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Abstract. The n-cell GF-NLFSR (Generalized Feistel-NonLinear Feedback Shift Register) structure
[8] is a generalized unbalanced Feistel network that can be considered as a generalization of the outer
function FO of the KASUMI block cipher. An advantage of this cipher over other n-cell generalized
Feistel networks, e.g. SMS4 [11] and Camellia [5], is that it is parallelizable for up to n rounds. In
hardware implementations, the benefits translate to speeding up encryption by up to n times while
consuming similar area and significantly less power. At the same time n-cell GF-NLFSR structures
offer similar proofs of security against differential cryptanalysis as conventional n-cell Feistel structures.
We also ensure that parallelized versions of Camellia and SMS4 are resistant against other block
cipher attacks such as linear, boomerang, integral, impossible differential, higher order differential,
interpolation, slide, XSL and related-key differential attacks.
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1 Introduction

1.1 Background and Motivation

Two very important security properties of block cipher structures are low differential and linear proba-
bility bounds for protection against differential and linear cryptanalysis. Choy et al. [8] had proven that
the “true” differential/linear probabilities of any n rounds of the n-cell GF-NLFSR structure is p2 if the
differential/linear probability of the nonlinear function of each round is p. However, this result is applicable
only if we use a nonlinear function with good provable differential/linear probability. One option is to use
an S-box. However if the nonlinear function takes in 32-bit input, an S-box of this size would be infeasible
to implement in terms of logic gates in hardware or as a look-up-table in memory. Other options would
be to build a SDS (Substitution-Diffusion-Substitution) structure [21], use a Feistel structre [2] or even a
nested Feistel structure for the nonlinear function [3], because there are provable bounds for the differential
and linear probabilities of these structures.

However these nonlinear functions are too complex, and not suitable for space and speed efficient im-
plementation. Therefore, the Substitution-then-Diffusion structure is usually implemented for the nonlinear
functions. These structures are commonly called Substitution Permutation Networks (SPN) in the litera-
ture. Numerous examples of implementations where the SPN structure is used for the nonlinear functions
of Feistel and Generalized Feistel Structures exist. They include DES [1], Camellia [5], SMS4 [11] and Clefia
[22], to name a few. Motivated by these considerations, we would like to investigate the practical differential
and linear probability bounds of the n-cell GF-NLFSR structure when the nonlinear function is a SPN
structure.

As applications, we would like to parallelize some of the abovementioned ciphers, where we replace
the (Generalized) Feistel structures by the parallelizable GF-NLFSR structures, while keeping the internal
components like S-boxes and linear diffusion to be the same. This would make encryption speed faster by
up to n times. Two candidates which we find promising for parallelizing are the Camellia and SMS4 ciphers.

⋆ The research was supported in part by the Singapore National Research Foundation under Research Grant NRF-
CRP2-2007-03.



1.2 Related Works

In order to analyze the resistance of a block cipher against differential and linear cryptanalysis, we would
like to lower bound the number of active S-boxes (S-boxes which contribute to the differential/linear prob-
ability) in any differential/linear characteristic path over a fixed number of rounds. Using such bounds, the
cipher designer can choose a large enough number of rounds so that there are too many active S-boxes for
differential/linear cryptanalysis to be successful.

Kanda [16] has proven that for a Feistel cipher with an SPN round function having branch number B
(a measure of dispersion, please refer to Section 2 for the exact definition), the number of active S-boxes in
any differential and linear characteristic path over every 4r rounds is at least rB+ ⌊ r

2⌋. Based on this lower
bound, the authors of [5] designed the block cipher Camellia, which has practical provable security against
differential and linear cryptanalysis.

1.3 Our Contribution

In Section 3, we provide a neat and concise proof of the result that for a 2nr-round parallelizable n-cell
GF-NLFSR structure with an SPN round function having branch number B, the number of active S-boxes
in any differential characteristic path is at least rB+ ⌊ r

2⌋. The result holds for any n ≥ 2 in general, and we
expect the result to be useful in the design and analysis of block cipher structures. For the case of a 2-cell
GF-NLFSR structure, we have rB+ ⌊ r

2⌋ active S-boxes over every 4r rounds, which is the same as Kanda’s
result [16] for a conventional 2-cell Feistel structure. Motivated by this observation, we propose in Section 4 a
parallelizable version of Camellia, p-Camellia, where we change the conventional Feistel structure to a 2-cell
GF-NLFSR structure but keep all other components such as S-boxes and linear diffusion maps to be the
same. We also ensure p-Camellia is secure against other cryptanalysis such as linear, boomerang, integral,
impossible differential, higher order differential, interpolation and slide attacks. In addition, we assess the
advantages of hardware implementations. For this reason we briefly introduce design strategies for hardware
implementations. We then show that especially for applications with high throughput requirements, a 2-
cell GF-NLFSR such as p-Camellia offers significant advantages over a conventional 2-cell Feistel structure
such as Camellia. In particular, we show that an implementation of p-Camellia that processes two rounds in
parallel has a maximum frequency that is nearly twice as high as it would be for Camellia while having similar
area demands and significantly less power demands. We also show that for fully pipelined implementations
a conventional 2-cell Feistel structure requires twice as many pipeline stages, and hence twice as many clock
cycles delay, to achieve the same frequency as it is the case for a 2-cell GF-NLFSR.

In Section 6, we also apply a 4-cell GF-NLFSR structure to form a parallelizable version of SMS4 called
p-SMS4. We change the generalized Feistel structure in both the main cipher and key schedule of SMS4 to a
4-cell GF-NLFSR structure but keep all other components such as S-boxes and linear diffusion maps to be the
same. We first prove that p-SMS4 is secure against differential cryptanalysis. In [7], Biryukov et al. showed
a powerful related-key differential attack on AES-256 which can recover the secret key with complexity 2131

using 235 related keys. We give a proof through the p-SMS4 key schedule that p-SMS4 is resistant against this
attack. We also ensure p-SMS4 is secure against other block cipher cryptanalysis such as boomerang, integral,
impossible differential, higher order differential, interpolation, slide and XSL attacks. A 4-cell GF-NLFSR
structure offers also implementation advantages for round-based and parallelized hardware architectures.
We show that a 4-cell GF-NLFSR structure, implemented in an architecture that processes four rounds in
one clock cycle, has a significantly shorter critical path, and hence a higher maximum frequency, than a
conventional 4-cell Feistel structure. In parallelized implementations this advantage increases to a nearly four
times higher maximum frequency while having similar area demands and significantly less power demands.
In general the advantage is dependent on the number of branches, hence an n-cell GF-NLFSR has an
advantage of a nearly n times higher maximum frequency.



2 Definitions and Preliminaries

In this section, we will list some definitions and summarize the results of Kanda in [16]. He has proven
the upper bounds of the maximum differential and linear characteristic probabilities of Feistel ciphers with
bijective SPN round function. More explicitly, the round function F -function comprises the key addition
layer, the S-function and the P -function. Here we neglect the effect of the round key since by assumption,
the round key, which is used within one round, consists of independent and uniformly random bits, and is
bitwise XORed with data. The S-function is a non-linear transformation layer with m parallel d-bit bijective
S-boxes whereas the P -function is a linear transformation layer. In particular, we have

S : (GF (2d)m → (GF (2d)m , X = (x1, · · · , xm) 7→ Z = S(X) = (s1(x1), · · · , sn(xn)),

P : (GF (2d)m → (GF (2d)m , Z = (z1, · · · , zm) 7→ Y = P (Z) = (y1, · · · , yn),

F : (GF (2d)m → (GF (2d)m , X 7→ Y = F (X) = P (S(X)).

Definition 1. Let x, z ∈ GF (2d). Denote the differences and the mask values of x and z by ∆x, ∆z, and,
Γx, Γz respectively. The differential and linear probabilities of each S-box si are defined as:

DP si(∆x → ∆z) =
#{x ∈ GF (2d)|si(x) ⊕ si(x ⊕ ∆x) = ∆z}

2d
,

LP si(Γz → Γx) = (2 ×
#{x ∈ GF (2d)|x · Γx = si(x) · Γz

2d
− 1)2.

Definition 2. The maximum differential and linear probabilities of S-boxes are defined as:

ps = max
i

max
∆x 6=0,∆z

DP si(∆x → ∆z),

qs = max
i

max
Γx,Γz 6=0

LP si(Γz → Γx).

This means that ps, qs are the upper bounds of the maximum differential and linear probabilities for all
S-boxes.

Definition 3. Let X = (x1, x2, · · · , xm) ∈ GF (2d)m. Then the Hamming weight of X is denoted by
Hw(X) = #{i|xi 6= 0}.

Definition 4. [25] The branch number B of linear transformation θ is defined as follows:

B = min
x6=0

(Hw(x) + Hw(θ(x)).

Consider Feistel ciphers with bijective SPN round functions as described previously. As mentioned in
[16], for the differential case, B is taken to be the differential branch number, i.e. B = min∆X 6=0(Hw(∆X)+
Hw(∆Y )), where ∆X is an input difference into the S-function and ∆Y is an output difference of the
P -function. On the other hand, for the linear case, B is taken to be the linear branch number, i.e. B =
minΓY 6=0(Hw(P ∗(ΓY )) + Hw(ΓY )), where ΓY is an output mask value of the P -function and P ∗ is a
diffusion function of mask values concerning the P -function. Throughout this paper, B is used to denote
differential or linear branch number, depending on the context.

Definition 5. A differential active S-box is defined as an S-box given a non-zero input difference. Similarly,
a linear active S-box is defined as an S-box given a non-zero output mask value.

Theorem 1. Let D(r) and L(r) be the minimum number of all differential and linear active S-boxes for a
r-round Feistel cipher respectively. Then the maximum differential and linear characteristic probabilities of

the r-round cipher are bounded by pD(r)

s and qL(r)

s respectively.

Note that Theorem 1 applies to any block cipher in general.

Theorem 2. [16] The minimum number of differential (and linear) active S-boxes D(4r) for 4r-round Feistel
ciphers with SPN round function is at least rB + ⌊ r

2⌋.



3 Practical Security Evaluation of GF-NLFSR against Differential and Linear

Cryptanalysis

GF-NLFSR was proposed by Choy et al. in [8]. It is an n-cell extension of the outer function FO of the
KASUMI block cipher which is a 2-cell structure [8].

Throughout this paper, we consider GF-NLFSR block ciphers with SPN (S-P) round function, as de-
scribed in Section 1.2. In this paper, we assume that both the S-function and P -function are bijective.
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Fig. 1. i-th round of GF-NLFSR

With reference to Figure 1 , let X(i) and Y (i) be the input and output data to the i-th round function
respectively. Then the GF-NLFSR block cipher can be defined as

X(i+n) = Y (i) ⊕ X(i+1) ⊕ X(i+2) ⊕ · · · ⊕ X(i+n−1), for i = 1, 2, · · · . (1)

3.1 Differential Cryptanalysis

We now investigate the minimum number of differental active S-boxes for GF-NLFSR block cipher. From
equation (1), it can be shown almost immediately that there must be at least 2 differential active S-boxes
over (n + 1)-round of n-cell GF-NLFSR cipher.

Proposition 1 The minimum number of differential active S-boxes for (n + 1)-round n-cell GF-NLFSR
cipher with bijective SPN round function satisfies D(n+1) ≥ 2.

Proof. Without loss of generality, we assume that the n + 1 consecutive rounds run from the first round to
the (n + 1)-th round. Since the SPN round function is bijective, ∆Y (1) = 0 if and only if ∆X(1) = 0. From
equation (1), we have

∆X(n+1) = ∆Y (1) ⊕ ∆X(2) ⊕ ∆X(3) ⊕ · · · ⊕ ∆X(n), (2)

from which it follows that there must exist at least two non-zero terms in equation (2) in order for equation
(2) to hold. Therefore

D(n+1) = Hw(∆X(1)) + · · · + Hw(∆X(n+1)) ≥ 2.

⊓⊔



Lemma 1. Let X = (x1, x2, · · · , xm) and X ′ = (x′
1, x

′
2, · · · , x′

m) ∈ GF (2d)m. Then

Hw(X ⊕ X ′) ≤ Hw(X) + Hw(X ′).

Proof.

Hw(X ⊕ X ′)

= #{s|xs 6= 0 and x′
s = 0} + #{t|xt = 0 and x′

t 6= 0} + #{u|xu 6= 0 and x′
u 6= 0 and xu 6= x′

u}

≤ Hw(X) + #{t|xt = 0 and x′
t 6= 0}

≤ Hw(X) + Hw(X ′)

⊓⊔

Lemma 2 is a straightforward generalization of Lemma 1.

Lemma 2. Let X1, X2, · · · , Xk ∈ GF (2d)m. Then

Hw(X1 ⊕ X2 ⊕ · · · ⊕ Xk) ≤ Hw(X1) + Hw(X2) + · · · + Hw(Xk).

As stated in Theorem 1, to investigate the upper bound of the maximum differential characteristic
probability of the GF-NLFSR cipher, we need to find a lower bound for D(r), the number of differential
active S-boxes for r consecutive rounds of the cipher. Then the differential characteristic probability of the

r-round GF-NLFSR cipher is at most pD
(r)

s .

Lemma 3. For n-cell GF-NLFSR cipher, the minimum number of differential active S-boxes in any 2n
consecutive rounds satisfies D(2n) ≥ B.

Proof. Without loss of generality, we assume that the 2n consecutive rounds run from the first round to the
2n-th round. For j = 1, · · · , n, note that at least one of ∆X(j) 6= 0. Let i be the smallest integer such that
∆X(i) 6= 0, where 1 ≤ i ≤ n. Then

D(2n) = Hw(∆X(1)) + Hw(∆X(2)) + · · · + Hw(∆X(2n))

≥ Hw(∆X(i)) + Hw(∆X(i+1)) · · · + Hw(∆X(i+n))

≥ Hw(∆X(i)) + Hw(∆X(i+1) ⊕ · · · ⊕ ∆X(i+n)), by Lemma 2,

= Hw(∆X(i)) + Hw(∆Y (i))

≥ B.

⊓⊔

Remark 1. From the above proof, we see that with probability 1− 1
M , where M is the size of each cell, i.e.

most of the time, we have ∆X(1) 6= 0. In that case, we are able to achieve at least B number of differential
active S-boxes over (n + 1)-round of n-cell GF-NLFSR cipher.

As a consequence of Lemma 3 and using a similar approach as [16], we have the following result.

Theorem 3. The minimum number of differential active S-boxes for 2nr-round n-cell GF-NLFSR cipher
with bijective SPN round function satisfies

D(2nr) ≥ rB + ⌊
r

2
⌋.

In particular, when n = 2, the minimum number of differential active S-boxes for 4r-round 2-cell GF-
NLFSR cipher with bijective SPN round function is at least rB + ⌊ r

2⌋. Hence we see that 2-cell GF-NLFSR
cipher with bijective SPN round function has similar practical security against differential cryptanalysis as
Feistel ciphers with bijective SPN round functions. Moreover, 2-cell GF-NLFSR has an added advantage
that it realizes parallel computation of round functions, thus providing strong motivation for parallelizing
ciphers with SPN round functions, as described in Section 4.



3.2 Linear Cryptanalysis

For the purpose of parallelizing Camellia and SMS4, we shall investigate the practical security of 2-cell
and 4-cell GF-NLFSR cipher against linear cryptanalysis. Again from Theorem 1, to investigate the upper
bound of the maximum linear characteristic probability of the GF-NLFSR cipher, we need to find a lower
bound for L(r), the number of linear active S-boxes for r consecutive rounds of the cipher. Then the linear

characteristic probability of the r-round cipher is at most qL
(r)

s . We first consider the 2-cell GF-NLFSR
cipher, followed by the 4-cell GF-NLFSR cipher.

Duality between Differential Characteristic and Linear Approximation As discussed in Section
3 of [18], when analyzing mask values in linear cryptanalysis, we need to consider the duality between
differential characteristic and linear approximation, where each XOR is replaced by a joint and each joint
is replaced by an XOR. Hence, in the case of 2-cell GF-NLFSR cipher, with reference to Figure 2, we have

ΓX(i+2) = ΓY (i) ⊕ ΓY (i+1), for i ≥ 1, (3)

where the input and output mask values to the i-th round F function are denoted by ΓX(i) and ΓY (i)

respectively.

Fig. 2. (Left)2-cell GF-NLFSR cipher; (Right) Dual of 2-cell GF-NLFSR cipher

Similarly, for 4-cell GF-NLFSR cipher, with reference to Figure 3, we have

ΓX(i+4) = ΓY (i) ⊕ ΓY (i+1) ⊕ ΓY (i+2) ⊕ ΓY (i+3). (4)



Fig. 3. (Left)4-cell GF-NLFSR cipher; (Right) Dual of 4-cell GF-NLFSR cipher



Lemma 4. For 2-cell GF-NLFSR cipher with bijective SPN round function and linear branch number
B = 5, the minimum number of linear active S-boxes in any 4 consecutive rounds satisfies L(4) ≥ 3.

Proof. Let the input and output mask values to the i-th round F function be ΓX(i) and ΓY (i) respectively.
Note that since the F function is bijective, ΓX(i) = 0 if and only if ΓY (i) = 0. Without loss of generality,
we assume that the 4 consecutive rounds run from the first round to the fourth round. Thus the minimum
number of linear active S-boxes over 4 consecutive rounds is given by

L(4) = Hw(ΓY (1)) + Hw(ΓY (2)) + Hw(ΓY (3)) + Hw(ΓY (4)).

As discussed in the previous section, we have, from Equation (3),

ΓX(i+1) = ΓY (i−1) ⊕ ΓY (i),

for i = 2 and 3. We consider all cases as follows, where L
(r)
i denotes the number of linear active S-boxes

over r rounds for case i:

Case 1: ΓX(1) = 0
This implies that ΓX(2) 6= 0 and ΓX(3) = ΓY (2). Hence L

(3)
1 ≥ Hw(ΓX(2)) + Hw(ΓX(3)) = Hw(ΓX(2)) +

Hw(ΓY (2)) ≥ B = 5 ≥ 3. Thus L
(4)
1 ≥ L

(3)
1 ≥ 3.

Case 2: ΓX(1) 6= 0 and ΓX(2) = 0

This implies that ΓX(3) = ΓY (1). Hence L
(3)
2 ≥ Hw(ΓX(1)) + Hw(ΓX(3)) = Hw(ΓX(1)) + Hw(ΓY (1)) ≥

B = 5 ≥ 3. Thus L
(4)
2 ≥ L

(3)
2 ≥ 3.

Case 3: ΓX(1) 6= 0, ΓX(2) 6= 0 and ΓX(3) = 0

This implies that ΓX(4) = ΓY (2). Hence L
(4)
3 ≥ Hw(ΓX(1)) + Hw(ΓX(2)) + Hw(ΓX(4)) = Hw(ΓX(1)) +

Hw(ΓX(2)) + Hw(ΓY (2)) ≥ 1 + B = 6 ≥ 3.

Case 4: ΓX(1) 6= 0, ΓX(2) 6= 0, ΓX(3) 6= 0 and ΓX(4) = 0

Then we obtain L
(4)
4 ≥ Hw(ΓX(1)) + Hw(ΓX(2)) + Hw(ΓX(3)) ≥ 1 + 1 + 1 = 3.

Case 5: ΓX(1) 6= 0, ΓX(2) 6= 0, ΓX(2) 6= 0 and ΓX(4) 6= 0

Then we obtain L
(4)
5 = Hw(ΓX(1)) + Hw(ΓX(2)) + Hw(ΓX(3)) + Hw(ΓX(3)) ≥ 1 + 1 + 1 + 1 = 4 ≥ 3 .

Therefore L(4) ≥ 3.
⊓⊔

Theorem 4. For 2-cell GF-NLFSR cipher with bijective SPN round function and linear branch number
B = 5, we have

(1) L(8) ≥ 7,
(2) L(12) ≥ 11,
(3) L(16) ≥ 15.

Proof. Without loss of generality, we begin from the first round.

(1) From the proof of Lemma 4, over 8 rounds, we only need to check the case for ΓX(1) 6= 0, ΓX(2) 6= 0,
ΓX(3) 6= 0 and ΓX(4) = 0. (In all remaining cases, there will be at least 7 linear active S-boxes over 8
rounds.) However ΓX(3) 6= 0 and ΓX(4) = 0 correspond to Case 1 of Lemma 4 for the four consecutive
rounds that begin from the 4th round and end after the 7th round. Hence there will be at least 3+5 = 8
linear active S-boxes. Therefore L(8) ≥ 7.



(2) From (i), over 12 rounds, we only need to consider the case for ΓX(i) 6= 0 for i = 1, · · · , 7 and ΓX(8) = 0.
Following a similar argument to (i), we are definitely ensured of at least 7+5 = 12 linear active S-boxes.
Hence L(12) ≥ 11.

(3) The proof is similar to that of (i) and (ii).
⊓⊔

We conclude this section with the study of minimum number of active S-boxes for 4-cell GF-NLFSR.

Proposition 1. Assume that the linear branch number B = 5. Then the minimum number of linear active
S-boxes for 5-round 4-cell GF-NLFSR cipher with bijective SPN round function satisfies L(5) ≥ 2.

Proof. Let ΓX(i) and ΓY (i) be the input and output mask to the ith round function respectively. Since the
round function is bijective, ΓX(i) = 0 if and only if ΓY (i) = 0. It is evident from equation (4) that there
cannot exist exactly one non-zero input mask for five consecutive rounds. The result now follows easily. ⊓⊔

Theorem 5. Assume that the linear branch number B = 5. Then the minimum number of linear active
S-boxes for 10-round 4-cell GF-NLFSR cipher with bijective SPN round function satisfies L(10) ≥ B + 1.

Proof. With no loss of generality, assume that the 10 rounds run consecutively from the first round to the
tenth round. Let ΓX(i) and ΓY (i) be the input and output mask to the ith round function respectively.
Recall that due to the duality between differential characteristic and linear approximation, equation (4)

holds. Let M = {ΓX(1), ΓX(2), ΓX(3), ΓX(4)}. We consider all the following cases, where L
(r)
j denotes the

number of linear active S-boxes for r rounds for case j.

Case 1 : There is exactly one non-zero input mask in set M, i.e. ΓX(i) 6= 0 for some i = 1, 2, 3 or 4.
Then ΓX(5) = ΓY (i) 6= 0. Since for four consecutive rounds, the input masks cannot be zero at the same
time, we obtain

L
(9)
1 = Hw(ΓX(i)) + Hw(ΓX(5)) + Hw(ΓX(6)) + · · · + Hw(ΓX(9))

≥ Hw(ΓX(i)) + Hw(ΓY (i)) + 1

≥ B + 1.

Case 2 : All input masks in M are non-zero.
By Proposition 1, we obtain

L
(9)
2 = Hw(ΓX(1)) + · · · + Hw(ΓX(4)) + Hw(ΓX(5)) + · · · + Hw(ΓX(9))

≥ 4 + 2

= 6

≥ B + 1.

Case 3 : There are exactly three non-zero input masks in M.
Let S = {ΓX(5), ΓX(6), ΓX(7), ΓX(8)}. If there are at least three non-zero input masks in S, then we are
done. Also, since the input masks for four consecutive rounds cannot be zero at the same time, at least one
input mask in S is non-zero. This implies that we only need to check the following:
(i) There is exactly one non-zero input difference in S.
Then ΓX(9) = ΓY (j) for j = 5, 6, 7 or 8. Hence

L
(9)
3 ≥ 3 + Hw(ΓX(j)) + Hw(ΓX(9)) ≥ B + 3.

(ii) There are exactly two non-zero input masks in S.



– Suppose ΓX(5) = 0 and ΓX(6) 6= 0. Then ΓY (1) ⊕ ΓY (2) ⊕ ΓY (3) ⊕ ΓY (4) = 0 and it follows that
ΓX(6) = ΓY (1) 6= 0. Hence we are ensured of at least B + 2 active S-boxes.

– Suppose ΓX(6) = 0 and ΓX(7) 6= 0. Then ΓY (2) ⊕ ΓY (3) ⊕ ΓY (4) ⊕ ΓY (5) = 0 and it follows that
ΓX(7) = ΓY (2) 6= 0. Hence we are ensured of at least B + 2 active S-boxes.

– Suppose ΓX(6) = ΓX(7) = 0, ΓX(5) 6= 0 and ΓX(8) 6= 0. Then it can be deduced easily that ΓX(8) =
ΓY (3) 6= 0, and there must be at least B + 2 active S-boxes.

– Suppose ΓX(7) = ΓX(8) = 0, ΓX(5) 6= 0 and ΓX(6) 6= 0. It follows directly that ΓX(9) = ΓY (4).
If ΓX(9) =6= 0, then we are done. Otherwise ΓX(4) = 0 which implies that ΓX(3) 6= 0. However,
0 = ΓX(8) = ΓY (3) 6= 0, which is a contradiction.

Case 4 : There are exactly two non-zero input masks in M.
(i) Suppose ΓX(5) = 0. Then ΓX(6) = ΓY (1).

– If ΓX(1) 6= 0, then L
(6)
4 ≥ Hw(ΓX(1)) + Hw(ΓY (1)) + 1 ≥ B + 1.

– If ΓX(1) = 0 and ΓX(2) 6= 0, then ΓX(7) = ΓY (2) and so we obtain,

L
(7)
4 ≥ Hw(ΓX(2)) + Hw(ΓY (2)) + 1 ≥ B + 1.

– If ΓX(1) = 0 and ΓX(2) = 0 , then ΓX(3) 6= 0 and ΓX(4) 6= 0. Hence ΓX(8) = ΓY (3), from which

L
(8)
4 ≥ Hw(ΓX(3)) + Hw(ΓX(4)) + Hw(ΓX(8)) ≥ B + 1,

follows.

(ii) Suppose ΓX(5) 6= 0 and ΓX(6) = 0. It follows that ΓX(7) = ΓY (2).

– If ΓX(2) 6= 0, then L
(7)
4 ≥ Hw(ΓX(2)) + Hw(ΓY (2)) + 1 ≥ B + 1.

– If ΓX(2) = 0 and ΓX(3) 6= 0, then ΓX(8) = ΓY (3). This implies that

L
(8)
4 ≥ Hw(ΓX(3)) + Hw(ΓY (3)) + 1 ≥ B + 1.

– If ΓX(2) = 0 and ΓX(3) = 0, then ΓX(1) 6= 0 and ΓX(4) 6= 0. This implies that ΓX(9) = ΓY (4), and so

L
(9)
4 ≥ Hw(ΓX(4)) + Hw(ΓX(9)) + Hw(ΓX(1)) ≥ B + 1.

(iii) Suppose ΓX(5) 6= 0, ΓX(6) 6= 0 and ΓX(7) = 0. Then ΓX(8) = ΓY (3).

– If ΓX(3) 6= 0, then L
(8)
4 ≥ Hw(ΓX(3)) + Hw(ΓY (3)) + 1 ≥ B + 1.

– If ΓX(3) = 0 and ΓX(4) 6= 0, then ΓX(9) = ΓY (4). This implies that

L
(9)
4 ≥ Hw(ΓX(4)) + Hw(ΓY (4)) + 1 ≥ B + 1.

– If ΓX(3) = 0 and ΓX(4) = 0, then ΓX(1) 6= 0 and ΓX(2) 6= 0. This implies that ΓX(10) = ΓY (5) 6= 0.
So

L
(10)
4 ≥ Hw(ΓX(5)) + Hw(ΓX(10)) + Hw(ΓX(1)) + Hw(ΓX(2)) + Hw(ΓX(6)) ≥ B + 3.

(iv) Suppose ΓX(5) 6= 0, ΓX(6) 6= 0 and ΓX(7) 6= 0. If ΓX(8) 6= 0 or ΓX(9) 6= 0, then there will be at least
6 linear active S-boxes and we are done. Otherwise ΓX(8) = ΓX(9) = 0 and ΓX(10) = ΓY (5) 6= 0 and we
obtain

L
(10)
4 ≥ Hw(ΓX(5)) + Hw(ΓX(10)) + Hw(ΓX(6)) + Hw(ΓX(7)) ≥ B + 2.

Hence considering all cases, we conclude that L(10) ≥ B + 1. ⊓⊔

Corollary 1. The minimum number of linear active S-boxes for 9-round 4-cell GF-NLFSR cipher with
bijective SPN round function satisfies L(9) ≥ 4.

Proof. The result follows easily from the proof of Theorem 5. ⊓⊔



4 Application 1: Parallelizing Camellia

4.1 Brief Description of Camellia

Camellia was jointly developed by NTT and Mitsubishi Electric Corporation. According to [5], Camellia uses
an 18-round Feistel structure for 128-bit key, and a 24-round Feistel structure for 192-bit and 256-bit keys,
with additional input/output whitenings and logical functions called the FL-function and FL−1-function in-
serted every 6 rounds. Its F -function uses the SPN (Substitution-Permutation Network) structure, whereby
the non-linear layer comprises eight S-boxes in parallel while the linear layer can be represented using only
bytewise exclusive-ORs. Note that the F -function is bijective.

For security against differential and linear cryptanalysis, the branch number of the linear layer should be
optimal, i.e. branch number = 5. In addition, the S-boxes adopt functions affine equivalent to the inversion
function in GF (28) which achieves the best known of the maximum differential and linear probabilities 2−6

[5].
The key schedule of Camellia is slightly different for the 128-bit key version and the 192-bit/256-bit key

version. Despite the slight differences, the key schedule is relatively simple and consists of two main steps.
One (or two) 128-bit subkey materials are first derived from the secret key via some Feistel network. The
round keys are then generated by rotating the secret key itself and the derived subkeys by various amounts.

For more details of the structure of Camellia, readers are referred to [4].

4.2 Parallelizing Camellia : p-Camellia

In this section, we propose another version of the existing Camellia block cipher, which we call p-Camellia
(“parallelizable” Camellia). As described previously, Camellia uses a Feistel network structure. For the
encryption procedure of p-Camellia, we shall replace the Feistel network with the 2-cell GF-NLFSR block
cipher structure instead, as depicted in Figure 4 of Appendix. Other components such as number of rounds,
S-function, P -function and the key schedule for the different key versions etc remain unchanged. In addition,
similar to Camellia, there are input/output whitenings which are represented by the XOR symbols at the
beginning/end of p-Camellia cipher in Figure 4.

5 Figure of p-Camellia

5.1 Differential and Linear Cryptanalysis of p-Camellia

Following the same approach in [4], denote the maximum differential and linear characteristic probabilities
of p-Camellia reduced to 16-round by p and q respectively. Recall that since both p-Camellia and Camellia
use the same F -function, in the case of p-Camellia, the maximum differential and linear probability of the
S-boxes are 2−6. From [4], the differential branch numbers is equal to 5. By considering the P ∗-function of
Camellia as in [16], the linear branch number is verified to be 5.

Over 16 rounds, there are four 4-round blocks. By virtue of Theorem 3, where n = 2 and r = 4, we have

p ≤ (2−6)4×5+2 = 2−132 < 2−128.

By Theorem 4, we obtain q ≤ (2−6)15 = 2−90. This implies that an attacker needs to collect at least 290

chosen/known plaintexts to mount an attack, which is not feasible in practice.
This implies that there is no effective differential or linear characteristic for p-Camellia reduced to more

than 15 rounds. In other words, p-Camellia offers sufficient security against differential and linear attack.

5.2 Other Attacks on p-Camellia

In this section, we briefly examine the protection of p-Camellia against various known attacks. Since p-
Camellia uses the same components as Camellia, we expect that p-Camellia offers similar level of protection
against most of the attacks, as compared to Camellia.
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Boomerang Attack To perform boomerang attack, the cipher is split into two shorter ciphers E0 and
E1 such that the differential probability of each part is known to be large. Suppose an adversary split 16
rounds into E0 and E1 with r and 16 − r rounds respectively. By Theorem 3, the characteristic differential
probability of each sub-ciphers would be bounded by p0 ≤ (2−30)⌊r/4⌋ and p1 ≤ (2−30)⌊(16−r)/4⌋. (Note that
we ignore the last term in the upper bound of Theorem 3 for ease of calculation.) It can be easily verified
that ⌊r/4⌋ + ⌊(16 − r)/4⌋ ≥ 3 for r = 1, . . . , 15. Consequently,

p2
0 × p2

1 ≤ 2−60×3 = 2−180 < 2−128,

and thus p-Camellia is secure against boomerang attack.

Impossible Differential Attack Impossible differential attack is a chosen plaintext attack and is an
extension of differential cryptanalysis. The main idea of this attack is to construct an impossible differential
characteristic which is then used to filter wrong key guesses. Employing similar techniques as [23], we can
prove the following result.

Proposition 2. Let e1 denote a subblock which is non-zero in the first byte position and zero in the remain-
ing byte positions. For 2-cell GF-NLFSR cipher with bijective SPN round function and differential branch
number B ≥ 3, there is at least one 5-round impossible differential, namely of the form (e1, 0) 95 (β, β),
where β is a non-zero fixed difference.
(Note that here we only consider B ≥ 3 since linear transformation layers with B = 2 are unlikely to be used
as they do not aid in the protection of the cipher against differential attack.)

Proof. Suppose for a contradiction that (e1, 0) →5 (β, β) is possible. In the direction of encryption, after 3
rounds, we have (e1, 0) → (PS(e1), PS(e1) ⊕ PSPS(e1)). On the other hand, decrypting two rounds, we
obtain (S−1P−1(β), 0) ← (β, β). Hence

PS(e1) ⊕ PSPS(e1) = 0,

P (S(e1) ⊕ SPS(e1)) = 0,

S(e1) ⊕ SPS(e1) = 0. (5)

However,

Hw(SPS(e1) ⊕ S(e1)) ≥ (B − 1) − 1 = B − 2 ≥ 3 − 2 = 1,

which is a contradiction with equation 5. ⊓⊔

Since for p-Camellia, B = 5, by Proposition 2, there is at least a 5-round impossible differential in p-Camellia.
We have not found impossible differentials with more than 5 rounds. As explained in [5], we expect that
the presence of the FL- and FL−1 functions will greatly increase the difficulty of performing impossible
differential attack on p-Camellia since the functions change the differential paths depending on key values.

Integral Attack In an integral attack, the attacker studies the propagation of multisets of chosen plaintexts
of which part is held constant, and another part varies through all possibilities (also said to be active) through
the cipher. There is a 4-round integral distinguisher of 2-cell GF-NLFSR [8], namely (A,C) → (S0, S1),
where C is constant, A is active and S0 ⊕S1 is active. We have not found integral distinguishers with more
than 4 rounds. An adversary can extend an integral attack distingusher by at most three rounds. That
means he would need to extend the integral attack distinguisher from 4 to 18− 3 = 15 rounds which seems
unlikely.



Slide Attack The slide attack works on ciphers with cyclical structures over a few rounds. According
to [5], the FL- and FL−1- functions are inserted between every 6 rounds to provide non-regularity across
rounds. In addition, different subkeys are used for every round, making slide attack unlikely.

We now proceed to examine the protection of p-Camellia against higher order differential attack and
interpolation attack. We will adopt a similar approach as [5], which is somewhat heuristic but adequate for
us to have a comprehensive and insightful discussion.

Higher Order Differential Attack Higher order differential attack was introduced by Knudsen in [17].
This attack works especially well on block ciphers with components of low algebraic degree such as the
KN-Cipher [13], whereby the ciphers can be represented as Boolean polynomials of low degree in terms of
the plaintext. The attack requires O(2t+1) chosen plaintext when the cipher has degree t.

p-Camellia uses exactly the same S-boxes as Camellia and it was confirmed in [5] that the degree of
the Boolean polynomial of every output bit of the S-boxes is 7 by finding Boolean polynomial for every
outpit bit of the S-boxes. Hence, similar to Camellia, the degree of an intermediate bit in the encryption
process should increase as the data passes through many S-boxes. Indeed, let (αi, βi) be the input to the
(i+1)-th round of p-Camellia. Suppose deg(α0) = deg(β0) = 1. After the first round, deg(α1) = deg(β0) = 1
while deg(β1) = deg(F (α0) ⊕ β0) = 7. Continuing this process, we see that the degrees of αi and βi for
i = 0, 1, 2, · · · , increases as follows: (1, 1), (1, 7), (7, 7), (7, 49), (49, 49), (49, 127), (127, 127), · · ·

That is, the degrees increase exponentially as the number of rounds increase and reach the maximum
degree of 127 after the 6th round, implying that it is highly unlikely that higher order differential attack
will work.

Interpolation Attack The interpolation attack [14] works on block ciphers that can be expressed as
an equation in GF (2d) with few monomials. p-Camellia uses the same components as Camellia and it was
shown in [5] that as the data passes through many S-boxes and the P -function, the cipher became a complex
function which is a sum of many multi-variate monomials over GF (28). Hence we also expect p-Camellia
to be secure against interpolation attack.

5.3 Implementation Advantages

Before we discuss the implementation advantages of p-Camellia we briefly introduce hardware implemen-
tation strategies for block ciphers that consist of a round-function that is iterated several times. While
software implementations have to process single operations in a serial manner, hardware implementations
offer more flexibility for parallelization. Generally speaking there exist three major architecture strategies
for the implementation of block ciphers: serialized, round-based, and parallelized. In a serialized architecture
only a fraction of a single round is processed in one clock cycle. These lightweight implementations allow
reduction in area and power consumption at the cost of a rather long processing time. If a complete round
is performed in one clock cycle, we have a round-based architecture. This implementation strategy usually
offers the best time-area product and throughput per area ratio. A parallelized architecture processes more
than one round per clock cycle, leading to a rather long critical path. A longer critical path leads to a lower
maximum frequency but also requires the gates to drive a higher load (fanout), which results in larger gates
with a higher power consumption. By inserting intermediate registers (a technique called pipelining), it is
possible to split the critical path into fractions, thus increasing the maximum frequency. Once the pipeline
is filled, a complete encryption can be performed in one clock cycle with such an architecture. Consequently,
this implementation strategy yields the highest throughput at the cost of high area demands. Furthermore,
since the pipeline has to be filled, each pipelining stage introduces a delay of one clock cycle.

From a lightweight perspective, i.e. if we consider serialized architectures, it is no wonder that area,
power and timing demands stay the same for Camellia and p-Camellia, since no operation was introduced
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or removed. Also a round-based p-Camellia implementation is as efficient as a round-based Camellia im-
plementation. However, if we consider applications that require high throughput, p-Camellia has significant
advantages. If we consider an architecture that implements two rounds in one clock cycle (see Figure 5),
Camellia’s critical path involves two F-functions and two 2-input XOR gates, compared to only one F-
function and one 3-input XOR gate for p-Camellia. Since Camellia inserts every six rounds the FL and
FL−1 functions, it is advantageous to parallelize this fraction of Camellia/p-Camellia. In this case the
critical path of Camellia consists of six F-functions, six 2-input XOR gates and the delay of FL/FL−1

while p-Camellia’s critical path only consists of three F-functions, three 3-input XOR gates, and the delay
of FL/FL−1. Given the fact that the F-function consists of a 2-input XOR gate (key addition), several
combinatorial gates (S-box) and an extensive XOR network (P-function), the delay difference between a
2-input and a 3-input XOR gate is negligible. Hence p-Camellia can achieve a maximum frequency that is
nearly twice as high as it would be for Camellia while having similar or lower area and power demands. In
case pipelining is applied, Camellia requires twice as much pipelining stages as p-Camellia to achieve the
same maximum frequency, resulting in a delay that is twice as high.

Table 1. Comparison of the implementation results of the round function of Camellia and p-Camellia on UMC 180

nm ASIC technology.

Camellia p-Camellia
1 round 2 rounds 1 round 2 rounds

abs. % abs. % abs. % abs. %

Area (GE) 4877 100 9754 200 4877 100 9754 200

power∗ (mW) 2.65 100 8.38 316.5 2.65 100 5.2 196.2

max Freq. (MHz) 229.4 100 117.8 51.4 229.4 100 221.2 96.5

max T’put (Gbps) 29.4 100 30.2 103 29.4 100 56.6 192.9
∗at a frequency of 100 MHz and a supply voltage of 1.8V.

To substantiate our claims we have implemented the round function of Camellia and p-Camellia each
with a 128-bit key in VHDL. We obtained area, timing and power figures figures for a 180 nm ASIC
technology from UMC using Synopsys Design Vision for synthesis. Table 1 depicts a comparison of the



hardware implementation results of the round function of Camellia and p-Camellia. This is a typical setup
in a co-processor or instruction set extension scenario. As expected, the area requirements of 4877 GE for
one instance of the round function are the same for Camellia and p-Camellia and double to 9754 GE for two
instances. Also the maximum frequency of 229.4 MHz is the same for Camellia and p-Camellia in the one
round implementation. However, as depicted in Figur 5 the critical path for two consecutive instances of the
round function of Camellia is nearly twice as long as for p-Camellia. Consequently, the maximum frequency
achievable for Camellia drops to 51.4% while it only slightly decreases to 96.5% for p-Camellia. p-Camellia
cannot achieve exactly twice the maximum frequency, because it XORs three summands, while Camellia only
XORs two summands. The maximum throughput of a 1 round implementation is the same for Camellia and
p-Camellia and achieves 29.4 Gbps (Giga bits per second). A two round Camellia implementation slightly
increases the maximum throughput by a mere 2.7% to 30.2 Gbps, while p-Camellia boosts the maximum
throughput to 56.6 Gbps - an increment of 92.9% compared to the 1 round Camellia implementation and
still 87.8% higher than the 2 round Camellia implementation.

For all architectures we simulated the power consumption at a frequency of 100 MHz and a supply voltage
of 1.8 Volt. 1 round of Camellia and p-Camellia require both 2.65 mW. While the power consumption for the
2 rounds implementation of Camellia increases more than 3 times (+216%) to 8.38 mW, it less than doubles
for the 2 rounds implementation of p-Camellia (+96%) to 5.2 mW compared to the 1 round implementations.
These figures highlight the advantages of p-Camellia over Camellia from a power perspective.

6 Application 2: Parallelizing SMS4

6.1 Brief Description of SMS4

According to [11], SMS4 takes in a 128-bit key and uses a 32-round generalized Feistel structure to transform
the plaintext to the ciphertext. Each round of the generalized Feistel transformation transforms four 32-bit
words Xi, i = 0, 1, 2, 3, as follows:

(X0,X1,X2,X3, rk) 7→ (X1,X2,X3,X0 ⊕ T (X1 ⊕ X2 ⊕ X3 ⊕ rk)), (6)

where rk denotes the round key. In each round, the nonlinear function T does the following operations in
sequence: 32-bit subkey addition, S-box Subsitution (layer of four 8-bit S-boxes) and lastly, a 32-bit linear
transformation L.

It is well-known that the S-boxes adopt functions affine equivalent to the inversion function in GF (28)
[15, 10], which achieves the best known maximum differential and linear probabilities of 2−6. Furthermore,
it can be verified that the branch number of the linear transformation L is Ld = 5. This gives optimal
spreading effect which increases the number of active S-boxes for protection against differential and linear
cryptanalysis.

The key schedule of SMS4 XORs the secret key MK with a constant FK and passes it through a
nearly-identical 32-round structure as the main SMS4 cipher. The only difference is that the 32-bit linear
transformation L is replaced by a simpler linear transformation L′, which can be verified to have branch
number L′

d = 4. The 32-bit nonlinear output of the i-th round of the key schedule is taken to be the i-th
round subkey of the main cipher. For more details, please refer to [11].

6.2 Parallelizing SMS4: p-SMS4

In this section, we propose another version of the existing SMS4 block cipher, which we call p-SMS4 (“par-
allelizable” SMS4 ). As described previously, SMS4 uses a generalized Feistel network structure described
by equation (6). For the encryption procedure of p-SMS4, we shall replace the generalized Feistel network
with the 4-cell GF-NLFSR block cipher structure described by:

(X0,X1,X2,X3, rk) 7→ (X1,X2,X3,X1 ⊕ X2 ⊕ X3 ⊕ T (X0 ⊕ rk)). (7)



Other components such as number of rounds and the T -function, which consists of four S-boxes and a
L-function, remain the same as SMS4. One round of p-SMS4 corresponds to a 4-cell version of the structure
in Figure 1, where the nonlinear function F (·) is the T -function used in SMS4.

The key schedule of p-SMS4 XORs the secret key MK with a constant FK and passes it through an
identical 32-round structure as the main cipher of p-SMS4 described by equation (7). The constant FK,
S-box and the linear transformation L′ of the key schedule remain the same as SMS4. We need the key
schedule to have the same structure as the main cipher so that it is also parallelizable in hardware, and
thus can be made “on-the-fly”.

6.3 Differential and Linear Cryptanalysis of p-SMS4

Su et al. proved bounds for the differential characteristic probability of the SMS4 cipher in [19]. One of
the results they proved was that in every 7 rounds of the SMS4 cipher, there are at least 5 active S-boxes.
However, there are currently no known bounds on the linear characteristic probability of SMS4 to the best
of our knowledge.

Similarly for the p-SMS4 cipher, we can easily compute the differential characteristic bound by Theorem
3. Denote the maximum differential probability of p-SMS4 reduced to 29-round by p (we assume a minus-3
round attack where the attacker guesses three subkeys with complexity 296).

Recall that both p-SMS4 and SMS4 use the same T -function. In the case of p-SMS4, the maximum
differential probability of the S-boxes is 2−6 and Ld = 5. By virtue of Theorem 3 with n = 4 and r = 5, the
first 24 rounds has 5× 3 + ⌊3/2⌋ = 16 active S-boxes. Over the next 5 rounds, we have 2 active S-boxes by
Proposition 1. Therefore the differential characteristic probability over 29 rounds satisfies:

p ≤ (2−6)16 × (2−6)2 = 2−108.

This implies that an attacker needs to collect at least 2108 chosen plaintext-ciphertext pairs to launch an
attack. This is not feasible in practice. Moreover by Remark 1, for random input differences, we have at
least 5 active S-boxes every 5 rounds with probability 1− 2−32. Only 2−32 of the time do we need 8 rounds
to ensure at least 5 active S-boxes. Thus we expect the bound for the differential characteristic probability
to be even lower. In summary, we have shown that p-SMS4 offers sufficient security against differential
cryptanalysis.

Denote the maximum linear probability of p-SMS4 reduced to 28-round by q. Recall that the maximum
linear probability of the S-boxes is 2−6 and the linear branch number is 5. By Theorem 5 and Corollary
1, we deduce that there must be at least 16 linear active S-boxes. Hence q ≤ (2−6)16 = 2−96. This implies
that an attacker needs to collect at least 296 chosen/known plaintexts to mount a linear attack, which is
not feasible in practice.

This implies that there is no effective differential or linear characteristic for p-SMS4 reduced to more
than 29 rounds. In other words, p-SMS4 offers sufficient security against differential and linear attack.

6.4 Related-Key Differential Attack on p-SMS4

Related-key differential attacks have been shown to have the devastating effect of recovering the secret key
of AES-256 with a complexity of 2131 using 235 related keys in [7]. In related-key differential attack, there
are non-zero differential inputs into both the cipher and the key schedule. The adversary tries to find a
differential characteristic path in the key schedule with probability pk and a differential characteristic path
in the main cipher with probability pc|k that holds, on the condition that the key schedule differential path
is true. The attacker can then launch the attack with complexity O(1/(pk × pc|k)) where he can tweak the
secret key 1/pk times to get that many related keys. In AES-256, we have pk = 2−35 and pc|k = 2−93.

Because the p-SMS4 key schedule uses a 4-cell GF-NLFSR structure, we can try to bound the probability
pk of a differential characteristic path in the key schedule by Theorem 3. However, Theorem 3 cannot be



directly applied to the main cipher to derive the differential characteristic probability pc|k because there are
subkey differential input into every round.

We use the fact that the key schedule uses the inversion S-box with differential probability 2−6 and that
the linear transform L′ has branch number L′

d = 4. By Theorem 3 with n = 4 and r = 4, every 24 rounds
of the key schedule has 4 × 3 + ⌊3/2⌋ = 13 active S-boxes. With a computation similar to Section 6.3, we
have another 2 active S-boxes over the next 5 rounds giving:

pk ≤ (2−6)13 × (2−6)2 = 2−90.

over 29 rounds of the key schedule. That means the complexity of any minus-3 round related-key differential
attack is at least O(290) and uses at least 290 related keys, which is not feasible in practice. Again, by a
similar explanation as in Section 6.3 based on Remark 1, most of the time we have 5 active S-boxes per 5
rounds and we expect pk to be lower and the attack complexity to be higher.

In [6], a related-key boomerang attack on AES-256 with a complexity of 2119 using 4 related keys is
presented but it assumes a more powerful adverserial model. In a similar way, we can show through the
p-SMS4 key schedule differential structure that related-key boomerang attack is infeasible.

6.5 Other Attacks on p-SMS4

Boomerang Attack Suppose an adversary performs a minus-3 round attack on 29 rounds of p-SMS4.
He would need to split 29 rounds into two sub-ciphers E0, E1 with r and 29−r rounds respectively, where r =

1, · · · , 28. By Proposition 1 and Theorem 3, p0 ≤ (2−6)5×⌊ r

8 ⌋+2×⌊ r mod 8
5 ⌋ and p1 ≤ (2−6)5×⌊ 29−r

8 ⌋+2×⌊
(29−r) mod 8

5 ⌋.
(Note that we ignore the last term in the upper bound of Theorem 3 for ease of calculation.) For r =

1, · · · , 28, let n8 = ⌊ r
8⌋+ ⌊ 29−r

8 ⌋ and n5 = ⌊ r mod 8
5 ⌋+ ⌊ (29−r) mod 8

5 ⌋. It can be easily checked that there are
only three combinations of values that n8 and n5 can take, as summarized in the Table 2.

Now p0 × p1 ≤ (2−6)5n8+2n5 . This implies that

p2
0 × p2

1 ≤ (2−12)5n8+2n5 .

The upper bounds of p2
0 × p2

1 for each combination of n8 and n5 are also given in Table 2. From Table 2, we
see that p2

0 × p2
1 < 2−128. Hence p-SMS4 is secure against boomerang attack.

n8 n5 r p2
0 × p2

1

3 0 1, · · · , 4, 9, · · · , 12, 17, · · · , 20, 25, · · · , 28 ≤ (2−12)15 = 2−180

3 1 5, 8, 13, 16, 21, 24 ≤ (2−12)15+2 = 2−204

2 2 6, 7, 14, 15, 22, 23 ≤ (2−12)10+4 = 2−168

Table 2. Values of n8, n5 and upper bounds of p2
0 × p2

1 for r = 1, · · · , 28

Impossible Differential Attack According to [8, 20, 24], there is at least one 18-round impossible differ-
ential distinguisher in the 4-cell GF-NLFSR, which results in a 25-round impossible differential attack with
complexity 2123 and uses 2115 chosen plaintext encryptions. An identical attack is applicable to 25-round
p-SMS4 with the same complexity. However, that attack is unlikely to work on the full p-SMS4 cipher,
which has 32 rounds.



Integral Attack According to [8, 20], there is at least one 16-round integral attack distinguisher in the 4-cell
GF-NLFSR starting with one active 32-bit word. A naive key guessing attack can extend this distinguisher
by at most 3 rounds at the end (guessing more rounds of keys may make the complexity too close to 2128).
An adversary may extend the attack by 4 rounds in front, starting with 3 active words and using the method
of [12]. Using these means, we expect a 4 + 16 + 3 = 23 round attack on p-SMS4 and the full 32 rounds will
be secure against integral attack.

Slide Attack The slide attack works on ciphers with cyclical structures over a few rounds. However the
subkeys used in every round are nonlinearly derived from the previous subkey. Thus the subkeys are all
distinct and there is no simple linear relation between them, making slide attack unlikely.

XSL Attack In [15], Ji and Hu showed that the eprint XSL attack on SMS4 embedded in GF (28) can be
applied with complexity 277. A similar analysis can be applied on p-SMS4 to show that the complexity of
the eprint XSL attack on p-SMS4 embedded in GF (28) is also 277. However, it was shown in [10] by Choy
et al. that Ji and Hu’s analysis might be too optimistic and the actual complexity of the compact XSL
attack on embedded SMS4 is at least 2216.58. We can use an analysis identical to the ones used in [10] to
show that the complexity of the compact XSL attack on p-SMS4 is also at least 2216.58.

Using a similar approach as [5], we discuss the protection of p-SMS4 against higher order differential
attack and interpolation attack in the remaining of this section.

Higher Order Differential Attack As mentioned previously, higher order differential attack is generally
applicable to ciphers that can be represented as Boolean polynomials of low degree in terms of the plaintext.
The attack requires O(2t+1) chosen plaintext when the cipher has degree t.

p-SMS4 uses exactly the same S-boxes as SMS4 where the degree of the Boolean polynomial of every
output bit of the S-boxes is 7. Making the assumption that when we compose two randomly chosen S-boxes
F,G of degree t1, t2, F ◦ G should have degree t1t2. We expect the degree of an intermediate bit in the
encryption process to increase exponentially as the data passes through many S-boxes.

Indeed, by the 4th round, every output bit will have degree 7. By the 8th round, every output bit will
have degree 72 = 49. By the 12th round, every output bit will have degree min(73, 127) = 127 in terms of
the plaintext bits. Therefore p-SMS4 is secure against higher order differential attack.

Interpolation Attack The interpolation attack works on block ciphers that can be expressed as an
equation in GF (2d) with few monomials. p-SMS4 uses the same components as SMS4 and as the data
passes through many S-boxes and L-functions, the cipher will became a complex function which is a sum
of exponentially many multi-variate monomials over GF (28). Hence we expect p-SMS4 to be secure against
interpolation attack.

6.6 Implementation Advantages

Similar to p-Camellia we will assess the implementation advantages of p-SMS4 over SMS4 with respect
to serialized, round-based and parallelized architectures. In case of SMS4 the XOR sum of three branches
forms the input to the F-function and its output is XORed to the last branch while p-SMS4 uses one branch
as the input for the F-function and XORs its output to the remaining three branches. This difference allows
more flexible implementations of p-SMS4 compared to SMS4, because the XOR sum of four signals can
be achieved by either using three 2-input XOR gates or combining a 3-input XOR gate with a 2-input
XOR gate. The first option is faster (0.33 ns vs. 0.45 ns) while the second option requires less area (256
GE vs. 235 GE), which is an advantage for lightweight implementations. Beside this flexibility, p-SMS4 has
similar characteristics as SMS4 for a serialized implementation. The critical path of a round-based p-SMS4



implementation is shorter than that of SMS4, since it consists of the F-function and a 2-input XOR gate
compared to a 3-input XOR gate, the F-function and a 2-input XOR gate for SMS4.
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Fig. 6. Possible hardware architecture of four rounds of SMS4 (left) and p-SMS4 (right).

For parallelized implementations p-SMS4 offers even greater advantages. If we consider an implementa-
tion that processes four rounds in one clock cycle (see figure 6), the critical path of p-SMS consists only
of the F-function and two 2-input XOR gates while SMS4’s critical path consists of four F-functions, four
2-input XOR gates and four 3-input XOR gates. Hence, the maximum frequency and thus the maximum
throughput that can be achieved with p-SMS4 using such an architecture is around four times higher while
the area and power consumption are similar or lower compared to a corresponding SMS4 implementation. A
similar frequency can be achieved for SMS4 by inserting three pipelining stages, which significantly increases
the area and power consumption and introduces a delay of three clock cycles.

To substantiate our claims we have implemented the round function of SMS4 and p-SMS4 in VHDL. We
obtained area, timing and power figures figures for a 180 nm ASIC technology from UMC using Synopsys
Design Vision for synthesis. Table 3 depicts a comparison of the hardware implementation results of the
round function of SMS4 and p-SMS4. This is a typical setup in a co-processor or instruction set extension
scenario. As expected, the area requirements of 2924 GE for one instance of the round function are the
same for SMS3 and p-SMS4 and nearly quadruple to 11546 GE and 11574 GE for four instances. The 1
round implementation of p-SMS4 achieves a slightly higher maximum frequency of 290.7 MHz compared
to SMS4 with 288.2 MHz. However, as depicted in Figur 6 the critical path for four consecutive instances
of the round function of SMS4 is nearly four times as long as for p-SMS4. Consequently, the maximum
frequency achievable for SMS4 drops to 25.4% while it only slightly decreases to 92.8% for p-SMS4. The
maximum throughput of a 1 round implementation is the about same for SMS4 and p-SMS4 and achieves
36.9 Gbps and 37.2 Gbps, respectively. A four round SMS4 implementation slightly increases the maximum



Table 3. Comparison of the implementation results of the round function of SMS4 and p-SMS4 on UMC 180 nm

ASIC technology.

SMS4 p-SMS4
1 round 4 rounds 1 round 4 rounds

abs. % abs. % abs. % abs. %

Area (GE) 2924 100 11546 394.9 2924 100 11574 395.9

power∗ (mW) 1.81 100 11.38 627.5 1.39 76.8 5.9 322.3

max Freq. (MHz) 288.2 100 73.1 25.4 290.7 100.9 267.4 92.8

max T’put (Gbps) 36.9 100 37.4 101.4 37.2 100.9 136.9 371.1
∗at a frequency of 100 MHz and a supply voltage of 1.8V.

throughput by a mere 1.4% to 37.4 Gbps, while p-SMS4 boosts the maximum throughput to 136.9 Gbps -
an increment of 271.1% compared to the 1 round SMS4 implementation and still 266% higher than the 4
round SMS4 implementation.

For all architectures we simulated the power consumption at a frequency of 100 MHz and a supply
voltage of 1.8 Volt. 1 round of SMS4 requires 1.81 mW and a similar p-SMS4 implementation rewuires 1.39
mW. While the power consumption for the 4 rounds implementation of SMS4 increases more than 6 times
(+528%) to 11.38 mW, it less than quadruples for the 4 rounds implementation of p-SMS4 (+222%) to
5.85 mW compared to the 1 round implementations. These figures highlight the advantages of p-SMS4 over
SMS4 from a power perspective.

From these estimates it becomes clear that the implementation advantages of our newly proposed par-
allelizable Feistel-structure becomes even larger with a growing number of branches. In fact, an n-cell
GF-NLFSR can be implemented using n rounds in parallel while having nearly the same critical path as
for a single round implementation. This translates to an about n times higher maximum frequency while
the area and power consumption are similar then for a conventional Feistel structure.

7 Conclusion

In this paper we proposed the use of n-cell GF-NLFSR structure to parallelize (Generalized) Feistel struc-
tures. We used two examples, p-Camellia and p-SMS4, and showed that they offer sufficient security against
various known existing attacks. At the same time, as compared to their conventional Feistel structure coun-
terparts Camellia and SMS4, their hardware implementations achieve a maximum frequency that is about
n times higher, where n is the number of Feistel branches, while having similar area demands and signifi-
cantly less power demands. These estimates indicate that of n-cell GF-NLFSRs are particularly well suited
for applications that require a high throughput.
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