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Abstract. Once quantum computers reach maturity most of today’s traditional cryptographic
schemes based on RSA or discrete logarithms become vulnerable to quantum-based attacks.
Hence, schemes which are more likely to resist quantum attacks like lattice-based systems or
code-based primitives have recently gained significant attention. Interestingly, a vast number of
such schemes also deploy random oracles, which have mainly be analyzed in the classical setting.

Here we revisit the random oracle model in cryptography in light of quantum attackers. We

show that there are protocols using quantum-immune primitives and random oracles, such that

the protocols are secure in the classical world, but insecure if a quantum attacker can access the

random oracle via quantum states. We discuss that most of the proof techniques related to the

random oracle model in the classical case cannot be transferred immediately to the quantum

case. Yet, we show that “quantum random oracles” can nonetheless be used to show for example

that the basic Bellare-Rogaway encryption scheme is quantum-immune against plaintext attacks

(assuming quantum-immune primitives).

1 Introduction

Lattice-based cryptosystems, as well as coding-based schemes, recently gained a lot of attention as
alternatives to traditional schemes based on RSA or the discrete logarithm problem [RSA78, DH76].
Besides broadening the set of cryptographic assumptions, lattice-based systems for example come
with three other advantages over traditional schemes:

• They offer average-case to worst-case hardness [Ajt96, MR04].

• They enable new functional properties such as fully homomorphic encryption schemes [Gen09].

• They are likely to be resistant against quantum attackers because —unlike RSA, for example—
they are often based on NP-hard problems [Mic98, AR03, AR05]. This is also believed for
coding-based schemes.

The latter property becomes tricky when the schemes are combined with random oracles, as in
[CGP01, Cou04, Ove09, Rüc08, GPV08, Lyu09, DV09, BM10].

∗This work was done while the author was at Darmstadt University of Technology, Germany.
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The random oracle model in cryptography has been introduced to ease the design of truly
practical schemes withstanding threats from classical (i.e., non-quantum) attackers [BR93]. The
question is whether it is sufficient to simply replace the number-theoretic primitives in such schemes
or if security needs to be re-assessed from scratch when using the random oracle model also as a
hedge against quantum attackers.

We note that none of the authors of the above mentioned works claims (or proves) that their
random oracle based schemes remain secure against quantum attackers. Still, it would be desirable
to show this property and to preserve all advantages over traditional schemes. From a more abstract
point of view, taking a closer look at random oracles and quantum attackers is also an intriguing
question to prepare for the quantum era: replacing traditional systems like RSA by quantum-immune
ones may not be sufficient to save random oracle based constructions.

Modeling Random Oracles for Quantum Attackers. In the classical random oracle model
the (classical) adversary is given oracle access to a random hash function H : {0, 1}∗ → {0, 1}∗. As
such, the adversary can only “learn” a hash value H(x) by querying the oracle about x. We propose
two new models for random oracles in the quantum world. In a straightforward attempt to transfer
the classical model to the quantum world, we may thus simply lend the adversary “local quantum
power” and insist on classical access to H.

In a different approach, following the idea behind the random oracle model that the idealized
oracle is eventually replaced by a “strong” implementation, the quantum attacker can evaluate the
implementation on quantum states. To capture such possibilities in the model we allow the adversary
to evaluate the oracle “in superposition”, i.e. he can submit quantum states |ϕ〉 =

∑
αx |x〉 to

the oracle H and receives back the evaluated state
∑
αx |H(x)〉 (appropriately encoded to make

the transformation unitary). We call this the quantum-accessible model. It complies with similar
efforts from learning theory [BJ99, SG04] and computational complexity [BBBV97] where oracles
are quantum-accessible, and from lower bounds for quantum collision finders [AS04]. Still, since
we consider classical algorithms, being able to communicate only classically, honest parties and the
scheme’s algorithms can access H only via classical bit strings.

We remark that the quantum-accessible model provides strictly stronger security guarantees.
Yet, none of the two new models is, per se, superior to the other. After all, the (classical) random
oracle model already allows for provable secure solutions that lose any security guarantees when
translated into the standard model, where the random oracle is instantiated by an efficient hash
function [CGH98]. Hence, one may also consider the classical random oracle model to be appropriate
to capture a large class of attacks, especially since the only known provable speed-up of quantum
algorithms that is applicable to hash functions is quadratic, namely, Grover’s algorithm [Gro96].1

Note, too, that we do not advocate to use either approach in a quantum setting without second
thoughts. This is especially true since, at this point, is not even clear what the “right” quantum
random oracle model is; we merely suggest two reasonable approaches. One should always seek for
random-oracle-free solutions in both the classical and the quantum worlds. The question we are
addressing is how much of known results from the classical (random oracle) world we can carry
over to the quantum setting instantaneously, given that we adopt the idea of having a strong hash
function for which generic attacks are optimal. Since Grover’s algorithm —and more generally,

1However, special care must be taken with respect to concrete security claims in this case. As an example, finding
collisions for random oracles with n bits output would still require 2n/2 steps on the average for a quantum attacker
then, whereas collision search given the hash function’s code can be performed in 2n/3 steps by a quantum computer
[BHT98].
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any computation on qubits— can be considered to be generic, we should at least take such attack
methods into account.

Nonetheless, to motivate our preference for the stronger model we present a two-party protocol
which is

• secure in the classical world in the random oracle model, and presumably also when the random
oracle is instantiated,

• secure against quantum attackers with classical access to the random oracle model, but insecure
under any implementation of the hash function, and

• insecure in the quantum-accessible random oracle model.

The protocol itself assumes that (asymptotically) quantum computers are faster than classical (par-
allel) machines and uses the quadratic gap due to Grover’s algorithms and its application to collision
search [BHT98] to separate secure from insecure executions. Note that, without this assumption,
quantum computers would not give an advantage over classical (parallel) computers, and the ques-
tion if the quantum adversaries can be more powerful seems to be moot.

Proofs in the Quantum-Accessible ROM. Proofs in our quantum-accessible ROM become
much more involved than in the classical model, mainly because several artefacts of the model do
not seem to carry over immediately. Among others, these are:

Adaptive Programmability: The classical random oracle model allows a simulator to program
the answers of the random oracle for an adversary, often adaptively. A well-known example
are simulators in zero-knowledge proofs where challenges are replaced by hash values [BR93]
and the simulator adaptively changes the hash value to make it fit. Since the quantum adver-
sary can query the random oracle with a state in superposition, the adversary may get some
information about all exponentially many values right at the beginning.

Rewinding/Partial Consistency: The random oracle based proof for Fiat-Shamir type schemes
[PS00] requires rewinding of the adversary, replaying some hash values but changing at least a
single value. Besides the usual problems of rewinding quantum adversaries, we again encounter
the fact that we may not be able to change hash values unnoticed.

Extractability/Preimage Awareness: Another advantage of the random oracle model for clas-
sical adversaries is that one learns the preimages the adversary is interested in. This is for
example crucial to simulate decryption queries in the security proof for OAEP [FOPS01]. For
quantum-accessible oracles the actual query may be hidden in a superposition and it is unclear
how to extract the right query.

Efficient Simulation: Related to programmability, but requiring a weaker form of simulation, is
the plain simulation of random oracles (without injecting appropriate values). In the classical
world, we can easily simulate an exponential-size random oracle efficiently via lazy sampling:
simply pick random but consistent answers “on the fly”. With quantum-accessible random
oracles the adversary can now evaluate the random oracle on all inputs simultaneously, disal-
lowing the on-demand strategy for classical oracles.
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We do not claim that any of these problems cannot be solved in the quantum world, e.g., some
form of rewinding is possible for quantum zero-knowledge [Wat09]. In fact, we show how to resolve
the issue of efficient simulation by using (quantum-accessible) pseudorandom functions. These
are pseudorandom functions where the quantum distinguisher can also submit quantum states to
the pseudorandom or random oracle. By this technique, we can efficiently simulate the quantum-
accessible random oracle through the (efficient) pseudorandom function.

We remark that quantum access to pseudorandom functions seems to be more than one usually
needs for security against quantum attackers. Consider for example a symmetric-key identification
scheme where the prover, upon receiving a random string r from the verifier, evaluates the pseudo-
random function on r and returns the outcome. Then, also a quantum attacker on the verifier’s side
can only access the pseudorandom function through the prover and therefore only on classical bits.
While such pseudorandom functions can be derived from quantum-immune pseudorandom gener-
ators [GGM86], it is an open problem if the stronger quantum-accessible pseudorandom functions
exist.

A Positive Example: BR Encryption. Once we have overcome the simulation problem we
show that the extractability property can be ensured for quantum-accessible random oracles, at
least in a weak sense. That is, we consider the BR encryption scheme [BR93] where a ciphertext
(f(r), H(r) ⊕ m) contains the image of a random value r under an injective trapdoor function f
(like the lattice-based one described in [GPV08]) and a traditional one-time pad encryption of the
message via the quantum-accessible random oracle H evaluated for string r.

Here, we show that the adversary, mounting a chosen-plaintext attack against bit strings en-
crypted by a classical party, cannot submit quantum states to H such that the probability of asking
the unknown random value r is large. Otherwise we show how to invert f successfully by measuring
such a query, collapsing the state to r with sufficiently large probability. In this sense, we can extract
only once, and only with a certain probability, from adversarial quantum queries.

Our reduction, showing how to use the quantum distinguisher against the encryption scheme to
build a quantum inverter against f , uses the quantum-accessible pseudorandom function to simulate
the random oracle. Our proof, however, actually provides a more fine-grained view: In the main step
we first devise a quantum inverter which breaks the security of f relative to a random oracle. Only
then we show that we can simulate the quantum-accessible random oracle via a quantum-accessible
pseudorandom function to get an inverter against f in the plain model.

Hence, even if quantum-accessible pseudorandom functions do not exist, our result provides a
hardness result relative to a (quantum-accessible) random oracle. Such results relative to random
oracles must be taken with a grain of salt, though, as it is not clear if this provides meaningful
implications in the standard world; see [HCKM93, For94] for surveys. We discuss this and further
questions arising in the context of random oracles in a quantum world at the end of the paper.

2 Random Oracles and Quantum Attackers

We first briefly recall facts about quantum computations and set some notation; for more details,
we refer to [NC00].

A quantum system A is associated to a (finite-dimensional) complex Hilbert space HA with
an inner product 〈·|·〉. The state of the system is described by a vector |ϕ〉 ∈ HA such that the
Euclidean norm ‖ |ϕ〉 ‖ =

√
〈ϕ|ϕ〉 is 1. Given quantum systems A and B over spaces HA and HB,
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respectively, we define the joint or composite quantum system through the tensor product HA⊗HB.
The product state of |ϕA〉 ∈ HA and |ϕB〉 ∈ HB is denoted by |ϕA〉 ⊗ |ϕB〉 or simply |ϕA〉 |ϕB〉. An
n-qubit system lives in the joint quantum system of n two-dimensional Hilbert spaces. The standard
orthonormal computational basis |x〉 for such a system is given by |x1〉⊗ · · ·⊗ |xn〉 for x = x1 . . . xn.
Any (classical) bit string x is encoded into a quantum state as |x〉. An arbitrary pure n-qubit state
|ϕ〉 can be expressed in the computational basis as |ϕ〉 =

∑
x∈{0,1}n αx |x〉 where αx are complex

amplitudes obeying
∑

x∈{0,1}n |αx|2 = 1.

Transformations. Evolutions of quantum systems are described by unitary transformations with
IA being the identity transformation on register A. Given a joint quantum system over HA ⊗ HB
and a transformation UA acting only on HA, it is understood that UA |ϕA〉 |ϕB〉 refers to (UA ⊗
IB) |ϕA〉 |ϕB〉.

Information can be extracted from a quantum state |ϕ〉 by performing a positive-operator valued
measurement (POVM) M = {Mi} with positive semi-definite measurement operators Mi that sum
to the identity

∑
iMi = I. Outcome i is obtained with probability pi = 〈ϕ|Mi |ϕ〉. A special

case are projective measurements such as the measurement in the computational basis of the state
|ϕ〉 =

∑
x αx |x〉 which yields outcome x with probability |αx|2.

Following [BBC+98] we model a quantum attacker AQ with access to oracles O1, O2, . . . by a
sequence of unitary transformations

U1, O1, U2, . . . , OT−1, UT

over m = poly(n) qubits. Here, oracle Oi : {0, 1}n → {0, 1}n maps the first 2n qubits from basis
state |x〉 |y〉 to basis state |x〉 |y ⊕Oi(x)〉 for x, y ∈ {0, 1}n. Note that the algorithm AQ may also
receive some input |ψ〉. Given an algorithm AQ as above, with access to oracles Oi, we sometimes

write A|O1(·)〉,|O2(·)〉,...
Q to indicate that the oracle is quantum-accessible (as opposed to oracles that

can only process classical bits).
To introduce asymptotics we assume that AQ is actually a sequence of such transformation

sequences, indexed by parameter n, and that each transformation sequence is composed out of
quantum systems for input, output, oracle calls, and work space (of sufficiently many qubits). To
measure polynomial running time, we assume that each Ui is approximated (to sufficient precision) by
members of a set of universal gates (say, Hadamard, phase, CNOT and π/8 for sake of concreteness
[NC00]), where at most polynomially many gates are used. Furthermore, T = T (n) is assumed to
be polynomial, too.

Distance Measures. For two quantum states |ϕ〉 =
∑
αx |x〉 and |ψ〉 =

∑
βx |x〉 in super-

position in the basis states |x〉, the Euclidean distance is given by
(∑

x |αx − βx|
2 )1/2. The to-

tal variation distance (aka. statistical difference) of two distributions D0,D1 is defined through∑
x |Prob[D0 = x]− Prob[D1 = x]|. The following fact from [BV93] upperbounds the total vari-

ance distance in terms of the Euclidean distance:

Theorem 2.1 ([BV93]) Let |ϕ〉 , |ψ〉 be quantum states with Euclidean distance at most ε. Then,
performing the same measurement on |ϕ〉 , |ψ〉 yields distributions with statistical distance at most
4ε.
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3 Negative Result

In this section we discuss a two-party protocol that is provably secure in the random oracle model
against both classical and quantum adversaries (when using quantum-immune primitives). We then
use the quadratic gap between the birthday attack and Grover’s algorithm to show that the protocol
remains secure for certain hash functions when only classical adversaries are considered, but becomes
insecure for any hash function if quantum adversaries are allowed. Analyzing the protocol in the
stronger random oracle model, where we grant the adversary quantum access to the random oracle,
yields the same negative result.

3.1 Preliminaries

We start this section by presenting the necessary definitions and assumptions for our construction.
For sake of simplicity we start with a quantum-immune identification scheme to derive our protocol;
any other primitive or protocol can be used in a similar fashion.

Identification Schemes. An identification scheme IS consists of three efficient algorithms (IS.KGen,
P,V) where IS.KGen on input 1n returns a key pair (sk, pk). The joint execution of P(sk, pk) and
V(pk) then defines an interactive protocol between the prover P and the verifier V. At the end of
the protocol V outputs a decision bit b ∈ {0, 1}. We assume completeness in the sense that for
any honest prover the verifier accepts the interaction with output b = 1. Security of identification
schemes is usually defined by considering an adversary A that first interacts with the honest prover
to obtain some information about the secret key. In a second stage, the adversary then plays the
role of the prover and has to make a verifier accept the interaction. We say that an identification
scheme is sound if the adversary can convince the verifier with negligible probability only.

(Near-)Collision-Resistant Hash Functions. A hash function H = (H.KGen,H.Eval) is a pair
of efficient algorithms such that H.KGen for input 1n returns a key k (which contains 1n), and H.Eval
for input k and M ∈ {0, 1}∗ deterministically outputs a digest H.Eval(k,M). For a random oracle
H we use k as a “salt” and consider the random function H(k, ·). The hash function is called near-
collision-resistant if for any efficient algorithm A the probability that for k ← H.KGen(1n), some
constant 1 ≤ ` ≤ n and (M,M ′)← A(k, `) we have M 6= M ′ but H.Eval(k,M)|` = H.Eval(k,M ′)|`,
is negligible (as a function of n). Here we denote by x|` the leading ` bits of the string x. Note that
for ` = n the above definition yields the standard notion of collision-resistance.

In the classical setting, (near-)collision-resistance for any hash function is upper bounded by the
birthday attack. This generic attack states that for any hash function with n bits output, an attacker
can find a collision with probability roughly 1/2 by probing 2n/2 distinct and random inputs. For
random oracles this attack is optimal.

Grover’s Algorithm and Quantum Collision Search. Grover’s algorithm [Gro96, Gro98]
performs a search on an unstructured database with N elements in time O(

√
N) while the best

classical algorithm requires O(N) steps. Roughly, this is achieved by using superpositions to examine
all entries “at the same time”. Brassard et al. [BHT98] showed that this speed-up can also be
obtained for solving the collision problem for a hash function H : {0, 1}∗ → {0, 1}n. Therefore, one
first selects a subset K of the domain {0, 1}∗ and then applies Grover’s algorithm on an indicator
function f that tests for any input M ∈ {0, 1}∗\K if there exists an M ′ ∈ K such that H(M) =
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H(M ′) holds. By setting |K| = 3
√

2n, the algorithm finds a collision after O( 3
√

2n) evaluations of H
with probability at least 1/2.

Computational and Timing Assumptions. To allow reasonable statements about the secu-
rity of our protocol we need to formalize assumptions concerning the computational power of the
adversary and the time that elapses on quantum and classical computers. We first demand that
the speed-up one can gain by using a parallel machine with many processors, is bounded by a fixed
term. This basically resembles the fact that in the real world there is only a concrete and finite
amount of equipment available that can contribute to such a performance gain.

Assumption 3.1 (Parallel Speed-Up) Let T (C) denote the time that is required to solve a prob-
lem C on a classical computer, and TP (C) is the required time that elapses on a parallel system.
Then, there exist a constant α ≥ 1, such that for any problem C it holds that TP (C) ≥ T (C)/α.

We also introduce two assumptions regarding the time that is needed to evaluate a hash function
or to send a message between two parties. Note that both assumption are merely for the sake
of convenience, as one could patch the idea by relating the timings more rigorously. The first
assumption states that the time that is required to evaluate a hash function H is independent of
the input and the computational environment.

Assumption 3.2 (Unit Time) For any hash function H and any input message M (resp. MQ for
quantum-state inputs) the evaluation of H(M) requires a constant time T (H(M)) = TP (H(M)) =
TQ(H(MQ)) (where TQ denotes the time that elapses on a quantum computer).

Furthermore, we do not charge any extra time for sending and receiving messages, or for any
computation other than evaluating a hash function (e.g., maintaining lists of values).

Assumption 3.3 (Zero Time) Any computation or action that does not require the evaluation of
a hash function, costs zero time.

The latter assumption implicitly states that the computational overhead that quantum algorithms
may create to obtain a speed-up is negligible when compared to the costs of a hash evaluation. This
might be too optimistic in the near future, as indicated by Bernstein [Ber09]. That is, Bernstein
discussed that the overall costs of a quantum computation can be higher than of massive parallel
computation. However, as our work addresses conceptional issues that arise when efficient quantum
computers exist, this assumption is somewhat inherent in our scenario.

3.2 Construction

We now propose our identification scheme between a prover P and a verifier V. The main idea is to
augment a secure identification scheme IS by a collision-finding stage. In this stage the verifier checks
if the prover is able to produce collisions on a hash function in a particular time. Subsequently, both
parties run the standard identification scheme. At the end, the verifier accepts if the prover was able
to find enough collisions in the first stage or identifies correctly in the second stage. Thus, as long
as the prover is not able to produce collisions in the required time, the protocol mainly resembles
the IS protocol.

More precisely, let IS = (IS.KGen,P,V) be an identification scheme and H = (H.KGen,H.Eval)
be a hash function. We construct an identification scheme IS∗ = (IS.KGen∗,P∗,V∗) as follows:
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The key generation algorithm IS.KGen∗(1n) simply runs (sk, pk)← IS.KGen(1n) and returns sk and
(pk, `) for some value ` ≤ log(n).

The interactive protocol 〈P∗(sk, (pk, `)),V∗(pk, `)〉 then consists of two stages: In the first stage
the verifier chooses a key k ← H.KGen for the hash function H and sends it to the prover. For
timekeeping, the verifier then starts to evaluate the hash function H.Eval(k, ·) on the messages 〈c〉
for c = 1, 2, . . . ,

⌈
3
√

2`
⌉
, where 〈c〉 stands for the binary representation of c with log

⌈
3
√

2`
⌉

bits. The

prover has now to respond with a near-collision M 6= M ′ such that H.Eval(k,M) = H.Eval(k,M ′)
holds for the first ` bits. One round of the collision-stage ends if V∗ either receives such a collision
from P∗ or finishes its

3
√

2` hash evaluations. The verifier and the receiver then repeat such a round
r = poly(n) times, sending a fresh key k in each round. Recall that, if assuming a random oracle
H, then both parties are supposed to evaluate the function H(k, ·).

In the second stage of our scheme, the prover and verifier run the underlying identification
protocol 〈P(sk, pk),V(pk)〉 leading to a decision bit b. Finally, the verifier outputs b∗ = 1 if b = 1
or if the prover was able to provide collisions in at least r/4 rounds of the first stage. Else, V∗
rejects with output b∗ = 0. Note that due to our choice of ` ≤ log(n), the protocol IS∗ still runs in
polynomial time.

Verifier V∗ Prover P∗
pk, ` ≤ log(n), collCount = 0 (sk, pk)← IS.KGen(1n), `

collision stage (repeat for i = 1, 2, . . . , r):
ki ← H.KGen(1n)

compute H.Eval(〈1〉) ki−−−−−−−−−−−−−−→ search for `-near
compute H.Eval(〈2〉) collision on H(ki, ·)

...
Mi,M

′
i←−−−−−−−−−−−−−−

compute H.Eval(〈c〉)

stop if c >
⌈

3
√

2`
⌉

or

H.Eval(ki,Mi)|` = H.Eval(ki,M
′
i)|`

if collision was found set
collCount := collCount + 1

identification stage:
−−−−−−−−−−−−−−→

decision bit b
〈P(sk, pk),V(pk)〉
←−−−−−−−−−−−−−−

accept if b = 1
or collCount > r/4

Figure 1: The IS∗-Identification Protocol

Completeness of the IS∗ protocol follows easily from the completeness of the underlying IS
scheme.
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Security against Classical and Quantum Adversaries. To prove security of our protocol we
need to show that an adversary A after interacting with an honest prover P∗, can subsequently not
impersonate P∗ such that V∗ will accept the identification. Let ` be such that ` > 6 log(α) where α
is the constant from Assumption 3.1. By assuming that IS = (IS.KGen,P,V) is a quantum-immune
identification scheme, we can show that IS∗ is secure in the standard random oracle model against
classical and quantum adversaries.

The main idea is that for oracle models, the ability of finding collisions is bounded by the
birthday attack. Due to the constraint of granting only time O(

3
√

2`) for the collision search and
setting ` > 6 log(α), even an adversary with quantum or parallel power is not able to make at least√

2` random oracle queries. Thus, A has only negligible probability to respond in more than 1/4 of
r rounds with a collision.

When considering only classical adversaries we can also securely instantiate the random oracle
by a hash function H that provides near-collision-resistance close to the birthday bound. Note that
this property is particularly required from the SHA-3 candidates [NIS07].

However, for adversaries AQ with quantum power such an instantiation is not possible for any
hash function. This stems from the fact that AQ can locally evaluate a hash function on quantum
states which in turns allows to apply Grover’s search algorithm. But then an adversary will find a
collision in time

3
√

2` with probability at least 1/2, and thus will be able to provide r/4 collisions
with noticeable probability. The same result holds in the quantum-accessible random oracle model,
since Grover’s algorithm only requires (quantum) black-box access to the hash function.

Formal proofs of all statements are given in Appendix A.

4 Positive Result

In this section we show that, assuming quantum-accessible pseudorandom functions exist, the
Bellare-Rogaway encryption scheme Enc(m; r) = (f(r), H(r)⊕m) is indistinguishable against quan-
tum attackers in the quantum-accessible random oracle model.

4.1 Quantum-Immune Encryption

A public-key encryption scheme E = (E.KGen,E.Enc,E.Dec) consists of efficient classical algorithms
to generate a key pair (sk, pk) ← E.KGen(1n), to encrypt messages C ← E.Enc(pk,m) and to
decrypt ciphertexts m ← E.Dec(sk, C) such that m = E.Dec(sk,E.Enc(pk,m)) for all m, (sk, pk) ←
E.KGen(1n).

A well-known encryption scheme in the random oracle model is the Bellare-Rogaway (BR)
scheme [BR93], allowing also to deploy quantum-immune primitives like the injective trapdoor
function of Gentry et al. [GPV08]. Note that a quantum-immune injective trapdoor function
F = (F.KGen,F.Eval,F.Inv) consists of efficient algorithms where F.KGen(1n) generates descriptions
of functions f, f−1 such that y = F.Eval(f, x) and x = F.Inv(f−1, y) for all x ∈ {0, 1}n, and all
f, f−1 output by F.KGen. We often identify F.Eval(f, ·) with f(·) and F.Inv(f−1, ·) with f−1(·).
Furthermore, for all efficient quantum algorithms IQ the probability Prob[IQ(f, f(x)) = x] that IQ
breaks one-wayness is negligible (in n), where the probability is over the choice of f and x and IQ’s
random choices.

Construction 4.1 (BR-encryption scheme) Let F be an injective trapdoor function and H be
a hash function. Then define the BR-encryption scheme as follows:
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• Key generation: E.KGen on input 1n runs F.KGen(1n) to get (f, f−1) and returns (sk, pk) =
(f−1, f).

• Encryption: E.Enc(pk,m) encrypts a message m ∈ {0, 1}n by picking r ← {0, 1}n at random
and returning (f(r), H(r)⊕m).

• Decryption: E.Dec(sk, C) parses C as (y, z) and returns H(f−1(y)) ⊕ z (or ⊥ if inverting y
fails).

We define chosen-plaintext security of an encryption scheme against quantum adversaries anal-
ogously to the classical case. That is, the adversary AQ receives as input the public key pk of the
encryption scheme, generated as (sk, pk) ← E.KGen(1n), and can query an external oracle once.
This oracle accepts as input two messages m0,m1 ∈ {0, 1}n, picks a random bit b and returns
E.Enc(pk,mb), denoted as the challenge ciphertext. We call this oracle the challenge oracle Chb for
bit b. Algorithm AQ eventually outputs a bit b′ trying to predict b. Note that we are only consid-
ering the case where the attacker uses quantum power, whereas the other parties rely on classical
communication and thus require confidentiality for regular bit strings only.

Definition 4.2 An encryption scheme E is qIND-CPA (quantum indistinguishable under chosen-

plaintext attacks) if for any efficient quantum adversary AQ the probability Prob
[
AChb

Q (pk) = b
]

for

the challenge oracle Chb is negligibly close to 1/2 for random bit b.

4.2 Security Proof Relative to Quantum-Accessible Random Oracles

We now show that the BR scheme is qIND-CPA in the quantum-accessible random oracle model.
Recall that our proof is in two steps: First we show that, if one can break qIND-CPA, then one can
break the trapdoor function relative to a random oracle where we give the inverter algorithm IQ
quantum access to a random oracle H and measure its probability to invert f(r) also with respect
to the choice of this oracle. In the second step we show that we can simulate the random oracle via
quantum-accessible pseudorandom functions to break one-wayness of the trapdoor function in the
plain model. The following theorem provides the first step:

Theorem 4.3 Assume that F is a quantum-immune injective trapdoor function (in the quantum-
accessible random oracle model). Then the BR-encryption scheme is qIND-CPA in the quantum-
accessible random oracle model.

The proof follows the classical case in spirit. We assume that a successful attacker of the
encryption scheme exists and show that this assumption leads to a contradiction. We can define the
aggregated probability that the attacker queries an element r from the oracle by summing up all the
squared amplitudes of his quantum states before the oracle calls are made. We distinguish the two
cases where the attacker queries the preimage r with negligible or non-negligible total probability. In
the latter case, we can use the attacker to invert F which contradicts the one-wayness of F (relative
to a random oracle).

If r is only queried with negligible probability, Theorem 4.4 below due to Bennett et al. [BBBV97]
allows us to replace the answer to the r-query of the random oracle with an independent random
string without changing the attacker’s success probability significantly. In this new experiment
however, the response from the challenge oracle does not depend on b anymore and the maximal
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success probability of any attacker must be 1/2, a contradiction to the assumed non-negligible
advantage of our attacker.

In order to apply Theorem 4.4, we will argue that the quantum registers of AQ are always in
a pure state, also after querying the classical challenge oracle. To this end, we model a quantum
attacker AQ as follows: His quantum state consists of m qubits initialized in the state |0〉⊗m and
he is given a classical description of f . He then performs a unitary transformation U1 to obtain the
state |φ1〉. Then, the random oracle O acts on the first 2n registers of |φ1〉 (n qubits for the in- and
output, respectively) and the next unitary U2 is performed (on all m qubits) yielding |φ2〉, etc. At
some point 1 ≤ tc ≤ T , the classical challenge oracle is queried. Formally, after the unitary Utc , the
first 2n registers of |φtc〉 are measured in the computational basis yielding outcomes m0,m1 which
are given to the challenge oracle. The oracle Chb samples uniformly b ∈ {0, 1} and r ∈ {0, 1}n and
returns (f(r), H(r) ⊕mb). Let us abbreviate all the classical information learned at this challenge
step by k := (m0,m1, f(r), H(r) ⊕ mb). The subsequent unitary operations Utc+1, . . . , UT by AQ

can now depend on the classical information k. We note that the quantum state of AQ remains
pure also after the challenge phase, because the interaction with Chb is entirely classical. After the
last unitary UT , the first qubit of |φT 〉 is measured in the computational basis and the outcome is
interpreted as AQ’s guess of the bit b.

As we have seen, |φt〉 denotes the quantum state of the adversary after performing the t-th unitary
Ut and before making the t-th oracle call. For r ∈ {0, 1}n, let qr(|φt〉) be the query probability of
string r at time t, i.e., if we write out the state in the computational basis |φt〉 =

∑
x αx |x〉 and the

input to the oracle O is given in the first n registers, then qr(|φt〉) =
∑

v∈{0,1}m−n |αrv|2.

Theorem 4.4 (Theorem 3.3 in [BBBV97]) Let AQ be a quantum algorithm running in time T
with oracle access to O. Let ε > 0 and let S ⊆ [1, T ]×{0, 1}n be a set of time-string pairs such that∑

(t,r)∈S qr(|φt〉) ≤ ε2/T . If we modify O into an oracle O′ which answers each query r at time t
by providing the same string R (which has been independently sampled at random), and we consider
the state |φ′T 〉 when AQ is invoking O′ instead of O, then the Euclidean distance between |φT 〉 and
|φ′T 〉 is at most ε.

Proof (of Theorem 4.3). Suppose that there exists a quantum attacker AQ distinguishing the two
cases in the encryption scheme. Assume that this adversary has non-negligible advantage δ = δ(n).
Since AQ receives either (f(r), H(r) ⊕m0) or (f(r), H(r) ⊕m1) from the challenge oracle it must
have learned the value H(r), otherwise H(r)⊕mb is from AQ’s point of view indistinguishable from
random. Note that the interaction with the challenge oracle is purely classical, as we are interested
in security in the scenario where only the adversary is granted quantum power and he intercepts
classical ciphertexts.

Suppose that we change the experiment of AQ such that instead of computing H(r)⊕mb in the
challenge ciphertext, we pick a random value R and return R ⊕mb (together with f(r)). Denote
this experiment by Random. It is clear that the success probability of any attacker in Random is
1/2, because all the information seen is completely independent of the random bit b.

For r ∈ {0, 1}n, let Qr =
∑T−1

t=1 qr(|φrt 〉) be the aggregated probability that AQ in the game
Random asks query r to the random oracle. Call r good if Qr is negligible. We distinguish the
following two cases:

1. There exists a non-negligible fraction of bad r’s. In this case, we show how AQ can be used
to invert f , contradicting the one-wayness of f .
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2. A random r is good with overwhelming probability. In this case, Theorem 4.4 will allow us
to argue that AQ’s success probability only negligibly differs from 1/2 in contradiction to our
assumption.

For the first case, we assume that there exists a non-negligible fraction of bad r’s for which Qr
is non-negligible. In particular, since T is polynomial this means that there exists a t for which
qr(|φt〉) is non-negligible for such r’s. We show that we can then invert the trapdoor function f with
non-negligible probability by a quantum attacker IQ. The idea is to guess the time t as follows.

Algorithm IQ is given f and f(r) for random r as input. It also picks a random index i between 1
and T , a random bit b and a random value R. It then executes algorithm AQ against the encryption
scheme in game Random. For the first i− 1 times if adversary AQ would make a call to the random
oracle algorithm then IQ forwards the query to his own quantum-accessible random oracle. If the
adversary asks for the challenge ciphertext then IQ returns (f(r), R ⊕ mb). Before executing the
i-th query, algorithm IQ measures the first n registers in the computational basis. If the registers
contain the preimage r of f(r) then stop and output r; else stop with output ⊥. It now follows from
our assumptions that the inverter IQ succeeds with non-negligible probability.

For the second case, let r be the randomness used by the challenge oracle in the game Random.
As r is chosen independently at random, it follows from our assumption that Qr is negligible with
overwhelming probability. We define S = {(t, r)|1 ≤ t ≤ T} to be the set of pairs where the time-
part t is arbitrary and the string equals r. Hence, with overwhelming probability, the assumption
of Theorem 4.4 is fulfilled and the Euclidean distance of the final state |φT 〉 of the game Random
and the final state |φ′T 〉 of an experiment where we changed the answers of the random oracle
on query r to R is negligibly close. Note that the modified experiment is identical to a run of the
original experiment in which AQ has non-negligible advantage δ(n). By Theorem 2.1, the variational
distance of the distribution of the output bits in the two experiments is negligible and therefore, the
advantage of AQ in Random should be non-negligible, contradicting our previous observation that
no attacker in Random can have an advantage over random guessing. �

4.3 Replacing Random Oracles by Pseudorandom Functions

Note that in the above proof we grant the adversary IQ also access to a random oracle, such that we
formally have reduced the qIND-CPA security of the BR-encryption scheme to a quantum-immune
injective trapdoor function which is secure in the (quantum-accessible) random oracle model. How-
ever, we can obtain the same result for F in the standard model, if we assume that quantum-
accessible pseudorandom functions exist and let IQ simulate the random oracle with such a PRF.

Quantum-Accessible Pseudorandom Functions. Recall that there are two ways to define
quantum-immune pseudorandom functions. In both cases the distinguisher is an efficient quantum
algorithm but in one case it can access the random or pseudorandom oracle only classically, and in
the other case it gets quantum-access to the oracle (i.e., the oracles operate on quantum states).
We need the latter for our application and drop the term “quantum-immune” as it follows from the
fact that it is quantum accessible:

Definition 4.5 A quantum-accessible pseudorandom function is a pair of efficient classical algo-
rithms, (PRF.KGen,PRF.PRF), such that for any efficient quantum algorithm DQ the difference∣∣∣Prob

[
D|PRF.PRF(κ,·)〉

Q (1n) = 1
]
− Prob

[
D|R(·)〉

Q (1n) = 1
]∣∣∣
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is negligible (in n), where the probability in the first case is over the choice of κ ← PRF.KGen(1n)
and DQ’s random choices (e.g., measurements), and in the second case over the random function R
(with the same domain and range as PRF.PRF) and DQ’s random choices.

We note that, following Watrous [Wat09], indistinguishability as above should still hold for any
auxiliary quantum state σ given as additional input to DQ (akin to non-uniformity for classical
algorithms). We do not include such auxiliary information in our definition in order to simplify.

As mentioned in the introduction, we are not aware if such pseudorandom functions exist.

Security Proof. We next show that, starting with our successful inverter in the random oracle
model, we can apply quantum-accessible pseudorandom functions to get security without reference
to random oracles:

Lemma 4.6 If quantum-accessible pseudorandom functions exist then any quantum-immune injec-
tive trapdoor function in the quantum-accessible random oracle model is also quantum-immune in
the standard model (i.e., without random oracles).

Proof. Let IQ be a successful quantum inverter against the trapdoor function F in the quantum-
accessible random oracle model. We construct now adversary I ′Q (without random oracle access)
which too inverts the trapdoor function sufficiently often. This algorithm I ′Q works as IQ but
replaces the queries that IQ would issue to its quantum-accessible random oracle by executions
of the circuit for computing PRF(κ, ·) (on quantum states) for a self chosen key κ. Inverter I ′Q
eventually copies the (classical) output of IQ and stops.

We claim that the transition from the random oracle to the quantum-accessible pseudorandom
function does not have a noticeable impact on the success probability of IQ. That is, if this was not
the case and the success probability would drop significantly, then we can construct a distinguisher
DQ against the quantum-accessible pseudorandom function as follows.

Algorithm DQ initially generates (f, f−1)← F.KGen(1n), picks a random r and computes f(r).
It invokes IQ on f , meaning that it gradually performs the computation steps of IQ and for each
oracle call, algorithm DQ calls its own oracle. If IQ eventually stops with some output, algorithm
DQ verifies if the output matches r and returns 1 if so, and 0 otherwise.

In case DQ’s oracle implements a truly random function, DQ’s experiment corresponds exactly
to the attack of IQ in the quantum-accessible random oracle model. In this case, DQ outputs 1 with
non-negligible probability by assumption. If DQ’s oracle implements a pseudorandom function then
the experiment corresponds exactly to the attack of I ′Q and, by assumption, DQ outputs 1 with
negligible probability only. In summary, algorithm DQ would distinguish the two cases significantly.
�

5 Conclusion

We have shown that great care must be taken if using the random oracle model when arguing
security against quantum attackers. Proofs in the classical case should be reconsidered, especially
in case the quantum adversary can access the random oracle with quantum states.

The foremost question raised by our results is in how far techniques for “classical random or-
acles” can be applied in the quantum case. This stems from the fact that manipulating or even
observing the interaction with the quantum-accessible random oracle would require measurements
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of the quantum states. That, however, prevents further processing of the query in a quantum man-
ner. We gave the example of the Bellare-Rogaway scheme where some ideas can indeed be re-used
for the quantum world, if quantum-accessible pseudorandom functions exist. The latter primitive
seems to be fundamental to simulate random oracles in the quantum world. Showing or disproving
the existence of such pseudorandom functions is thus an important step.

Alternatively to assuming the existence of quantum-accessible pseudorandom functions, one may
—as we did in a first step of our proof— consider reductions to primitives relative to a random oracle.
However, the hardness of the primitives in a relativized world may not hold in the standard world,
i.e., such reductions may not provide meaningful security claims. That is, Bennett and Gill [BG81]
originally conjectured that hardness results in complexity theory, which hold relative to a random
oracle with probability 1, should also be true in the standard setting (Random Oracle Hypothesis).
This conjecture, though, turned out to be false, mainly for complexity classes related to interactive
proof systems. See again [HCKM93, For94] for overviews.

As explained in the introduction, there are several strategies to use random oracles in proofs,
besides the question on how to simulate the random oracle. It is currently unclear whether similar
security proofs can be obtained for cryptographic schemes that require stronger intervention with
the random oracle, such as OAEP [BR95, FOPS01] where the reduction needs to observe all queries
to the random oracles, or FDH [BR96] where one even has to “program” parts of the output. Thus,
it remains an interesting open problem to revisit the security guarantees for those schemes in the
quantum-accessible model.
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A Security of the IS∗ Protocol

To prove security of our protocol we need to show that an adversary A after interacting with an
honest prover P∗, can subsequently not impersonate P∗ such that V∗ accepts the identification.

Security against Classical Adversaries. We first show that the IS∗ protocol is secure in the
(standard) random oracle model against classical adversaries and then discuss that there exist hash
functions which can securely replace the random oracle.

Lemma A.1 Let IS = (IS.KGen,P,V) be a secure identification scheme. Then for any efficient
classical adversary A and ` > 6 log(α) the protocol IS∗ is secure in the random oracle.

Proof. Assume towards contradiction that a verifier V∗ after interacting with an adversary A, both
given (pk, `) as input, accepts with output b∗ = 1. Thus, A must have convinced V∗ in the evaluation
of the IS-protocol or provided at least r/4 collisions. Due to the independence of the two stages of
our protocol (in particular, sk is not used during the collision search) we have

Prob[A “breaks” IS∗] ≤ Prob[ collCount > r/4] + Prob[A “breaks” IS] .

Since we assume that the underlying identification scheme is secure, the latter probability is negli-
gible. Thus, it remains to show that an adversary A with access to a random oracle H finds r/4
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near-collisions on H(ki, ·) for given ki in time O(
3
√

2`) with negligible probability only. In the ran-
dom oracle model, the ability of finding collisions is bounded by the birthday attack, which states
that after sending

√
2` random input values2, at least one pair will collide with probability ≥ 1/2.

Taking possible parallel power of the adversary into account, the protocol allows A to make at most
α · 3
√

2` queries for some constant α ≥ 1 (Assumption 3.1). Since ` > 6 log(α) we have α · 3
√

2` <
√

2`

and thus A’s success probability for finding a collision in each round is < 1/2 which vanishes when
repeating the collision search r times.

More concretely, the upper bound on the birthday probability for q queries and a function with
range size N is given by q(q−1)

2N (see e.g. [BKR94]). Thus, when considering an adversary making at

most q = α
3
√

2` queries to a random oracle with range {0, 1}` we obtain:

Prob[Coll] ≤ α2

2
3
√

2`
≤ α2

2 3
√
n

due to the choice of ` ≤ log n. The repetition of such a constrained collision search does not increase
the success probability of the adversary, since the verifier sends a fresh “key” ki in each round.
Thus, the adversary can not reuse already learned values from the random oracle, but has to start
the collision search from scratch for each new key. That is, the probability of A finding a collision
is at most Prob[Coll] in each round.

Applying the Chernoff-bound yields the probability for finding at least r/4 collision in r inde-
pendent rounds:

Prob[ collCount > r/4] ≤ exp

(
− rα2

2 3
√
n
·
(

3
√
n− 2α2

2α2

)2

· 1

4

)
≤ exp

(
− r

3
√
n

32α2

)
Thus, for a constant α, and setting r = poly(n) the above term is negligible in n. But then, the

overall success probability of A is negligible as well. �

When considering classical adversaries only, we can securely instantiate the random oracle in
the IS∗ scheme by a hash function H that provides near-collision-resistance close to the birthday
bound. Under this assumption, the security proof of our identification scheme carries over to the
standard model, as well. (We omit a formal proof, as it follows the argumentation of Lemma A.1
closely.) Note that it is a particular requirement of the SHA-3 competition [NIS07], that the hash
function candidates achieve collision-resistance approximately up to the birthday bound and provide
this property also for any fixed subset of the hash functions output bits. Thus, all remaining SHA-3
candidates (or at least the winner of the competition) is supposed to be quasi-optimal near-collision-
resistant.

Security against Quantum Adversaries. We now show that such a result is not possible in the
quantum world, i.e., for any hash function H there exists a quantum-adversary AQ that breaks the
IS∗ protocol (regardless of the security of the underlying identification scheme). This is in contrast
to the security that can still be achieved in the (classical) random oracle model:

2Note that we give all statements for a random oracle outputting directly ` ≤ log(n) bits, as we are interested in
near-collisions. Such an oracle can be obtained from a random oracle with range {0, 1}n by simply truncating the
output to the first ` bits.
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Lemma A.2 Let ISQ = (IS.KGen,P,V) be a secure quantum-immune identification scheme. Then
for any efficient quantum adversary AQ and ` > 6 log(α) the protocol IS∗ is secure in the random
oracle model.

Proof. By assuming that ISQ is a quantum-immune identification scheme, an adversary AQ trying
to convince a verifier V∗ in the IS∗ protocol must provide at least r/4 many collisions in the first
stage of the protocol. Thus, we have to show that a quantum adversary AQ can succeed in the
collision-search with negligible probability only.

Note that in order to gain advantage of the quantum speed-up (e.g., by applying Grover’s search
algorithm) the random oracle H, resp. the indicator function based on H, has to be evaluated
on quantum states, i.e., on superpositions of many input strings. However, by granting AQ only
classical access to the random oracle, it is not able to exploit its additional quantum power to find
collisions on H. Thus, AQ has to stick to the classical collision-search on a random oracle, which
we have proven to succeed in r/4 of r rounds with negligible probability, due to the constraint of
making at most α · 3

√
2` oracle queries per round (see proof of Lemma A.1 for details). �

We now show that our IS∗ scheme becomes totally insecure for any instantiation of the random
oracle by a hash function H.

Lemma A.3 There exist an efficient quantum adversary AQ such that for any hash function H =
(H.KGen,H.Eval) the protocol IS∗ is not secure.

Proof. For the proof we show that a quantum-adversary AQ can find collisions on H in at least r/4
rounds with non-negligible probability. To this end we first transform the classical hash function H
into a quantum-accessible function HQ. For the transformation we use the fact that any classical
computation can done on a quantum computer as well [NC00]. The ability to evaluate HQ on
superpositions then allows to apply Grover’s algorithm in a straightforward manner: for any key
ki that is send by the verifier V∗, the adversary invokes Grover’s search on an indicator function
testing whether HQ.Eval(ki, x)|` = HQ.Eval(ki, x

′)|` for distinct x 6= x′ holds. After
3
√

2` evaluations
of HQ the algorithm outputs a collision Mi,M

′
i with probability > 1/2. As we assume that a

quantum evaluation of HQ requires roughly the same time than an evaluation of the corresponding
classical function H, and we do not charge AQ for any other computation, the collision search of
AQ terminates before V∗ stops a round of the collision-finding stage.

Hence, AQ provides a collision with probability > 1/2 in each of the r rounds. Using the Chernoff
bound, we can now upper bound the probability that AQ finds less than r/4 collision as:

Prob[ collCount < r/4] ≤ exp

(
−r

2
·
(

1

2

)2

· 1

2

)
≤ exp

(
− r

16

)
which is roughly Prob[Coll < r/4] ≤ 0.94r and thus negligible as a function of r. That is,
the adversary AQ can make V∗ accept the interaction with noticeable probability at least 1 −
Prob[ collCount < r/4]. �

As Grover’s algorithm only requires (quantum-accessible) black-box access to the hash function,
the approach described in the proof of Lemma A.3 directly applies to the quantum-accessible random
oracle model, as well:

Lemma A.4 The protocol IS∗ is not secure in the quantum-accessible random oracle model.
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