
Security Improvement on a Password-Authenticated

Group Key Exchange Protocol

Junghyun Nam†

August 1, 2010

Abstract

A group key exchange (GKE) protocol is designed to allow a group of par-
ties communicating over a public network to establish a common secret key. As
group-oriented applications gain popularity over the Internet, a number of GKE
protocols have been suggested to provide those applications with a secure mul-
ticast channel. Among the many protocols is Yi et al.’s password-authenticated
GKE protocol in which each participant is assumed to hold their individual pass-
word registered with a trusted server. A fundamental requirement for password-
authenticated key exchange is security against off-line dictionary attacks. How-
ever, Yi et al.’s protocol fails to meet the requirement. In this work, we report
this security problem with Yi et al.’s protocol and show how to solve it.

Keywords: Group key exchange, password, dictionary attack, identity-based
cryptography.

1 Introduction

The increasing ubiquity of computer networks is accelerating the development of
group-oriented applications in which a group of parties communicate collaboratively
to achieve their common interest or objective. Typical group-oriented applications
include video/audio teleconferencing, distributed multiplayer games, grid computing,
collaborative workspaces, and social networking services. In particular, social net-
working services such as Twitter [5] and Facebook [3] have recently gained tremen-
dous popularity and are redefining our sense of community. The proliferation of
group-oriented applications has led to a growing concern in security of group com-
munications. The current Internet, by design, is an open network which might be
controlled by an adversary. Today’s adversaries are equipped with more powerful
computing resources and attacking tools than ever before. The situation gets even

†Department of Computer Science, Konkuk University, 322 Danwol-dong, Chungju-si,
Chungcheongbuk-do 380-701, Republic of Korea.
E-mail: jhnam@kku.ac.kr

1

worse when we consider malicious insiders. In general, we cannot expect complete
trust among all group members just because they collaborate to achieve a specific
purpose; collaboration does not imply full trust. Perhaps malicious insiders pose the
most serious security threat to many organizations and enterprises.

One valuable tool for protecting group communications is protocols for group
key exchange (GKE). A group of parties communicating over a public network can
generate a common secret key (called a session key) by running a GKE protocol.
Once a session key has been established, the parties can use this key to encrypt
and/or authenticate their subsequent multicast messages. This represents a typical
way of communicating confidentially and with integrity over a public channel. The
session key, of course, must be known only to the intended parties at the end of the
protocol run, because otherwise the whole system becomes vulnerable to all manner
of attacks. Roughly stated, a key exchange protocol satisfying this requirement is said
to be authenticated. Any protocol for authenticated key exchange inherently requires
that the protocol participants establish their long-term authentication secrets (either
low-entropy passwords or high-entropy cryptographic keys) before they ever run the
protocol.

Protocols for password-authenticated key exchange are designed to work even
when the authentication secrets are human-memorable passwords chosen from a small
known set of values. These password-based protocols, despite their practical signifi-
cance in today’s computing environments, are notoriously hard to design right. The
major hurdle to password-authenticated key exchange is (off-line) dictionary attacks
in which an adversary exhaustively enumerates all possible passwords in an off-line
manner to find out the correct one. Indeed, many protocols, even some with a claimed
proof of security, have been found to be vulnerable to a dictionary attack years after
they were published. In the current work, we present another instance of the vulner-
ability that can be identified in the password-authenticated GKE protocol proposed
recently by Yi et al. [6]. Like the previous protocols of [1, 2, 4], Yi et al.’s protocol
assumes a Kerberos-like authentication model in which each client, who is a potential
participant of the protocol, shares a password with a trusted server but not with any
other clients. This model enjoys the obvious practical advantage that no matter how
many different session keys for different groups a client wants to generate, he/she does
not need to hold multiple passwords but only needs to remember a single password
shared with the server. Yi et al.’s protocol differs from previous designs [1, 2, 4] in two
aspects: (1) it can be constructed generically from any GKE protocol secure against
passive adversaries and (2) it employs identity-based cryptography where an arbitrary
identity like an email address can serve as a public key. Despite its practicality and
uniqueness, Yi et al.’s protocol should not be adopted in its present form. Due to a
fatal flaw in its design, Yi et al.’s protocol fails to protect the passwords of its par-
ticipants against a dictionary attack. We here report this critical problem with Yi et
al.’s protocol and present how to solve it.

2

2 Yi et al.’s Group Key Exchange

This section reviews Yi et al.’s password-authenticated GKE protocol PGKE [6]. There
are three kinds of entities involved in PGKE: (1) a set of n clients C1, . . . , Cn who
wish to establish a common session key; (2) a server S who provides the clients with
a centralized authentication service; (3) a private key generator PKG who generates
global system parameters as well as S’s long-term private keys. Both S and PKG
are trusted to behave in an “honest but curious” manner; that is, S and PKG may
attempt to learn the session key only by passive eavesdropping.

Building Blocks. The cryptographic building blocks of PGKE include:

• a group key exchange protocol GKE which is secure against a passive adversary.
Every message of GKE is assumed to be sent — via point-to-point links — to
all protocol participants. This assumption implies that in GKE, the set of all
messages sent and received by each participant is expected to be the same.

• an identity-based encryption scheme IBE which is secure against an adaptive
chosen ciphertext attack. We let Ecrt and Dcrt be the encryption and decryption
algorithms of IBE. The plaintext space of IBE is M = {0, 1}` for some `.

• an identity-based signature scheme IBS which is existentially unforgeable under
an adaptive chosen message attack. We let Sign and Vrfy be the signing and
verification algorithms of IBS.

Initialization. Before the protocol PGKE is ever executed, the following initialization
is performed to generate public parameters and long-term secrets.

Public parameters. PKG chooses: (1) a large cyclic group G of prime order q and
a generator g of G and (2) two collision-resistant hash functions H1 : {0, 1}∗ → M
and H2 : {0, 1}∗ → {0, 1}λ. (Here, λ is the security parameter that determines the
length of session identifiers constructed during protocol runs.) This is in addition to
generating any public parameters needed for GKE, IBE and IBS.

Long-term secrets. The server S obtains from PKG its private decryption/signing
keys (DKS , SKS) corresponding to its public key IDS . (Here, the public key IDS is
an arbitrary identity of S, and is used both for encryption and verification purposes.)
Each client Ci chooses a password pwi and stores it on the server S.

Protocol Execution. If the protocol GKE takes r rounds of communications, then
the protocol PGKE runs in r + 2 rounds as follows:

[Round 1 ∼ r]: The clients C1, . . . , Cn execute the protocol GKE. Let ki be the key
computed by Ci as a result of the execution of GKE. Let sidi be the (ordered) con-
catenation of all messages sent and received by Ci during the course of the execution.

3

[Round r + 1]: Each client Ci computes SIDi = H2(gki |sidi) and sets PIDi =
(C1, C2, . . . , Cn, S). Then Ci computes

Authi = EcrtIDS
(H1(SIDi|PIDi|pwi))

and sends the message Mi = Ci|SIDi|Authi to the server S. Upon receiving all of
M1, . . . , Mn, the server S sets SIDS = SID1 and PIDS = (C1, C2, . . . , Cn, S) and
checks that the following equation holds for all i = 1, . . . , n:

DcrtDKS
(Authi) = H1(SIDS |PIDS |pwi).

If any of the checks fails, S terminates the protocol execution.

[Round r + 2]: S generates a signature

AuthS = SignSKS
(PIDS |SIDS)

and broadcasts the message MS = S|AuthS . After receiving MS , each client Ci checks
that

VrfyIDS
(PIDi|SIDi, AuthS) = 1.

If the verification fails, Ci aborts the protocol. Otherwise, Ci computes the session
key Ki = gk2

i .

3 Security Analysis

Resistance against dictionary attacks is the fundamental security requirement that
should be satisfied by any password-based protocols for authenticated key exchange.
However, the PGKE protocol described above fails to meet the requirement. In this
section, we reveal this security problem with PGKE and then suggest a countermeasure
to the attack.

Dictionary Attack. Consider an adversary A whose goal is to find out the password
of client Ci. Then, the following describes a dictionary attack mounted byA to achieve
its goal.

1. As the (r + 1)th round of PGKE proceeds, A eavesdrops on the message Mi =
Ci|SIDi|Authi sent from Ci to S.

2. A next makes a guess pw′i for the password pwi and computes

Auth′i = EcrtIDS
(H1(SIDi|PIDi|pw′i)).

3. A then verifies the correctness of pw′i by checking that Auth′i is equal to Authi.
If pw′i and pwi are equal, then the equality Auth′i = Authi ought to be satisfied.

4

4. A repeats steps 2 and 3 until a correct password is found.

This dictionary attack may lead to devastating losses of passwords because: (1)
it can be mounted against any of the clients and (2) the steps for verifying password
guesses can be performed in an off-line manner by an automated program.

Of course, there is a possibility in the dictionary attack that the adversary A
comes up with a password guess pw′i such that pw′i 6= pwi but H1(SIDi|PIDi|pw′i) =
H1(SIDi|PIDi|pwi) and thus Auth′i = Authi. However, this possibility should be
negligible because otherwise H1 is not collision-resistant.

Countermeasure. The security failure of PGKE is attributed to one obvious flaw
in the protocol design: the password pwi is the only secret included in the computa-
tion of Authi = EcrtIDS

(H1(SIDi|PIDi|pwi)). SIDi can be obtained directly from
the message Mi since it is transmitted in the clear. PIDi represents the identities
of protocol participants and is generally assumed to be available to the adversary.
(However, this assumption is not necessary for our dictionary attack if we think of
the adversary A as a malicious client Cj(6= Ci) who also is a protocol participant.)
On the basis of this observation, one may suggest that a simple defense against the
attack is to transmit SIDi in an encrypted form. This suggestion, of course, is valid if
the adversary A does not know the key ki from which SIDi can be derived. However,
notice that A could be any (malicious) client Cj who runs the protocol with client
Ci. Hiding SIDi from the public makes no difference to such an inside adversary.

As the discussion above highlights, a proper defense to the dictionary attack must
ensure that the password of a client should not be disclosed even to other clients
participating in the same protocol run. Keeping this in mind, we recommend to
change the (r + 1)th round of PGKE as follows:

[Round r + 1] (revision): Each client Ci chooses a random xi ∈ {0, 1}`, computes
Xi = EcrtIDS

(xi) and SIDi = H2(gki |sidi), and sets PIDi = (C1, C2, . . . , Cn, S).
Then Ci computes

Authi = EcrtIDS
(H1(SIDi|PIDi|pwi|xi))

and sends the message Mi = Ci|SIDi|Xi|Authi to the server S. After receiving the
messages M1, . . . , Mn, the server S sets SIDS = SID1 and PIDS = (C1, C2, . . . , Cn, S)
and checks that H1(SIDS |PIDS |pwi|DcrtDKS

(Xi)) is equal to DcrtDKS
(Authi) for all

i = 1, . . . , n. If any of the checks fails, S terminates the protocol execution.

The other rounds of the protocol remain unchanged.
The key change made in our revision is the inclusion of the confounder xi into the

computation of Authi. This change prevents Authi from being used as a password
verifier. Hence, the dictionary attack is no longer valid against the improved protocol.

5

References

[1] J. Byun and D. Lee, “N-party encrypted Diffie-Hellman key exchange using differ-
ent passwords,” in Proc. 3rd International Conference on Applied Cryptography
and Network Security, LNCS vol. 3531, pp. 75–90, 2005.

[2] J. Byun, S. Lee, D. Lee, and D. Hong, “Constant-round password-based group
key generation for multi-layer ad-hoc networks,” in Proc. 3rd International Con-
ference on Security in Pervasive Computing, LNCS vol. 3934, pp. 3–17, 2006.

[3] Facebook, http://www.facebook.com.

[4] J. Kwon, I. Jeong, K. Sakurai, and D. Lee, “Password-authenticated multi-
party key exchange with different passwords,” Cryptology ePrint Archive, Report
2006/476, 2006.

[5] Twitter, http://twitter.com.

[6] X. Yi, R. Tso, and E. Okamoto, “ID-Based group password-authenticated key
exchange,” Advances in Information and Computer Security — 4th International
Workshop on Security, LNCS vol. 5824, pp. 192–211, 2009.

6

