [12] of Tandem-DM. In this
notion, the adversary first gets to pick a challenge digest and subsequently (using oracle access toE) needs to find a
preimage.

Unfortunately, Tandem-DM has the particularity that the point 02n is weaker than other range points with respect
to preimage resistance. Indeed, to find a preimage of02n (given a random blockcipher) an adversary can make queries
of the formEU‖U (U) for different values ofU until it finds aU such thatEU‖U (U) = U ; then it is easy to see
thatTDME(U‖U‖U) = 02n. The probability (over the choice ofE) of this attack succeeding inq queries is1 −
(1 − 1/N)q ≈ q/N = q/2n, since a different key is used for each query. On the other hand, we shall see that all
nonzero points in{0, 1}2n have much better preimage resistance thanq/N , at least forq in the range of interest (i.e.
q = o(N), ω(1)). We also note this preimage attack on02n is nearly matched by an easily-proved preimage resistance
bound ofq/N ′ = q/(2n− q) for 02n (or any other point in{0, 1}2n); the bound follows from the fact that a necessary
condition for inverting02n is to find a query with XOR output0n.

One solution for avoiding issues associated to02n is to have the point-to-invert be chosen at random from{0, 1}2n;
in this case there is chance at most1/22n anyway that02n is the image to invert. However, we find it slightly more
interesting to emphasize that02n is the only “bad” point in the range by letting the adversary choose which point to
invert, under the stipulation that the adversary is not allowed to choose02n (for which we anyway have the above

11

q/N ′ preimage resistance bound which, though worse than the preimage resistance bound we shall prove for nonzero
points, is acceptable from a practical standpoint). A more detailed description of the preimage resistance experiment
can be found below.

We note that Fleischmann et al. [3] claim to prove preimage resistance of the typeO(q/(2n − q)2) for Tandem-
DM. Unfortunately, their analysis has similar flaws to theircollision resistance proof. For example, while examining
the case that the adversary’s last query may be used in the toprow of a solution for the preimage, FGL “give for free”
the bottom row query if it is not already in the query history,and claim that the two queries (the last query and the free
query) have combined chance of success1/(2n− q)2, sinceA⊕R must equalC1 andB⊕S must equalC2; the issue,
once again, is that if the “free” bottom row query is already in the query history, there is no randomness left in the
valueB ⊕ S (whereas if the bottom row query was not in the query history,the adversary could not succeed anyway,
so in this case there is in fact no need to give it the bottom query for free). Moreover, Fleischmann et al. ignore the
possibility that the adversary may use the same query for thetop and bottom row in its attack, which is associated
to the issues regarding02n discussed above; however, since they work in a model where the range point to invert is
chosen at random, this particular omission would be easy to repair.

Our preimage resistance experiment will be as follows: an adversaryA with oracle access to a randomly sampled
blockcipherE : {0, 1}2n × {0, 1}n → {0, 1}n selects and announces a pointC1‖C2 ∈ {0, 1}2n, C1‖C2 6= 02n,
before making queries toE. The adversary wins afterq queries if its query historyQ = {(Xi, Ki, Yi)}

q
i=1 contains

the means of computing a preimage ofC1‖C2, in the sense that there exist valuesA, B, L, R, S ∈ {0, 1}n such that
A ⊕ R = C1, B ⊕ S = C2 and such that the queries(A, B‖L, R), (B, L‖R, S) are inQ. (In this case, we sayQ
contains a preimageof C1‖C2.) We denote by

Adv
pre6=0
TDM (q)

the maximum advantage of any (probabilistic, computationally unbounded) adversary at this game. We note that here,
too,n is a hidden parameter of the advantage. Moreover, we let

Preim(Q)

be the predicate that is true if and only ifQ contains a preimage ofC1‖C2, whereC1‖C2 is an elided-but-understood
parameter of the predicate. Thus,Adv

pre6=0
TDM (q) is the maximum ofPr[Preim(Q)] taken over allq-query adversaries

A, the probability being taken overE and the coins ofA. We always assume thatA is honest in the sense of choosing a
nonzero valueC1‖C2. Now our preimage resistance theorem is the following (notethat the definition ofN ′ is different
than in Theorem 1):

Theorem 2. LetN = 2n, q < N , N ′ = N − q and letα be an integer,1 ≤ α ≤ q. Then

Adv
pre6=0
TDM (q) ≤ 2

(eq

αN ′

)α

+
2α

N ′
.

Proof. The “preimage diagram” for Tandem-DM is the left-hand portion of Fig. 4. While there are no “right-hand
side” queries for the preimage diagram, we keep the labelling ‘TL’, ‘BL’ for the queries on the left-hand side. That is,
in the preimage resistance game, the adversary’s goal is to solve a “puzzle” by finding queries TL, BL of the form TL
= (A, B‖L, R), BL = (B, L‖R, S) such thatA ⊕ R = C1, B ⊕ S = C2. We emphasize at the outset that the case
C1 = C2 doesnot require a separate analysis, and is handled in the same way asthe caseC1 6= C2.

We start by noting that, in any solution of the preimage diagram, the queries TL, BL are necessarily distinct.
Indeed, as discussed in Proposition 4, when the queries TL, BL are equal they have the form(U, U‖U, U) and the
output of Tandem-DM is02n. We also note that if TL =(A, B‖L, R) then BL =(B, L‖R, B⊕C2), and, conversely, if
BL = (B, L‖R, S) then TL =(R⊕C1, B‖L, R). Thus the queries TL, BL uniquely determine each other in thestrong
sense thatall threecoordinates of BL are determined by the query TL, and vice-versa.

As the preimage adversaryA makes queries we maintain two sequencesWTL andWBL calledwish lists, which
are initially empty, as well as two flagsflag1 andflag2, which are initially zero. For each new query(X, K1‖K2, Y)
learned byA we update the wish lists and the flags as follows:

1. If (X, K1||K2, Y) ∈ WTL or (X, K1||K2, Y) ∈ WBL thenflag1 ← 1.
2. If X ⊕ Y = C1 then(K1, K2||Y, K1 ⊕ C2) is added toWBL.

12

3. If X ⊕ Y = C2 then(K2 ⊕ C1, X ||K1, K2) is added toWTL.
4. If |WTL| > α or |WBL| > α, thenflag2 ← 1.

We point out that, as long asA does not make redundant queries (which we assume it does not), the elements ofWTL

are all distinct from one another, as are the elements ofWBL. Indeed, it is easy to see that each element ofWTL

uniquely determines the query(X, K1||K2, Y) which caused it to be added toWTL, and likewise forWBL.
We claim Preim(Q) =⇒ flag1. Indeed, if there are two queries(A, B‖L, R), (B, L‖R, S) in Q such that

A⊕R = C1, B ⊕ S = C2, then one of these two queries was made after the other. Reasoning on both cases, we find
that this query was an element of one of the wish lists at the point when it was learned, thus settingflag1. (The reverse
implicationflag1 =⇒ Preim(Q) is also true and is trivial.) We thus have

Pr[Preim(Q)] = Pr[flag1 = 1] ≤ Pr[flag2 = 1] + Pr[flag1 = 1 ∧ flag2 = 0]. (12)

We can bound
Pr[flag2 = 1] ≤ 2

(eq

αN ′

)α

. (13)

The proof of (13) is similar to Proposition 2, except that oneomits the final union bound which results in the multipli-
cation byN .

Let WishGrantedTL,i be the event that, at any point during the attack,A learns a query(X, K1‖K2, Y), such that,
at that moment and prior to the updating of the lists for that query, thei-th element ofWTL is equal to(X, K1‖K2, Y).
DefineWishGrantedBL,i in the same way. We then have

Pr[flag1 = 1 ∧ flag2 = 0] ≤

α
∑

i=1

Pr[WishGrantedTL,i] +

α
∑

i=1

Pr[WishGrantedBL,i].

However, each wish list element can only be “wished for” onceby A, due to the fact thatEK1‖K2
(·) is a permutation.

ThusPr[WishGrantedTL,i], Pr[WishGrantedBL,i] ≤ 1/N ′ and so

Pr[flag1 = 1 ∧ flag2 = 0] ≤
2α

N ′
. (14)

By (13), (14) and (12) we obtain

Pr[Preim(Q)] ≤ 2
(eq

αN ′

)α

+
2α

N ′

thus establishing the Theorem. ⊓⊔

Here also,α must be optimized numerically for given values ofn andq. For n = 128, for example, Theorem 2
yieldsAdv

pre
TDM (2127.0) ≤ 10−36 with α = 35, Adv

pre
TDM (2127.9) ≤ 10−35 with α = 95 andAdv

pre
TDM (2127.99) ≤

10−33 with α = 468. In fact, forn = 128 Theorem 2 gives a non-void upper bound forAdv
pre
TDM (q) for values ofq

up to≈ 2128−2−60

.
Theorem 2 should be compared with the trivial preimage resistance boundq/N ′ valid for any range point, that

follows from the above-mentioned observation that inverting a pointC1‖C2 in particular implies finding a query
(A, B‖L, R) such thatA⊕R = C1 (there is chance at most1/N ′ of this occurring for any query). Firstly,q/N ′ = 1
whenq = N/2, whereas the bound of Theorem 2 implies that forδ constant,δ < 1, andq = δN , Adv

pre
TDM (q)→ 0

asn → ∞ with anyα(n) such thatlimn→∞ α(n) = ∞ andlimn→∞ α(n)/N = 0. Secondly,q/N ′ exhibits a linear
growth inq for fixedn, whereas the bound of Theorem 2 pinpoints a much more “suddenthreshold” of success, located
nearq ≈ N ; this is illustrated by the two graphs for the casen = 128, shown in Fig. 5.

Using Theorem 2 we can also derive a preimage resistance bound for the more standard definition of preimage
resistance in which the adversary is given a random point in the range to invert. (A third definition, which we do not
consider, samples the point to invert by sampling and evaluating a random point in the domain. For further discussion
of these definitions and reductions among them, see [12].) Let Adv

pre$
TDM denote the maximum advantage of aq-query

adversary at inverting a random point in{0, 1}2n, where the probability of inversion is also taken over the random
choice of the point, and where “inverting the point” means, like above, constructing a query history that contains a
preimage of the point. As an easy consequence of Theorem 2, wehave:

13

Theorem 2
Trivial bound

0

0.2

0.4

0.6

0.8

1
P

re
im

ag
e

re
si

st
an

ce

120 122 124 126 128 130
log q

Fig. 5: Comparison between Theorem 2 and the trivial bound for n = 128. The Theorem 2 bound has a very sharp inflection point

located nearq = 2128−2
−60

.

Theorem 3. LetN = 2n, q < N , N ′ = N − q and letα be an integer,1 ≤ α ≤ q. Then

Adv
pre$
TDM (q) ≤ 2

(eq

αN ′

)α

+
2α

N ′
+

q

N2N ′
.

Here the additional termq/N2N ′ accounts for the event that the point to invert is02n. This event happens with
probability1/N2, in which case the adversary has chance at mostq/N ′ of success.

6 A Generalization

In this section we give (without proof) a generalization of Tandem-DM that has the same level of collision resistance
as Tandem-DM and that is subject to the same type of collisionresistance analysis as the one we do in this paper.
The main purpose of this section is not to propose a new schemefor potential implementation but rather to shed some
additional light on Tandem-DM and on our proof by showing which key features enable our analysis.

Let F1 : {0, 1}n × {0, 1}n → {0, 1}n, F2 : {0, 1}n × {0, 1}n → {0, 1}n be functions such thatFi(U, ·) and
Fi(·, U) are permutations of{0, 1}n for any constantU ∈ {0, 1}n, i = 1, 2. Let G : {0, 1}n × {0, 1}n × {0, 1}n →
{0, 1}n×{0, 1}n×{0, 1}n be a permutation such that the first coordinate ofG’s output is determined by the first two
coordinates of its input and such that the last coordinate ofG’s input is determined by the last two coordinates of its
output (thus ifG(X, Y, Z) = (U, V, W) we can always computeU from X andY only and always computeZ from
V andW only). Moreover letH : {0, 1}3n → {0, 1}3n be an arbitrary permutation. Our generalization is the function
TDME

F1,F2,G,H : {0, 1}3n → {0, 1}2n defined by

TDME
F1,F2,G(A‖B‖L) = F1(X1, Y1)‖F2(X2, Y2)

14

where

X1‖K1‖K
′
1 = H(A‖B‖L)

Y1 = EK1‖K′

1
(X1)

X2‖K2‖K
′
2 = G(K1, K

′
1, Y1)

Y2 = EK2‖K′

2
(X2)

where the penultimate assignment identifies({0, 1}n)3 with {0, 1}3n. One may think of the valueY1 asR and of
the valueY2 asS. We note thatTDME = TDME

F1,F2,G,H whenG, H are identity functions andF1(X, Y) =
F2(X, Y) = X ⊕ Y .

This generalization is also preimage resistant up to the “trivial” bound of q/(2n − q). However we do not claim
TDME

F1,F2,G,H enjoys the same kind of preimage resistance as offered by Tandem-DM (under, say, the random-point-
in-the-range model). Indeed, preimage resistance seems more subtle to bound than collision resistance, mainly because
of attacks in which TL = BL and because we are not happy to give up a termq/(2n − q) for preimage resistance. We
leave the worst-case preimage resistance ofTDME

F1,F2,G,H as an interesting open problem.

7 Conclusion

In this work, we have shown that an earlier work concerning the security of Tandem-DM was incorrect. However,
with a new proof (exploiting new ideas) we have shown that, inthe ideal-cipher model, Tandem-DM is collision resis-
tant almost up to the birthday bound and (provably) preimageresistant essentially up to the birthday bound (leaving
considerable room for improvement for the latter).

On a high level, our proof of collision resistance adheres toa (by now) standard framework. We first modify the
collision-finding adversary by giving it several “free” queries and subsequently we bound the modified adversary’s
chance of success using a case analysis. This approach allows to easily bound both the number of free queries and the
probability of a query (free or not) causing a collision.

In contrast, the FGL proof directly uses a case analysis and subsequently uses free queries within the case analysis.
This ad hoc addition of free queries (and its binding to a particular case) is problematic, as it does not allow proper
accounting of the free queries. In particular, if a free query is fresh it might cause a collision (or other bad event)
elsewhere whereas if the free query has actually been asked before, no new randomness can be extracted from it.

Thus, apart from having established the security of Tandem-DM, we hope that our work also serves as a useful
reminder to some of the subtleties involved in ICM proofs andas a guideline on how to avoid certain pitfalls.

References

1. Y. Dodis and J. Steinberger.: Message Authentication Codes from Unpredictable Block Ciphers.
Crypto 2009, LNCS 5677, pp. 267–285. Springer, Heidelberg (2010). Full version available at
http://people.csail.mit.edu/dodis/ps/tight-mac.ps

2. E. Fleischmann, C. Forler, M. Gorski and S. Lucks.: Collision Resistant Double-Length Hashing. ProvSec 2010, LNCS 6401,
pp. 102–118. Springer, Heidelberg (2010)

3. E. Fleischmann, M. Gorski and S. Lucks.: On the security ofTandem-DM. FSE 2009, LNCS 5665, pp. 84–103. Springer,
Heidelberg (2009)

4. E. Fleischmann, M. Gorski and S. Lucks.: Security of cyclic double block length hash functions, Cryptography and Coding,
12th IMA International Conference, Cirencester, UK, LNCS 5921 pp. 153–175. Springer, Heidelberg (2009)

5. S. Hirose.: Provably secure double-block-length hash functions in a black-box model. ICISC 2004, LNCS 3506, pp. 330–342.
Springer, Heidelberg (2005)

6. S. Hirose.: Some plausible constructions of double-block-length hash functions. FSE 2006, LNCS 4047, pp. 210–225. Springer,
Heidelberg (2006)

7. X. Lai and J. Massey.: Hash function based on block ciphers. Eurocrypt 1992, LNCS 658, pp. 55–70. Springer, Heidelberg
(1993)

8. J. Lee and D. Kwon.: The security of Abreast-DM in the idealcipher model.
http://eprint.iacr.org/2009/225.pdf

15

9. J. Lee and J. Steinberger.: Multi-property preservationusing polynomial-based modes of operation, Eurocrypt 2010,
LNCS 6110, pp. 573–596. Springer, Heidelberg (2010)

10. S. Lucks.: A collision-resistant rate-1 double-block-length hash function. Symmetric Cryptography, Dagstuhl Seminar Pro-
ceedings 07021 (2007)

11. O.Özen and M. Stam.: Another Glance at Double-Length Hashing,Cryptography and Coding, 12th IMA International Con-
ference, Cirencester, UK, LNCS 5921, pp. 94–115. Springer,Heidelberg (2009)

12. P. Rogaway and T. Shrimpton.: Cryptographic hash-function basics: definitions, implications, and separations forpreimage
resistance, second-preimage resistance, and collision-resistance. FSE 2004, LNCS 3017, pp. 371–388. Springer, Heidelberg
(2004)

13. P. Rogaway and J. Steinberger.: Constructing cryptographic hash functions from fixed-key blockciphers. Crypto 2008, LNCS
5157, pp. 433–450. Springer, Heidelberg (2008)

14. T. Shrimpton and M. Stam.: Building a collision-resistant compression function from non-compressing primitives.ICALP
2008, Part II. LNCS 5126, pp. 643–654, Springer, 2008.

15. J. Steinberger.: The collision intractability of MDC-2in the ideal-cipher model, Eurocrypt 2007, LNCS 4515, pp. 34–51.
Springer, Heidelberg (2007)

16. M. Stam.: Beyond uniformity: better security/efficiency tradeoffs for compression functions, Crypto 2008, LNCS 5157,
pp. 397–412. Springer, Heidelberg (2008)

17. M. Stam.: Blockcipher-based hashing revisited, FSE 2009, LNCS 5665, pp. 67–83. Springer, Heidelberg (2009)
18. D. Wagner.: Cryptanalysis of the Yi-Lam hash, Asiacrypt2000, LNCS 1976, pp. 483–488. Springer, Heidelberg (2000)
19. X. Yi and K.-Y. Lam.: A new hash function based on block cipher. ACISP 1997, Second Australasian Conference on Informa-

tion Security and Privacy, LNCS 1270, pp. 139–146. Springer, Heidelberg (1997)

A A second collision resistance proof: doing without the trick

The collision resistance analysis of Tandem-DM given in Section 4 depends on a rather subtle trick—namely, a mod-
ification of the adversary that allows us, later on in the proof, to infer that a particular type of query, if present in the
query history,must have been made in a particular direction(forward or backward); knowing the query direction then
allows us to conclude that very few queries of the given type can exist in the query history. This observation dispatches
the most crucial (i.e. difficult) cases of the analysis. We refer the reader back to Section 4, in particular cases Forward
TL of Proposition 3 and Forward TL of Proposition 5 for more details.

In this section we give a more standard collision analysis ofTandem-DM that does not use this trick. This analysis
does not modify the adversary in any way (in particular, the adversary will makeq queries, not2q) and resorts to
sub-analyses for dealing with difficult cases (i.e. cases that were previously handled via our trick). Some of the sub-
analyses require sub-sub-analyses of their own; the work istedious, but straightforward, following the path laid out by
previous recursive analyses of this type, in particular theanalysis of MDC-2 [15] (such recursive analyses may also
be found in [1, 13]). The purpose of presenting a second proofis purely for general interest: it shows “what the proof
looks like” (and in particular its length) when our trick isn’t used, and serves as a tutorial and reminder on the use of
recursive analyses. In particular, the collision resistance bound derived from this second proof is of birthday-type,but
worse than the bound of Theorem 1: while the adversary only makesq queries instead of2q, the greater number of
cases considered in the proof yields a weaker bound overall.Forn = 128, our second theorem gives that an adversary
makingq = 2119.18 queries achieves chance< 0.5 of obtaining a collision (Theorem 1 givesq = 2120.87).

For the proof, we reuse the predicateXor(Q) of Section 2. Writing the query history asQ = (Xi, Ui‖Vi, Yi)
q
1

(i.e. decomposingKi asUi‖Vi) we also define two predicatesXorKL, XorKR (where ‘KL’ and ‘KR’ stand for ‘Key
Left’ and ‘Key Right’, respectively) as follows:

XorKL(Q) ⇐⇒ max
C∈{0,1}n

|{i : Xi ⊕ Yi ⊕ Ui = C}| > α,

XorKR(Q) ⇐⇒ max
C∈{0,1}n

|{i : Xi ⊕ Yi ⊕ Vi = C}| > α.

We emphasize that the parameterα which appears in these definitions is the “sameα” as for Xor(Q). We addi-
tionally define five predicatesTriples+A‖B‖L, Triples−S‖R‖L, Doubles1A‖B‖L‖S′‖R′‖L′ , Doubles2+

A‖B‖L‖A′‖B′‖L′ and

Doubles2−S‖R‖L‖S′‖R′‖L′ using two new parametersβ > 0 andγ > 0. The definitions for these more complicated

16

BL
B

L

A

R

S B⊕S

A⊕R
TR

BR
B′

B′ L′

A′ R′

R′

S′ B′⊕S′

A′⊕R′

Fig. 6: Definition ofTriples+
A‖B‖L

(Q). For everyA, B, L ∈ {0, 1}n, the eventTriples+
A‖B‖L

(Q) occurs iff there are more thanγ

valuesR ∈ {0, 1}n for which there exists an ordered triple of distinct queries(B, L‖R, S), (A′, B′‖L′, R′), (B′, L′‖R′, S′) ∈ Q
such thatA⊕R = A′ ⊕R′ andB ⊕ S = B′ ⊕ S′, namely more thanγ valuesR for which the adversary can complete the above
partial collision diagram using distinct queries. The wires A, B, L are drawn in bold to indicate that their values are “externally
fixed”.

TL

B

B L

A R

S B⊕S

A⊕R
TR

BR
B′

B′ L′

A′ R′

R′

S′ B′⊕S′

A′⊕R′

Fig. 7: Definition ofTriples−
S‖R‖L

(Q). For everyS, R, L ∈ {0, 1}n, the eventTriples−
S‖R‖L

(Q) occurs iff there are more thanγ
valuesB ∈ {0, 1}n for which there exists an ordered triple of distinct queries(A, B‖L, R), (A′, B′‖L′, R′), (B′, L′‖R′, S′) ∈ Q
such thatA⊕R = A′ ⊕R′ andB ⊕ S = B′ ⊕ S′, namely more thanγ valuesB for which the adversary can complete the above
partial collision diagram using distinct queries.

BL
B

L

A

R

S B⊕S

A⊕R
TR

B′

B′ L′

A′ R′

S′ B′⊕S′

A′⊕R′

Fig. 8: Definition of the eventDoubles1A‖B‖L‖S′‖R′‖L′(Q). For every A, B, L, S′, R′, L′ ∈ {0, 1}n, the event
Doubles1A‖B‖L‖S′‖R′‖L′(Q) occurs iff the adversary obtains more thanβ solutions to the above diagram, where a “solution” con-
sists of an ordered pair of (distinct) queries(B, L‖R, S), (A′, B′‖L′, R′) ∈ Q such thatA⊕R = A′⊕R′ andB⊕S = B′⊕S′.

BL
B

L

A

R

S B⊕S

A⊕R

BR
B′

L′

A′

R′

S′ B′⊕S′

A′⊕R′

Fig. 9: Definition of the eventDoubles2+

A‖B‖L‖A′‖B′‖L′(Q). For every A, B, L, A′, B′, L′ ∈ {0, 1}n, the event

Doubles2+

A‖B‖L‖A′‖B′‖L′(Q) occurs iff the adversary obtains more thanβ solutions to the above diagram, where a “solution”
consists of an ordered pair of (distinct) queries(B, L‖R, S), (B′, L′‖R′, S′) ∈ Q such thatA⊕R = A′⊕R′ andB⊕S = B′⊕S′.

17

TL

B

B L

A R

S B⊕S

A⊕R
TR

B′

B′ L′

A′ R′

S′ B′⊕S′

A′⊕R′

Fig. 10: Definition of the eventDoubles2−
S‖R‖L‖S′‖R′‖L′(Q). For every S, R, L, S′, R′, L′ ∈ {0, 1}n, the event

Doubles2−
S‖R‖L‖S′‖R′‖L′(Q) occurs iff the adversary obtains more thanβ solutions to the above diagram, where a “solution” con-

sists of an ordered pair of (distinct) queries(A, B‖L, R), (A′, B′‖L′, R′) ∈ Q such thatA⊕R = A′⊕R′ andB⊕S = B′⊕S′.

predicates are given in Figures 6–10. We note that the ‘Doubles’ events are defined with respect to the parameterβ
whereas the ‘Triples’ events are defined with respect toγ.

The reader may wonder as to the “logic” behind which wires areheld constant in which diagram. Note, say, for
Triples+, that the wiresA, L andB are all those which “would be held constant” if we had fixed a certain forward
queryEB‖L(A) for position TL whose outputR was not yet known; similarly, forTriples−, the wiresS, R andL

are those which would be held constant if we had fixed a backward queryE−1
L‖R(S) for position BL whose outputB

was not yet known. The wires held constant in the eventDoubles1 are similarly obtained by fixing a forward query
EB‖L(A) and a backward queryE−1

L′‖R′
(S′) of unknown outputs, and so on for the eventsDoubles2+, Doubles2−.

We further define the existentially quantified versions of these predicates:

Triples+(Q) ⇐⇒ there existA, B, L ∈ {0, 1}n such thatTriples+A‖B‖C(Q)

Triples−(Q) ⇐⇒ there existS, R, L ∈ {0, 1}n such thatTriples−S‖R‖L(Q)

Doubles1(Q) ⇐⇒ there existA, B, L, S′, R′, L′ ∈ {0, 1}n such thatDoubles1A‖B‖L‖S′‖R′‖L′(Q)

Doubles2+(Q) ⇐⇒ there existA, B, L, A′, B′, L′ ∈ {0, 1}n such thatDoubles2+
A‖B‖L‖A′‖B′‖L′(Q)

Doubles2−(Q) ⇐⇒ there existS, R, L, S′, R′, L′ ∈ {0, 1}n such thatDoubles2+
S‖R‖L‖S′‖R′‖L′(Q).

We finally define the following shorthands:

X(Q) = Xor(Q) ∨ XorKL(Q) ∨ XorKR(Q)

Triples(Q) = Triples+(Q) ∨ Triples−(Q)

Doubles2(Q) = Doubles2+(Q) ∨ Doubles2−(Q)

Doubles(Q) = Doubles1(Q) ∨Doubles2(Q).

Keeping the predicatesColl1(Q), Coll2(Q) andColl3(Q) as defined in Section 4, we have the following elementary
implications:

Coll(Q) =⇒ X(Q) ∨ (Coll1(Q) ∧ ¬X(Q)) ∨ Coll2(Q) ∨ (Coll3(Q) ∧ ¬X(Q))

Coll1(Q) ∧ ¬X(Q) =⇒ (Triples(Q) ∧ ¬X(Q)) ∨ (Coll1(Q) ∧ ¬Triples(Q) ∧ ¬X(Q))

Triples(Q) ∧ ¬X(Q) =⇒ (Doubles(Q) ∧ ¬X(Q)) ∨ (Triples(Q) ∧ ¬Doubles(Q) ∧ ¬X(Q))

Doubles(Q) ∧ ¬X(Q) =⇒ (Doubles1(Q) ∧ ¬X(Q)) ∨ (Doubles2(Q) ∧ ¬X(Q)).

(The first implication follows from Proposition 1.) Thus, wehave

Pr[Coll(Q)] ≤ Pr[X(Q)] + Pr[Coll2(Q)] + Pr[Coll3(Q) ∧ ¬X(Q)]

+ Pr[Coll1(Q) ∧ ¬Triples(Q) ∧ ¬X(Q)] + Pr[Triples(Q) ∧ ¬Doubles(Q) ∧ ¬X(Q)]

+ Pr[Doubles1(Q) ∧ ¬X(Q)] + Pr[Doubles2(Q) ∧ ¬X(Q)]. (15)

18

We now proceed to individually upper bound each of the probabilities in (15). In each of the following propositions,
Q is the query history of aq-query adversary,N ′ = N − q = 2n− q andα, β, γ are integers such that1 ≤ α, β, γ ≤ q
andα ≤ β and such thatγ ≡ 0 mod 3 andβ ≡ 0 mod 2. Moreover we letQi denote the adversary’s query history
after the firsti queries (including the answer of thei-th query), as usual.

Proposition 6. Pr[X(Q)] ≤ 3N
(

eq
αN ′

)α
.

Proof. We individually havePr[Xor(Q)] ≤ N
(

eq
αN ′

)α
, Pr[XorKL(Q)] ≤ N

(

eq
αN ′

)α
andPr[XorKR(Q)] ≤ N

(

eq
αN ′

)α
.

Each of these inequalities can be proved as in Proposition 2. ⊓⊔

Proposition 7. Pr[Coll2(Q)] ≤ q/N ′.

Proof. Same as for Proposition 4 (which does not use the assumptions¬Xor(Q), ¬FB(Q)). ⊓⊔

Proposition 8. Pr[Coll3(Q) ∧ ¬X(Q)] ≤ q(1 + α)/N ′.

Proof. Recall that, as observed in Proposition 5,Coll3(Q) implies that the adversary obtains two distinct queries
(A, B‖L, R), (B, L‖R, S) such thatA ⊕ R = B ⊕ S. We letColl′3(Q) denote the latter event, and upper bound
Pr[Coll′3(Q) ∧ ¬X(Q)] instead.

We say thei-th query issuccessfulif it can be used either as query TL =(A, B‖L, R) or BL = (B, L‖R, S) of a
Coll′3-solution, where the other query of the solution is inQi−1. Fixing a value ofi, we upper bound separately the
probability that thei-th query can be used in position TL and that it can be used in position BL. We further divide each
case into forward and backward queries, giving four cases toconsider:

TL forward: LetEB‖L(A) be thei-th query of the adversary. For this query to be successful (in this case) there must be
a query(B, L‖R, S) in the query history such thatB ⊕ S = R⊕A. Because¬X(Qi−1) =⇒ ¬XorKR(Qi−1), there
at mostα such queries(B, L‖R, S) in the query history, each determining a unique value ofR. Thus the adversary’s
i-th query has chance of succeeding at mostα/N ′.

TL backward: Same analysis as case TL backward of Proposition 5, with chance of success at most1/N ′.

BL forward: Symmetrical to case TL backward, with chance of success at most1/N ′.

BL backward: Symmetrical to case TL forward, with chance of success at mostα/N ′.

Since each query must be either forward or backward (but not both), the chance of success of any given query is at
most(1 + α)/N ′, and the overall chance of success inq queries is at mostq(1 + α)/N ′. ⊓⊔

Proposition 9. Pr[Coll1(Q) ∧ ¬Triples(Q) ∧ ¬X(Q)] ≤ q(α + γ)/N ′.

Proof. By symmetry between the left- and right-hand sides of the collision diagram, we can divide the eventColl1(Q)
according to whether the last query made by the adversary to complete aColl1-type collision is used in position TL or
BL. We further divide each of these two cases into forward andbackward queries. We say the last (or “i-th”) query of
the adversary issuccessfulif it completes aColl1-type collision.

TL forward: LetEB‖L(A) be thei-th query of the adversary. For this query to succeed in completing aColl1-type
collision at position TL, the answerR be this query must be such that there exists a triple of (distinct) queries
(B, L‖R, S), (A′, B′‖L′, R′), (B′, L′‖R′, S′) ∈ Q such thatA ⊕ R = A′ ⊕ R′ andB ⊕ S = B′ ⊕ S′. How-
evever,¬Triples(Qi−1) =⇒ ¬Triples+(Qi−1) implies that there are mostγ such valuesR. The chance of success
of thei-th query is therefore at mostγ/N ′.

TL backward: Same analyis as case TL backward of Proposition3, with chance of success at mostα/N ′.

19

BL forward: Symmetrical to case TL backward, with chance of success at mostα/N ′.

BL backward: Symmetrical to case TL forward, with chance of success at mostγ/N ′.

Since each query is either forward or backward, the chance ofsuccess of any given query is at most(α + γ)/N ′, and
the overall chance of success inq is at mostq(α + γ)/N ′. ⊓⊔

Proposition 10. Pr[Triples(Q) ∧ ¬Doubles(Q) ∧ ¬X(Q)] ≤ 6N3
(

3eqβ
γN ′

)γ/3

.

Proof. We show

Pr[Triples+(Q) ∧ ¬Doubles(Q) ∧ ¬X(Q)] ≤ 3N3

(

3eqβ

γN ′

)γ/3

.

A similar analysis gives the same upper bound forPr[Triples−(Q)∧¬Doubles(Q)∧¬X(Q)], thus yielding the bound.
We fix arbitrary valuesA, B, L ∈ {0, 1}n. It suffices to show

Pr[Triples+A‖B‖L(Q) ∧ ¬Doubles(Q) ∧ ¬X(Q)] ≤ 3

(

3eqβ

γN ′

)γ/3

(16)

as the desired bound will then follow by a union bound overA, B, L.
We let#R(Qi) be the number of valuesR ∈ {0, 1}n such that there exists an ordered triple of distinct queries

(B, L‖R, S), (A′, B′‖L′, R′), (B′, L′‖R′, S′) ∈ Qi such thatA ⊕ R = A′ ⊕ R′ andB ⊕ S = B′ ⊕ S′. Moreover
we let#RBL(Qi) be the number of valuesR ∈ {0, 1}n such that a triple of this type existswhere the last query made
completing the triple is used in positionBL, namely where the first element of the triple is added to the query history
after the last two elements. We similarly define#RTR(Qi) and#RBR(Qi). Because

#R(Q) > γ =⇒ (#RBL(Q) > γ/3) ∨ (#RTR(Q) > γ/3) ∨ (#RBR(Q) > γ/3)

it suffices to show:

Pr[#RBL(Q) > γ/3 ∧ ¬Doubles(Q) ∧ ¬X(Q)] ≤

(

3eqα

γN ′

)γ/3

(17)

Pr[#RTR(Q) > γ/3 ∧ ¬Doubles(Q) ∧ ¬X(Q)] ≤

(

3eqβ

γN ′

)γ/3

(18)

Pr[#RBR(Q) > γ/3 ∧ ¬Doubles(Q) ∧ ¬X(Q)] ≤

(

3eqβ

γN ′

)γ/3

(19)

to show

Pr[#R(Q) > γ ∧ ¬Doubles(Q) ∧ ¬X(Q)] ≤ 3

(

3eqβ

γN ′

)γ/3

(20)

sinceα ≤ β.
We start by proving (17). Note, firstly, that#RBL(Qi)−#RBL(Qi−1) ≤ 1 for all i ≥ 1, because a query in posi-

tion BL uniquely determines the valueR. We now boundPr[#RBL(Qi)−#RBL(Qi−1) = 1], considering two cases
according to whether thei-th query is forward or backward. We write ‘BL forward’ and ‘BL backward’ to emphasize
the query is to be used in position BL. We say thei-th (or last) query issuccessfulif #RBL(Qi)−#RBL(Qi−1) = 1.

BL forward: LetEL‖R(B) be thei-th query. Then because¬X(Qi−1) there are at mostα queries(A′, B′‖L′, R′) ∈
Qi−1 such thatA′ ⊕R′ = A ⊕R (recallA is fixed) and each of these queries for position TR uniquely determines a
query for position BR. Thus, there are at mostα possibilities for the valueB′ ⊕ S′ and thus at mostα valuesS that
would make the last query successful. The chance of success is therefore at mostα/N ′.

20

BL backward: Since the valueB is fixed, the chance of success in this case is trivially at most 1/N ′.

Therefore,Pr[#RBL(Qi) −#RBL(Qi−1) = 1] ≤ α/N ′. Using a similar bound as in Proposition 2 (withq instead
of 2q, α/N ′ instead of1/N ′ andγ/3 instead ofα) we thus get (17).

We now prove (18). Here too we have#RTR(Qi) − #RTR(Qi−1) ≤ 1 for all i. Indeed, a given value of
A′ ⊕ R′ uniquely determinesR, sinceA is fixed. We boundPr[#RTR(Qi) − #RTR(Qi−1) = 1] considering
two cases, according to whether thei-th query is forward or backward. We again say thei-th query issuccessful
if #RTR(Qi)−#RTR(Qi−1) = 1.

TR forward: LetEB′‖L′(A′) be thei-th query. Then because¬Doubles2+(Qi−1) there are at mostβ pairs of queries
(B, L‖R, S), (B′, L′‖R′, S′) ∈ Qi−1 such thatA⊕R = A′ ⊕ R′ andB ⊕ S = B′ ⊕ S′. Each such pair determines
a unique valueR′, and the output of thei-th query must be one of these valuesR′ for thei-th query to be successful.
Thus thei-th query is successful with chance at mostβ/N ′.

TR backward: LetE−1
B′‖L′(R′) be thei-th query. Then this query uniquely determines the BR query,so uniquely de-

termines the valuesB′ ⊕ S′ = B ⊕ S making at mostα possibilities for the query BL (using¬X(Qi−1)). But each
query BL uniquely determines the valuesA⊕R, so the last query has chance at mostα/N ′ of being successful.

Sinceα ≤ β we therefore havePr[#RTR(Qi) − #RTR(Qi−1) = 1] ≤ β/N ′, and (18) follows by a similar
computation as in Proposition 2 (withq instead of2q, β/N ′ instead of1/N ′ andγ/3 instead ofα).

We finally prove (19). Once again we have#RBR(Qi)−#RBR(Qi−1) ≤ 1 because a given query BR uniquely
determines the query TR, which uniquely determines the value A′ ⊕ R′ = A ⊕ R and hence the valueR. We bound
Pr[#RBR(Qi)−#RBR(Qi−1) = 1] using the same method and conventions as above:

BR forward: LetEL′‖R′(B′) be thei-th query. This query uniquely determines the query TR, so uniquely determines
the values ofR (asA is fixed andA′ ⊕ R′ = A ⊕ R) and hence the queryBL (asB, L are fixed), and so the value
B ⊕ S is uniquely determined. The chance of success in this case isthus at most1/N ′.

BR backward: LetE−1
L′‖R′

(S′) be thei-th query. Because¬Doubles1(Qi−1) there are at mostβ pairs of queries
(B, L‖R, S), (A′, B′‖L′, R′) such thatA⊕R = A′ ⊕R′ andB ⊕ S = B′ ⊕ S′. Each such pair of queries uniquely
determines a valueB′, and an output of thei-th query cannot be successful unless it is theB′ of such a pair. Thus the
i-th query has chance of success at mostβ/N ′.

Thus we havePr[#RBR(Qi) − #RBR(Qi−1) = 1] ≤ β/N ′, leading to (19) by the same computation as for (18).
This concludes the proof of (20) which is the same as (16), andthus completes the proof of the proposition. ⊓⊔

Proposition 11. Pr[Doubles1(Q) ∧ ¬X(Q)] ≤ 2N6
(

2eqα
βN ′

)β/2

.

Proof. We fix valuesA, B, L, S′, R′, L′ ∈ {0, 1}n. By a union bound, it suffices to show that

Pr[Doubles1A‖B‖L‖S′‖R′‖L′(Q)] ≤ 2

(

2eqα

βN ′

)β/2

. (21)

Let #D(Qi) be the number of pairs of queries(B, L‖R, S), (A′, B′‖L′, R′) ∈ Qi such thatA ⊕ R = A′ ⊕ R′ and
B ⊕ S = B′ ⊕ S′. Moreover we let#DBL(Qi) be the number of such pairs where the query(B, L‖R, S) was made
after the query(A′, B′‖L′, R′), and let#DTR(Qi) be the number of such pairs where the query(A′, B′‖L′, R′) was
made after the query(B, L‖R, S). Since

#D(Q) > β =⇒ (#DBL(Qi) > β/2) ∨ (#DTR(Qi) > β/2)

21

it suffices to show

Pr[#DBL(Q) > β/2 ∧ ¬X(Q)] ≤

(

2eqα

βN ′

)β/2

(22)

Pr[#DTR(Q) > β/2 ∧ ¬X(Q)] ≤

(

2eqα

βN ′

)β/2

(23)

in order to show

Pr[#D(Q) > β ∧ ¬X(Q)] ≤ 2

(

2eqα

βN ′

)β/2

. (24)

We show only (22) because the proof of (23) is entirely similar. First note that#DBL(Qi) −#DBL(Qi−1) ≤ 1
for all i because a query BL uniquely fixesA⊕R which uniquely fixesA′ ⊕R′ and hence uniquely fixesA′, whereas
the query BL also fixesB ⊕ S = B′ ⊕ S′ and hence uniquely fixesB′; since the valueL′ is already fixed anyway, a
query BL uniquely determines a query TR (and vice-versa).

We now boundPr[#DBL(Qi)−#DBL(Qi−1) = 1], considering separately the cases when thei-th query is for-
ward and backward. We label these cases as ‘Forward BL’ and ‘Backward BL’. We say that thei-th query issuccessful
if #DBL(Qi)−#DBL(Qi−1) = 1.

Forward BL: LetEL‖R(B) be thei-th query. ThenA ⊕ R = A′ ⊕ R′ is uniquely determined by thei-th query. In
particular, since¬X(Qi−1) implies there are at mostα queries of XOR outputA′⊕R′, there are at mostα possibilities
for query TR and henceα possibilities for the valueB′⊕S′. Hence thei-th query has chance of success at mostα/N ′.

Backward BL: Trivially, sinceB is fixed, thei-th query has chance of success at most1/N ′.

In any case, thus, the chance of success of thei-th query is at mostα/N ′. The bound (22) then follows from a similar
computation as in Proposition 2 (withq instead of2q, α/N ′ instead of1/N ′ andβ/2 instead ofα).

Together with the (identical) proof of (23), this implies (24) which is equivalent to (21), and thus completes the
proof. ⊓⊔

Proposition 12. Pr[Doubles2(Q) ∧ ¬X(Q)] ≤ 4N5
(

2eq
βN ′

)β/2

.

Proof. We show that

Pr[Doubles2+(Q) ∧ ¬X(Q)] ≤ 2N5

(

2eq

βN ′

)β/2

since the same bound can be proved forPr[Doubles2−(Q) ∧ ¬X(Q)] by the same method.
We fix valuesA, B, L, A′, B′, L′ ∈ {0, 1}n. By a union bound, it suffices to show that

Pr[Doubles2+
A‖B‖L‖A′‖B′‖B′(Q) ∧ ¬X(Q)] ≤ 2

(

2eq

βN ′

)β/2

. (25)

(Indeed, since the constraintA ⊕ R = A′ ⊕ R′ is equivalent toR ⊕ R′ = A ⊕ A′, the two valuesA, A′ are only as
relevant as their xorA ⊕ A′, thus removing one factor ofN from the union bound; formally, we should say that we
“fix a value of the xorA⊕A′”, but this is not notationally convenient.)

Overwriting the notation of Proposition 11, we now define#D(Qi) to be the number of pairs of queries(B, L‖R, S),
(B′, L′‖R′, S′) ∈ Qi such thatA⊕R = A′⊕R′ andB⊕S = B′⊕S′. We further define#DBL(Qi) and#DBR(Qi)
analogously to previous such definitions. Since

#D(Q) > β =⇒ (#DBL(Qi) > β/2) ∨ (#DBR(Qi) > β/2)

22

it suffices to show

Pr[#DBL(Q) > β/2 ∧ ¬X(Q)] ≤

(

2eq

βN ′

)β/2

(26)

Pr[#DBR(Q) > β/2 ∧ ¬X(Q)] ≤

(

2eq

βN ′

)β/2

(27)

in order to show

Pr[#D(Q) > β ∧ ¬X(Q)] ≤ 2

(

2eq

βN ′

)β/2

. (28)

We prove only (26) since (27) is analogous. We have#DBL(Qi) − #DBL(Qi−1) ≤ 1 for all i because a query
BL uniquely fixesA⊕R which uniquely fixesA′⊕R′ and hence uniquely fixesR′. We now boundPr[#DBL(Qi)−
#DBL(Qi−1) = 1], considering separately the cases when thei-th query is forward and backward. As usual, we say
that thei-th query issuccessfulif #DBL(Qi)−#DBL(Qi−1) = 1.

Forward BL: LetEL‖R(B) be thei-th query. ThenA ⊕ R = A ⊕ R′ is uniquely determined, soR′ is uniquely
determined and hence the query BR is uniquely determined. ThusB′ ⊕ S′ is uniquely determined and thei-th query
has chance1/N ′ of success.

Backward BL: SinceB is fixed, thei-th query has chance of success at most1/N ′.

In any case, thus, the chance of success of thei-th query is at most1/N ′. The bound (22) then follows from a similar
computation as in Proposition 2 (withq instead of2q andβ/2 instead ofα).

Together with the (identical) proof of (27), this implies (28) which is equivalent to (25), and thus completes the
proof. ⊓⊔

Adding together the bounds of Propositions 6–12, we thus obtain the following Theorem:

Theorem 4. Let 1 ≤ q < N , N ′ = N − q. Letα, β, γ be integers between 1 andq such thatα ≤ β, β ≡ 0 mod 2
andγ ≡ 0 mod 3. Then

Pr[Coll(Q)] ≤ 3N
(eq

αN ′

)α

+
2q

N ′
+

2qα

N ′
+

qγ

N ′

+ 6N3

(

3eqβ

γN ′

)γ/3

+ 2N6

(

2eqα

βN ′

)β/2

+ 4N5

(

2eq

βN ′

)β/2

.

Forn = 128 and withα = 13, β = 156 andγ = 195 Theorem 4 shows that an adversary makingq = 2119.18 achieves
chance less than 0.5 of obtaining a collision. Moreover, Theorem 4 has the same “qualitative” corollary as Theorem 1:

Corollary 2. limn→∞ AdvTDM
coll (N/n) = 0.

Proof. Let q = N/n, α = 7n/ logn (more precisely,α = ⌈7n/ logn⌉), β = 2α andγ = 3α, where the logarithm
takes base2. SinceN ′ > N/2 for n > 2, we have

Adv
coll
TDM (q) ≤ 3N

(eq

αN ′

)α

+
2q

N ′
+

2qα

N ′
+

qγ

N ′

+ 6N3

(

3eqβ

γN ′

)γ/3

+ 2N6

(

2eqα

βN ′

)β/2

+ 4N5

(

2eq

βN ′

)β/2

≤ 3N

(

2eq

αN

)α

+
4q

N
+

10qα

N
+ 6N3

(

4eq

N

)α

+ 2N6

(

2eq

N

)α

+ 4N5

(

2eq

αN

)α

≤
(

3N + 4N5
)

(

2e logn

7n2

)
7n

log n

+
4

n
+

70

log n
+ 6N3

(

4e

n

)
7n

log n

+ 2N6

(

2e

n

)
7n

log n

.

23

Using the equalityN = nn/ log n, we can show that the last expression goes to zero asn → ∞. For example, the last
term

2N6

(

2e

n

)
7n

log n

= 2 · n
6n

log n

(

2e

n

)
7n

log n

= 2

(

2e

n
1
7

)
7n

log n

goes to zero asn→∞. ⊓⊔

24

