

Homomorphic One-Way Function Trees and Application in
Collusion-Free Group Rekeying

JING LIU
School of Information Science and Technology, Sun Yat-Sen University, Guangzhou,
People’s Republic of China, 510006, liujing3@mail.sysu.edu.cn

Abstract. Efficient group rekeying is an important building-block for secure group

communications. Although Sherman et al. claimed that their group rekeying scheme, OFT

(One-way Function Tree) achieves perfect forward and backward secrecy, Horng later

showed that functional dependency among keys in a one-way function tree subjects OFT

scheme to a particular kind of collusion attack. Soon after that, Ku and Chen found several

new types of collusion attack. Two solutions to prevent collusion attacks on OFT scheme

have been proposed, but at the cost of a broadcast size bigger than original OFT scheme. In

this paper, we prove the falsity of recently-proposed necessary and sufficient conditions for

existence of a collusion attack on OFT scheme by counterexample and give new necessary

and sufficient conditions for nonexistence of an arbitrary type of collusion attack. We

introduce a new type of cryptographic construction — homomorphic one-way function trees

(HOFT) by respectively substituting a homomorphic trapdoor function and a modular

multiplication for the pseudorandom one-way function (OWF) and the exclusive-or mixing

function in original one-way function trees (OFT). Furthermore, we propose two graph

operations — tree product as well as tree blinding for HOFTs and prove that both are

structure-preserving. Tree product facilitates processing multiple membership changes in a

bulk operation in addition to single membership change. We demonstrate that adding/deleting

leaf nodes in a HOFT is equivalent to performing a tree product of the HOFT and an

incremental key chain (or tree). Tree blinding helps conceal information about a key tree

without compromising its inner structure (functional dependency). Utilizing tree product and

tree blinding operations, we are able to design a collusion-free group rekeying scheme based

 2

on HOFTs with the same leave-rekeying communication efficiency as original OFT scheme

but with even better join-rekeying communication efficiency. This study shows that if we

implement it properly, functional dependency in an OFT helps design a collusion-free and

communication-efficient group rekeying scheme rather than renders it vulnerable to collusion

attack.

Key words. Group rekeying, One-way function tree, Homomorphism, Collusion

1. INTRODUCTION

Many group-oriented applications, for instance, IPTV, DVB (Digital Video Broadcast),

videoconferences, interactive group games, collaborative applications, stock quote streaming

and web caching all require one-to-many or many-to-many group communication. Allowing

for the efficient utilization of network bandwidth, IP Multicast [6] is the best way to realize

group communication. Because only one data packet need be transmitted over the network

for an arbitrarily sized recipient set and it traverses any link between two network nodes only

once. To protect the confidentiality of group communications, a symmetric key called group

key is used to encrypt the data traffic. For security-sensitive applications (e.g. military

applications and highly secretive conferences), the key must be changed for every

membership change. To prevent a new member from decoding messages exchanged before it

joined a group, a new key must be distributed for the group when a new member joins.

Therefore, the joining member is not able to decipher previous messages even if it has

recorded earlier messages encrypted with the old key. This security requirement is called

group backward secrecy [5]. On the other hand, to prevent a departing member from

continuing access to the group’s communication (if it keeps receiving the messages), the key

should be changed as soon as a member leaves. Therefore, the departing member will not be

able to decipher future group messages encrypted with the new key. This security

requirement is called group forward secrecy [5]1. To provide both group backward secrecy

 3

and group forward secrecy, the group key must be updated upon every membership change

and distributed to all the authorized members. This process is referred to as group rekeying

(or group key management) in literature. Respectively, the rekeying process due to a joining

membership change (a departing membership change) is referred to as join rekeying (leave

rekeying). For large dynamic groups with frequent changes in membership, how to design a

scalable group rekeying scheme is a big challenge. Since the late 1990s, a continuing research

effort has been carried out, and today has seen a huge body of literature. See [18] for an

excellent survey and a recent survey is [4]).

Among the large number of generic group rekeying schemes (by “generic” we mean making

no additional assumption such as making use of trusted platform technology), tree-based

schemes [23, 22, 1, 21] are the most efficient ones to date. They have a communication

complexity of O(log2n) for a group size of n [18]. Recent research [16] has also confirmed

that log2n is the lower bound of the communication complexity for generic secure group key

management protocols.

The seminal scheme among all tree-based ones is the named Logical Key Hierarchies (LKH)

that is independently proposed by Wong et al. [23] and Wallner et al. [22]. In LKH scheme,

each internal node in the key tree represents a key encryption key (KEK), each leaf node of

the key tree is associated with a group member and the root node represents the group key.

Key associated with the internal node is shared by all members associated with its descendant

leaf nodes. Every member is assigned the keys along the path from its leaf to the root. When

a member leaves the group, all the keys that the member knows should be changed. If n

represents the total number of members in a group and we consider a full and balanced binary

tree, leave rekeying using LKH requires at least 2log2n key encryptions and transmission by

key server. When a member joins, the key server chooses a position nearest to the root for it

and changes all the keys from the parent of the joining member to the root. Join rekeying

 4

using logical key hierarchy requires encryptions and transmission of 2log2n keys by key

server. Another novel tree-based scheme is One-way Function Tree (OFT) proposed by

Sherman et al. [1, 21] (see section 2.1 for details). In comparison with LKH, OFT scheme

nearly halves the communication overhead in leaving rekeying. However, Horng [10] showed

that OFT is vulnerable to a particular kind of collusion attack (see section 2.2 for details).

Soon after, Ku and Chen [12] found new types of collusion attacks and also proposed an

improved scheme to prevent any collusion attack. But leaving rekeying using their approach

has a communication complexity of O((log2n)2+log2n), and hence their approach loses the

advantage of original OFT over LKH. Recently, Xu et al. [24] showed that all the known

attacks on OFT can be generalized to a generic collusion attack. They also derived necessary

and sufficient conditions for this attack to exist and proposed a scheme to prevent the

collusion attack while minimizing the average broadcast size of rekeying message. But the

scheme requires a storage linear to the size of the key tree (O(2n-1)) and it still has bigger

broadcast size than LKH.

In this paper, we prove the falsity of Xu et al.’s necessary and sufficient conditions for

existence of a collusion attack on OFT scheme by counterexample and give new necessary

and sufficient conditions for nonexistence of an arbitrary type of collusion attack. We

introduce a new cryptographic construction — homomorphic one-way function trees (HOFT)

by respectively substituting a homomorphic trapdoor function and a modular multiplication

for the pseudorandom one-way function and the exclusive-or mixing function in original one-

way function trees (OFT). We propose two tree operations — tree product and tree blinding

for HOFTs and prove that both are structure-preserving. We also demonstrate that

adding/deleting leaf nodes in a HOFT is equivalent to performing a tree product of the HOFT

and an incremental key chain (or tree). Tree blinding helps conceal information about a key

tree without compromising its inner structure. It has been shown that the functional

 5

dependency among keys in a one-way functions tree (OFT) subjects OFT scheme to collusion

attacks. Two solutions [12, 24] that trade off communication efficiency for collusion

resistance have been proposed. Utilizing tree product and tree blinding operations, we are

able to design a collusion-free group rekeying scheme based on HOFTs with the same leave-

rekeying communication efficiency as original OFT scheme but with even better join-

rekeying communication efficiency. Although Sherman et al. discussed multiple addition and

eviction in their paper [21], they failed to give the concrete group rekeying algorithms as they

dealt with single membership change. To the authors’ knowledge, our scheme is the first

OFT-based batch rekeying one so far. Tree product facilitates processing multiple

membership changes in a bulk operation in addition to single membership change. We

present various algorithms to cope with all possible occasions of multiple membership

changes.

The remainder of this paper is organized as follows. Section 2.1 gives a closer look at OFT

scheme. Section 2.2 reviews different kinds of collusion attacks on it. Section 2.3 introduces

two improvements on OFT to prevent collusion attacks. In section 2.4, we prove the falsity of

Xu et al.’s necessary and sufficient conditions for a collusion attack on OFT scheme to exist

by counterexample and give new necessary and sufficient conditions for nonexistence of an

arbitrary type of collusion attack. Section 2.5 gives further comments on collusion attacks.

Sections 3.1 present the concept of homomorphic one-way function tree (HOFT). In section

3.2, we propose two graph operations on HOFTs: tree product and tree blinding and prove

both are structure-preserving. Section 4 describes a collusion-free group rekeying scheme

based on HOFTs which can handle single membership change and multiple membership

changes in the same framework at length. Section 5 gives a heuristic security analysis of our

group rekeying scheme. Section 6 gives a comparison between our scheme and other related

schemes. Section 7 concludes this paper and gives some topics for future research.

 6

2. RELATED RESEARCH

2.1 Introduction to One-way Function Tree

Group rekeying using One-way Function Tree (OFT) was proposed by Sherman, Balenson

and McGrew [1, 21]. The idea of using one-way function (OWF) in a tree structure originated

from Merkle. In his report [15], Merkle provided a method to authenticate a large number of

public validation parameters for a one-time signature scheme by using a tree structure in

conjunction with a one-way and collision-resistant hash function (the famous Merkle

authentication tree).

For the sake of simplicity, we adopt the terminology and formulations from paper [1] instead

of the more recent ones presented in paper [21]. A key server maintains a balanced binary key

tree for a group. When a member joins/leaves the group, it must update the key tree and

distribute a rekeying message to the group to maintain group forward secrecy and group

backward secrecy. A one-way function key tree is computed in a bottom-up manner using an

OWF (e.g., MD5, SHA-1) and a mixing function (e.g. XOR) as follows. Except the root node,

each internal node is associated with two keys: a secret key (also called unblinded key or

node key in specific context) and a blinded key. The blinded key is computed by applying an

OWF (also called blinding function) g to the secret key. Every internal secret key is

computed by applying a mixing function f to the two blinded keys respectively associated

with its two child nodes (child blinded keys for short). Like LKH, the key server shares a

unique secret key (leaf node key) with every group member via a secure channel established

during the registration protocol. However, unlike LKH, the key server does not send the

members those secrets keys along the path from their leaf node to the root. Instead, it supplies

each member the blinded keys of the siblings of the nodes in the path from its associated leaf

node to the root of the tree. Each member uses those blinded keys to compute all the secret

keys in its path from its parent to the root. Like LKH, secret key associated with the internal

 7

node is shared by all members associated with its descendant leaf nodes and the root secret

key is the group key.

The structure of an OFT is illustrated by Figure 1. For example, member A shares a unique

secret key Ka with key server. The key server sends A the blinded keys Kb’ = g(Kb), Kc’ =

g(Kc). A can compute all the secret keys along the path from its parent to the root by

computing Kab = g(Ka)  Kb’, Ka.c= g(Kab)  Kc’. (‘’ denotes an XOR function)

Fig. 1 Join rekeying in OFT

Whatever group rekeying is performed, the following invariant should be maintained.

Key distribution Invariant — Each legitimate member knows the node keys on the path

from its associated leaf node to the root (and therefore the corresponding blinded keys along

this path), and the blinded keys that are siblings to this path, and no other node keys nor

blinded keys.

Figure 1 illustrates the join rekeying in OFT. When D joins, the key server chooses a leaf

node nearest to the root node (e.g., the leaf node associated with C) and splits it into two

nodes to create an empty leaf node for D. All the secret keys associated with the nodes in the

path from the parent of D’s leaf node to the root should be changed, and hence those

corresponding blinded keys are changed. Throughout this paper, we use {X}_Y to denote

encryption of X with a key Y by using symmetric encryption algorithm. When D joins, the

key server needs to construct and multicast a rekeying message as: {Kc.d’}_Kab, {Kc
new,

 8

Kd’}_Kc, {Kab’, Kc
new’}_Kd. That is to say, all the rekeyed blinded keys are encrypted with

their siblings’ secret keys. Note that Kc must be changed into Kc
new. Otherwise, A and B both

know Kc’, which violates the key distribution invariant for the updated key tree. What is more

important is that since the joining member D will be supplied with Kab’ and Kc’, it will be

able to obtain the supposed past group key Ka.c by computing Ka.c = Kab’  Kc’, which

violates group backward secrecy.

Consider a full and balanced OFT with n members (after the join). The key server needs to

encrypt and send log2n blinded keys to the new member. The key server also needs to encrypt

and send log2n new blinded keys to the other pre-existing members. It also needs to encrypt

and send a new unblinded key Kc
new to the rekeyed member C. In total, the key server needs

to encrypt and send 2log2n+1 blinded keys when a member joins the group. In addition, the

key server needs to compute log2n new secret keys and log2n+1 new blinded keys. This

amounts to 2log2n+1 OWF computations. The joining member needs to perform log2n

decryptions to extract all its log2n blinded keys from the rekeying message and then compute

all its nodes keys including the current group key in a bottom-up manner as illustrated in

Figure 1. If a pre-existing member has l node keys in need of change due to the addition of a

new member to the key tree, it only needs to perform one decryption to extract its single

rekeyed blinded key, and then compute the new l node keys by performing l hash

computations and l exclusive-or computations in a bottom-up manner as illustrated in Figure

1 (Note that the member already holds l unchanged blinded keys corresponding to l rekeyed

node keys). Whereas for LKH scheme, the pre-existing member needs to perform l

decryptions to extract the l rekeyed node keys. This merit of OFT superior to LKH has not

been noticed by existing literatures and even by OFT’s inventors.

 9

Fig. 2 Leave rekeying in OFT

Leave rekeying is depicted in Figure 2. When E leaves, all the secret keys in the path from

the parent of E’s leaf node to the root should be changed. If E’s sibling is a leaf node, the key

server changes Kd to Kd
new, and sends Kd

new encrypted with Kd. If E’s sibling is an internal

node, the key server needs to pick one of the internal node’s descendant leaf nodes (e.g. the

leftmost one) and change its unblinded key to trigger rekeying the subtree rooted at Kd. Then

the key server replaces E’s parent node Kde with E’s rekeyed sibling node Kd
new (or rekeyed

sibling subtree rooted at Kd
new). This action taken by the key server results in rekeying of all

the keys in the path from the departing member’s parent node to the root in effect. When E

leaves, the key server needs to construct and multicast a rekeying message as: {Kcd’}_Kab,

{Kd
new’}_Kc, { Kd

new}_Kd. Kd must be changed into Kd
new. Otherwise, C knows Kd’, which

violates the key distribution invariant for the old key tree. What’s more important is that the

evicted E will be able to obtain the supposed future group key Ka.d by computing Kcd = Kc’ 

Kd’ and Ka.d= Kab’  Kcd’, which violates group forward secrecy.

Consider a full and balanced OFT with n members (after the leave). The key server needs to

encrypt and send log2n new blinded keys to the group. In addition, it needs to encrypt and

send the new unblined key Kd
new to the rekeyed member D. In all, the key server needs to

encrypt and send log2n+1 blinded keys when a member joins the group. The key server also

needs to compute new secret keys and new blinded keys, and hence perform 2log2n+1 OWF

 10

computations. If a legitimate member has l node keys in need of change, it only needs to

perform one decryption to extract its single rekeyed blinded key, and then compute the new l

node keys by performing l hash computations and l exclusive-or computations in a bottom-up

manner. Whereas for LKH scheme, the member needs to perform l decryptions to extract the

l rekeyed node keys.

2.2 Collusion attacks on OFT scheme

In LKH, all the keys in the key tree are randomly chosen and thus independent with each

other. The hierarchical structure of keys only represents the logical subgroup relationship

among the members, that is, key associated with the internal node is shared by all members

associated with its descendant leaf nodes. While in OFT, besides the logical subgroup

relationship, there is a functional dependency relationship among the secret keys. Functional

dependency among keys allows leave rekeying in OFT to save half of communication cost

compared to LKH. However, the same relationship also renders it vulnerable to collusion

attacks. Different kinds of collusion attacks on OFT are found sequentially by Horng [10] as

well as Ku and Chen [12]. We depict all the collusion scenarios in Figure 3.

1

2 3

5 6 7

9

4

8 14 15

Alice

Bob Candy

Fig. 3 Scenarios of Collusion Attacks on OFT

2.2.1 Horng’s attack

The first collusion attack on OFT attributed to Horng is as follows. Referring to Figure 3,

suppose that Alice, associated with node 8, is evicted at time tA, and later Candy joins the

group at time tC and it is associated with node 6. We denote the secret key of node i in the

 11

time interval between tA and tC as [,]A Ci t tK . The same notation will be used in the rest of this

paper. If there are no changes in group membership between time tA and tC, according to the

OFT scheme, 3[,]A Ct tK is not affected by the eviction of Alice. The evicted Alice brings out

the blinded key 3 [,]A Ct tK  with her. Moreover, the secret key of node 2 is updated when Alice is

evicted, and then remains unchanged even after Candy joins. Candy obtains the blinded

key 2 [,]A Ct tK  at the time of joining. Collectively knowing 2 [,]A Ct tK  and 3 [,]A Ct tK  , Alice and

Candy can collude to obtain the group key in the time interval [tA, tC] by

computing 1 [,] 2 [,] 3 [,]A C A C A Ct t t t t tK K K   . Therefore, the OFT scheme fails to provide group

forward secrecy against Alice and group backward secrecy against Candy at the same time.

The above attack is due to unchanging keys of the root’s children. Horng thus proposed two

necessary conditions for a collusion attack to exist: (1) the two colluding nodes must be

evicted and join at different subtree of the root; (2) no key update happens between time tA

and tC. Later, Ku and Chen showed that neither of these two conditions is necessary by

proposing two new kinds of collusion attacks.

2.2.2 Ku and Chen’s attacks

The first kind of collusion attack proposed by Ku and Chen is exemplified by the following

scenario. Referring to Figure 3, suppose that Alice is evicted at time tA, and later Bob joins

the group at time tB and it is associated with node 5. If there are no changes in group

membership between time tA and tB, for the same reason as Horng’s attack, Alice and Bob can

collude to compute 2[,]A Bt tK . While during the time interval [tA, tB], the secret key of node 3

remains unchanged. Alice and Bob both know the blinded key 3 [,]A Bt tK  . Therefore,

 12

knowing 2[,]A Bt tK and 3 [,]A Bt tK  , they can compute the group key 1[,]A Bt tK . This attack does not

satisfy the first necessary condition proposed by Horng.

The second kind of collusion attack is illustrated by the following scenario. Suppose that

Alice is evicted at time tA, later Bob joins the group at time tB, and lastly Candy joins the

group at time tC. We also assume that there are no changes in group membership either

between time tA and tB or between time tB and tC. The secret key of node 3 remains unchanged

after the eviction of Alice until Candy joins the group. Alice brings out the blinded key

3 [,]A Ct tK  with her after the eviction. The secret key of node 2 is updated when Bob joins the

group and then remains unchanged even after Candy joins the group. Candy obtains the

blinded key 2 [,]B Ct tK  at the time of joining. Collectively knowing 3 [,]A Ct tK  and 2 [,]B Ct tK  , Alice

and Candy can collude to compute the group key 1[,]B Ct tK (note that [,] [,]B C A Ct t t t). This

attack denies the second necessary condition proposed by Horng.

2.3 Improvements on OFT scheme

Here, we discuss the essential reasons why OFT scheme is vulnerable to collusion attacks.

When a new member joins, it will be supplied with the blinded keys that were once used to

compute the past group key before the new member joins. That is to say, the joining member

receives partial information about the past group key, which is partially against the

requirement of group backward secrecy. It is possible for the joining member to combine its

knowledge with other member’s to compute a valid past group key. On the other hand, when

a member leaves, it brings out the knowledge about the blinded keys that remain the same for

a certain time interval after the departing member leaves. These blinded keys will be used to

compute the future group key. That is to say, the evicted member brings out partial

information about the future group key, which is partially against the requirement of group

 13

forward secrecy. It is possible for the evicted member to combine its knowledge with other

member’s to compute the future group key.

From the above discussion, it is possible to devise a solution for preventing collusion attacks

either by preventing evicted member from bringing out any knowledge about future group

key or by supplying joining member with no knowledge about past group key. Each of the

following two improvements on the OFT scheme is just aiming at one aspect to prevent

collusion attack.

2.3.1 Ku and Chen’s improvement

Ku and Chen improve the OFT scheme by changing all the keys known by an evicted

member upon the eviction. That is to say, not only all the secret keys associated with the

nodes in the path from the parent of evictee’s leaf node to the root, but also all the blinded

keys associated with the siblings of those nodes in that path must be changed. For example, in

Figure 3, when Alice is evicted, the secret key of node 5 and node 3 will be updated in

addition to that of node 4, node 2 and node 1 as required by the original scheme. The

additional updates of secret keys increase the broadcast size by (log2n)2 keys. Therefore, the

key server needs to encrypt and send (log2n)2+log2n+1 keys in all.

An opposite solution aiming at the joining member can be obtained by not only changing

all the secret keys on the joining member’s path to the root as required by the original scheme,

but also changing all the blinded keys associated with siblings of those nodes in that path

before supplying the joining member with those blinded keys. An interesting option enabled

here is that we can decide to use either the above solution or Ku and Chen’s solution

according to the frequency of evictions or joins. When member evictions are rare, we can

choose to use Ku and Chen’s scheme. Otherwise, the above solution will be used.

2.3.2 Xu et al.’s improvement

 14

Xu et al. observed that collusion between an evicted member and a joining member is not

always possible and its success depends on the temporal relationship among them. One

apparent way to reduce the broadcast size is to change additional keys only when a collusion

attack is indeed possible. For that purpose, Xu et al. [24] proposed a stateful method in which

the key server tracks all evicted members and records all the knowledge of them. Every time

a new member joins, the key server checks against that knowledge to decide whether this

joining member could collude with any previously evicted node. To track all evicted

members and record all the knowledge of them, Xu et al.’s scheme has a storage requirement

linear to the size of the key tree. Because Xu et al.’s scheme only performs additional key

update when necessary, it has lower communication overhead than Ku and Chen’s scheme.

Although Xu et al. shows that their scheme has lower communication overhead than LKH

scheme for small to medium groups, the increasing number of collusion attacks renders their

scheme less efficient that LKH for large groups.

Xu et al. propose three propositions to support the correctness of their method. They first

consider a generic collusion attack (depicted in Figure 4) on OFT scheme. Suppose that a

member A evicted at time tA and a member C joining the group at a later time tC. Let B, D, E,

and F respectively denote the subtrees rooted at L, R, R’, and R”. Let tDMIN, tEMIN, and tFMIN

correspondingly denote the time of the first key update after tA that happens in D, E, and F.

Let tBMAX, tEMAX, and tFMAX denote the time of the last key update before tC that happens in B,

E, and F, respectively.

 15

Fig. 4 A Generic Collusion Attack on OFT

Xu’s proposition 1. For OFT scheme, referring to Figure 4, the only secret keys that can be

computed by A and C when colluding are:

- KI in the time interval [tBMAX, tDMIN],

- KI’ in [tBMAX, tDMIN]∩([tA, tEMIN]∪[tEMAX, tC]),

- KI” in [tBMAX, tDMIN]∩([tA, tEMIN]∪[tEMAX, tC]) ∩([tA, tFMIN]∪[tFMAX, tC]) ,

and so on, up to the root. Notice that these intervals may be empty and the node I’s position

is where the path of A to the root and that of C merges.

In fact, it can be easily verified that all the collusion attacks presented in section 2.2 are

special instances of this generic attack.

Xu’s proposition 2. A pair of colluding members A and C cannot compute any node key

which they are not supposed to know by the OFT scheme, if

- A is evicted after C joins.

- A and C both join

- A and C are both evicted.

This proposition confirms that the above generic collusion attack is the only collusion pattern

of interest. Based on the above two propositions, the authors give the following sufficient and

necessary conditions for an arbitrary type of collusion attack to exist.

 16

Xu’s proposition 3. For OFT scheme, an arbitrary collection of evicted members and

joining members can collude to compute some secret key not already known, if and only if the

same secret key can be computed by a pair of members in the collection.

Unfortunately, in their proof of this proposition, the authors claim that to compute a secret

key not already known, the colluding members must know both child blinded keys of the

secret key by themselves. However, the colluding members may get to know those child

blinded keys by collusion too, but not by themselves. We present an interesting

counterexample in the following section that denies the necessity of proposition 3, and then

propose new necessary and sufficient conditions for nonexistence of an arbitrary type of

collusion attack.

2.4 A counterexample and new necessary and sufficient conditions

Fig. 5 A Counterexample against Xu’s Proposition 3

We consider a collusion scenario depicted in Figure 5. Suppose that Dean (D) and Bob (B)

join the group sequentially at time t7 and t8, while Alice (A) and Colin (C) leave the group

sequentially at time t1 and t2. The chronological order of t1, t2, … , and t8 is just determined

by the numerical order of their subscripts. Let α, β, γ, δ, μ, and ν denote the subtrees rooted at

node 4, 5, 6, 7, 2, and 3, respectively. In addition to the above changes in group membership,

there are changes sequentially at time t3, t4, t5, and t6, which respectively happened in α, γ, δ,

 17

and β. Let X
MAXt denotes the time of the last key update before X joins the group that happens

in α. Let Y
MINt denotes the time of the first key update after Y leaves the group that happens in

β. Recall that KX denotes the secret key associated with node X and KX’ denotes the

corresponding blinded key. And KX [t1, t2] denotes the secret key in the time interval [t1, t2].

According to Xu’s proposition 1, Alice and Bob can collude to compute K2 in the time

interval [B
MAXt , A

MINt], i.e.,
3 62[,]t tK ; Colin and Dean can collude to compute K3 in the time

interval [D
MAXt , C

MINt], i.e.,
4 53[,]t tK . Thus, collectively knowing

3 62[,]t tK and
4 53[,]t tK , Alice,

Bob, Colin and Dean can collude to compute
4 51[,]t tK . However, we shall show that any

possible pair of evicted and joining members cannot collude to compute
4 51[,]t tK .

According to Xu’s proposition 1, all the secret keys that can be computed by Alice and Bob

when colluding are:

- K2 in the time interval [B
MAXt , A

MINt], i.e.,
3 62[,]t tK ,

- K1 in the time interval [B
MAXt , A

MINt]∩([t1,
A
MINt]∪[B

MAXt ,t8]), but evaluation of that

formula equals [t3, t6] ∩([t1,t2]∪[t7,t8])=.

So Alice and Bob cannot collude to compute
4 51[,]t tK . By the same argument, we can prove

that for the rest of eviction-joining scenarios, i.e., the collusion between Colin and Dean,

between Alice and Dean, or between Colin and Bob,
4 51[,]t tK cannot be computed either.

This counterexample thus denies that the necessity of Xu’s proposition 3. Here we present

new necessary and sufficient conditions for nonexistence of an arbitrary type of collusion

attack.

 18

Proposition 4 An arbitrary collection of evicted members and joining members cannot

collude to compute any secret key not already known, if and only if arbitrary pair of evicted

and joining members cannot collude to compute any secret key not already known.

Proof: The necessity is trivial. We prove the sufficiency by contradiction. Recall that Ki’ is

the blinded version of Ki. For an arbitrary node key Ki in a HOFT X, its left child and right

child is denoted by K2i and K2i+1 respectively. Suppose that a collection of evicted members

and joining members can collude to compute a new secret key
1 2[,]i t tK which must attribute to

nothing but either of the following two causes:

(1) There exist two colluding members who have already known K2i’ and K2i+1’ respectively

for some time intervals that are supersets of [t1, t2]. Therefore, they can collude to

compute
1 2[,]i t tK ;

(2) At least a subset of colluding members can collude to compute either K2i or K2i+1 for some

time interval that is a superset of [t1, t2].

If it attributes to the former, the two members must be a pair of evicted and joining members

according to Proposition 2, which stands in contradiction to our hypothesis, and thus the

proposition follows. Otherwise, let's assume that
1 1

2 [,]a bi t tK (
1 1

[,]a bt t is a superset of [t1, t2]) is

not already known and can be computed by a subset of colluding members. Obviously,

for
1 1

2 [,]a bi t tK , we can repeatedly apply the same argument as above. In fact, the same

argument can be repeated until either we found a satisfying pair of evicted and joining

members who can collude to compute a certain node key not already known from its two

child blinded keys (these keys are also internal blinded keys), each of which is separately

known by a colluding member, or due to the limited size of the key tree, we stop at a certain

node key not already known that has two leaf blinded keys as its children. Each of these

 19

blinded keys is separately known by a colluding member. Whatever the result, it stands in

contradiction to our hypothesis, and thus the proposition follows. �

Thus, the correctness of Xu et al.’s scheme follows from proposition 1, proposition 2 and our

proposition 4.

2.5 Further comments on collusion attacks

Unlike traditional security protocol (e.g., two-party key establishment protocols), group-

oriented security protocols (e.g., group key establishment protocols) have an open number of

group members. Two or more malicious members can collude to sabotage the security target

of these protocols. Therefore, preventing collusion attack is a paramount requirement when

designing a group-oriented security protocol.

Although OFT was claimed to achieve perfect forward and backward security by its inventors

[21], collusion attacks on it have been found. Because its inventors only consider collusion

among evicted members (or joining members) but ignore the potential collusion between

evictees and joining members. Strictly speaking, no matter which kind of membership

(evicted, joining or even legitimate) the colluding members may hold, a collusion attack

already occurs when any two or more of them can collude to compute new knowledge about

intermediate secret keys or group key besides what they already know. Therefore, we must

strengthen the definition for collusion attack to ensure that it covers all possible patterns of

collusion. We prefer to use Fan et al’s informal definition [7] as follows. A collusion attack is

an attack in which two or more malicious members participate in an effort to achieve more

information than the aggregation of the information authorized to them.

3. HOMOMORPHIC ONE-WAY FUNCTION TREE

3.1 Definition

 20

For the security of OFT scheme, Sherman [20] give one sufficient condition that OWF g

should be pseudorandom (e.g. MD4 or SHA-1). However, determining the precise necessary

conditions for the security of OFT scheme still remains unsolved since it was proposed as an

open problem by the same authors [21]. We believe that instantiating the blinding function g

as a homomorphic trapdoor function (e.g., Rabin function [17] or RSA function [19]) will not

compromise the security of OFT (see section 5 for security analysis). As a matter of fact, the

binary key tree used by the well-known tree-based group Diffie-Hellman key agreement

(TGDH) [11] can be regarded as an instance of OFT where the blinding function g is x (mod

p). That function is homomorphic and not pseudorandom too.

Before we give the definition of homomorphic OFT, let’s review related mathematical

concepts. A group G with its operation “” is denoted by (G, ). In mathematics, given two

groups (G, ) and (H, ·), a group homomorphism from (G, ) to (H, ·) is a function g : G → H

such that for all u and v in G, it holds that g(uv) = g(u)·g(v). From this property, one can

deduce that g maps the identity element eG of G to the identity element eH of H, and it also

maps inverses to inverses in the sense that g(u-1) = g(u)-1. According to this definition, Rabin

function and RSA function are both homomorphic.

Depending on one's viewpoint, homomorphism can be seen as a positive or negative attribute

of a cryptosystem [19]. Once homomorphism is exploited by certain cryptosystem (e.g.

encryption, digital signature, MAC, hash, etc.), it will enable the ability to perform a specific

algebraic operation on the original data by performing a (possibly different) algebraic

operation on cryptographically transformed data. Introducing homomorphic trapdoor function

for OFTs enables the ability to perform a specific “inner” operation on certain set of leaf

nodes in a OFT (e.g., adding or deleting leaf nodes, blinding all nodes) by performing an

 21

“outer” graph operation on one or two OFTs without compromising the “inner” structure —

functional dependency among keys.

Since all nodes in OFT are homogeneous (i.e., cryptographic keys), we choose to use self-

homomorphism mapping an Abelian group to itself. If every secret key associated with a

node (node key for short) in an OFT X is an element of an Abelian group G (e.g., Zn
*, n is a

composite), we say that X is defined over G (or X over G for short).

Definition 1 Homomorphic OFT — A homomorphic OFT (HOFT) over an Abelian group

(G, ) is a binary key tree which is computed using a self-homomorphic OWF g and the

multiplicative operation “” in a bottom-up manner as follows. For an arbitrary node key xi in

a HOFT X, if its left child and right child are denoted by x2i and x2i+1 respectively, we have xi

= g(x2i)  g(x2i+1).

3.2 Two structure-preserving operations

We shall show that introducing homomorphic OWF (HOWF for short) for OFTs enables two

structure-preserving operations — tree product and tree blinding. A binary operation (unary

operation) is said to be structure-preserving if the operation takes two HOFTs (one HOFT) as

input and outputs a HOFT. For convenience, in this section, we shall interchangeably use the

same notation “xi” or “yi” to denote either a node itself or its associated node key.

3.2.1 Tree product

Fig. 6 Tree product

 22

Definition 2 Tree product — Given two arbitrary HOFTs X and Y both over an Abelian

group (G, ) with the same structure (i.e., same height and same organization of leaf nodes), a

tree product of X and Y, denoted by X  Y is computed by multiplying their corresponding

node keys (see Figure 6).

Note that although we use the same notation “” for group operation and tree product, its

meaning is context-evident.

Theorem 3.1 Given two arbitrary HOFTs X and Y both over an Abelian group (G, ) with the

same structure, the result of a tree product X  Y is also a HOFT.

Proof: Let X and Y are two arbitrary HOFTs defined over an Abelian (G, ) and Z = X  Y.

We prove Z is also a HOFT. For an arbitrary node key zi  Z, we have (recall that for an

arbitrary node key xi in a HOFT X, its left child and right child are denoted by x2i and x2i+1

respectively)

zi = xi  yi (Definition 2)

= (g(x2i)  g(x2i+1))  (g(y2i)  g(y2i+1)) (Definition 1, since X and Y are both HOFT)

= (g(x2i)  g(y2i)) (g(x2i+1)  g(y2i+1)) (“” is commutative and associative)

= g(x2i  y2i)  g(x2i+1  y2i+1) (g is homomorphic)

= g(z2i)  g(z2i+1) (Definition 2)

According to Definition 1, Z is a HOFT. □

In other words, tree product is structure-preserving.

 23

Fig. 7 Tree product of a key tree and a key chain

If a HOWF chain C over (G, ) has the same length as a certain path from a leaf node to the

root in a HOFT X over (G, ), we can define a tree product of the HOFT X and the HOWF

chain C based on Definition 2. Recall that the two operands of a tree product must have the

same structure. Therefore, we must expand C with identity node keys (whose value is the

identity element e of G) as in Figure 7 to make it have the same structure as X before

performing a tree product operation. Since g is a group self-homomorphism, g(e) equals e. It

is easy to check that the key tree expanded from C is also a HOFT. In this manner, a HOWF

chain can always be transformed into a HOFT with arbitrary shape. Since e is an identity

element, when performing a tree product of the HOFT X and the key tree expanded from C,

those node keys multiplied by identity node key remain unchanged. Therefore, we can

directly define the product of a HOFT X and a HOWF chain C as computed by only

multiplying their corresponding node keys. According to Theorem 3.1, the result of the tree

product X  C is also a HOFT.

3.2.2 Tree blinding

Definition 3 Tree blinding — For an arbitrary HOFT X over an Abelian group (G, ) in

conjunction with its HOWF g, a tree blinding operation based on g maps X to another key

tree Y, denoted by Y = g(X). Y is computed by applying g to every node of X (see Figure 8).

We call Y a blinded key tree of X.

Fig. 8. Tree blinding

 24

Theorem 3.2 For an arbitrary HOFT X over (G, ), the result of a tree blinding operation on

X, g(X) is also a HOFT.

Proof: Let X is an arbitrary HOFT and Y = g(X). We prove Y is a HOFT. For an arbitrary node

key yi  Y, we have

yi = g(xi)

 = g(g(x2i)  g(x2i+1)) (X is a HOFT)

= g(y2i  y2i+1) (Y = g(X))

= g(y2i)  g(y2i+1) (g is homomorphic)

According to Definition 1, Y is a HOFT. □

Theorem 3.2 reveals that tree blinding is also a structure-preserving operation. Obviously,

from any node key in a blinded key tree g(X), it is computationally infeasible to gain any

information about the node keys in the original key tree X due to the one-wayness of g.

4 A COLLUSION-FREE GROUP REKEYING SCHEME BASED ON HOFTS

In tree-based schemes, adding or evicting members correspond to adding or deleting relevant

leaf nodes in a key tree. In this section, we demonstrate that adding or deleting leaf nodes in a

HOFT X is equivalent to performing a tree product of X and an incremental key chain (or key

tree). The incremental key tree (or key chain) includes all the incremental keys that

correspond to all those node keys supposed to change when a number of members are added

or evicted. Thus, the process of group rekeying is as follows. When members join or leave,

the key server first constructs an incremental key tree (or key chain) according to these

membership changes, and then updates the key tree by computing a tree product of it and the

incremental key tree (or key chain). After that, the key server needs to communicate all the

changes in the key tree to legitimate group members by broadcasting the incremental key tree

(or key chain) so that those members can update their affected node keys by computing a

 25

product of those keys and their corresponding incremental keys. Although Sherman et al.

discussed multiple additions and evictions in their paper [21], they failed to give specific

group rekeying algorithms as they dealt with single membership change. While in our scheme,

tree product facilitates processing either single membership change or multiple membership

changes in a same framework.

In the following sections, we present various group rekeying algorithms dealing with all

patterns of membership changes. Suppose that after a group initialization, we established a

HOFT X over an Abelian group (G, ) (see section 6.4.1 of book [9] for details). We shall

interchangeably refer to a node and the member associated with that node. For any node key

xi, we use yi to denote its blinded version.

4.1 Evicting a member

Due to limited space, we only discuss the case an evictee’s sibling is a leaf node. Group

rekeying algorithm for the case an evictee’s sibling is an internal node can be easily derived

from the algorithm given in this section. We first describe how to delete the evictee’s leaf

node in a HOFT by a tree product, and then discuss the group rekeying algorithm.

(1) Deleting a leaf node by a tree product

Figure 9, 10 and 11 illustrate how to evict a member x15 and construct a corresponding

incremental key chain C during the same process. In the following figures, we use dotted

circles to denote node keys that do not directly participate in a tree product computation (e.g.,

x14’ and x15), but whose positions should be attended to. We also use a shaded and dotted

node to denote an evictee.

 26

Fig. 9 Normalization

Fig. 10 Contraction

The key chain consisted of all ancestral node keys of an evictee is called an ancestor chain

(AC) of the evictee. And the leaf node of AC is called an anchor. For example, in Figure 9,

C* (surrounded by a dashed line) is an AC for x15 and the anchor of C* is x7. To delete a leaf

node x15 from a HOFT X, we take two steps. The first step called normalization is in fact a

tree product of X and a normalizing key chain C1 (see Figure 9). The purpose of

normalization is to turn AC’s anchor into an identity. We construct the normalizing key chain

C1 with the same length as C* by recursively applying the OWF g to the inverse of AC’s

anchor (i.e., x7
-1). Before conducting the second-step operation, the sibling node key (x14) of

the evictee (x15) should be changed for the reason as discussed in section 2.1 (see Figure 2).

We use x14’ to denote the new value. The second step called contraction (see Figure 10) is in

 27

fact a tree product of X’ and a contracting key chain C2. Its purpose is to replace the evictee’s

parent with the evictee’s rekeyed sibling. The contracting key chain C2 is obtained by

replacing x7 with x14’ in C* and recomputing the key chain to root by recursively applying an

OWF g to x14’. After the two steps, member x15 is successfully evicted.

Fig. 11 Evicting a member by performing a tree product

An incremental key chain C is constructed by performing a tree product of the normalizing

key chain C1 and the contracting key chain C2 (they have the same structure, and therefore a

tree product operation can be performed). This incremental key chain has same structure as

AC of the evictee and includes all the incremental keys that correspond to all those node keys

supposed to change when a member is evicted. Obviously, the resulting C is a HOWF chain

too. Thus, the two operations — normalization and contraction can be combined into a single

one-step operation as in Figure 11. In fact, the key server can directly compute the

incremental key chain C by recursively applying an OWF g to x7
-1
 x14’. In a word, deleting a

leaf node x15 from a HOFT X is equivalent to performing a tree product of X and an

incremental key chain C.

(2) Group rekeying algorithm

 28

When a member is evicted, all the node keys on AC of the evictee should be changed. To this

end, the key server must construct an incremental key chain as above, update the key tree by

performing a tree product of it and the incremental key chain, and then broadcast the

incremental key chain to legitimate members. However, it must strictly control access to the

incremental key chain not only to prevent every evictee from accessing any part of it, but also

to restrict every legitimate member to the incremental keys it is entitled to (see section 5 for

the reason). Therefore, the key server sends the blinded version of every incremental key

except the root encrypted with the unblinded sibling key of the incremental key’s

correspondent in the updated key tree, i.e., {g(C3)}_x2 and {g(C7)}_x6. In addition, the key

server also encrypts the new value of the evcitee’s sibling with its old value, i.e., {x14’ }_x14.

In a word, to evict member x15, the key server broadcasts a rekeying message “{g(C3)}_x2,

{g(C7)}_x6, {x14’ }_x14”.

After receiving the rekeying message, every legitimate member perform one decryption to

extract the blinded incremental keys corresponding to its single blinded key in need of

rekeying, and then update it by multiplying its old value by corresponding blinded

incremental key. After that, it recomputes all its node keys in need of change in a bottom-up

manner as discussed in section 2.1.

Consider a full and balanced HOFT with n members (after the eviction). The key server

needs to encrypt and send log2n+1 blinded incremental keys when a member leaves the group.

The key server also needs to compute the incremental key chain, and hence perform one

modular multiplication and log2n OWF computations. In addition, to update the HOFT by

performing a tree product, it needs to perform log2n+1 modular multiplication computations.

If the evictee’s sibling is an internal node, the node key associated with the internal node

must be changed for the same reason as discussed in Part 2.1 (see Figure 2). Since it is an

internal node, we have to trigger rekeying in the subtree rooted at it (we refer to it as the

 29

evictee’s sibling subtree) by rekeying the subtree’s shallowest leaf node (see section 4.6 for

how to rekey the sibling subtree). Then, the key server replaces the evictee’s parent with the

evictee’s rekeyed sibling subtree.

4.2 Evicting multiple members in a bulk operation

Bursty behaviour (a number of membership changes happen simultaneously), periodic group

rekeying or batch group rekeying all require a bulk operation that can process multiple

membership changes at the same time. The broadcast size and computational effort of

multiple additions and evictions can be substantially reduced by using a bulk operation that

evicts and/or adds multiple members simultaneously rather than repeatedly applying

individual add or evict operations. This reduction results from the fact that a set of individual

operations may repeatedly change node keys along common segments of the key tree. Let’s

first give the concept of a private subtree.

Private subtree — For a set S of leaf nodes in a tree T, a subtree T’ of T is called a private

subtree for S, if any leaf node not contained in S does not belong to T’. In other words, this

subtree is privately and exclusively shared by leaf nodes in S.

4.2.1 All the evictees share a private tree

If all the evictees’ leaf nodes happen to share a private subtree (for example, in Figure 12,

members x24, x25 and x13 share a private subtree T’ surrounded by a dotted line), we can evict

all those members simultaneously by pruning this private subtree. If we regard the whole

private subtree T’ as a leaf node x6, pruning T’ is equivalent to using the algorithm in section

4.1 to delete x6.

 30

x1

x5

x2

x4

x3

x6

x12 x13

x24 x25

Pruning subtree T’

T’

T

x7

Evcitee

Fig. 12 Pruning

Consider a full and balanced OFT with n members (before the evictions). Based on our

discussion in section 4.1-(2), when evicting l members (suppose l is a power of 2), to

distribute the incremental key chain securely, the key server needs to encrypt and send

log2(n/l) blinded incremental keys. If we repeatedly apply algorithm in section 4.1 to

individually process every eviction, the key server needs to encrypt and send l﹡log2(n/l)

keys at least.

4.2.2 Evictees are sparsely distributed

If any subset of evictees cannot share a private subtree (in other words, all evictees are

sparsely distributed), we use the following algorithm to evict them.

(1) Deleting sparsely-distributed leaf nodes by a tree product

Figures 13-15 demonstrate how to delete sparsely-distributed evictees x9, x11, and x13 from a

HOFT X by applying a tree product. Based on the discussion in section 4.1, here we only

need to focus on how to construct a normalizing key tree, a contracting key tree and an

incremental key tree.

① Normalization

 31

Fig. 13 Normalization for sparsely-distributed evictions

Figure 13 illustrate how to construct the normalizing key tree T1. First of all, we present a

concept Combined Ancestor Tree proposed by Sherman and McGrew [21].

Combined Ancestor Tree — For a set of evictees or joining members, the tree consisting of

all ancestors of their associated leaf nodes is called a Combined Ancestor Tree (CAT).

When a set of members are evicted, all node keys need to be changed are on CAT. For

evictees x9, x11, and x13, their CAT is T* (surrounded by a dashed line). Normalizing key tree

T1 is obtained by replacing each leaf node key of CAT with its inverse and recomputing the

whole OFT to the root.

② Contraction

Fig. 14 Contraction for sparsely-distributed evictions

 32

We construct the contracting key tree T2 by replacing every leaf node of T* with its adjacent

evictee’s rekeyed sibling (or rekeyed sibling subtree) and recomputing the resulting key tree

to the root (see Figure 14).

Since HOFT T1 and T2 have the same structure, the incremental key tree T is obtained by

performing a tree product of T1 and T2. Obviously, the resulting incremental key tree T has

the same structure as the CAT of those evictees and includes all the incremental keys that

correspond to all those node keys supposed to change when a number of members are evicted.

In fact, the incremental key tree T can be computed while it is traversed in a postorder

manner by the key server. However, in original OFT scheme, to update every node keys on

CAT, the key server needs to traverse a tree bigger than the incremental key tree here to

include not only those nodes on CAT, but also all sibling of them.

Fig. 15 An incremental key tree for sparsely-distributed evictions

(2) Group rekeying algorithm

After deleting those sparsely-distributed evictees’ leaf nodes by performing a tree product,

the key server must broadcast all the incremental keys to remaining members. Not only to

prevent any evictee from gaining access to incremental key tree, but also to restrict every

legitimate member to the incremental keys it is entitled to, the key server sends the blinded

version of every incremental key (except the root incremental key) encrypted with the

unblinded sibling key of the incremental key’s correspondent in the updated key tree, i.e.,

{g(t2)}_x3’, {g(t3)}_x2’, {g(t4)}_x10’, {g(t5)}_x8’ and {g(t6) = t3}_x7. In addition, the key

 33

server sends the new value of every evictee’s sibling encrypted with its old value, i.e.,

{x8’}_x8, {x10’}_x10, {x12’}_x12.

After every legitimate member receives the rekeying message, it will be able to compute all

incremental keys it is entitled to in a bottom-up manner, and then update its own rekeyed

node keys by multiplying their old values by their corresponding incremental keys. For

example, member x8 is able to obtain blinded key g(t5) by decrypting {g(t5)}_x8’ with its new

node key x8’. Since it can directly compute t4 = x4
-1*x8’, member x8 can compute t2 =

g(t4)*g(t5) and then x2’=x2*t2. Now it can decrypt {g(t3)}_x2’ to obtain g(t3). In the end, it can

compute t1 = g(t2)*g(t3) and then x1’=x1*t1.

Since the incremental key tree has the same structure as the CAT, we can compute the

broadcast overhead by the size of CAT (denoted by SL) as in paper [21]. Consider a full and

balanced OFT with n members (before l members are evicted). The key server needs to

encrypt and broadcast l node keys of l evictees’ rekeyed siblings. Since the size of

incremental key tree is SL, it also needs to encrypt and send SL-1 blinded incremental keys.

The key server also needs to compute the incremental key tree, and hence perform SL

modular multiplication and SL-1 OWF computations. In addition, to update the HOFT by

performing a tree product, it needs to perform SL modular multiplication computations. In all,

the key server needs to perform 2SL modular multiplication computations and SL-1 OWF

computations.

Compared with repeatedly applying algorithm in section 4.1 to individually process every

eviction, a bulk operation acquires an economy of scale when the size of the incremental tree

is less than the number of evictees times the height of the key tree.

4.2.3 Generic case

 34

Fig. 16 A generic case for multiple evictions

Based on discussion in sections 4.2.1 and 4.2.2, we are now able to consider a generic case

where certain subsets of evictees are able to form private subtrees while the rest are just

sparsely distributed. For every subset of evictees capable of forming a private subtree, we

regard this private subtree as a single node, i.e., their root. Thus, the generic case will become

the case of sparsely-distributed evictees. For example, referring to Figure 16, if we regard the

private subtree T* shared by x36, x37, x19 as a single node x9, T in Figure 16 becomes X in

Figure 13. And deleting x36, x37, x19, x11, and x13 from T is equivalent to deleting sparsely-

distributed evictees x9, x11, and x13 from X in Figure 13 using algorithm in section 4.2.2.

4.3 Adding a member

When members join the group, the key server first performs a tree blinding operation g on the

current key tree X to obtain a blinded key tree Y = g(X) (see Figure 8) and then adds those

members’ leaf nodes onto the blinded key tree Y. Same as in OFT scheme, the key server will

supply every joining member with the blinded keys of the siblings of the nodes in the path

from its associated leaf node to the root of the updated key tree. These blinded keys are

information about the blinded key tree Y and it is computationally infeasible for the joining

members (even by collusion) to compute any information about the original key tree X due to

 35

one-wayness of g. Therefore, a joining member will not be able to combine this knowledge

with any evicted member to obtain a valid past group key. In addition, since the incremental

key tree or key chain is constructed from a blinded key tree Y and it contains no information

about the original key tree X either, controlling access to the incremental key tree (or key

chain) is not necessary any more. The key server just broadcasts the leaf incremental keys

encrypted with old group key.

Fig. 17 Adding the joining member’s leaf node

Figure 17 illustrates how to add a leaf node to a HOFT by applying tree product.

(1) Adding a leaf node onto a blinded key tree by a tree product

Fig. 18 an incremental key chain for a single join

In the blinded key tree Y, we first choose a leaf node whose position is nearest to the root

node (e.g., y6) as the node to be normalized and construct the normalizing key chain C1

 36

similar to the algorithm in section 4.1. Note that the difference between the normalization

operation for a single addition and that for a single eviction is the place of node to be

normalized. In the former, the node to be normalized is where we add a new node, whereas,

in the latter, the node to be normalized is the parent of the node to be deleted. Now we show

how to construct the expanding key tree. Expanding the path from the node to be normalized

to the root by creating two new child nodes at its anchor, one for the pre-existing member and

the other for the joining member, we get a tree with structure like T2. Then, we recompute the

resulting key tree to root to get the expanding key tree T2. Note that unlike in leave rekeying,

there is no need to change the sibling node key of the joining member’s node key. Because

even if the joining member is able to compute the root node key (y1) of the blinded tree Y as

discussed in section 2.1, knowing root node key (y1) of Y reveals no information about the

past group key (x1). We finally construct the incremental key chain C by performing a tree

product of the normalizing key chain C1 and its counterpart in the expanding key tree T2 like

in Figure 18. In fact, the key server can directly compute C by recursively applying OWF g to

c6. In a word, to adding a leaf node x13 in a blinded HOFT Y is equivalent to performing a tree

product of Y and the incremental key chain C.

(2) Group rekeying algorithm

When a member x13 joins the group, the key server first performs a tree blinding operation on

the key tree X to obtain a blinded key tree Y, constructs a incremental key chain C based on Y,

and then performs a tree product of Y and C to obtain the final updated key tree Y’. Now, the

key server needs to broadcast the incremental key chain C to all pre-existing members by

sending its leaf node c6 encrypted with the old group key x1, i.e., {c6}_x1. It also need to

supply the joining member x13 with the blinded keys of the siblings of the nodes in the path

from its associated leaf node to the root of Y’, after encrypting them with the joining

member’s unique secret key x13, i.e., {g(y6), g(y7), g(y2)}_x13. Each joining member uses

 37

those blinded keys to compute node keys in its path to the root including the current group

key y1’. Every pre-existing member can decrypt the broadcast message {c6}_x1 to obtain the

anchor c6 of the incremental key chain C and restore the whole incremental key chain C by

recursively applying OWF g to it. Therefore, they can update all the node keys they are

entitled to by applying OWF g to them and then further change those updated node keys

whose associated nodes are in the joining member’s path to the root by multiplying them by

the corresponding incremental keys. In a word, the rekeying message is “{c6}_x1, {g(y6),

g(y7), g(y2)}_x13”

Consider a full and balanced OFT with n members (after the join). The key server only needs

to encrypt and send 1 incremental key c6 when a member joins the group. To supply the

joining member with blinded keys, it needs to encrypt and send log2n blinded keys. In all, the

key server needs to encrypt and send log2n+1 keys which nearly half the broadcast size of

original OFT scheme.

There is also cost associated with OWF and multiplication computations at the key server.

When a member joins the group, the key server needs to compute the blinded key tree Y from

original key tree X at first, and hence perform 2n-2 OWF computations. Then the key server

needs to compute the incremental key chain C, and hence perform log2n+1 OWF

computations and two multiplication computations. At last, the key server needs to compute a

tree product of X and the incremental key chain C, and hence perform log2n multiplication

computations. In all, the key server needs to perform 2n+log2n-1 OWF computations and

log2n+2 multiplication computations.

4.4 Adding multiple members in a bulk operation

As we discussed in section 4.2, there are situations (bursty behaviour, periodic group

rekeying or batch group rekeying) where we need to process multiple joins in a bulk

operation so that the broadcast size and computational effort can be substantially reduced.

 38

For tree-based schemes (e.g. LKH and OFT), maintaining the balance of a key tree is very

important for achieving a good performance. For a large dynamic group, leave changes in

membership are usually unpredictable. Random deletions of leaf nodes are most likely to

result in an imbalanced key tree. However, when members join, we have the freedom of

choosing their positions in a key tree. This is our chance to remedy the imbalance of a key

tree. Therefore, when adding nodes in a key tree, we always put that consideration in the first

place. We define imbalance degree of a key tree as the value of the difference in depths

between the shallowest and deepest leaves. We can set a threshold (e.g., 2) for the imbalance

degree. If the imbalance degree of a key tree does not exceed the threshold, we add members

evenly onto the blinded key tree. Otherwise, we use other methods to add them (see section

4.4.2).

4.4.1 Evenly adding multiple members onto a balanced key tree

(1) Evenly adding multiple leaf nodes by a tree product

After performing a tree blinding operation on current key tree X to obtain a blinded key tree Y,

we find all the shallowest leaf nodes in Y, and perform the normalization and expansion

operations on Y. Referring to Figure 19, to add members x9, x11 and x14 onto the blinded key

tree Y, we choose y4, y5 and y7 as the nodes to be normalized. Based on the discussion in

section 4.2.2 and 4.3, the normalization and expansion operations will be performed as in

Figure 19. We can construct the incremental key tree T (see Figure 20) by performing a tree

product of the normalizing key tree T1 and its counterpart in the expanding key tree T2. The

key server can directly compute the incremental key tree T when traversing it in a postorder

manner. To add members x9, x11 and x14 onto the blinded key tree Y is equivalent to

performing a tree product of Y and T.

 39

Fig. 19 Evenly adding multiple members

Fig. 20 an incremental key tree for even additions

 (2) Group rekeying algorithm

After performing a tree blinding operation on the key tree X to obtain a blinded key tree Y,

the key server constructs an incremental key tree T, and performs a tree product of Y and T to

obtain an updated key tree Y’. The key server needs to communicate the changes in the key

tree by broadcasting the incremental key tree T. Since an OFT is constructed in a bottom-up

manner, it can be uniquely determined by all its leaf nodes. If the position of every leaf node

can be uniquely identified, every member can reconstruct the whole HOFT in a bottom-up

manner after receiving all leaf node keys. In an incremental key tree T, we identify the

position of every leaf node by its path ID. Referring to Figure 20, the path ID of a leaf node

 40

is obtained as follows. Tracking the leaf node’s path from the root to it, when visiting a left

link (right link) from a node, we append a binary bit “0” (a “1”) to an initially-null binary

string. Until we visit the leaf node itself, we got a binary string called a path ID. For example,

the position of t5 in incremental key tree T is identified by its path ID “01”. In fact, for all

tree-based group rekeying schemes, legitimate members always need to extract the joining

members or evictees’ path IDs from a rekeying message to locate the changes in a key tree

(see section 6). It follows from the above discussion that instead of broadcasting whole

incremental key tree T, the key server only needs to send every leaf node keys of T in

conjunction with their path IDs encrypted with the old group key, i.e., {t4,00,t5,01,t7,11}_x1

for T. After decrypting this message, every pre-existing member can reconstruct the whole

incremental key tree T. Therefore, they can accordingly update their own rekeyed node keys.

In addition, the key server also needs to supply every joining member with blinded keys. In

all, to add members x9, x11 and x14, the key server sends a rekeying message as

“{t4,00,t5,01,t7,11}_x1, {g(y4), g(y5’), g(y3’)}_x9, {g(y5), g(y4’), g(y3’)}_x11, {g(y7), g(y6),

g(y2’)}_x14”.

Consider a full and balanced OFT with n members (after l members join). When l members

join the group, to communicate the incremental key tree T to all pre-existing members, the

key server needs to encrypt and send l leaf node keys of T as well as l path IDs. In addition,

to supply every joining member with their blinded keys, it needs to encrypt and send llog2n

blinded keys. In all, the key server needs to send (l + llog2n) (Keys) + llog2n (bits). There is

also cost associated with OWF and multiplication computations at the key server. When l

members join the group (suppose that l is a power of 2), firstly, the key server needs to

compute a blinded key tree Y from original key tree X, and hence perform 2n-2l-2 OWF

computations. Recall that the size of an incremental key tree is denoted by SL. Secondly, the

key server needs to compute the incremental key tree, and hence perform SL+l-1 OWF

 41

computations and SL+2l multiplication computations. Lastly, the key server needs to compute

a tree product of X and the incremental key tree T, and hence perform SL multiplication

computations. In all, the key server needs to perform 2n-l+SL-3 OWF computations and

2SL+2l multiplication computations.

4.4.2 Adding multiple members by grafting

(1) Adding multiple leaf nodes by grafting

When the imbalance degree of the key tree exceeds a threshold (e.g., 2), we add multiple leaf

nodes adjacently instead of evenly. Referring to Figure 21, if the imbalance degree of a key

tree is i (i≥3) and the number of joining members, l is not bigger than 2i-1 (also suppose that

l+1 is a power of 2), we choose a shallowest node (e.g., y2) as the grafting point and construct

a new full and balanced homomorphic one-way subtree T* (surrounded by a dashed line in

Figure 21) which takes the shallowest leaf node y2 and all the joining members x9, x10, and x11

as its leaf nodes. Then we graft T* onto the main key tree at the grafting point. The

normalization and expansion operations will be performed as in Figure 21. Lastly, we

construct an incremental key chain C (see Figure 22) by performing a tree product of the

normalizing key chain C1 and its counterpart in the expanding key tree T2. In a word, to add

the joining members x9, x10, and x11 onto an imbalanced key tree is equivalent to firstly

constructing a new subtree T*, and then performing a tree product of Y and an incremental

key chain C (i.e., grafting).

If the imbalance degree of a key tree is i (i ≥ threshold 3), but the number of joining members,

l is bigger than 2i-1, we just choose 2i-1 members among them and then perform the grafting

operation like above. If the imbalance degree of the updated key tree is still bigger than the

threshold, we keep on performing the grafting operation using the remaining joining

members until the imbalance degree is not bigger than the threshold or all the joining

members have been added. Note that all the above grafting operations can be combined into a

 42

single bulk operation. If the imbalance degree of the updated key tree is not bigger than the

threshold and there still remain joining members to be added, we use algorithm in section

4.4.1 to add remaining members evenly.

Fig. 21 adding multiple members by grafting

Fig. 22 An incremental key chain for grafting

 (2) Group rekeying algorithm

For simplicity, we only consider the scenario where the imbalance degree of a key tree is i

(i≥3) and the number of joining members, l is not bigger than 2i-1. Firstly, the key server

performs a tree blinding operation on the key tree X to obtain a blinded key tree Y, and then

constructs a new subtree T* taking the node key associated with the grafting point on Y and

the joining members’ node keys as its leaf nodes. Secondly, it constructs the incremental key

chain C, and then performs a tree product of Y and C to obtain an updated key tree Y’. Instead

of individually supplying every joining member with the blinded keys of the siblings of the

 43

nodes in its path to the root of Y’, the key server sends each blinded key in T* encrypted with

its sibling’s unblinded key (if it exists) and the blinded keys associated with the siblings of

nodes in the path from the grafting point to the root of Y’ encrypted with their siblings’

unblinded keys (these blinded keys are common to all joining members), i.e., {g(y2)}_x9,

{g(x9)}_ y2, {g(x10)}_ x11, {g(x11)}_ x10, {g(t2*)}_ t3*, {g(t3*)}_ t2*, {y2’}_t1*. Every joining

member can decrypt certain parts of this message to obtain the blinded keys of the siblings of

the nodes in its path to the root of Y’. To broadcast C, it only needs to send C’s anchor

encrypted with past group key, i.e., {c2}_x1. Every pre-existing member can decrypt this

message to obtain c2, and thus restore the whole incremental key chain C by recursively

applying OWF g to c2 (see Figure 22).

Consider a full and balanced OFT with n members (after l members join) and l+1 is a power

of 2. When l members join, to supply every joining member with their blinded keys, the key

server needs to send and encrypt 2l-2+log2(n/(l+1)) keys. That number equals SL-1. To

broadcast the incremental key chain C of length log2(n/(l+1)), the key server only needs to

send and encrypt one key. In all, the key server needs to send and encrypt SL keys.

There is also cost associated with OWF and multiplication computations at the key server.

When l members join the group, the key server needs to compute the blinded key tree Y from

original key tree X first, and hence perform 2n-2l-2 OWF computations. To compute the

subtree T*, the key server needs to perform 2l OWF computations and l multiplications. It

also needs to compute the incremental key chain C of length log2(n/(l+1)), and hence perform

log2(n/(l+1)) OWF computations and one multiplication. To compute the updated key tree Y’,

it needs to compute log2(n/(l+1)) multiplications. In all, the key server needs to compute

2n+log2(n/(l+1))-2 OWF computations and l+log2(n/(l+1))+1 multiplications.

4.5 Handling mixed membership changes in a bulk operation

 44

There are situations (bursty behaviour, periodic group rekeying or batch group rekeying)

where we need to process mixed membership changes (i.e., joins and evictions mixed

together) in one bulk operation. In that case, we firstly deal with all evictees by applying the

corresponding leave rekeying algorithm in section 4.1 or 4.2 to current key tree X to obtain an

updated key tree Xnew. Secondly, we deal with all the joining members by applying the

corresponding join rekeying algorithm in section 4.3 or 4.4 to key tree Xnew. Therefore, it is a

two-step bulk operation.

4.6 Automatic Rekeying

Fig. 23 Automatic Rekeying

There are situations where a special kind of group rekeying called automatic rekeying is

required. For instance, besides group rekeying due to membership changes, the key server

must spontaneously update the traffic encryption key (i.e., the group key here) at regular

short intervals to thwart traffic analysis attack, especially when a group has no membership

change during a long time interval. Since the type of group rekeying is not triggered by any

membership change, we call it automatic. Because node keys in LKH are independent,

automatic rekeying in LKH scheme is very simple. The key server only needs to generate a

new group key and broadcast it encrypted with the old group key. As for OFT, we have to

trigger rekeying in the key tree by rekeying the shallowest leaf node because there is a

 45

bottom-up functional dependency among keys. We illustrate the automatic rekeying

algorithm based on HOFT by Figure 23.

The key server chooses a shallowest leaf node, e.g., x5. If this node’s path to root is of length l,

the key server generates a random seed t, and then recursively apply OWF g to t for l times to

generate an incremental key chain C of the same length l. It then updates the key tree by

performing a tree product of X and C. Finally, it broadcasts t encrypted with old group key x1,

i.e., {t}_x1. Since every current member can decrypt the seed t and thus restore the whole

incremental key chain C, it will be able to update its own node keys in need of change.

Member x5 computes its new leaf node key by multiplying x5 by t. Consider a full and

balanced HOFT with n members. The key server needs to encrypt and send 1 incremental key

(seed). The key server also needs to compute the incremental key chain, and hence perform

log2n OWF computations. In addition, to update the HOFT, it needs to perform

log2n+1modular multiplications.

In section 4.1, we mentioned that when the evictee’s sibling is an internal node, the sibling

subtree should be rekeyed before performing the contraction operation. We can use the

automatic rekeying algorithm here to rekey the sibling subtree. That’s another situation where

automatic rekeying is required.

Whereas, for automatic rekeying based on original OFT, the key server needs to generate a

new node key x5’ for member x5 and encrypt all blinded node keys in member x5’s path to

root with their corresponding siblings’ unblinded keys. That is to say, the key server needs to

send the following rekeying message: “{x5’}_x5, {g(x5)}_x4, {g(x2)}_x3”. Consider a full and

balanced HOFT with n members. The key server needs to encrypt and send log2n blinded

keys plus one new node key for the rekeyed member.

4.7 Comments on choosing OWF candidates for HOFT

 46

Since OWF computations are intensive in our scheme, we must choose an efficient

homomorphic OWF. Since it is impossible to construct a homomorphic OWF that is as fast as

a pseudorandom hash function such as MD5 or SHA1, the only candidates for a HOWF in

HOFT are homomorphic trapdoor functions like Rabin functions or RSA functions.

Considering the computational performance, Rabin functions are the primary choice and RSA

functions with small encryption exponent [19] the secondary choice. For Rabin functions, the

public key parameters are generated as follows:

- Choose two large distinct primes p and q with p  q  3 (mod 4).

- Let n = pq. Such number n is called Blum number.

Then the public key is n, and the private key is p and q. The set of all quadratic residues

modulo n is denoted by Qn. Rabin function is a trapdoor OWF mapping Zn
* to Qn defined as

follows:

- For an integer x  Zn
*, compute y = x2 mod n.

 Inverting this function requires computing square roots modulo n. The latter problem is

computationally equivalent to factoring n (in the sense of polynomial-time reduction) [14].

Since we only utilize the one-wayness of a trapdoor function, the trapdoor information (i.e., p

and q) should be safely destroyed as soon as the public parameters are generated.

5 SECURITY ANALYSIS

Since Figure 4 used by Xu et al. to illustrate their proposition 1 helps to analyse all possible

node keys that can be computed by a pair of colluding members, we also use it to analyse

collusion attack on our scheme. We first discuss that an arbitrary pair of colluding members

cannot compute any useful information about a group key not already known. Therefore, we

need to consider all possible collusion scenarios as follows:

(1) Eviction-eviction scenario

 47

In this scenario, we consider the collusion between a pair of members who was individually

evicted in different leave rekeying operations. Suppose that in Figure 4, A is first evicted at

time tA and later C is evicted at time tC. And we also suppose that there is no other

membership changes between tA and tC. Since C knows the group key [,]A CRoot t tK after A is

evicted, the group forward secrecy is violated by collusion attack only when A and C can

collude to compute the group key [,]CRoot tK  (the dash here means the time of the next update

of this key after tC). Because C stays in the group longer than A, their knowledge about the

shared node keys in the intersection of their paths (e.g., KI and KI’) and the siblings (KR’ and

KR’’) is no more than C’s knowledge about those keys. In addition, those shared node keys in

the intersection of their paths are changed after C is evicted according to our leave rekeying

algorithm. Therefore, with respect to these node keys, colluding with A does not help C. On

the other hand, the unique knowledge held by A is about node keys in the subtree B, but this

knowledge cannot be combined with C’s knowledge about node keys in subtree D to compute

any node key. The only exception is A’s knowledge about L and R that can be combined with

C’s to compute KI (and consequently KI’ and so on). However, according to our leave

rekeying algorithms, A’s knowledge about L and R is [,]AL tK  (the dash here means the time

of the last update of this key before tA) and [,]A CR t tK  (recall that K’ is the blinded version of K),

which is useless for computing new node key [,]CI tK  . Therefore, in this scenario, the

colluding members cannot compute any node key not already known.

In each leave rekeying algorithm of our scheme, the key server strictly controls access to the

incremental key chain (or key tree) not only to prevent every evictee from accessing any part

of it, but also to restrict every legitimate member to the incremental keys it is entitled to.

Otherwise, if we grant every legitimate member full access to the incremental key chain (key

 48

tree), collusion between evictees is possible. Referring to Figure 4, since C has full access to

the incremental key chain (or key tree) after A is evicted denoted by
AtiKC that contains the

incremental key corresponding to [,]AL tK  denoted by A

L

t
Ki , collectively knowing

A

L

t
Ki and [,]AL tK  , A and C can collude to compute [,] [,]

A

A L A

t
L t K L tK i K   . While after C is

evicted (suppose that after C is evicted, there still remain legitimate members associated with

subtrees B and D respectively), [,]AL tK  will be used to encrypt the incremental key C

R

t
Ki

according to our leave rekeying algorithm. Therefore, A and C can collude to gain access

to
Ct

iKC even after both of them are evicted. They can further compute the future group

key [,]CRoot tK  . Thus, group forward secrecy is violated.

(2) Collusion between a pair of members evicted in a same bulk operation

Suppose that A and C are evicted at time tAC in a same bulk operation. Since both KL and KR

are changed after tAC, A and C cannot collude to compute [,]ACI tK  . What’s more, all the

shared node keys in the intersection of their paths are changed after tAC. Therefore, although

their knowledge about the blinded keys associated with the siblings of those shared node keys

is still effective for a certain interval after tAC, they can never collude to compute any node

keys including the future group key [,]ACRoot tK  .

(3) Joining-joining scenario

We consider collusion between a pair of joining members individually added in different join

rekeying operations. Suppose that A is added at time tA and later C is added at time tC in

Figure 4. We also suppose that there is no other membership changes between tA and tC. The

group backward secrecy is violated by collusion attack only when A and C can collude to

compute the past group key [,]ARoot tK  . According to our join rekeying algorithm, before the

leaf node of A or B is added onto a key tree, the key tree will be refreshed as a whole by a

 49

tree-blinding operation. If the key tree in an internal [tA, tC] is denoted by [,]A Ct ttree , A and B’s

knowledge respectively relating to totally different key tree [,]A Ct ttree and [,]Ct
tree  (the dash

here means that time of the next update of the key tree after tC) cannot be combined with each

other directly. Due to the one-wayness of tree-blinding operation, certain knowledge about

blinded key tree [,]Ct
tree  can be deduced from knowledge about key tree [,]A Ct ttree , but not

vice versa. Therefore, the possible collusion only happens when A transforms its knowledge

about [,]A Ct ttree into that about [,]Ct
tree  by performing an OWF computation on each node

keys she knows, thus A and C may be able to collude to compute certain knowledge

about [,]Ct
tree  . But that is useless for computing the past group key [,]ARoot tK  .

(4) Collusion between a pair of members added in the same operation

In Figure 4, suppose that A and C are jointly added at time tAC in a join rekeying operation.

According to our joining rekeying algorithm, before they are added, the key tree will be

refreshed as a whole by a tree-blinding operation. That is to say, their knowledge acquired at

the time of joining is about key tree [,]ACttree  and is useless for computing the past group

key [,]ACRoot tK  .

(5) Joining-eviction scenario

In Figure 4, suppose that A first joins the group at time tA and later C is evicted at time tC. If A

and C collude, they trivially know the group key before A joins and after C is evicted,

because C is in the group before A joins and A stays in the group after C is evicted. Therefore,

colluding A and C can never compute any group key besides what they already know.

(6) Eviction-joining scenario

Suppose that A is evicted at time tA and later C joins the group at time tC. We also suppose

that there is no other membership changes between tA and tC. We need to pinpoint the time

 50

when tree-blinding is performed and the time when C’s leaf node is added onto the blinded

key tree. The former is denoted by tBlind and the latter tC. The group backward secrecy/group

forward secrecy is violated by collusion attack only when A and C can collude to compute the

group key [,]A BlindRoot t tK . Because the key tree is refreshed as a whole by a tree-blinding

operation before C joins, A’s knowledge cannot be combined with C’s knowledge. However,

A can transform a part of her knowledge about the unblinded key tree [,]A Blindt ttree (specifically,

the blinded keys associated with the siblings of the node keys in her path to the root, Note

that these keys are still effective for a certain interval after A is evicted) into that about the

blinded key tree [,]Blind Ct ttree by performing an OWF computation on them. On the other hand,

C acquires some blinded node keys of [,]Blind Ct ttree at the time of joining. Therefore, according

to Xu’s proposition 1, A and C can at most collude to compute certain nodes keys of

[,]Blind Ct ttree (including the root node key [,]Blind CRoot t tK) rather than any node key of the

unblinded key tree [,]A Blindt ttree (including the group key [,]A BlindRoot t tK). Moreover, [,]Blind CRoot t tK

never acts as a group key in our scheme.

Based on the above results, we can prove that an arbitrary collection of evicted members and

joining members cannot collude to compute any group key not already known by using the

same argument as in the proof of proposition 4.

6. COMPARISON WITH OTHER SCHEMES

We summarize relevant discussions in section 2.1 and section 4 to present a comprehensive

comparison between our scheme and related schemes in Table 1, covering the following

measures: collusion attack, broadcast size (in bits), key server’s computational overhead and

maximum computational cost of members. Ku and Chen’s improvement on OFT and Xu et

al.’s scheme are referred as Ku&Chen scheme and Xu scheme respectively. Since both

 51

schemes did not give the specific algorithms for processing multiple membership changes,

we omit them from relevant comparison. Cost analysis for batch group rekeying using LKH

is based on scheme proposed by Li et al. [13]. In Table 1, n is the number of members in the

group, SL is the size of the CAT when l changes in membership happen, and K is the size of a

cryptographic key in bits. According to [21], the size of the incremental key tree SL satisfies

2l+log2(n/l)-2<SL<2l+llog2(n/l)-1. CE, Ch, Cg, and CM are respectively the computational

cost of one evaluation of the encryption function E, one evaluation of pseudorandom hash

function, one evaluation of trapdoor OWF g, and one modular multiplication. Note that for

every entry associated with broadcast size, besides the cost for cryptographic keys, the

additive log2n (or llog2n) bits are used to locate the leaf node (or l leaf nodes) in a key tree

that is associated with a changing member (or l changing members).

Table 1 Comparison with related scheme

(1) Adding a member

LKH OFT Ku&Chen Xu HOFT
Collusion attack no yes no no no

Broad. size(bits) 2log 2n*K+log 2n 2log 2n *K+log 2n 2log 2n *K+log 2n
2log 2n *K+log 2n or

((log 2n)2+2log 2n)*K+log 2n
(log 2n +1)*K+log 2n

Server comp. 2log 2n *C E 2log 2n *(C E +C h) 2log 2n *(C E +C h)
2log 2n *(C E +C h) or

((log 2n)2+2log 2n)*(C E +C h)

(log 2n +1)*C E + (2n+log 2n-

1)C g + (log 2n+ 2)*C M

Max. Pre-existng
mem. comp.

log 2n *C E C E +log 2n *C h C E +log 2n *C h C E +log 2n *C h C E +log 2n* (2C g +C M)

(2) Evicting a member

LKH OFT Ku&Chen Xu HOFT
Collusion attack no yes no no no

Broad. size(bits) 2log 2n*K+log 2n log 2n *K+log 2n ((log 2n)2+log 2n)*K+log 2n log 2n *K+log 2n (log 2n +1)*K+log 2n

Server comp. 2log 2n *C E log 2n *(C E + 2C h) ((log 2n)2+2log 2n)*(C E +C h) log 2n *(C E + 2C h)
(log 2n +1)*C E +log 2n*

C g + (log 2n+ 2)*C M

Max. mem. comp. log 2n *C E C E +log 2n*C h log 2n* (C E +C h) C E +log 2n*C h
C E +log 2n*C g + (log 2n

+ 1)*C M

(3) Adding l members

 52

Grafting Evenly Adding
Collusion attack no yes

Broad. size(bits) (2S L -l)*K+l*log 2n (S L +l*log 2n)*K+l*log 2n S L *K+l*log 2n (l +l *log 2n)*K+l*log 2n

Server comp. (2S L -l)*C E S L *C E + (2S L -l)*C h

(2l +1)*C E +log 2(n /(l +1)*(C g +C M)+ (2n

- 2)*C g + (l+ 1)*C M

(l + l*log 2n)*C E + (2n -l +S L -

3)*C g + (2S L + 2l)*C M

Max. mem. comp. log 2n *C E log 2n *(C E +C h) C E +log 2n/ (l+ 1)*(C g +C M)+log 2n*C g l *C E +log 2n* (2C g +C M)

no

LKH OFT
HOFT

 (4) Evicting l members

Pruning Evicting sparsely-distributed evictees
Collusion attack no yes

Broad. size(bits) (2S L -l)*K+l*log 2n (S L +l- 1)*K+l*log 2n log 2(n /l)*K +l *log 2n (S L +l- 1)*K+l*log 2n

Server comp. (2S L -l)*C E (S L +l- 1)*C E + 2S L *C h
log 2(n /l)*C E +(2n +log 2(n /l)-

1)*C g +log 2(n/l)*C M

(S L +l- 1)*C E + (S L - 1)*C g + 2S L C M

Max. mem. comp. log 2n *C E log 2n *(C E +C h) log 2(n/l)*(C E +C g +C M) log 2n *(C E +C g)+ (2log 2n+ 1)*C M

no

HOFT
LKH OFT

(5) Automatic rekeying

LKH OFT HOFT

Broad. size(bits) K+log 2n (log 2n+ 1)*K+log 2n K+log 2n

Server comp. C E (log 2n+ 1)*C E + 2log 2n *C h C E +log 2n*C g + (log 2n+ 1)*C M

Max. mem. comp. C E C E +log 2n *C h C E +log 2n* (2C g +C M)

OFT based schemes have better leave-rekeying efficiency than LKH scheme. Another

advantage of OFT-based schemes in processing single membership change over LKH is that

pre-existing members have less computational overhead. This merit possessed by OFT has

not been noticed by existing literatures and even by its inventors. Due to using trapdoor OWF

Trapdoor OWF (e.g., Rabin function) instead of a much faster pseudorandom hash function

(e.g., SHA1), HOFT has higher computational overhead than original OFT scheme,

especially in conducting join rekeying. But it is worth trading off computation for collusion-

freeness as well as lower communication overhead. What’s more, for network based group

communication, the communication efficiency is the main concern rather than computational

efficiency within a computer, especially considering Moore's law. Among all collusion-free

schemes (even including OFT), HOFT has best join-rekeying communication efficiency.

Because in join rekeying based on HOFT, the key server only needs to broadcast all the leaf

nodes of an incremental key tree (or key chain) rather than a whole CAT (or AC) (which has

 53

the same size as the incremental key tree) as required by the original OFT scheme. Ku &

Chen scheme prevents collusion attack by changing all the keys known by an evictee on

every member eviction, which require a broadcast of quadratic size. Whereas Xu scheme

only performs additional key update when detecting a possible collusion between an evictee

and a joining member, it has lower communication overhead than Ku & Chen scheme.

7. CONCLUSION AND FUTURE RESEARCH

In this paper, we introduce a new cryptographic construction — HOFT and two structure-

preserving operations — tree product and tree blinding. We demonstrate that adding/deleting

leaf nodes from a HOFT is equivalent to performing a tree product of the HOFT and an

incremental key tree (key chain). Based on tree product and one-wayness of tree blinding

operation, we propose a group rekeying scheme which not only prevents collusion attack on

OFT scheme without compromising its leave-rekeying communication efficiency, but also

improves its join-rekeying communication efficiency.

If we want to construct a homomorphic authentication tree based on Merkle authentication

tree [15], the multiplication operation that is substituted for the concatenation operation

should be non-commutative and a self-homomorphic OWF with respect to this non-

commutative operation (e.g., Cantor pairing function) must be found. If such a homomorphic

authentication tree does exist, adding, modifying or deleting a leaf node in a homomorphic

authentication tree will become more efficient than in original Merkle authentication tree.

In our scheme, a HOFT is constructed in a bottom-up manner. We can construct a top-down

homomorphic one-way function tree based on the binary hash tree proposed in MARKS [3].

In such a key tree, updating leaf node keys can be performed by tree product too. However,

pseudo-randomness of the sequence of leaf node keys (each leaf node key serves as the group

key for a short time period in MARKS) and key independency among them will be lost due

 54

to introduction of homomorphic OWF. Finding meaningful application for top-down HOFT

may be of interest for future research.

So far, a lot of group key establishment protocols have been shown to be vulnerable to

collusion attacks [10, 18, 3]. This triggered people towards using formal methods to design

and verify group key establishment protocols. Rigorous analysis methodology for provable

security of group key agreement schemes based on DDH (Decisional Deffie-Hellman) or

CDH (Computational Deffie-Hellman) assumption has been established in the framework of

modern cryptography [2]. Several works on formal verification of the security of the same

kind of schemes have been done as well [8]. However, we don’t see any relevant research

result related to provable security as well as formal verification of tree-based group key

distribution schemes like LKH or OFT scheme. In this paper, we only give a heuristic

security analysis of HOFT. Developing formal methods to design and verify tree-based group

key distribution protocols as well as rigorous analysis methodology for provable security of

these protocols is the focus of ongoing work too.

ACKNOWLEDGEMENT

The authors thank Ronald L. Rivest for illuminating discussions.

FOOTNOTE 1

Most literature simply used terms backward secrecy and forward secrecy to refer to the above

two security requirements. However, forward secrecy has its specific meaning in theoretic

cryptography community. A protocol is said to have perfect forward secrecy (or forward

secrecy) if compromise of long-term keys does not compromise past session keys [14]. For

the sake of accuracy, we suggest the research circle to adopt the terms group forward secrecy

and group backward secrecy).

REFERENCES

 55

[1] D. Balenson, A. T. Sherman, and D. A. McGrew, Key Management for Large Dynamic Groups: One-Way

Function Trees and Amortized Initialization. draft-irtf-smug-groupkeymgmt-oft-00.txt, IRTF work in

progress, 2000

[2] E. Bresson, O. Chevassut, and D. Pointcheval, Provably-Secure Authenticated Group Diffie-Hellman Key

Exchange. ACM Trans. on Information and System Security (TISSEC), vol. 10, no 3 (2007), Article No. 10.

[3] B. Briscoe, MARKS: Zero Side Effect Multicast Key Management Using Arbitrarily Revealed Key

Sequences, Proceedings of First International Workshop on Networked Group Communication (NGC), Pisa,

Italy, November 1999.

[4] Y. Challal and H. Seba. Group Key Management Protocols: A Novel Taxonomy, International Journal of

Information Technology, vol. 2, no 2 (2005), pp. 105-118

[5] L. Cheung, J. A. Cooley, R. Khazan, and C. Newport, Collusion-Resistant Group Key Management Using

Attribute-Based Encryption, The First International Workshop on Group-Oriented Cryptographic Protocols

(GOCP) 2007.

[6] S. DEERING, Host Extensions for IP Multicasting, RFC 1112, 1989.

[7] J. Fan, P. Judge, AND M. Ammar, HySor: Group Key Management with Collusion-Scalability Tradeoffs

Using a Hybrid Structuring of Receivers, Proceedings of the IEEE International Conference on Computer

Communications Networks, 2002, pp. 196- 201.

[8] A. Gawanmeh, A. Bouhoula, and S. Tahar, Rank Functions based Inference System for Group Key

Management Protocols Verification, International Journal of Network Security, Vol. 8, no 2 (2009), Science

Publications, pp. 187-198.

[9] T. Hardjono and L. R. Donteti, Multicast and Group Security, Artech House, 2003.

[10] G. Horng, Cryptanalysis of a Key Management Scheme for Secure Multicast Communications, IEICE Trans.

Commun., Vol. E85-B no 5 (2002), pp. 1050-1051.

[11] Y. Kim, A. Perrig, and G. Tsudik, Tree-based group key agreement, ACM Transactions on Information

Systems Security, vol. 7 no l (2004), pp. 60-96

[12] W. C. Ku and S. M. Chen, An improved key management scheme for large dynamic groups using one-way

function trees, Proceedings of International Conference on Parallel Processing Workshops, 2003, pp. 391-

396.

 56

[13] X. S. Li, Y. R. Yang, M. Gouda, and S. S. Lam, Batch Rekeying for Secure Group Communications,

Proceedings of the Tenth International World Wide Web Conference, Hong Kong, China, 2001

[14] A. J. Menezes, P.C. van Oorschot, and S. A.Vanstone, Handbook of Applied Cryptography, Boca Raton:

CRC Press, 1997.

[15] R. C. Merkle, Secrecy, Authentication, and Public-Key Cryptosystems. Technical Report No. 1979-1,

Information Systems Laboratory, Stanford Univ., Palo Alto, Calif.

[16] D. Micciancio and S. Panjwani, Optimal communication complexity of generic multicast key distribution,

IEEE/ACM Trans. on Networking, vol. 16, no 4 (2008), pp. 803-813.

[17] M. Rabin, Digitalized Signatures and Public-Key Functions as Intractable as Factorization. Technical

Report: TR-212. MIT Laboratory for Computer Science, January 1979

[18] S. Rafaeli and D. Hutchison. A Survey of Key Management for Secure Group Communication, ACM

Computing Surveys, vol. 35, no 3 (2003), pp. 309–329.

[19] R. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signatures and public-key

cryptosystems, Communications of the ACM, vol. 21, no 2 (1978), pp. 120–126.

[20] A. T. Sherman, A Proof of Security for the LKH and OFC Centralized Group Keying Algorithms, NAI

Labs Technical Report No. 02-043D, NAI Labs at Network Associates, Inc., Rockville, Md., Nov. 2002.

[21] A. T. Sherman and D.A. McGrew, Key establishment in large dynamic groups using one-way function trees,

IEEE Transactions on Software Engineering, vol. 29, no 5 (2003), pp. 444 – 458.

[22] D. M. Wallner, E. J. Harder, and R. C. Agee, Key Management for Multicast: Issues and rchitectures,

Internet Draft (work in progress), draft-wallner-key-arch-01.txt, Internet Eng. Task Force, Sept. 1998.

[23] C. K. Wong, M.G. Gouda, and S.S. Lam, Secure Group Communications Using Key Graphs, IEEE/ACM

Transactions on Networking, Vol. 8, no 1 (Feb. 2000), pp. 16-30.

[24] X. Xu, L.Wang, A. Youssef, and B. Zhu, Preventing Collusion Attacks on the One-Way Function Tree

(OFT) Scheme, Proceedings of Applied Cryptography and Network Security, 2007 vol. 4521 of LNCS, pp.

177–193.

