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Abstract. Efficient multicast key distribution (MKD) is essential for secure multicast 

communications. Although Sherman et al. claimed that their MKD scheme — OFT (One-

way Function Tree) achieves both perfect forward and backward secrecy, several types of 

collusion attacks on it still have been found. Solutions to prevent these attacks have also 

been proposed, but at the cost of a higher communication overhead. In this paper, we 

prove falsity of a recently-proposed necessary and sufficient condition for existence of 

collusion attack on OFT scheme by a counterexample and give a new necessary and 

sufficient condition for nonexistence of any type of collusion attack on it. We extend the 

notion of OFT given by Sherman et al. to obtain a new type of cryptographic construction 

— homomorphic one-way function tree (HOFT). We propose two graph operations on 

HOFTs, tree product as well as tree blinding, and prove that both are structure-preserving. 

We provide algorithms for adding/removing leaf nodes in a HOFT by performing a tree 

product of the HOFT and a corresponding incremental secret tree. Employing HOFTs 

and related algorithms, we provide a collusion-free MKD scheme, which has not only the 

same leave-rekeying communication efficiency as original OFT scheme, but also even 

better join-rekeying communication efficiency. 

Key words. Multicast key distribution, One-way function tree, Homomorphism, 

Collusion 

1. INTRODUCTION 

Many emerging group-oriented applications, for instance, IPTV, DVB (Digital Video 

Broadcast), videoconferences, interactive group games, collaborative applications, and so 
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on all require a one-to-many or many-to-many group communication mechanism. 

Allowing for efficient utilization of network bandwidth, IP multicast [1] is the best way 

to realize group communication in the Internet setting. One of the most efficient 

approaches to ensure confidentiality of group communications is employing symmetric-

key encryption scheme. But before the sender encrypts and transmits the data traffic over 

a group communication channel to a group of privileged users, a shared key called group 

key must be established among them. Compared to secure two-party key establishment, 

secure group key establishment in a dynamic group is a more challenging problem. Like 

the former, group key establishment can be subdivided into group key distribution (GKD) 

and group key exchange (or group key agreement). Group key exchange schemes are 

only suitable for small dynamic peer groups. Two parallel lines of research, commonly 

referred to as broadcast encryption (BE) and multicast key distribution (MKD) (or 

multicast encryption), have been established to study the GKD problem but from 

different perspectives. This paper only focuses on MKD schemes. In contrast with 

stateless receivers in BE schemes,  each receiver in MKD schemes are stateful, which 

means that they are allowed to maintain a personal state and make use of previously 

learned keys for decrypting current transmissions. Rather than tackling the general GKD 

problem as BE schemes, most MKD schemes aim to solve a special problem in the 

multicast encryption setting, called immediate group rekeying. Especially, for some 

security-sensitive multicast applications (e.g. military applications and highly secretive 

conferences), group key must be changed for every membership change. To prevent a 

new member from decoding messages exchanged before it joins a group, a new group 

key must be distributed for the group when a new member joins. Therefore, the joining 

member is not able to decipher previous messages even if it has recorded earlier 

messages encrypted with the old key. This security requirement is called group backward 

secrecy [2]. On the other hand, to prevent a departing member from continuing access to 

the group’s communication (if it keeps receiving the messages), the key should be 

changed as soon as a member leaves. Therefore, the departing member will not be able to 

decipher future group messages encrypted with the new key. This security requirement is 

called group forward secrecy [2]. To provide both group backward secrecy and group 

forward secrecy, the group key must be updated upon every membership change and 
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distributed to all the members. This process is referred to as immediate group rekeying in 

literature. Respectively, the rekeying process due to a joining membership change (resp. a 

departing membership change) is referred to as join rekeying (resp. leave rekeying). For 

large dynamic groups with frequent changes in membership, how to design a scalable 

MKD scheme is a big challenge. Since the late 1990s, a continuing research effort has 

been carried out, and today has seen a huge body of literature (See [3] for an excellent 

survey and a recent survey is [4]). 

Among all generic multicast key distribution schemes in which rekey messages are 

built using traditional cryptographic primitives (symmetric-key encryption and/or 

pseudorandom generators), a class of schemes called tree-based schemes [5],[6],[7] are 

the most efficient ones to date in terms of communication overhead. They have a 

communication complexity of O(log2n) for a group size of n. Recent result by Micciancio 

et al. [8] has also confirmed that log2n is the optimal lower bound on the communication 

complexity of generic group key management schemes.  

Logical Key Hierarchy (LKH) scheme independently proposed by Wong et al. [5] and 

Wallner et al. [6] is seminal among the tree-based class of MKD schemes. In LKH 

scheme, each internal node in the key tree represents a key encryption key (KEK), each 

leaf node of the key tree is associated with a group member and the root node represents 

the group key. Key associated with the internal node is shared by all members associated 

with its descendant leaf nodes. Every member is assigned the keys along the path from its 

leaf to the root. When a member leaves the group, all the keys that the member knows 

should be changed. If n represents the current number of members in a group and we 

consider a full and balanced binary tree, leave rekeying using LKH requires at least 

2log2n key encryptions and transmission by key server. When a member joins, the key 

server chooses a position nearest to the root for it and changes all the keys from the 

parent of the joining member to the root. Join rekeying using LKH requires encryptions 

and transmission of 2log2n keys by key server.  

Another novel tree-based scheme is One-way Function Tree (OFT) proposed by 

Sherman et al. [7], [9] (see section 2.1 for details). OFT scheme nearly halves the 

communication overhead of LKH in case of leaving rekeying. However, Horng [10] 

showed that OFT is vulnerable to a particular kind of collusion attack (see section 2.2 for 
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details). Soon after, Ku and Chen [11] also found new types of collusion attacks, and they 

proposed an improved scheme to prevent any collusion attack. But leaving rekeying 

using their approach requires a communication complexity of O((log2n)2+log2n), and 

hence their approach loses the advantage of original OFT over LKH. Recently, Xu et al. 

[12] showed that all the known attacks on OFT can be generalized to a kind of generic 

collusion attack. They also derived a necessary and sufficient condition for such attack to 

exist and further proposed a scheme to prevent such collusion attack while minimizing 

the average broadcast size of rekeying message. However their scheme requires a storage 

linear to the size of the key tree (O(2n-1)) and it still has a bigger broadcast size than 

LKH. 

In this paper, we prove falsity of Xu et al.’s necessary and sufficient condition for 

existence of any type of collusion attack on OFT scheme by a counterexample and give a 

new necessary and sufficient condition for nonexistence of an arbitrary type of collusion 

attack. We introduce a new cryptographic construction —  homomorphic one-way 

function trees (HOFT) by respectively substituting a homomorphic trapdoor function and 

a modular multiplication for the pseudorandom one-way function and the exclusive-or 

mixing function in original one-way function trees (OFT). We propose two tree 

operations — tree product and tree blinding for HOFTs and prove that both are structure-

preserving. Tree blinding helps conceal information about the node secrets of a key tree 

without compromising its inner structure. Then, we provide algorithms for 

adding/removing leaf nodes in a HOFT by performing a tree product of the HOFT and a 

corresponding incremental secret tree. Utilizing HOFTs and related algorithms, we 

design a collusion-free MKD scheme that has not only the same leave-rekeying 

communication efficiency as original OFT scheme, but also even better join-rekeying 

communication efficiency. On the contrary, two existing solutions [11], [12] to improve 

OFT have to trade off communication efficiency for collusion resistance. 

The remainder of this paper is organized as follows. Section 2.1 gives a closer look at 

OFT scheme. Section 2.2 reviews different kinds of collusion attacks on it. Section 2.3 

introduces two solutions to prevent collusion attacks on OFT. In section 3, we prove the 

falsity of Xu et al.’s necessary and sufficient condition for a collusion attack on OFT 

scheme to exist by a counterexample and give new necessary and sufficient condition for 
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nonexistence of an arbitrary type of collusion attack. In sections 4, we introduce a new 

cryptographic construction – Homomorphic OFT and related algorithms. Section 5 

presents a collusion-free multicast key distribution scheme based on HOFTs and related 

algorithms. Section 6 gives a thorough security analysis of our multicast key distribution 

scheme. Section 7 gives a comparison between our scheme and other related schemes. 

Section 8 concludes this paper and gives some topics for future research. 

2. RELATED RESEARCH 

2.1 Introduction to One-way Function Tree 

One-way Function Tree (OFT) scheme was proposed by Sherman, Balenson and 

McGrew [7],[9]. The idea of using one-way function (OWF) in a tree structure originated 

from Merkle. In his report [13], Merkle provided a method to authenticate a large number 

of public validation parameters for a one-time signature scheme by using a tree structure 

in conjunction with a one-way and collision-resistant hash function (i.e., the famous 

Merkle authentication tree). 

We adopt the terminology and formulations from [7]. A key server maintains a 

balanced binary key tree for a group. Each internal node v of the key tree is associated 

with a node secret xv, a blinded node secret yv and a node key Kv. The node secret of the 

root node is the group key. Two special one-way functions f and g are defined as the left 

and right halves of a pseudorandom function. The function f is used to compute each 

blinded node secret from its corresponding node secret, i.e., yv = f(xv); The function g is 

used to compute each node key from its corresponding node secret, i.e., Kv = g(xv). The 

internal node secret is shared by all members associated with its descendant leaf nodes. 

The key server shares a secret key called leaf node secret with every group member via a 

secure channel established during the registration protocol. However, unlike in LKH, the 

key server does not send each member those node secrets along the path from its leaf 

node to the root. Instead, it supplies each member with the blinded node secrets 

associated with the siblings of the nodes in the path from the member’s leaf node to the 

root. Each member uses these blinded node secrets and its leaf node secret to compute the 

other node secrets in this member’s path to the root according to a functional relationship 

as follows. A one-way function key tree is computed in a bottom-up manner using an 
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OWF f and a bitwise exclusive-or operation denoted by ‘⊕’. The node secret associated 

with an arbitrary internal node (internal node secret for short) is computed by applying 

the exclusive-or operation to the two blinded node secrets respectively associated with 

the two child nodes of the internal node (child blinded node secrets for short). 

Whatever group rekeying is performed, the following invariant should be maintained. 

Key distribution Invariant — Each legitimate member knows the node secrets on the 

path from its associated leaf node to the root, and the blinded node secrets that are 

siblings to this path, and no other node secrets nor blinded node secrets. 

For example, the structure of an OFT is illustrated by Figure 1. A shares a leaf node 

secret xa with the key server. When A joins the group, the key server sends A the 

following blinded node secrets: yb, yc. Therefore, A is able to compute all the node secrets 

along the path from its parent to the root in a bottom-up manner by sequentially 

computing xab = f(xa) ⊕ yb, xa.c= f(xab) ⊕ yc. 

 
Fig. 1 Join rekeying in OFT 

Figure 1 also illustrates the join rekeying in OFT. When D joins, the key server first 

chooses a leaf node nearest to the root, the leaf node associated with C in this case, and 

splits it into two nodes so as to create an leaf node for D. Like in LKH, all the node 

secrets in the path from the parent of D’s leaf node to the root need to be changed. To 

achieve this, the key server generates a new leaf node secret xc
new for C, then computes all 

the node secrets that need to be changed in the same bottom-up manner as described 

above. Then to control each member’s access to these new node secrets in the updated 

key tree, the key server constructs and transmits a rekeying message as: {yc.d}_Kab, {xc
new, 

yd}_Kc, {yab, yc
new}_Kd. Throughout this paper, we use {X}_Y to denote encryption of X 

with a key Y by using a symmetric encryption scheme. That is to say, all the rekeyed 

blinded node secrets are encrypted with their siblings’ node keys. It is worth noting that 
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xc must be changed into xc
new. Otherwise, A and B both know yc in the updated key tree, 

which violates the key distribution invariant. What is more, since the joining member D 

would be supplied with yab and yc, it would be able to obtain the past group key xa.c by 

computing xa.c = yab ⊕ yc, which violates group backward secrecy.  

Consider a full and balanced OFT with n members (after the join). The key server 

needs to encrypt and send log2n blinded node secrets to the new member. The key server 

also needs to encrypt and send log2n new blinded node secrets to the other members. It 

also needs to encrypt and send a new leaf node secret xc
new to C. In total, the key server 

needs to encrypt and send 2log2n+1 blinded and unblinded node secrets when a member 

joins the group. In addition, the key server needs to compute log2n new secret keys in a 

bottom-up manner and log2n+1 new blinded node secrets. That amounts to 2log2n+1 

OWF computations (since the exclusive-or operation is very effective, it is reasonable to 

omit all of them). The joining member needs to perform log2n decryptions to extract all 

its log2n blinded node secrets from the rekeying message and then compute all the nodes 

keys along its path to the root in a bottom-up manner. For other members, if one has l 

node secrets in need of change, it only needs to perform one decryption to extract its 

single rekeyed blinded node secret, and then compute the new l node secrets by 

performing l OWF computations in a bottom-up manner. Whereas in LKH scheme, this 

member needs to perform l decryptions to extract the l rekeyed node keys. This 

computational advantage of OFT over LKH has been noticed neither by its inventors nor 

by existing literatures. 

 
Fig. 2 Leave rekeying in OFT 

Leave rekeying is depicted in Figure 2. When E leaves, all the node secrets in the path 

from the parent of E’s leaf node to the root should be changed. If the sibling of the key 
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node associated with E, i.e., xd, is also a leaf node like in Figure 2, the key server only 

needs to change xd into xd
new, and sends xd

new encrypted under Kd. Otherwise, the key 

server needs to pick one of the descendant leaf nodes of xd (e.g. the leftmost one) and 

change its associated leaf node secret to trigger rekeying the subtree rooted at xd. Then 

the key server replaces xe’s parent node xde with E’s rekeyed sibling node xd
new (or 

rekeyed sibling subtree rooted at xd
new). This process results in rekeying all the keys in the 

path from the departing member’s parent node to the root in effect. Like in join rekeying, 

the key server needs to construct and transmit a rekeying message as: {ycd}_Kab, 

{yd
new}_Kc, { xd

new}_Kd. It is worth noting that xd must be changed into xd
new. Otherwise, 

C knows yd in the old key tree, which violates the key distribution invariant. And what’s 

more important is that evictee E would be able to obtain the new group key xa.d by 

sequentially computing xcd = yc ⊕ yd, xa.d= yab ⊕ f(xcd), which violates group forward 

secrecy. 

Consider a full and balanced OFT with n members (after the leave). The key server 

needs to encrypt and send log2n new blinded node secrets to the group. In addition, it 

needs to encrypt and send the new node secret xd
new to the rekeyed member D. In all, the 

key server needs to encrypt and send log2n+1 blinded and unblinded node secrets when a 

member leaves the group. To compute new node secrets and blinded node secrets, the key 

server needs to perform 2log2n+1 OWF computations. If a legitimate member has l node 

secrets in need of change, it only needs to perform one decryption to extract its single 

rekeyed blinded node secret, and then compute the l new node secrets by performing l 

OWF computations in a bottom-up manner. Whereas in LKH scheme, this member needs 

to perform l decryptions to extract the l rekeyed node keys. 

2.2 Collusion attacks on OFT scheme 

In LKH, all the keys in the key tree are randomly chosen and thus independent with each 

other. The hierarchical structure of keys only represents the logical subgroup relationship 

among the members, that is, key associated with the internal node is shared by all 

members associated with its descendant leaf nodes. Whereas, there is a functional 

dependency relationship among the node secrets besides the logical subgroup relationship 

in OFT. This relationship allows leave rekeying in OFT to save half of communication 

cost compared to LKH. However, the same relationship also renders it vulnerable to 
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collusion attacks. A few kinds of collusion attacks on OFT are found by Horng [10], and 

Ku and Chen [12]. We depict all kinds of collusion scenarios in Figure 3. 

 
Fig. 3 Scenarios of Collusion Attacks on OFT 

2.2.1 Horng’s attack 

The first collusion attack on OFT attributed to Horng is as follows. Referring to Figure 3, 

suppose that Alice, associated with node 8, leaves at time tA, and later Candy joins the 

group at time tC and is associated with node 6. We use [ , ]A Ci t tx  to denote the node secret 

associated with node i in the time interval between tA and tC. Suppose that there are no 

changes in group membership between time tA and tC. Since 3[ , ]A Ct tx  is not affected by the 

eviction of Alice according to the OFT scheme, Alice holds its blinded 

version 3[ , ]A Ct ty even after her eviction. Since the node secret associated with node 2 is 

updated when Alice leaves, and remains unchanged at least until Candy joins, Candy 

obtains its blinded version 2[ , ]A Ct ty at the time of joining. Collectively knowing 

2[ , ]A Ct ty and 3[ , ]A Ct ty , Alice and Candy can collude to obtain the group key in the time 

interval [tA, tC] by computing 1 [ , ] 2[ , ] 3[ , ]A C A C A Ct t t t t tx y y= ⊕ . Therefore, the OFT scheme fails 

to provide not only group forward secrecy against Alice but also group backward secrecy 

against Candy. Horng proposed two necessary conditions for such a collusion attack to 

exist: (1) the two colluding members namely A and C must leave and join at different 

subtree of the root respectively; (2) no group key update happens between time tA and tC. 

Later, Ku and Chen showed that neither of these two conditions is necessary by 

proposing two new kinds of collusion attacks. 

2.2.2 Ku and Chen’s attacks 
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The first kind of collusion attack proposed by Ku and Chen is illustrated by the following 

scenario. Referring to Figure 3 again, suppose that Alice leaves at time tA, and later Bob 

joins the group at time tB and is associated with node 5. Also suppose that there are no 

changes in group membership between time tA and tB, for the same reason as above, Alice 

and Bob can collude to compute 2[ , ]A Bt tx . Since the node secret of node 3 remains 

unchanged during the time interval [tA, tB], Alice and Bob both know its blinded 

version 3[ , ]A Bt ty . Therefore, knowing 2[ , ]A Bt tx and 3[ , ]A Bt ty , both can compute the group 

key 1[ , ]A Bt tx . This attack does not satisfy the first necessary condition proposed by Horng. 

The second kind of collusion attack is illustrated by the following scenario. Suppose 

that Alice leaves at time tA, later Bob joins the group at time tB, and lastly Candy joins the 

group at time tC. We also assume that there are no changes in group membership not only 

between time tA and tB, but also between time tB and tC. After the eviction of Alice, the 

node secret of node 3 remains unchanged until Candy joins the group. Therefore, Alice 

holds its blinded version 3[ , ]A Ct ty even after her eviction. Since the node secret of node 2 is 

updated when Bob joins the group, and then remains unchanged at least until Candy joins 

the group, Candy obtains its blinded version 2[ , ]B Ct ty at the time of joining. Collectively 

knowing 3[ , ]A Ct ty and 2[ , ]B Ct ty , Alice and Candy can collude to compute the group 

key 1[ , ]B Ct tx (note that [ , ] [ , ]B C A Ct t t t⊂ ). This attack denies the second necessary condition 

proposed by Horng. 

2.3 Improvements on OFT scheme 

Here, we first discuss the essential reasons why OFT scheme is vulnerable to collusion 

attacks. When a new member joins, it will be supplied with the blinded node secrets that 

were once used to compute the past group key. In other words, the joining member 

receives partial information about the past group key. On the other hand, when a member 

leaves, it holds the blinded node secrets that remain unchanged for a certain time interval. 

These blinded node secrets may be used to compute the future group key. In other words, 

the evictee holds partial information about the future group key. It is possible for a pair of 

removed member and joining member to combine their knowledge together to compute a 

valid group key not already known alone.  
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From the above discussion, it is possible to devise a solution for preventing collusion 

attacks either by preventing evictee from bringing any knowledge about future group key 

or by supplying joining member with no knowledge about past group key. Each of the 

following two improvements on the OFT scheme is just aiming at one aspect to prevent 

collusion attack. 

2.3.1 Ku and Chen’s improvement 

Ku and Chen improve the OFT scheme by changing all the keys known by an evictee. 

That is to say, not only all the node secrets in the path from the parent of evictee’s leaf 

node to the root, but also all the blinded node secrets associated with the siblings of those 

nodes in that path must be changed. For example, in Figure 3, when Alice leaves, the 

node secrets of both node 5 and node 3 will be updated in addition to those of nodes 4, 2 

and 1 as required by the original scheme. The additional updates of node secrets increase 

the broadcast size by (log2n)2 keys. In total, the key server needs to encrypt and send 

(log2n)2+log2n+1 keys.  

An opposite solution can be obtained by changing not only all the node secrets in the 

joining member’s path to the root as required by the original scheme, but also all the 

blinded node secrets associated with siblings to this path.  

2.3.2 Xu et al.’s improvement 

Xu et al. [12] observed that collusion between an evictee and a joining member is not 

always possible and its success depends on the temporal relationship between them. It is 

not necessary to always change additional keys as above unless a collusion attack is 

indeed possible. They proposed a stateful approach in which the key server tracks all 

evictees and records all the knowledge held by them. Every time a new member joins, the 

key server checks against that knowledge to decide whether this joining member could 

have a successful collusion with any previous evictee. For that purpose, their scheme has 

a storage requirement linear to the size of the key tree. Since their scheme only performs 

additional secret update when necessary, it has lower communication overhead than Ku 

and Chen’s scheme. Although Xu et al. shows that their scheme has lower 

communication overhead than LKH scheme for small to medium groups, the increasing 
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number of collusion attacks render their scheme less efficient that LKH for large dynamic 

groups. 

In their paper [12], Xu et al. propose three propositions to support the correctness of 

their scheme. They first consider a generic collusion attack on OFT scheme (depicted in 

Figure 4). Suppose that A leaves at time tA and C joins at a later time tC. Let B, D, E, and 

F respectively denote the subtrees rooted at L, R, R’, and R”. Let tDMIN, tEMIN, and tFMIN 

denote the time of the first group key update after tA that happens in D, E, and F, 

respectively. Let tBMAX, tEMAX, and tFMAX denote the time of the last group key update 

before tC that happens in B, E, and F, respectively. 

 
Fig. 4 A Generic Collusion Attack on OFT 

Xu’s proposition 1: For OFT scheme, referring to Figure 4, the only node secrets that 

can be computed by A and C when colluding are: 

- xI in the time interval [tBMAX, tDMIN], 

- xI’ in [tBMAX, tDMIN]∩([tA, tEMIN]∪[tEMAX, tC]), 

- xI” in [tBMAX, tDMIN]∩([tA, tEMIN]∪[tEMAX, tC]) ∩([tA, tFMIN]∪[tFMAX, tC]) , 

and so on, up to the root. Notice that these intervals may be empty and the node I’s 

position is where the path of A to the root and that of C merges.  

In fact, it can be easily verified that all kinds of collusion attacks presented in section 

2.2 are special instances of this generic attack. 

Xu’s proposition 2: A pair of colluding members A and C cannot compute any node 

secret which they are not supposed to know by the OFT scheme, if one of the following 

conditions holds 
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- A is removed after C joins. 

- A and C both join. 

- A and C are both removed. 

This proposition confirms that the above generic collusion attack is the only pattern of 

two-party collusion. Based on these two propositions, the authors give the following 

sufficient and necessary condition for an arbitrary type of collusion attack to exist. 

Xu’s proposition 3: For OFT scheme, an arbitrary collection of removed members and 

joining members can collude to compute some node secret not already known, if and only 

if the same node secret can be computed by a pair of members in the collection. 

Unfortunately, in their proof of this proposition, the authors claim that to compute a 

node secret not already known, the colluding members must know both child blinded 

node secrets of it by themselves. However, the colluding members may manage to know 

those child blinded node secrets by collusion too, but not by themselves alone. 

3. AMENDMENT TO XU’S PROPOSITION 3 

In this section, we first present an interesting counterexample that denies the necessity 

of Xu’s proposition 3, and then propose a new necessary and sufficient condition for 

nonexistence of an arbitrary type of collusion attack. 

3.1 A counterexample 

 
Fig. 5 A Counterexample against Xu’s Proposition 3 

We consider a collusion scenario depicted in Figure 5. Suppose that Dean (D) and Bob (B) 

join the group at time t7 and t8, respectively, and Alice (A) and Colin (C) leave the group 

at time t1 and t2, respectively. It is assumed that the chronological order of t1, t2, … , and 
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t8 corresponds with the numerical order of  their subscripts. Let α, β, γ, δ, μ, and ν denote 

the subtrees rooted at node 4, 5, 6, 7, 2, and 3, respectively. In addition to the above 

changes in group membership, there are changes at time t3, t4, t5, and t6, which happened 

in α, γ, δ, and β, respectively. Let X
MAXtα denote the time of the last group key update 

before X joins the group that happens in α. Let Y
MINtβ denote the time of the first group 

key update after Y leaves the group that happens in β. Recall that xv denotes the node 

secret associated with node v and yv denotes the blinded version of it. And xv [t1, t2] denotes 

the node secret in the time interval [t1, t2]. 

According to Xu’s proposition 1, Alice and Bob can collude to compute x2 in the time 

interval [ B
MAXtα , A

MINtβ ], i.e.,
3 62[ , ]t tx ; Colin and Dean can collude to compute x3 in the time 

interval [ D
MAXtγ , C

MINtδ ], i.e., 
4 53[ , ]t tx . Thus, collectively knowing 

3 62[ , ]t tx and
4 53[ , ]t tx , Alice, 

Bob, Colin and Dean can collude to compute
4 51[ , ]t tx . However, we shall show that any 

possible pair of evictee and a joining member cannot collude to compute
4 51[ , ]t tx . 

According to Xu’s proposition 1, all the node secrets that can be computed by Alice 

and Bob when colluding are: 

- x2 in the time interval [ B
MAXtα , A

MINtβ ], i.e.,
3 62[ , ]t tx , 

- x1 in the time interval [ B
MAXtα , A

MINtβ ]∩([t1, A
MINtν ]∪[ B

MAXtν ,t8]), but evaluation of that 

formula results in [t3, t6] ∩([t1,t2]∪[t7,t8])=∅.  

So Alice and Bob cannot collude to compute
4 51[ , ]t tx . By the same argument, we can 

prove that for the rest of eviction-joining scenarios, i.e., the collusion between Colin and 

Dean, that between Alice and Dean, or that between Colin and Bob, 
4 51[ , ]t tx cannot be 

computed either. This counterexample thus denies the necessity of Xu’s proposition 3. 

3.2 A new necessary and sufficient condition 

Proposition 3.1: An arbitrary collection of removed members and joining members 

cannot collude to compute any node secret not already known, if and only if an arbitrary 

pair of removed member and joining member cannot collude to compute any node secret 

not already known. 
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Proof: The necessity is trivial. We prove the sufficiency by contradiction. For an 

arbitrary node secret xi in a HOFT X, we use x2i and x2i+1 to denote its left child and right 

child respectively. Recall that yi is the blinded version of xi. Suppose that a collection of 

removed members and joining members can collude to compute a new secret key
1 2[ , ]i t tx . 

Then either of the following two conditions must be satisfied: 

(1) In this collection of removed members and joining members, there exist two 

colluding members who have already known y2i and y2i+1 respectively in some time 

interval that is a superset of [t1, t2]. Therefore, they can collude to compute 
1 2[ , ]i t tx ; 

(2) At least a subset of colluding members can collude to compute either x2i or x2i+1 in 

some time interval that is a superset of [t1, t2]. 

If it is condition (1) that is satisfied, then the two colluding members must be a pair of 

evictee and joining member according to Proposition 2. 

If it is condition (2) that is satisfied, then there exists a subset of this collection of 

members who can collude to compute a node secret not already known, namely 
1 1

2 [ , ]a bi t tx  

(
1 1

[ ,  ]a bt t is a superset of [t1, t2]). For
1 1

2 [ , ]a bi t tx , we use the same argument as above. In fact, 

the same argument can be repeated recursively until either we found a pair of evictee and 

joining member who can collude to compute a internal node secret not already known 

from its two child blinded node secrets (they are also internal and respectively known by 

one of the colluding members), or due to the limited size of the key tree, we must stop at 

a certain node secret not already known that just has two leaf blinded node secrets as its 

children that are respectively known by one of the colluding members. 

Whatever, we always find a pair of evictee and joining member who can collude to 

compute a node secret not already known. That stands in contradiction to our hypothesis, 

and thus the sufficiency of Proposition 3.1 follows.      

3.3 Further comments on collusion attacks 

Unlike traditional cryptographic protocols (e.g., two-party key establishment protocols), 

group-oriented cryptographic protocols (group key establishment protocols, e-voting 

protocols, etc.) have an open number of group members. Malicious users could collude to 
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sabotage any security target of these protocols. Therefore, preventing collusion attack is a 

paramount requirement when designing such protocols.  

Although OFT was claimed to achieve perfect forward and backward secrecy by its 

inventors [21], collusion attacks on it still have been found. Because its inventors only 

consider collusion among removed members (or joining members), but unfortunately 

ignore the potential collusion between evictees and joining members. Therefore, it is 

important to give the formal definition of secure against collusion attacks in 

computational security model to ensure it covers all possible patterns of collusion attacks. 

This work has been done by Panjwani  [14]. 

4. HOMOMORPHIC ONE-WAY FUNCTION TREE 

4.1 Definition 

Before we give the definition of homomorphic one-way function tree, let’s review 

relevant mathematical concepts. A group G with its operation “∗” is denoted by (G, ∗). 

Given two groups (G, ∗) and (H, ·), a group homomorphism from (G, ∗) to (H, ·) is a 

function f : G → H such that for all u and v in G, it holds that f(u∗v) = f(u)·f(v). One can 

easily deduce that a group homomorphism f maps the identity element eG of G to the 

identity element eH of H, and maps inverses to inverses in the sense that f(u-1) = f(u)-1. 

According to this definition, Rabin function  [15] and RSA function [16] are both 

homomorphic. 

Depending on one's viewpoint, homomorphism can be seen as a positive or negative 

attribute of a cryptosystem. Positive usage of homomorphism in cryptosystem originates 

in  [17]. Once homomorphism is exploited by certain cryptosystem (encryption, digital 

signature, MAC, etc.), it will enable the ability to perform a specific algebraic operation 

on the original data by performing a (possibly different) algebraic operation on 

cryptographically transformed data. 

Since all nodes in an OFT are homogeneous (i.e., cryptographic keys), we choose to 

use self-homomorphism mapping an Abelian group to itself. If every node secret in an 

OFT X is an element of an Abelian group G (e.g., Zn
*, n is a composite), we say X is 

defined over G.  
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Definition 4.1 Homomorphic OFT — A homomorphic OFT (HOFT) over an Abelian 

group (G, ∗) is a binary key tree that is computed using a self-homomorphic OWF f and 

the multiplicative operation “∗” in a bottom-up manner as follows. For an arbitrary node 

secret xi in a HOFT X, suppose that its left child and right child are denoted by x2i and 

x2i+1 respectively, and we have xi = f(x2i) ∗ f(x2i+1). 

4.2 Two structure-preserving operations on HOFTs 

A binary operation (resp. unary operation) is said to be structure-preserving if the 

operation takes two HOFTs (resp. one HOFT) as inputs (resp. input) and outputs a HOFT. 

For convenience, we shall interchangeably use the same notation “xi” or “yi” to denote 

either a node itself or its associated node secret in this section. 

 
Fig. 6 Tree product 

Definition 4.2 Tree product — Given two arbitrary HOFTs X and Y, both defined over 

an Abelian group (G, ∗), and having the same graph structure (i.e., same height and same 

number of leaf nodes), a tree product of X and Y, denoted by X ∗ Y, is computed by 

multiplying their corresponding node secrets (see Figure 6). 

Note that although we use the same notation “∗” for both group operation and tree 

product, its meaning is context-evident.  

Theorem 4.1: Given two arbitrary HOFTs X and Y, both defined over an Abelian 

group (G, ∗), and having the same graph structure, the result of a tree product X ∗ Y is 

also a HOFT. 

Proof: Let X and Y are two arbitrary HOFTs defined over an Abelian (G, ∗), and Z = X 

∗ Y. We prove Z is also a HOFT. For an arbitrary node secret zi ∈ Z, we have (recall that 

for an arbitrary node secret xi in a HOFT X, its left child and right child are denoted by x2i 

and x2i+1 respectively) 

zi = xi ∗ yi                                                        (Definition 4.2) 
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= (f(x2i) ∗ f(x2i+1)) ∗ (f(y2i) ∗ f(y2i+1))          (Definition 4.1, since X and Y are both 

HOFT) 

= (f(x2i) ∗ f(y2i)) ∗(f(x2i+1) ∗ f(y2i+1))           (“∗” is commutative and associative) 

= f(x2i ∗ y2i) ∗ f(x2i+1 ∗ y2i+1)                         (f is homomorphic) 

= f(z2i) ∗ f(z2i+1)                                           (Definition 4.2). 

Thus, Z is a HOFT according to Definition 4.1.      

In other words, tree product is structure-preserving. 

 
Fig. 7 Tree product of a key tree and a key chain 

If a HOWF chain C over (G, ∗) has the same length as a certain path from a leaf node 

to the root in a HOFT X over (G, ∗), we can define a tree product of the HOFT X and the 

HOWF chain C based on Definition 4.2. Recall that the two operands of a tree product 

must have the same structure. Therefore, we first expand C with identity node secrets (i.e., 

whose value is the identity element e of G) as in Figure 7 to make it have just the same 

structure as X before performing a tree product operation. Since f is a group self-

homomorphism, f(e) equals e. It is easy to check that the key tree expanded from C is 

also a HOFT. In this manner, a HOWF chain can always be transformed into a HOFT 

with wanted shape. Since e is an identity element, when performing a tree product of the 

HOFT X and the key tree expanded from C, those node secrets multiplied by an identity 

node secret remain unchanged. Therefore, we can directly define the product of a HOFT 

X and a HOWF chain C as computed by only multiplying their corresponding node 

secrets. According to Theorem 4.1, the result of the tree product X ∗ C is also a HOFT. 

Definition 4.3 Tree blinding — For an arbitrary HOFT X defined over an Abelian 

group (G, ∗) in conjunction with a homomorphic one-way function (HOWF) f, a tree 
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blinding operation based on f maps X to another key tree Y, denoted by Y = f(X). Y is 

computed by applying f to every node of X (see Figure 8). We call Y a blinded tree of X. 

x1

x3

x5

x2

x4

y1

y3

y5

y2

y4

X Y=f(X) (yi = f(xi))

f

 
Fig. 8 Tree blinding 

Theorem 4.2: For an arbitrary HOFT X over (G, ∗), the blinded tree of X, i.e.,  f(X) is 

also a HOFT. 

Proof: Let X is an arbitrary HOFT and Y = f(X). We prove Y is also a HOFT. For an 

arbitrary node secret yi ∈ Y, we have 

yi = f(xi) 

   = f(f(x2i) ∗ f(x2i+1))                          (X is a HOFT) 

= f(y2i ∗ y2i+1)                                   (Y = f(X)) 

= f(y2i) ∗ f(y2i+1)                               (f is homomorphic) 

Thus, Y is a HOFT according to Definition 4.1.      

Theorem 4.2 reveals that tree blinding is also a structure-preserving operation. Due to 

one-wayness of f, tree blinding operation helps conceal information about the node 

secrets of a key tree without compromising its inner structure. 

4.3 Adding/removing leaf nodes in HOFTs 

In tree-based schemes, adding or removing members correspond to adding or removing 

relevant leaf nodes in a key tree. In this section, we provide algorithms for adding or 

removing leaf nodes in a HOFT X by performing a tree product of X and an incremental 

secret tree. First of all, we present an important concept called Combined Ancestor Tree 

proposed by Sherman and McGrew [7]. Combined Ancestor Tree — For a set of evictees 

or joining members, the subtree consisting of all ancestors of their associated leaf nodes 

is called a Combined Ancestor Tree (CAT). Specially, an ancestor chain is a CAT that 

has one single leaf node. For the sake of generality, we only discuss adding/removing 
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multiple leaf nodes in a HOFT which in fact subsumes the special case of 

adding/removing a single leaf node. 

4.3.1 Adding multiple leaf nodes in a HOFT 

 
Fig. 9 Normalization for multiple additions 

Adding multiple leaf nodes to a HOFT takes two steps illustrated in Figure 9 and Figure 

10 respectively. To add leaf nodes x9, x11, and x15 to X respectively at x4, x5, and x7, the 

corresponding CAT is T* like in Figure 9. The first step called normalization (depicted in 

Figure 9) is in fact to perform a tree product of X and a normalizing key tree T(1). The 

purpose is to turn all leaf node secrets of CAT T* into identity node secrets. The 

normalizing key tree T(1) is computed from CAT T* by first replacing each leaf node 

secret of CAT T* with its inverse, and then computing all the other internal node secrets 

in a bottom-up manner. All the internal node secrets including the root of T(1) are:  

t2
(1)=f(x4

-1) ∗f(x5
-1), t3

(1)=f(x7
-1), t1

(1)=f(f(x4
-1)∗f(x5

-1))∗f(f(x7
-1)). 

 
Fig. 10 Expansion 

The output of the first step normalization is a HOFT X’. The second step called 

expansion (illustrated in Figure 9) is to perform a tree product of X’ and an expanding 
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key tree T(2). New leaf nodes actually are added to X in this step. The expanding key tree 

T(2) is also computed from CAT T* by first creating two new child nodes for each leaf 

node, namely xi of CAT T* such that the node secret formerly associated with xi is now 

associated with the left child of xi, and a corresponding new node secret is associated 

with the right child of xi, and then computing all the other internal node secrets in a 

bottom-up manner. The output of expansion is the final result - an updated key tree Xnew. 

 
Fig. 11 An incremental secret tree for multiple additions 

To simplify the two-step process, we introduce an important concept called 

incremental secret tree. For X and Xnew, the incremental secret tree T for multiple 

additions (see Figure 11) is obtained by performing a tree product of the normalizing key 

tree T(1) and its counterpart in the expanding key tree T(2). 
Now, Xnew can be obtained from X by firstly performing a tree product of CAT T* and 

T (suppose that the output is Tnew), secondly keeping node secrets outside T* unchanged, 

and thirdly for every leaf node ti
new of Tnew, creating two new child nodes for it such that 

the node secret formerly associated with xi is now associated with the left child of ti
new, 

and a corresponding new node secret is associated with the right child of ti
new. 

4.3.2 Removing multiple leaf nodes in a HOTF 
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Fig. 12 Normalization for multiple removals 

We first explain how to remove multiple leaf nodes in a HOFT in two steps. As 

illustrated in Figure 12, to remove x9, x11 and x13, the first step is just the same as 

normalization for multiple additions. In the following figures, we use a dotted circle to 

denote node that does not directly participate in a tree product computation (e.g., x8, x9, 

and so on), but whose position should be remembered. We also use a shaded and dotted 

node to denote a node to be removed. 

 
Fig. 13 Contraction 

  The second step called contraction as illustrated in Figure 13, is to perform a tree 

product of X’ and a contracting key tree T(2). The contracting key tree T(2) is computed 

from CAT T* by first replacing each leaf node of T* with its child in X not to be removed, 

and then computing all the other internal node secrets in a bottom-up manner. 

 
Fig. 14 An incremental secret tree for multiple removals 
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  The incremental secret tree T for multiple removals (see Figure 14) is obtained by 

performing a tree product of the normalizing key tree T(1) and the contracting key tree T(2). 

Now, the updated new key tree Xnew can be obtained from X by firstly performing a tree 

product of CAT T* and T (suppose that the output is Tnew), secondly keeping node secrets 

outside T* unchanged, and thirdly removing both child nodes of each leaf node of T* 

from X. 

5 A COLLUSION-FREE MKD SCHEME BASED ON HOFTS 

Employing algorithms provided in section 4, we are able to present a collusion-free MKD 

scheme. When members join or leave, all the node secrets on the corresponding CAT 

should be changed. The key server use algorithms similar to those provided in section 4.3 

to construct an incremental secret tree (or key chain), and update the key tree by 

performing a tree product of it and the incremental secret tree. After that, the key server 

needs to communicate all the changes in the key tree to group members by broadcasting 

the incremental secret tree (or key chain) such that legitimate members can update their 

rekeyed node secrets and rekeyed blinded node secrets by a product of those secrets and 

their corresponding incremental secrets. The essential task of a MKD scheme based on 

HOFTs is to control access to the incremental secret tree (or key chain) to ensure group 

forward secrecy and group backward secrecy. In the following passages, for any leaf 

node of a key tree, we shall interchangeably refer to that node and the member associated 

with it for simplicity. Similar to OFT, we also use a pseudorandom OWF g to compute 

each node key Kv from its corresponding node secret xv, i.e, Kv = g(xv). 

5.1 Removing a member 

 
Fig. 15 Removing a member 
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For simplicity of exposition, we only discuss the case an evictee’s sibling is a leaf node. 

The algorithm for the case an evictee’s sibling is an internal node can be easily derived 

from that given in this section. As illustrated in Figure 15, to remove member x15 from 

the current secret tree X, the key server uses an algorithm similar to that provided in 

section 4.3.2 to produce the corresponding increment secret chain C except that during 

contraction operation, it needs to associate the sibling (x14) of the evictee with a new node 

secret (x14’) and replace the leaf node key (x7) of the ancestor chain C* with this new 

node secret. The key server sends the blinded version of each incremental secret ci except 

the root encrypted under the node key associate with the sibling of xi
new in the updated 

HOFT Xnew, i.e., {f(C3)}_K2 and {f(C7)}_K6. In addition, the key server also needs to send 

the evictee’s sibling a new node secret encrypted under its old node key, i.e., {x14’ }_K14. 

In a word, to remove member x15, the key server needs to broadcast a rekeying message: 

{f(C3)}_K2, {f(C7)}_K6, {x14’ }_K14.  

After receiving the rekeying message, each legitimate member performs one 

decryption to extract the blinded incremental secret corresponding to its single rekeyed 

blinded node secret, and then compute its new value by multiplying its old value by the 

blinded incremental secret. After that, it can compute all its rekeyed node secrets in a 

bottom-up manner as in OFT. 

Consider a full and balanced HOFT with n members (after the eviction). The key 

server needs to encrypt and send log2n+1 blinded and unblinded node secrets when a 

member leaves the group. The key server also needs to compute the incremental secret 

chain, and hence perform one modular multiplication and log2n OWF computations. In 

addition, to update the HOFT by performing a tree product, it needs to perform log2n+1 

modular multiplication computations. 

5.2 Removing multiple members in a bulk operation 

Bursty behaviour (a number of membership changes happen simultaneously), periodic 

group rekeying or batch group rekeying all require a bulk operation that can process 

multiple membership changes simultaneously. The broadcast size and computational 

effort of multiple additions and evictions can be substantially reduced by using a bulk 

operation that removes and/or adds multiple members simultaneously rather than 

repeatedly applying individual add or remove operations. This reduction results from the 
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fact that a set of individual operations may repeatedly change node secrets along common 

segments of the key tree.  

  Taking Figure 12-14 as an example, to remove members x9, x11 and x13 from the current 

secret tree X, the key server uses the same algorithm provided in section 4.3.2 to produce 

the CAT T* except that during contraction operation, it needs to associate each sibling 

(resp. x8, x10, x12) of the evictees with a new node secret (resp. x8’ , x10’,  x12’) and replace 

each leaf node (resp. x4, x5, x6) of T* respectively with these new node secrets. The key 

server sends the blinded version of each incremental secret ti except the root encrypted 

under the node key associate with the sibling of xi
new in the updated HOFT Xnew, i.e., 

{f(t2)}_K3
new, {f(t3)}_K2

new, {f(t4)}_K5
new, {f(t5)}_K4

new and {f(t6) = t3}_K7
new

 (recall that 

Ki
new = g(xi

new)). In addition, the key server sends the new value of every evictee’s sibling 

encrypted under its old value, i.e., {x8’}_K8, {x10’}_K10, {x12’}_K12 (recall that Ki = g(xi)). 

Note that K4
new = g(x8’), K5

new = g(x10’), K2
new = g(f(x8’)∗f(x10’)), K3

new = g(f(x12’)), K7
new = 

g(x7). In a word, to remove x9, x11 and x13, the key server needs to broadcast a rekeying 

message: {f(t2)}_K3
new, {f(t3)}_K2

new, {f(t4)}_K5
new, {f(t5)}_K4

new and {f(t6) = t3}_K7
new, 

{x8’}_K8, {x10’}_K10, {x12’}_K12 

After every legitimate member receives the rekeying message, it extracts all blinded 

incremental secrets it is entitled to and computes all incremental secrets it is entitled to in 

a bottom-up manner, and then update its own rekeyed node secrets and blinded node 

secrets by multiplying their old values by their corresponding incremental secrets. For 

example, member x8 is able to extract blinded node secret f(t5) by sequentially decrypting 

{x8’}_K8, {f(t5)}_K4
new. Since it can directly compute t4 = x4

-1∗x8’, member x8 now can 

compute t2 = f(t4)∗f(t5) and then x2
new=x2∗t2. Now it decrypts {f(t3)}_K2

new to obtain f(t3). 

In the end, it computes t1 = f(t2)∗f(t3) and then the new group key x1
new = x1∗t1. 

Since the incremental secret tree has the same structure as the CAT, we can compute 

the broadcast overhead by the size of CAT denoted by SL as in paper [7]. Consider a full 

and balanced OFT with n members (before l members are removed). The key server 

needs to encrypt and broadcast l new node secrets associated with l siblings of evictees. It 

also needs to encrypt and send SL-1 blinded incremental secrets. In total, it needs to 

encrypt and send SL+l-1 secrets. The key server also needs to compute the incremental 

secret tree, and hence perform SL modular multiplication and SL-1 OWF computations. In 
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addition, to update the HOFT by performing a tree product, it needs to perform SL 

modular multiplication computations. In total, the key server needs to perform 2SL 

modular multiplication computations and SL-1 OWF computations. 

5.3 Adding a member 

 

Fig. 16 Adding a member 

As illustrated in Figure 16, to add a joining member x13 to a secret tree X, the key server 

first performs a tree blinding operation f on X to obtain a blinded tree Y = f(X), then uses 

an algorithm similar to that provided in section 4.3.1 on Y to produce the corresponding 

increment secret chain C. The key server broadcasts the incremental secret chain C to all 

members by sending its leaf node c6 encrypted under the g(x1) (recall that x1 is the old 

group key), i.e., {c6}_ g(x1). It also needs to supply the joining member x13 with the 

blinded node secrets associated with the siblings of the nodes in its path to the root of 

Ynew. All those secrets are encrypted under the joining member’s leaf node key K13, i.e., 

{f(y6), f(y7), f(y2)}_K13. In a word, to add member x13, the key server needs to broadcast a 

rekeying message: {c6}_ g(x1), {f(y6), f(y7), f(y2)}_K13. 

The joining member extracts all those blinded node secrets from the rekeying message 

and computes all the node secrets in its path to the root in a bottom-up manner. All the 

other members can extract the leaf node secret c6 of the incremental secret chain C from 

the rekeying message and reconstruct the whole incremental secret chain C by recursively 

applying the OWF f to c6. Therefore, they can update all rekeyed node secrets and 

rekeyed blinded node secrets of their own by multiplying their old values by the 

corresponding incremental secrets. 
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Consider a full and balanced OFT with n members (after the join). When a member 

joins the group, the key server only needs to encrypt and send one incremental secret c6. 

To supply the joining member with blinded node secrets, it needs to encrypt and send 

log2n blinded node secrets. In total, the key server needs to encrypt and send log2n+1 

secrets which nearly halves the broadcast size of original OFT scheme. There is also cost 

associated with OWF and multiplication computations at the key server. The key server 

needs to compute the blinded tree Y from secret tree X, and hence perform 2n-2 OWF 

computations. The key server needs to compute the incremental secret chain C, and hence 

perform log2n+1 OWF computations and two multiplication computations. It needs to 

compute a tree product of X and the incremental secret chain C, and hence perform log2n 

multiplication computations. In total, the key server needs to perform 2n+log2n-1 OWF 

computations and log2n+2 multiplication computations. 

5.4 Adding multiple members in a bulk operation 

 

Fig. 17 Adding multiple members 

Taking Figure 17 as an example, to add members x9, x11, and x15 to a secret tree X, the 

key server first performs a tree blinding operation f on X to obtain a blinded tree Y = f(X), 

then uses the algorithm provided in section 4.3.1 on Y to produce the corresponding 

increment secret tree T. Now, the key server needs to communicate the changes in the 

secret tree by broadcasting the incremental secret tree T. It only needs to send every leaf 

node secrets of T encrypted under the g(x1) (recall that x1 is the old group key), i.e., {t4, t5, 

t7}_g(x1). After decrypting this message, every pre-existing member can reconstruct the 

whole incremental secret tree T. Therefore, they can accordingly update their own 
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rekeyed node secrets and rekeyed blinded node secrets. In addition, the key server also 

needs to supply every joining member with blinded node secrets. In a word, to add 

members x9, x11 and x14 to the secret tree X, the key server needs to send a rekeying 

message: {t4, t5, t7}_g(x1), {f(y4), f(y5
new), f(y3

new)}_K9, {f(y5), f(y4
new), f(y3

new)}_K11, {f(y7), 

f(y6), f(y2
new)}_K14. 

Consider a full and balanced OFT with n members (after l members join). When l 

members join the group, to communicate the incremental secret tree T to all pre-existing 

members, the key server needs to encrypt and send l leaf node secrets of T. In addition, to 

supply every joining member with their blinded node secrets, it needs to encrypt and send 

l∗log2n blinded node secrets. In all, the key server needs to send (l + l∗log2n) (Keys) + 

l∗log2n (bits). There is also cost associated with OWF and multiplication computations at 

the key server. The key server needs to compute a blinded node secret tree Y from 

original key tree X, and hence perform 2n-2l-2 OWF computations. The key server needs 

to compute the incremental secret tree, and hence perform SL+l-1 OWF computations and 

SL+2l multiplication computations (recall that the size of an incremental secret tree is 

denoted by SL). It needs to compute a tree product of X and the incremental secret tree T, 

and hence perform SL multiplication computations. In total, the key server needs to 

perform 2n-l+SL-3 OWF computations and 2SL+2l multiplication computations. 

5.5 Comments on choosing OWF candidates for HOFT 

Because OWF computations are intensive in our scheme, choosing an efficient 

homomorphic OWF is crucial for our scheme. The candidates can be homomorphic 

trapdoor functions like Rabin functions or RSA functions with small encryption exponent. 

Thanks to its superior performance, Rabin functions are preferred. For Rabin functions, 

the public key parameters are generated as follows: 

- Choose two large distinct primes p and q with p ≡ q ≡ 3 (mod 4). 

- Let n = p∗q. Such number n is called Blum number. 

Then the public key is n, and the private key is p and q. The set of all quadratic 

residues modulo n is denoted by Qn. Rabin function is a trapdoor OWF mapping Zn
* to Qn 

defined as follows: 

- For an integer x ∈ Zn
*, compute y = x2 mod n. 
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   Inverting this function requires computing square roots modulo n. The latter problem is 

computationally equivalent to factoring n (in the sense of polynomial-time reduction) 

[15]. Since we only employ the one-wayness of a trapdoor function, the trapdoor 

information (i.e., p and q) should be safely destroyed as soon as the public parameters are 

generated. 

6 SECURITY ANALYSIS 

In the following, for 
[ , ]V t t

x − , we use t- to denote the time of the last update of xV before t; 

for 
[ , ]V t t

x + , we use t+ to denote the time of the first update of xV before t. We first prove 

that an arbitrary pair of colluding members cannot compute any useful information about 

a group key not already known. To that purpose, we use Figure 4 to analyse all possible 

node keys that can be computed by a pair of colluding members. We need to consider all 

possible collusion scenarios as follows: 

(1) Eviction-eviction scenario 

In this case, we consider the collusion between a pair of members who was 

individually removed in different leave-rekeying operations. Suppose that in Figure 4, A 

is first removed at time tA and later C is removed at time tC. And we also suppose that 

there is no other membership changes between tA and tC. Because C stays in the group 

longer than A, their knowledge about the shared node secrets in the intersection of their 

paths (e.g., xI and xI’) and the siblings (xR’ and xR’’) is no more than C’s. In addition, those 

shared node secrets in the intersection of their paths are changed after C is removed 

according to our MKD scheme. Therefore, for these node secrets, colluding with A does 

not help C. On the other hand, the unique knowledge held by A is about node secrets in 

the subtree B, but this knowledge cannot be combined with C’s knowledge about node 

secrets in subtree D to compute any new node secret, except A’s knowledge about L and 

R that may be combined with C’s to compute xI (and consequently xI’ and so on). 

However, according to our MKD scheme, A’s knowledge about L and R is 
[ , ]A AL t t

x −  and 

[ , ]A CR t ty (recall that y is the blinded version of x), which is useless for computing new 

node secret
[ , ]C CI t t

x + . Therefore, in this scenario, the colluding members cannot compute 

any node secret not already known (including any group key). 
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When performing leave rekeying in our MKD scheme, the key server strictly controls 

access to the incremental secret chain (or key tree) not only to prevent every evictee from 

accessing any part of it, but also to restrict every legitimate member to the incremental 

secrets it is entitled to. Otherwise, if we grant every legitimate member full access to the 

incremental secret chain (key tree) like in join rekeying, collusion between evictees is 

possible. Referring to Figure 4, suppose that C has full access to the incremental secret 

chain after A is removed, denoted by 
AtC . Since 

AtC contains the incremental secret 

corresponding to
[ , ]A AL t t

x − , denoted by A

L

t
xc , collectively knowing A

L

t
xc and

[ , ]A AL t t
x − , C and 

A can collude to compute
[ , ] [ , ]

A

LA A A A

t
xL t t L t t

x c x+ −= ∗ . While after C is removed (suppose 

that after A and C are removed, subtrees B and D both still contain at least one legitimate 

member), 
[ , ]A AL t t

K +  will be used to encrypt the incremental secret C

R

t
xc  in the rekeying 

message according to our scheme (Recall that
[ , ] [ , ]

( )
A A A AL t t L t t

K g x+ = ＋ ). After 

extracting C

R

t
xc from the rekeying message, C can compute C

Root

t
xc  by repeatedly applying 

OWF f to C

R

t
xc . Now, C can obtain 

[ , ]C CRoot t t
x +  by 

computing
[ , ] [ , ]

C

RootA A A A

t
xRoot t t Root t t

x c x+ −= ∗ . Thus, group forward secrecy is violated. 

(2) Collusion between a pair of members both removed in a same bulk operation 

Suppose that A and C are both removed at time tAC in a same bulk operation. Referring 

to Figure 4, since xL, xR and all the shared node secrets in the intersection of their paths 

are changed after tAC, A and C cannot collude to compute group key
[ , ]AC ACRoot t t

x + and group 

key at any time interval beyond tAC
+, although their knowledge about the blinded node 

secrets associated with the siblings of those shared node secrets may be still effective for 

a certain interval after tAC. 

(3) Joining-joining scenario 

We consider collusion between a pair of joining members individually added in 

different join-rekeying operations. Suppose that A is added at time tA and later C is added 

at time tC in Figure 4. We also suppose that there is no other membership changes 

between tA and tC. The group backward secrecy is violated only when A and C can 

collude to compute any past group key before tA. According to our MKD scheme, before 
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the leaf node of A or C is added to a secret tree X, the secret tree X will be refreshed as a 

whole by a tree-blinding operation. A’s (resp. C’s) knowledge relates to secret tree X after 

tA (resp. X after tC). Due to the one-wayness of tree-blinding operation, no information 

about X before tA (including group key) can be obtained using knowledge about X after tA 

and X after tC in the sense of computational security. 

(4) Collusion between a pair of members added in the same operation 

In Figure 4, suppose that A and C are jointly added at time tAC in a join rekeying 

operation. The group backward secrecy is violated only when A and C can collude to 

compute any past group key before tAC. According to our MKD scheme, before they are 

added, the key tree will be refreshed as a whole by a tree-blinding operation. That is to 

say, their knowledge acquired at the time of joining is about secret tree X after tAC. Due to 

the one-wayness of tree-blinding operation, no information about X before tAC (including 

group key) can be obtained using knowledge about X after tAC in the sense of 

computational security. 

(5) Joining-eviction scenario 

In Figure 4, suppose that A first joins the group at time tA and later C is removed at 

time tC. If A and C collude, they trivially know the group key before A joins and after C is 

removed, because C is in the group before A joins and A stays in the group after C is 

removed. Therefore, colluding A and C can never compute any group key besides what 

they already know. 

(6) Eviction-joining scenario 

Suppose that A is removed at time tA and later C joins the group at time tC. We also 

suppose that there is no other membership changes between tA and tC. The time when 

tree-blinding is performed is denoted by tBlind. Note that tBlind is before tC, the time when 

C’s leaf node is actually added to the blinded tree. The group backward secrecy/group 

forward secrecy is violated by collusion attack only when A and C can collude to 

compute the group key [ , ]A BlindRoot t tx . After eviction, A still holds partial knowledge about 

[ , ]A Blindt tX . After joining, C holds partial information about [ , ]Blind Ct tX . In fact, A can 

transform his knowledge about [ , ]A Blindt tX  into that about [ , ]Blind Ct tX  by performing OWF f 

on the former. According to Xu’s proposition 1, A and C may collude to compute certain 
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nodes secrets of [ , ]Blind Ct tX (including the root node secret [ , ]Blind CRoot t tx ). However, 

[ , ]Blind CRoot t tx  is a transient secret that never acts as a group key in our scheme. Due to one-

wayness of tree blinding, A and B can at most collude to compute new information about 

[ , ]Blind Ct tX  rather than [ , ]A Blindt tX (including the group key [ , ]A BlindRoot t tx ). 

Thus, the above analysis follows that an arbitrary pair of colluding members cannot 

compute any useful information about a group key not already known. Furthermore, it is 

easy to prove that an arbitrary collection of removed members and joining members 

cannot collude to compute any group key not already known by using the same argument 

as in proposition 3.1. 

7. COMPARISON WITH OTHER SCHEMES 

We summarize relevant discussions in section 2 and section 5 to present a comparison 

between our scheme and related schemes, covering the following measures: collusion 

attack, broadcast size (in bits), key server’s computational overhead and maximum 

member computational cost. The two solutions to improve OFT respectively proposed by 

Ku et al. and Xu et al are referred as Ku&Chen scheme and Xu scheme. Since both 

schemes did not give the specific algorithms for processing multiple membership changes, 

we omit them from relevant comparison. Cost analysis for batch group rekeying using 

LKH is based on scheme proposed by Li et al. [18]. In Table 1, n is the number of 

members in the group, SL is the size of the CAT when l changes in membership happen, 

and K is the size of a cryptographic key or secret in bits. According to [7], the size of the 

incremental secret tree SL satisfies 2l+log2(n/l)-2<SL<2l+l∗log2(n/l)-1. CE, Ch, Cf, and CM 

denote the computational cost of one evaluation of the encryption function E, one 

evaluation of hash function, one evaluation of trapdoor OWF f, and one modular 

multiplication respectively. Note that for every entry associated with broadcast size, 

besides the cost for cryptographic keys, the additive log2n (or l∗log2n) bits are cost of 

position information used to locate a leaf node (or l leaf nodes) associated with a 

changing member (or l changing members). 
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Table 1 Comparison with related scheme 

(1) Adding a member 
LKH OFT Ku&Chen Xu HOFT

Collusion attack no yes no no no

Broad. size(bits) 2log 2n*K+log 2n 2log 2n *K+log 2n 2log 2n *K+log 2n
2log 2n *K+log 2n or

((log 2n )2+2log 2n )*K+log 2n
(log 2n +1)*K+log 2n

Server comp. 2log 2n *C E 2log 2n *(C E +C h ) 2log 2n *(C E +C h )
2log 2n *(C E +C h ) or

((log 2n )2+2log 2n )*(C E +C h )
(log 2n +1)*C E + (2n+log 2n-

1)C f + (log 2n+ 2)*C M

Max. Pre-existng
mem. comp.

log 2n *C E C E +log 2n *C h C E +log 2n *C h C E +log 2n *C h C E +log 2n* (2C f +C M )
 

(2) Removing a member 
LKH OFT Ku&Chen Xu HOFT

Collusion attack no yes no no no

Broad. size(bits) 2log 2n*K+log 2n log 2n *K+log 2n ((log 2n )2+log 2n )*K+log 2n log 2n *K+log 2n (log 2n +1)*K+log 2n

Server comp. 2log 2n *C E log 2n *(C E + 2C h ) ((log 2n )2+2log 2n )*(C E +C h ) log 2n *(C E + 2C h )
(log 2n +1)*C E +log 2n*

C f + (log 2n+ 2)*C M

Max. mem. comp. log 2n *C E C E +log 2n*C h log 2n* (C E +C h ) C E +log 2n*C h
C E +log 2n*C f + (log 2n

+ 1)*C M  
(3) Adding l members 

Collusion attack no yes no

Broad. size(bits) (2S L -l )*K+l*log 2n (S L +l*log 2n )*K+l*log 2n (l +l *log 2n )*K+l*log 2n

Server comp. (2S L -l )*C E S L *C E + (2S L -l )*C h
(l + l*log 2n )*C E + (2n -l +S L -

3)*C f + (2S L + 2l )*C M

Max. mem. comp. log 2n *C E log 2n *(C E +C h ) l *C E +log 2n* (2C f +C M )

LKH OFT HOFT

 
 (4) Removing l members 

Collusion attack no yes no

Broad. size(bits) (2S L -l )*K+l*log 2n (S L +l- 1)*K+l*log 2n (S L +l- 1)*K+l*log 2n
Server comp. (2S L -l )*C E (S L +l- 1)*C E + 2S L *C h (S L +l- 1)*C E + (S L - 1)*C f + 2S L C M

Max. mem. comp. log 2n *C E log 2n *(C E +C h ) log 2n *(C E +C f )+ (2log 2n+ 1)*C M

LKH OFT HOFT

 
 

OFT based schemes have better leave-rekeying efficiency than LKH scheme. Another 

advantage of OFT-based schemes in processing single membership change over LKH is 

that members without membership change have less computational overhead. It is worth 

noting that this merit possessed by OFT has been noticed neither by its inventors nor by 

existing literatures. Due to using a trapdoor OWF (e.g., Rabin function) instead of a much 

faster hash function (e.g., SHA1), HOFT has higher computational overhead than original 
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OFT scheme, especially in conducting join rekeying. But it is worth trading off 

computational cost for collusion-freeness as well as lower communication overhead. 

What’s more, for network based group communication, the communication efficiency is 

the main concern rather than computational efficiency within a computer, especially 

considering Moore's law. Among all collusion-free schemes (even including OFT), 

HOFT has best join-rekeying communication efficiency. Because in join rekeying based 

on HOFT, the key server only needs to broadcast all the leaf nodes of an incremental 

secret tree (or key chain) rather than a whole CAT (which has the same size as the 

incremental secret tree) as required by the original OFT scheme. Ku & Chen scheme 

prevents collusion attack by changing all the keys known by an evictee on every member 

eviction, which require a broadcast of quadratic size. Whereas Xu scheme only performs 

additional secret update when detecting a possible collusion between an evictee and a 

joining member, it has lower communication overhead than Ku & Chen scheme. 

8. CONCLUSION AND FUTURE RESEARCH 

In this paper, we introduce a new cryptographic construction —  HOFT. Employing 

HOFTs and related algorithms, we propose a MKD scheme which not only prevents 

collusion attack on OFT scheme without compromising its leave-rekeying 

communication efficiency, but also improves its join-rekeying communication efficiency. 

If we want to construct a homomorphic authentication tree based on Merkle 

authentication tree, the multiplication operation that is substituted for the concatenation 

operation should be non-commutative, and a self-homomorphic OWF with respect to this 

non-commutative operation (e.g., Cantor pairing function) must be found. Adding, 

modifying or removing a leaf node in a homomorphic authentication tree will be more 

efficient than in original Merkle authentication tree. We leave as an open problem the 

existence of homomorphic authentication tree. 

In our scheme, a HOFT is constructed in a bottom-up manner. We also can construct a 

top-down homomorphic one-way function tree based on the binary hash tree proposed by 

Briscoe in [19]. In MARKS, each leaf node in a binary hash tree serves as a group key in 

a corresponding time slice in the group’s lifetime. In a top-down HOFT, updating leaf 

node secrets can also be performed by tree product too. However, the sequence of leaf 
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node secrets lacks pseudo-randomness and key independency among them due to 

introduction of homomorphic OWF. Finding meaningful application for top-down HOFT 

is a future research topic. 

So far, a few of group key distribution protocols – OFT, MARKS [19] , the algorithm 

proposed by Chang et al. [20], LORE [21] have been shown to be vulnerable to collusion 

attacks. Developing rigorous analysis methodology and formal verification method for 

these protocols are necessary. For group key exchange protocols, rigorous analysis 

methodology for their provable security based on DDH (Decisional Deffie-Hellman) or 

CDH (Computational Deffie-Hellman) assumption has been established [22],[23],[24]. 

Works on formal verification of group key exchange protocols have been done as well 

[25],[26]. In contrast, we don’t see any research result related to formal verification of 

group key distribution protocols. To the best of our knowledge, the only result related to 

provable security of group key distribution protocols is [14]. In their work [14], Panjwani 

proves that a corrected version of LKH is provably-secure against adaptive adversaries in 

computational security model. We can foresee that proving that OFT is secure against 

adaptive adversaries would be more difficult than LKH due to the functional dependency 

among secrets in a one-way function tree. Developing formal methods to verify group 

key distribution protocols as well as rigorous analysis methodology for provable security 

of OFT and HOFT is the focus of ongoing work. 
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