

 1

Homomorphic One-Way Function Trees and Application in

Collusion-Free Multicast Key Distribution

JING LIU

School of Information Science and Technology, Sun Yat-Sen University,

Guangzhou, People’s Republic of China, 510006,

liujing3@mail.sysu.edu.cn

Abstract. Efficient multicast key distribution (MKD) is essential for secure multicast

communications. Although Sherman et al. claimed that their MKD scheme — OFT (One-

way Function Tree) achieves both perfect forward and backward secrecy, several types of

collusion attacks on it still have been found. Solutions to prevent these attacks have also

been proposed, but at the cost of a higher communication overhead. In this paper, we

prove falsity of a recently-proposed necessary and sufficient condition for existence of

collusion attack on OFT scheme by a counterexample and give a new necessary and

sufficient condition for nonexistence of any type of collusion attack on it. We extend the

notion of OFT given by Sherman et al. to obtain a new type of cryptographic construction

— homomorphic one-way function tree (HOFT). We propose two graph operations on

HOFTs, tree product as well as tree blinding, and prove that both are structure-preserving.

We provide algorithms for adding/removing leaf nodes in a HOFT by performing a tree

product of the HOFT and a corresponding incremental secret tree. Employing HOFTs

and related algorithms, we provide a collusion-free MKD scheme, which has not only the

same leave-rekeying communication efficiency as original OFT scheme, but also even

better join-rekeying communication efficiency.

Key words. Multicast key distribution, One-way function tree, Homomorphism,

Collusion

1. INTRODUCTION

Many emerging group-oriented applications, for instance, IPTV, DVB (Digital Video

Broadcast), videoconferences, interactive group games, collaborative applications, and so

 2

on all require a one-to-many or many-to-many group communication mechanism.

Allowing for efficient utilization of network bandwidth, IP multicast [1] is the best way

to realize group communication in the Internet setting. One of the most efficient

approaches to ensure confidentiality of group communications is employing symmetric-

key encryption scheme. But before the sender encrypts and transmits the data traffic over

a group communication channel to a group of privileged users, a shared key called group

key must be established among them. Compared to secure two-party key establishment,

secure group key establishment in a dynamic group is a more challenging problem. Like

the former, group key establishment can be subdivided into group key distribution (GKD)

and group key exchange (or group key agreement). Group key exchange schemes are

only suitable for small dynamic peer groups. Two parallel lines of research, commonly

referred to as broadcast encryption (BE) and multicast key distribution (MKD) (or

multicast encryption), have been established to study the GKD problem but from

different perspectives. This paper only focuses on MKD schemes. In contrast with

stateless receivers in BE schemes, each receiver in MKD schemes are stateful, which

means that they are allowed to maintain a personal state and make use of previously

learned keys for decrypting current transmissions. Rather than tackling the general GKD

problem as BE schemes, most MKD schemes aim to solve a special problem in the

multicast encryption setting, called immediate group rekeying. Especially, for some

security-sensitive multicast applications (e.g. military applications and highly secretive

conferences), group key must be changed for every membership change. To prevent a

new member from decoding messages exchanged before it joins a group, a new group

key must be distributed for the group when a new member joins. Therefore, the joining

member is not able to decipher previous messages even if it has recorded earlier

messages encrypted with the old key. This security requirement is called group backward

secrecy [2]. On the other hand, to prevent a departing member from continuing access to

the group’s communication (if it keeps receiving the messages), the key should be

changed as soon as a member leaves. Therefore, the departing member will not be able to

decipher future group messages encrypted with the new key. This security requirement is

called group forward secrecy [2]. To provide both group backward secrecy and group

forward secrecy, the group key must be updated upon every membership change and

 3

distributed to all the members. This process is referred to as immediate group rekeying in

literature. Respectively, the rekeying process due to a joining membership change (resp. a

departing membership change) is referred to as join rekeying (resp. leave rekeying). For

large dynamic groups with frequent changes in membership, how to design a scalable

MKD scheme is a big challenge. Since the late 1990s, a continuing research effort has

been carried out, and today has seen a huge body of literature (See [3] for an excellent

survey and a recent survey is [4]).

Among all generic multicast key distribution schemes in which rekey messages are

built using traditional cryptographic primitives (symmetric-key encryption and/or

pseudorandom generators), a class of schemes called tree-based schemes [5],[6],[7] are

the most efficient ones to date in terms of communication overhead. They have a

communication complexity of O(log2n) for a group size of n. Recent result by Micciancio

et al. [8] has also confirmed that log2n is the optimal lower bound on the communication

complexity of generic group key management schemes.

Logical Key Hierarchy (LKH) scheme independently proposed by Wong et al. [5] and

Wallner et al. [6] is seminal among the tree-based class of MKD schemes. In LKH

scheme, each internal node in the key tree represents a key encryption key (KEK), each

leaf node of the key tree is associated with a group member and the root node represents

the group key. Key associated with the internal node is shared by all members associated

with its descendant leaf nodes. Every member is assigned the keys along the path from its

leaf to the root. When a member leaves the group, all the keys that the member knows

should be changed. If n represents the current number of members in a group and we

consider a full and balanced binary tree, leave rekeying using LKH requires at least

2log2n key encryptions and transmission by key server. When a member joins, the key

server chooses a position nearest to the root for it and changes all the keys from the

parent of the joining member to the root. Join rekeying using LKH requires encryptions

and transmission of 2log2n keys by key server.

Another novel tree-based scheme is One-way Function Tree (OFT) proposed by

Sherman et al. [7], [9] (see section 2.1 for details). OFT scheme nearly halves the

communication overhead of LKH in case of leaving rekeying. However, Horng [10]

showed that OFT is vulnerable to a particular kind of collusion attack (see section 2.2 for

 4

details). Soon after, Ku and Chen [11] also found new types of collusion attacks, and they

proposed an improved scheme to prevent any collusion attack. But leaving rekeying

using their approach requires a communication complexity of O((log2n)2+log2n), and

hence their approach loses the advantage of original OFT over LKH. Recently, Xu et al.

[12] showed that all the known attacks on OFT can be generalized to a kind of generic

collusion attack. They also derived a necessary and sufficient condition for such attack to

exist and further proposed a scheme to prevent such collusion attack while minimizing

the average broadcast size of rekeying message. However their scheme requires a storage

linear to the size of the key tree (O(2n-1)) and it still has a bigger broadcast size than

LKH.

In this paper, we prove falsity of Xu et al.’s necessary and sufficient condition for

existence of any type of collusion attack on OFT scheme by a counterexample and give a

new necessary and sufficient condition for nonexistence of an arbitrary type of collusion

attack. We introduce a new cryptographic construction — homomorphic one-way

function trees (HOFT) by respectively substituting a homomorphic trapdoor function and

a modular multiplication for the pseudorandom one-way function and the exclusive-or

mixing function in original one-way function trees (OFT). We propose two tree

operations — tree product and tree blinding for HOFTs and prove that both are structure-

preserving. Tree blinding helps conceal information about the node secrets of a key tree

without compromising its inner structure. Then, we provide algorithms for

adding/removing leaf nodes in a HOFT by performing a tree product of the HOFT and a

corresponding incremental secret tree. Utilizing HOFTs and related algorithms, we

design a collusion-free MKD scheme that has not only the same leave-rekeying

communication efficiency as original OFT scheme, but also even better join-rekeying

communication efficiency. On the contrary, two existing solutions [11], [12] to improve

OFT have to trade off communication efficiency for collusion resistance.

The remainder of this paper is organized as follows. Section 2.1 gives a closer look at

OFT scheme. Section 2.2 reviews different kinds of collusion attacks on it. Section 2.3

introduces two solutions to prevent collusion attacks on OFT. In section 3, we prove the

falsity of Xu et al.’s necessary and sufficient condition for a collusion attack on OFT

scheme to exist by a counterexample and give new necessary and sufficient condition for

 5

nonexistence of an arbitrary type of collusion attack. In sections 4, we introduce a new

cryptographic construction – Homomorphic OFT and related algorithms. Section 5

presents a collusion-free multicast key distribution scheme based on HOFTs and related

algorithms. Section 6 gives a thorough security analysis of our multicast key distribution

scheme. Section 7 gives a comparison between our scheme and other related schemes.

Section 8 concludes this paper and gives some topics for future research.

2. RELATED RESEARCH

2.1 Introduction to One-way Function Tree

One-way Function Tree (OFT) scheme was proposed by Sherman, Balenson and

McGrew [7],[9]. The idea of using one-way function (OWF) in a tree structure originated

from Merkle. In his report [13], Merkle provided a method to authenticate a large number

of public validation parameters for a one-time signature scheme by using a tree structure

in conjunction with a one-way and collision-resistant hash function (i.e., the famous

Merkle authentication tree).

We adopt the terminology and formulations from [7]. A key server maintains a

balanced binary key tree for a group. Each internal node v of the key tree is associated

with a node secret xv, a blinded node secret yv and a node key Kv. The node secret of the

root node is the group key. Two special one-way functions f and g are defined as the left

and right halves of a pseudorandom function. The function f is used to compute each

blinded node secret from its corresponding node secret, i.e., yv = f(xv); The function g is

used to compute each node key from its corresponding node secret, i.e., Kv = g(xv). The

internal node secret is shared by all members associated with its descendant leaf nodes.

The key server shares a secret key called leaf node secret with every group member via a

secure channel established during the registration protocol. However, unlike in LKH, the

key server does not send each member those node secrets along the path from its leaf

node to the root. Instead, it supplies each member with the blinded node secrets

associated with the siblings of the nodes in the path from the member’s leaf node to the

root. Each member uses these blinded node secrets and its leaf node secret to compute the

other node secrets in this member’s path to the root according to a functional relationship

as follows. A one-way function key tree is computed in a bottom-up manner using an

 6

OWF f and a bitwise exclusive-or operation denoted by ‘⊕’. The node secret associated

with an arbitrary internal node (internal node secret for short) is computed by applying

the exclusive-or operation to the two blinded node secrets respectively associated with

the two child nodes of the internal node (child blinded node secrets for short).

Whatever group rekeying is performed, the following invariant should be maintained.

Key distribution Invariant — Each legitimate member knows the node secrets on the

path from its associated leaf node to the root, and the blinded node secrets that are

siblings to this path, and no other node secrets nor blinded node secrets.

For example, the structure of an OFT is illustrated by Figure 1. A shares a leaf node

secret xa with the key server. When A joins the group, the key server sends A the

following blinded node secrets: yb, yc. Therefore, A is able to compute all the node secrets

along the path from its parent to the root in a bottom-up manner by sequentially

computing xab = f(xa) ⊕ yb, xa.c= f(xab) ⊕ yc.

Fig. 1 Join rekeying in OFT

Figure 1 also illustrates the join rekeying in OFT. When D joins, the key server first

chooses a leaf node nearest to the root, the leaf node associated with C in this case, and

splits it into two nodes so as to create an leaf node for D. Like in LKH, all the node

secrets in the path from the parent of D’s leaf node to the root need to be changed. To

achieve this, the key server generates a new leaf node secret xc
new for C, then computes all

the node secrets that need to be changed in the same bottom-up manner as described

above. Then to control each member’s access to these new node secrets in the updated

key tree, the key server constructs and transmits a rekeying message as: {yc.d}_Kab, {xc
new,

yd}_Kc, {yab, yc
new}_Kd. Throughout this paper, we use {X}_Y to denote encryption of X

with a key Y by using a symmetric encryption scheme. That is to say, all the rekeyed

blinded node secrets are encrypted with their siblings’ node keys. It is worth noting that

 7

xc must be changed into xc
new. Otherwise, A and B both know yc in the updated key tree,

which violates the key distribution invariant. What is more, since the joining member D

would be supplied with yab and yc, it would be able to obtain the past group key xa.c by

computing xa.c = yab ⊕ yc, which violates group backward secrecy.

Consider a full and balanced OFT with n members (after the join). The key server

needs to encrypt and send log2n blinded node secrets to the new member. The key server

also needs to encrypt and send log2n new blinded node secrets to the other members. It

also needs to encrypt and send a new leaf node secret xc
new to C. In total, the key server

needs to encrypt and send 2log2n+1 blinded and unblinded node secrets when a member

joins the group. In addition, the key server needs to compute log2n new secret keys in a

bottom-up manner and log2n+1 new blinded node secrets. That amounts to 2log2n+1

OWF computations (since the exclusive-or operation is very effective, it is reasonable to

omit all of them). The joining member needs to perform log2n decryptions to extract all

its log2n blinded node secrets from the rekeying message and then compute all the nodes

keys along its path to the root in a bottom-up manner. For other members, if one has l

node secrets in need of change, it only needs to perform one decryption to extract its

single rekeyed blinded node secret, and then compute the new l node secrets by

performing l OWF computations in a bottom-up manner. Whereas in LKH scheme, this

member needs to perform l decryptions to extract the l rekeyed node keys. This

computational advantage of OFT over LKH has been noticed neither by its inventors nor

by existing literatures.

Fig. 2 Leave rekeying in OFT

Leave rekeying is depicted in Figure 2. When E leaves, all the node secrets in the path

from the parent of E’s leaf node to the root should be changed. If the sibling of the key

 8

node associated with E, i.e., xd, is also a leaf node like in Figure 2, the key server only

needs to change xd into xd
new, and sends xd

new encrypted under Kd. Otherwise, the key

server needs to pick one of the descendant leaf nodes of xd (e.g. the leftmost one) and

change its associated leaf node secret to trigger rekeying the subtree rooted at xd. Then

the key server replaces xe’s parent node xde with E’s rekeyed sibling node xd
new (or

rekeyed sibling subtree rooted at xd
new). This process results in rekeying all the keys in the

path from the departing member’s parent node to the root in effect. Like in join rekeying,

the key server needs to construct and transmit a rekeying message as: {ycd}_Kab,

{yd
new}_Kc, { xd

new}_Kd. It is worth noting that xd must be changed into xd
new. Otherwise,

C knows yd in the old key tree, which violates the key distribution invariant. And what’s

more important is that evictee E would be able to obtain the new group key xa.d by

sequentially computing xcd = yc ⊕ yd, xa.d= yab ⊕ f(xcd), which violates group forward

secrecy.

Consider a full and balanced OFT with n members (after the leave). The key server

needs to encrypt and send log2n new blinded node secrets to the group. In addition, it

needs to encrypt and send the new node secret xd
new to the rekeyed member D. In all, the

key server needs to encrypt and send log2n+1 blinded and unblinded node secrets when a

member leaves the group. To compute new node secrets and blinded node secrets, the key

server needs to perform 2log2n+1 OWF computations. If a legitimate member has l node

secrets in need of change, it only needs to perform one decryption to extract its single

rekeyed blinded node secret, and then compute the l new node secrets by performing l

OWF computations in a bottom-up manner. Whereas in LKH scheme, this member needs

to perform l decryptions to extract the l rekeyed node keys.

2.2 Collusion attacks on OFT scheme

In LKH, all the keys in the key tree are randomly chosen and thus independent with each

other. The hierarchical structure of keys only represents the logical subgroup relationship

among the members, that is, key associated with the internal node is shared by all

members associated with its descendant leaf nodes. Whereas, there is a functional

dependency relationship among the node secrets besides the logical subgroup relationship

in OFT. This relationship allows leave rekeying in OFT to save half of communication

cost compared to LKH. However, the same relationship also renders it vulnerable to

 9

collusion attacks. A few kinds of collusion attacks on OFT are found by Horng [10], and

Ku and Chen [12]. We depict all kinds of collusion scenarios in Figure 3.

Fig. 3 Scenarios of Collusion Attacks on OFT

2.2.1 Horng’s attack

The first collusion attack on OFT attributed to Horng is as follows. Referring to Figure 3,

suppose that Alice, associated with node 8, leaves at time tA, and later Candy joins the

group at time tC and is associated with node 6. We use [,]A Ci t tx to denote the node secret

associated with node i in the time interval between tA and tC. Suppose that there are no

changes in group membership between time tA and tC. Since 3[,]A Ct tx is not affected by the

eviction of Alice according to the OFT scheme, Alice holds its blinded

version 3[,]A Ct ty even after her eviction. Since the node secret associated with node 2 is

updated when Alice leaves, and remains unchanged at least until Candy joins, Candy

obtains its blinded version 2[,]A Ct ty at the time of joining. Collectively knowing

2[,]A Ct ty and 3[,]A Ct ty , Alice and Candy can collude to obtain the group key in the time

interval [tA, tC] by computing 1 [,] 2[,] 3[,]A C A C A Ct t t t t tx y y= ⊕ . Therefore, the OFT scheme fails

to provide not only group forward secrecy against Alice but also group backward secrecy

against Candy. Horng proposed two necessary conditions for such a collusion attack to

exist: (1) the two colluding members namely A and C must leave and join at different

subtree of the root respectively; (2) no group key update happens between time tA and tC.

Later, Ku and Chen showed that neither of these two conditions is necessary by

proposing two new kinds of collusion attacks.

2.2.2 Ku and Chen’s attacks

 10

The first kind of collusion attack proposed by Ku and Chen is illustrated by the following

scenario. Referring to Figure 3 again, suppose that Alice leaves at time tA, and later Bob

joins the group at time tB and is associated with node 5. Also suppose that there are no

changes in group membership between time tA and tB, for the same reason as above, Alice

and Bob can collude to compute 2[,]A Bt tx . Since the node secret of node 3 remains

unchanged during the time interval [tA, tB], Alice and Bob both know its blinded

version 3[,]A Bt ty . Therefore, knowing 2[,]A Bt tx and 3[,]A Bt ty , both can compute the group

key 1[,]A Bt tx . This attack does not satisfy the first necessary condition proposed by Horng.

The second kind of collusion attack is illustrated by the following scenario. Suppose

that Alice leaves at time tA, later Bob joins the group at time tB, and lastly Candy joins the

group at time tC. We also assume that there are no changes in group membership not only

between time tA and tB, but also between time tB and tC. After the eviction of Alice, the

node secret of node 3 remains unchanged until Candy joins the group. Therefore, Alice

holds its blinded version 3[,]A Ct ty even after her eviction. Since the node secret of node 2 is

updated when Bob joins the group, and then remains unchanged at least until Candy joins

the group, Candy obtains its blinded version 2[,]B Ct ty at the time of joining. Collectively

knowing 3[,]A Ct ty and 2[,]B Ct ty , Alice and Candy can collude to compute the group

key 1[,]B Ct tx (note that [,] [,]B C A Ct t t t⊂). This attack denies the second necessary condition

proposed by Horng.

2.3 Improvements on OFT scheme

Here, we first discuss the essential reasons why OFT scheme is vulnerable to collusion

attacks. When a new member joins, it will be supplied with the blinded node secrets that

were once used to compute the past group key. In other words, the joining member

receives partial information about the past group key. On the other hand, when a member

leaves, it holds the blinded node secrets that remain unchanged for a certain time interval.

These blinded node secrets may be used to compute the future group key. In other words,

the evictee holds partial information about the future group key. It is possible for a pair of

removed member and joining member to combine their knowledge together to compute a

valid group key not already known alone.

 11

From the above discussion, it is possible to devise a solution for preventing collusion

attacks either by preventing evictee from bringing any knowledge about future group key

or by supplying joining member with no knowledge about past group key. Each of the

following two improvements on the OFT scheme is just aiming at one aspect to prevent

collusion attack.

2.3.1 Ku and Chen’s improvement

Ku and Chen improve the OFT scheme by changing all the keys known by an evictee.

That is to say, not only all the node secrets in the path from the parent of evictee’s leaf

node to the root, but also all the blinded node secrets associated with the siblings of those

nodes in that path must be changed. For example, in Figure 3, when Alice leaves, the

node secrets of both node 5 and node 3 will be updated in addition to those of nodes 4, 2

and 1 as required by the original scheme. The additional updates of node secrets increase

the broadcast size by (log2n)2 keys. In total, the key server needs to encrypt and send

(log2n)2+log2n+1 keys.

An opposite solution can be obtained by changing not only all the node secrets in the

joining member’s path to the root as required by the original scheme, but also all the

blinded node secrets associated with siblings to this path.

2.3.2 Xu et al.’s improvement

Xu et al. [12] observed that collusion between an evictee and a joining member is not

always possible and its success depends on the temporal relationship between them. It is

not necessary to always change additional keys as above unless a collusion attack is

indeed possible. They proposed a stateful approach in which the key server tracks all

evictees and records all the knowledge held by them. Every time a new member joins, the

key server checks against that knowledge to decide whether this joining member could

have a successful collusion with any previous evictee. For that purpose, their scheme has

a storage requirement linear to the size of the key tree. Since their scheme only performs

additional secret update when necessary, it has lower communication overhead than Ku

and Chen’s scheme. Although Xu et al. shows that their scheme has lower

communication overhead than LKH scheme for small to medium groups, the increasing

 12

number of collusion attacks render their scheme less efficient that LKH for large dynamic

groups.

In their paper [12], Xu et al. propose three propositions to support the correctness of

their scheme. They first consider a generic collusion attack on OFT scheme (depicted in

Figure 4). Suppose that A leaves at time tA and C joins at a later time tC. Let B, D, E, and

F respectively denote the subtrees rooted at L, R, R’, and R”. Let tDMIN, tEMIN, and tFMIN

denote the time of the first group key update after tA that happens in D, E, and F,

respectively. Let tBMAX, tEMAX, and tFMAX denote the time of the last group key update

before tC that happens in B, E, and F, respectively.

Fig. 4 A Generic Collusion Attack on OFT

Xu’s proposition 1: For OFT scheme, referring to Figure 4, the only node secrets that

can be computed by A and C when colluding are:

- xI in the time interval [tBMAX, tDMIN],

- xI’ in [tBMAX, tDMIN]∩([tA, tEMIN]∪[tEMAX, tC]),

- xI” in [tBMAX, tDMIN]∩([tA, tEMIN]∪[tEMAX, tC]) ∩([tA, tFMIN]∪[tFMAX, tC]) ,

and so on, up to the root. Notice that these intervals may be empty and the node I’s

position is where the path of A to the root and that of C merges.

In fact, it can be easily verified that all kinds of collusion attacks presented in section

2.2 are special instances of this generic attack.

Xu’s proposition 2: A pair of colluding members A and C cannot compute any node

secret which they are not supposed to know by the OFT scheme, if one of the following

conditions holds

 13

- A is removed after C joins.

- A and C both join.

- A and C are both removed.

This proposition confirms that the above generic collusion attack is the only pattern of

two-party collusion. Based on these two propositions, the authors give the following

sufficient and necessary condition for an arbitrary type of collusion attack to exist.

Xu’s proposition 3: For OFT scheme, an arbitrary collection of removed members and

joining members can collude to compute some node secret not already known, if and only

if the same node secret can be computed by a pair of members in the collection.

Unfortunately, in their proof of this proposition, the authors claim that to compute a

node secret not already known, the colluding members must know both child blinded

node secrets of it by themselves. However, the colluding members may manage to know

those child blinded node secrets by collusion too, but not by themselves alone.

3. AMENDMENT TO XU’S PROPOSITION 3

In this section, we first present an interesting counterexample that denies the necessity

of Xu’s proposition 3, and then propose a new necessary and sufficient condition for

nonexistence of an arbitrary type of collusion attack.

3.1 A counterexample

Fig. 5 A Counterexample against Xu’s Proposition 3

We consider a collusion scenario depicted in Figure 5. Suppose that Dean (D) and Bob (B)

join the group at time t7 and t8, respectively, and Alice (A) and Colin (C) leave the group

at time t1 and t2, respectively. It is assumed that the chronological order of t1, t2, … , and

 14

t8 corresponds with the numerical order of their subscripts. Let α, β, γ, δ, μ, and ν denote

the subtrees rooted at node 4, 5, 6, 7, 2, and 3, respectively. In addition to the above

changes in group membership, there are changes at time t3, t4, t5, and t6, which happened

in α, γ, δ, and β, respectively. Let X
MAXtα denote the time of the last group key update

before X joins the group that happens in α. Let Y
MINtβ denote the time of the first group

key update after Y leaves the group that happens in β. Recall that xv denotes the node

secret associated with node v and yv denotes the blinded version of it. And xv [t1, t2] denotes

the node secret in the time interval [t1, t2].

According to Xu’s proposition 1, Alice and Bob can collude to compute x2 in the time

interval [B
MAXtα , A

MINtβ], i.e.,
3 62[,]t tx ; Colin and Dean can collude to compute x3 in the time

interval [D
MAXtγ , C

MINtδ], i.e.,
4 53[,]t tx . Thus, collectively knowing

3 62[,]t tx and
4 53[,]t tx , Alice,

Bob, Colin and Dean can collude to compute
4 51[,]t tx . However, we shall show that any

possible pair of evictee and a joining member cannot collude to compute
4 51[,]t tx .

According to Xu’s proposition 1, all the node secrets that can be computed by Alice

and Bob when colluding are:

- x2 in the time interval [B
MAXtα , A

MINtβ], i.e.,
3 62[,]t tx ,

- x1 in the time interval [B
MAXtα , A

MINtβ]∩([t1, A
MINtν]∪[B

MAXtν ,t8]), but evaluation of that

formula results in [t3, t6] ∩([t1,t2]∪[t7,t8])=∅.

So Alice and Bob cannot collude to compute
4 51[,]t tx . By the same argument, we can

prove that for the rest of eviction-joining scenarios, i.e., the collusion between Colin and

Dean, that between Alice and Dean, or that between Colin and Bob,
4 51[,]t tx cannot be

computed either. This counterexample thus denies the necessity of Xu’s proposition 3.

3.2 A new necessary and sufficient condition

Proposition 3.1: An arbitrary collection of removed members and joining members

cannot collude to compute any node secret not already known, if and only if an arbitrary

pair of removed member and joining member cannot collude to compute any node secret

not already known.

 15

Proof: The necessity is trivial. We prove the sufficiency by contradiction. For an

arbitrary node secret xi in a HOFT X, we use x2i and x2i+1 to denote its left child and right

child respectively. Recall that yi is the blinded version of xi. Suppose that a collection of

removed members and joining members can collude to compute a new secret key
1 2[,]i t tx .

Then either of the following two conditions must be satisfied:

(1) In this collection of removed members and joining members, there exist two

colluding members who have already known y2i and y2i+1 respectively in some time

interval that is a superset of [t1, t2]. Therefore, they can collude to compute
1 2[,]i t tx ;

(2) At least a subset of colluding members can collude to compute either x2i or x2i+1 in

some time interval that is a superset of [t1, t2].

If it is condition (1) that is satisfied, then the two colluding members must be a pair of

evictee and joining member according to Proposition 2.

If it is condition (2) that is satisfied, then there exists a subset of this collection of

members who can collude to compute a node secret not already known, namely
1 1

2 [,]a bi t tx

(
1 1

[,]a bt t is a superset of [t1, t2]). For
1 1

2 [,]a bi t tx , we use the same argument as above. In fact,

the same argument can be repeated recursively until either we found a pair of evictee and

joining member who can collude to compute a internal node secret not already known

from its two child blinded node secrets (they are also internal and respectively known by

one of the colluding members), or due to the limited size of the key tree, we must stop at

a certain node secret not already known that just has two leaf blinded node secrets as its

children that are respectively known by one of the colluding members.

Whatever, we always find a pair of evictee and joining member who can collude to

compute a node secret not already known. That stands in contradiction to our hypothesis,

and thus the sufficiency of Proposition 3.1 follows.

3.3 Further comments on collusion attacks

Unlike traditional cryptographic protocols (e.g., two-party key establishment protocols),

group-oriented cryptographic protocols (group key establishment protocols, e-voting

protocols, etc.) have an open number of group members. Malicious users could collude to

 16

sabotage any security target of these protocols. Therefore, preventing collusion attack is a

paramount requirement when designing such protocols.

Although OFT was claimed to achieve perfect forward and backward secrecy by its

inventors [21], collusion attacks on it still have been found. Because its inventors only

consider collusion among removed members (or joining members), but unfortunately

ignore the potential collusion between evictees and joining members. Therefore, it is

important to give the formal definition of secure against collusion attacks in

computational security model to ensure it covers all possible patterns of collusion attacks.

This work has been done by Panjwani [14].

4. HOMOMORPHIC ONE-WAY FUNCTION TREE

4.1 Definition

Before we give the definition of homomorphic one-way function tree, let’s review

relevant mathematical concepts. A group G with its operation “∗” is denoted by (G, ∗).

Given two groups (G, ∗) and (H, ·), a group homomorphism from (G, ∗) to (H, ·) is a

function f : G → H such that for all u and v in G, it holds that f(u∗v) = f(u)·f(v). One can

easily deduce that a group homomorphism f maps the identity element eG of G to the

identity element eH of H, and maps inverses to inverses in the sense that f(u-1) = f(u)-1.

According to this definition, Rabin function [15] and RSA function [16] are both

homomorphic.

Depending on one's viewpoint, homomorphism can be seen as a positive or negative

attribute of a cryptosystem. Positive usage of homomorphism in cryptosystem originates

in [17]. Once homomorphism is exploited by certain cryptosystem (encryption, digital

signature, MAC, etc.), it will enable the ability to perform a specific algebraic operation

on the original data by performing a (possibly different) algebraic operation on

cryptographically transformed data.

Since all nodes in an OFT are homogeneous (i.e., cryptographic keys), we choose to

use self-homomorphism mapping an Abelian group to itself. If every node secret in an

OFT X is an element of an Abelian group G (e.g., Zn
*, n is a composite), we say X is

defined over G.

 17

Definition 4.1 Homomorphic OFT — A homomorphic OFT (HOFT) over an Abelian

group (G, ∗) is a binary key tree that is computed using a self-homomorphic OWF f and

the multiplicative operation “∗” in a bottom-up manner as follows. For an arbitrary node

secret xi in a HOFT X, suppose that its left child and right child are denoted by x2i and

x2i+1 respectively, and we have xi = f(x2i) ∗ f(x2i+1).

4.2 Two structure-preserving operations on HOFTs

A binary operation (resp. unary operation) is said to be structure-preserving if the

operation takes two HOFTs (resp. one HOFT) as inputs (resp. input) and outputs a HOFT.

For convenience, we shall interchangeably use the same notation “xi” or “yi” to denote

either a node itself or its associated node secret in this section.

Fig. 6 Tree product

Definition 4.2 Tree product — Given two arbitrary HOFTs X and Y, both defined over

an Abelian group (G, ∗), and having the same graph structure (i.e., same height and same

number of leaf nodes), a tree product of X and Y, denoted by X ∗ Y, is computed by

multiplying their corresponding node secrets (see Figure 6).

Note that although we use the same notation “∗” for both group operation and tree

product, its meaning is context-evident.

Theorem 4.1: Given two arbitrary HOFTs X and Y, both defined over an Abelian

group (G, ∗), and having the same graph structure, the result of a tree product X ∗ Y is

also a HOFT.

Proof: Let X and Y are two arbitrary HOFTs defined over an Abelian (G, ∗), and Z = X

∗ Y. We prove Z is also a HOFT. For an arbitrary node secret zi ∈ Z, we have (recall that

for an arbitrary node secret xi in a HOFT X, its left child and right child are denoted by x2i

and x2i+1 respectively)

zi = xi ∗ yi (Definition 4.2)

 18

= (f(x2i) ∗ f(x2i+1)) ∗ (f(y2i) ∗ f(y2i+1)) (Definition 4.1, since X and Y are both

HOFT)

= (f(x2i) ∗ f(y2i)) ∗(f(x2i+1) ∗ f(y2i+1)) (“∗” is commutative and associative)

= f(x2i ∗ y2i) ∗ f(x2i+1 ∗ y2i+1) (f is homomorphic)

= f(z2i) ∗ f(z2i+1) (Definition 4.2).

Thus, Z is a HOFT according to Definition 4.1.

In other words, tree product is structure-preserving.

Fig. 7 Tree product of a key tree and a key chain

If a HOWF chain C over (G, ∗) has the same length as a certain path from a leaf node

to the root in a HOFT X over (G, ∗), we can define a tree product of the HOFT X and the

HOWF chain C based on Definition 4.2. Recall that the two operands of a tree product

must have the same structure. Therefore, we first expand C with identity node secrets (i.e.,

whose value is the identity element e of G) as in Figure 7 to make it have just the same

structure as X before performing a tree product operation. Since f is a group self-

homomorphism, f(e) equals e. It is easy to check that the key tree expanded from C is

also a HOFT. In this manner, a HOWF chain can always be transformed into a HOFT

with wanted shape. Since e is an identity element, when performing a tree product of the

HOFT X and the key tree expanded from C, those node secrets multiplied by an identity

node secret remain unchanged. Therefore, we can directly define the product of a HOFT

X and a HOWF chain C as computed by only multiplying their corresponding node

secrets. According to Theorem 4.1, the result of the tree product X ∗ C is also a HOFT.

Definition 4.3 Tree blinding — For an arbitrary HOFT X defined over an Abelian

group (G, ∗) in conjunction with a homomorphic one-way function (HOWF) f, a tree

 19

blinding operation based on f maps X to another key tree Y, denoted by Y = f(X). Y is

computed by applying f to every node of X (see Figure 8). We call Y a blinded tree of X.

x1

x3

x5

x2

x4

y1

y3

y5

y2

y4

X Y=f(X) (yi = f(xi))

f

Fig. 8 Tree blinding

Theorem 4.2: For an arbitrary HOFT X over (G, ∗), the blinded tree of X, i.e., f(X) is

also a HOFT.

Proof: Let X is an arbitrary HOFT and Y = f(X). We prove Y is also a HOFT. For an

arbitrary node secret yi ∈ Y, we have

yi = f(xi)

 = f(f(x2i) ∗ f(x2i+1)) (X is a HOFT)

= f(y2i ∗ y2i+1) (Y = f(X))

= f(y2i) ∗ f(y2i+1) (f is homomorphic)

Thus, Y is a HOFT according to Definition 4.1.

Theorem 4.2 reveals that tree blinding is also a structure-preserving operation. Due to

one-wayness of f, tree blinding operation helps conceal information about the node

secrets of a key tree without compromising its inner structure.

4.3 Adding/removing leaf nodes in HOFTs

In tree-based schemes, adding or removing members correspond to adding or removing

relevant leaf nodes in a key tree. In this section, we provide algorithms for adding or

removing leaf nodes in a HOFT X by performing a tree product of X and an incremental

secret tree. First of all, we present an important concept called Combined Ancestor Tree

proposed by Sherman and McGrew [7]. Combined Ancestor Tree — For a set of evictees

or joining members, the subtree consisting of all ancestors of their associated leaf nodes

is called a Combined Ancestor Tree (CAT). Specially, an ancestor chain is a CAT that

has one single leaf node. For the sake of generality, we only discuss adding/removing

 20

multiple leaf nodes in a HOFT which in fact subsumes the special case of

adding/removing a single leaf node.

4.3.1 Adding multiple leaf nodes in a HOFT

Fig. 9 Normalization for multiple additions

Adding multiple leaf nodes to a HOFT takes two steps illustrated in Figure 9 and Figure

10 respectively. To add leaf nodes x9, x11, and x15 to X respectively at x4, x5, and x7, the

corresponding CAT is T* like in Figure 9. The first step called normalization (depicted in

Figure 9) is in fact to perform a tree product of X and a normalizing key tree T(1). The

purpose is to turn all leaf node secrets of CAT T* into identity node secrets. The

normalizing key tree T(1) is computed from CAT T* by first replacing each leaf node

secret of CAT T* with its inverse, and then computing all the other internal node secrets

in a bottom-up manner. All the internal node secrets including the root of T(1) are:

t2
(1)=f(x4

-1) ∗f(x5
-1), t3

(1)=f(x7
-1), t1

(1)=f(f(x4
-1)∗f(x5

-1))∗f(f(x7
-1)).

Fig. 10 Expansion

The output of the first step normalization is a HOFT X’. The second step called

expansion (illustrated in Figure 9) is to perform a tree product of X’ and an expanding

 21

key tree T(2). New leaf nodes actually are added to X in this step. The expanding key tree

T(2) is also computed from CAT T* by first creating two new child nodes for each leaf

node, namely xi of CAT T* such that the node secret formerly associated with xi is now

associated with the left child of xi, and a corresponding new node secret is associated

with the right child of xi, and then computing all the other internal node secrets in a

bottom-up manner. The output of expansion is the final result - an updated key tree Xnew.

Fig. 11 An incremental secret tree for multiple additions

To simplify the two-step process, we introduce an important concept called

incremental secret tree. For X and Xnew, the incremental secret tree T for multiple

additions (see Figure 11) is obtained by performing a tree product of the normalizing key

tree T(1) and its counterpart in the expanding key tree T(2).
Now, Xnew can be obtained from X by firstly performing a tree product of CAT T* and

T (suppose that the output is Tnew), secondly keeping node secrets outside T* unchanged,

and thirdly for every leaf node ti
new of Tnew, creating two new child nodes for it such that

the node secret formerly associated with xi is now associated with the left child of ti
new,

and a corresponding new node secret is associated with the right child of ti
new.

4.3.2 Removing multiple leaf nodes in a HOTF

 22

Fig. 12 Normalization for multiple removals

We first explain how to remove multiple leaf nodes in a HOFT in two steps. As

illustrated in Figure 12, to remove x9, x11 and x13, the first step is just the same as

normalization for multiple additions. In the following figures, we use a dotted circle to

denote node that does not directly participate in a tree product computation (e.g., x8, x9,

and so on), but whose position should be remembered. We also use a shaded and dotted

node to denote a node to be removed.

Fig. 13 Contraction

 The second step called contraction as illustrated in Figure 13, is to perform a tree

product of X’ and a contracting key tree T(2). The contracting key tree T(2) is computed

from CAT T* by first replacing each leaf node of T* with its child in X not to be removed,

and then computing all the other internal node secrets in a bottom-up manner.

Fig. 14 An incremental secret tree for multiple removals

 23

 The incremental secret tree T for multiple removals (see Figure 14) is obtained by

performing a tree product of the normalizing key tree T(1) and the contracting key tree T(2).

Now, the updated new key tree Xnew can be obtained from X by firstly performing a tree

product of CAT T* and T (suppose that the output is Tnew), secondly keeping node secrets

outside T* unchanged, and thirdly removing both child nodes of each leaf node of T*

from X.

5 A COLLUSION-FREE MKD SCHEME BASED ON HOFTS

Employing algorithms provided in section 4, we are able to present a collusion-free MKD

scheme. When members join or leave, all the node secrets on the corresponding CAT

should be changed. The key server use algorithms similar to those provided in section 4.3

to construct an incremental secret tree (or key chain), and update the key tree by

performing a tree product of it and the incremental secret tree. After that, the key server

needs to communicate all the changes in the key tree to group members by broadcasting

the incremental secret tree (or key chain) such that legitimate members can update their

rekeyed node secrets and rekeyed blinded node secrets by a product of those secrets and

their corresponding incremental secrets. The essential task of a MKD scheme based on

HOFTs is to control access to the incremental secret tree (or key chain) to ensure group

forward secrecy and group backward secrecy. In the following passages, for any leaf

node of a key tree, we shall interchangeably refer to that node and the member associated

with it for simplicity. Similar to OFT, we also use a pseudorandom OWF g to compute

each node key Kv from its corresponding node secret xv, i.e, Kv = g(xv).

5.1 Removing a member

Fig. 15 Removing a member

 24

For simplicity of exposition, we only discuss the case an evictee’s sibling is a leaf node.

The algorithm for the case an evictee’s sibling is an internal node can be easily derived

from that given in this section. As illustrated in Figure 15, to remove member x15 from

the current secret tree X, the key server uses an algorithm similar to that provided in

section 4.3.2 to produce the corresponding increment secret chain C except that during

contraction operation, it needs to associate the sibling (x14) of the evictee with a new node

secret (x14’) and replace the leaf node key (x7) of the ancestor chain C* with this new

node secret. The key server sends the blinded version of each incremental secret ci except

the root encrypted under the node key associate with the sibling of xi
new in the updated

HOFT Xnew, i.e., {f(C3)}_K2 and {f(C7)}_K6. In addition, the key server also needs to send

the evictee’s sibling a new node secret encrypted under its old node key, i.e., {x14’ }_K14.

In a word, to remove member x15, the key server needs to broadcast a rekeying message:

{f(C3)}_K2, {f(C7)}_K6, {x14’ }_K14.

After receiving the rekeying message, each legitimate member performs one

decryption to extract the blinded incremental secret corresponding to its single rekeyed

blinded node secret, and then compute its new value by multiplying its old value by the

blinded incremental secret. After that, it can compute all its rekeyed node secrets in a

bottom-up manner as in OFT.

Consider a full and balanced HOFT with n members (after the eviction). The key

server needs to encrypt and send log2n+1 blinded and unblinded node secrets when a

member leaves the group. The key server also needs to compute the incremental secret

chain, and hence perform one modular multiplication and log2n OWF computations. In

addition, to update the HOFT by performing a tree product, it needs to perform log2n+1

modular multiplication computations.

5.2 Removing multiple members in a bulk operation

Bursty behaviour (a number of membership changes happen simultaneously), periodic

group rekeying or batch group rekeying all require a bulk operation that can process

multiple membership changes simultaneously. The broadcast size and computational

effort of multiple additions and evictions can be substantially reduced by using a bulk

operation that removes and/or adds multiple members simultaneously rather than

repeatedly applying individual add or remove operations. This reduction results from the

 25

fact that a set of individual operations may repeatedly change node secrets along common

segments of the key tree.

 Taking Figure 12-14 as an example, to remove members x9, x11 and x13 from the current

secret tree X, the key server uses the same algorithm provided in section 4.3.2 to produce

the CAT T* except that during contraction operation, it needs to associate each sibling

(resp. x8, x10, x12) of the evictees with a new node secret (resp. x8’ , x10’, x12’) and replace

each leaf node (resp. x4, x5, x6) of T* respectively with these new node secrets. The key

server sends the blinded version of each incremental secret ti except the root encrypted

under the node key associate with the sibling of xi
new in the updated HOFT Xnew, i.e.,

{f(t2)}_K3
new, {f(t3)}_K2

new, {f(t4)}_K5
new, {f(t5)}_K4

new and {f(t6) = t3}_K7
new

 (recall that

Ki
new = g(xi

new)). In addition, the key server sends the new value of every evictee’s sibling

encrypted under its old value, i.e., {x8’}_K8, {x10’}_K10, {x12’}_K12 (recall that Ki = g(xi)).

Note that K4
new = g(x8’), K5

new = g(x10’), K2
new = g(f(x8’)∗f(x10’)), K3

new = g(f(x12’)), K7
new =

g(x7). In a word, to remove x9, x11 and x13, the key server needs to broadcast a rekeying

message: {f(t2)}_K3
new, {f(t3)}_K2

new, {f(t4)}_K5
new, {f(t5)}_K4

new and {f(t6) = t3}_K7
new,

{x8’}_K8, {x10’}_K10, {x12’}_K12

After every legitimate member receives the rekeying message, it extracts all blinded

incremental secrets it is entitled to and computes all incremental secrets it is entitled to in

a bottom-up manner, and then update its own rekeyed node secrets and blinded node

secrets by multiplying their old values by their corresponding incremental secrets. For

example, member x8 is able to extract blinded node secret f(t5) by sequentially decrypting

{x8’}_K8, {f(t5)}_K4
new. Since it can directly compute t4 = x4

-1∗x8’, member x8 now can

compute t2 = f(t4)∗f(t5) and then x2
new=x2∗t2. Now it decrypts {f(t3)}_K2

new to obtain f(t3).

In the end, it computes t1 = f(t2)∗f(t3) and then the new group key x1
new = x1∗t1.

Since the incremental secret tree has the same structure as the CAT, we can compute

the broadcast overhead by the size of CAT denoted by SL as in paper [7]. Consider a full

and balanced OFT with n members (before l members are removed). The key server

needs to encrypt and broadcast l new node secrets associated with l siblings of evictees. It

also needs to encrypt and send SL-1 blinded incremental secrets. In total, it needs to

encrypt and send SL+l-1 secrets. The key server also needs to compute the incremental

secret tree, and hence perform SL modular multiplication and SL-1 OWF computations. In

 26

addition, to update the HOFT by performing a tree product, it needs to perform SL

modular multiplication computations. In total, the key server needs to perform 2SL

modular multiplication computations and SL-1 OWF computations.

5.3 Adding a member

Fig. 16 Adding a member

As illustrated in Figure 16, to add a joining member x13 to a secret tree X, the key server

first performs a tree blinding operation f on X to obtain a blinded tree Y = f(X), then uses

an algorithm similar to that provided in section 4.3.1 on Y to produce the corresponding

increment secret chain C. The key server broadcasts the incremental secret chain C to all

members by sending its leaf node c6 encrypted under the g(x1) (recall that x1 is the old

group key), i.e., {c6}_ g(x1). It also needs to supply the joining member x13 with the

blinded node secrets associated with the siblings of the nodes in its path to the root of

Ynew. All those secrets are encrypted under the joining member’s leaf node key K13, i.e.,

{f(y6), f(y7), f(y2)}_K13. In a word, to add member x13, the key server needs to broadcast a

rekeying message: {c6}_ g(x1), {f(y6), f(y7), f(y2)}_K13.

The joining member extracts all those blinded node secrets from the rekeying message

and computes all the node secrets in its path to the root in a bottom-up manner. All the

other members can extract the leaf node secret c6 of the incremental secret chain C from

the rekeying message and reconstruct the whole incremental secret chain C by recursively

applying the OWF f to c6. Therefore, they can update all rekeyed node secrets and

rekeyed blinded node secrets of their own by multiplying their old values by the

corresponding incremental secrets.

 27

Consider a full and balanced OFT with n members (after the join). When a member

joins the group, the key server only needs to encrypt and send one incremental secret c6.

To supply the joining member with blinded node secrets, it needs to encrypt and send

log2n blinded node secrets. In total, the key server needs to encrypt and send log2n+1

secrets which nearly halves the broadcast size of original OFT scheme. There is also cost

associated with OWF and multiplication computations at the key server. The key server

needs to compute the blinded tree Y from secret tree X, and hence perform 2n-2 OWF

computations. The key server needs to compute the incremental secret chain C, and hence

perform log2n+1 OWF computations and two multiplication computations. It needs to

compute a tree product of X and the incremental secret chain C, and hence perform log2n

multiplication computations. In total, the key server needs to perform 2n+log2n-1 OWF

computations and log2n+2 multiplication computations.

5.4 Adding multiple members in a bulk operation

Fig. 17 Adding multiple members

Taking Figure 17 as an example, to add members x9, x11, and x15 to a secret tree X, the

key server first performs a tree blinding operation f on X to obtain a blinded tree Y = f(X),

then uses the algorithm provided in section 4.3.1 on Y to produce the corresponding

increment secret tree T. Now, the key server needs to communicate the changes in the

secret tree by broadcasting the incremental secret tree T. It only needs to send every leaf

node secrets of T encrypted under the g(x1) (recall that x1 is the old group key), i.e., {t4, t5,

t7}_g(x1). After decrypting this message, every pre-existing member can reconstruct the

whole incremental secret tree T. Therefore, they can accordingly update their own

 28

rekeyed node secrets and rekeyed blinded node secrets. In addition, the key server also

needs to supply every joining member with blinded node secrets. In a word, to add

members x9, x11 and x14 to the secret tree X, the key server needs to send a rekeying

message: {t4, t5, t7}_g(x1), {f(y4), f(y5
new), f(y3

new)}_K9, {f(y5), f(y4
new), f(y3

new)}_K11, {f(y7),

f(y6), f(y2
new)}_K14.

Consider a full and balanced OFT with n members (after l members join). When l

members join the group, to communicate the incremental secret tree T to all pre-existing

members, the key server needs to encrypt and send l leaf node secrets of T. In addition, to

supply every joining member with their blinded node secrets, it needs to encrypt and send

l∗log2n blinded node secrets. In all, the key server needs to send (l + l∗log2n) (Keys) +

l∗log2n (bits). There is also cost associated with OWF and multiplication computations at

the key server. The key server needs to compute a blinded node secret tree Y from

original key tree X, and hence perform 2n-2l-2 OWF computations. The key server needs

to compute the incremental secret tree, and hence perform SL+l-1 OWF computations and

SL+2l multiplication computations (recall that the size of an incremental secret tree is

denoted by SL). It needs to compute a tree product of X and the incremental secret tree T,

and hence perform SL multiplication computations. In total, the key server needs to

perform 2n-l+SL-3 OWF computations and 2SL+2l multiplication computations.

5.5 Comments on choosing OWF candidates for HOFT

Because OWF computations are intensive in our scheme, choosing an efficient

homomorphic OWF is crucial for our scheme. The candidates can be homomorphic

trapdoor functions like Rabin functions or RSA functions with small encryption exponent.

Thanks to its superior performance, Rabin functions are preferred. For Rabin functions,

the public key parameters are generated as follows:

- Choose two large distinct primes p and q with p ≡ q ≡ 3 (mod 4).

- Let n = p∗q. Such number n is called Blum number.

Then the public key is n, and the private key is p and q. The set of all quadratic

residues modulo n is denoted by Qn. Rabin function is a trapdoor OWF mapping Zn
* to Qn

defined as follows:

- For an integer x ∈ Zn
*, compute y = x2 mod n.

 29

 Inverting this function requires computing square roots modulo n. The latter problem is

computationally equivalent to factoring n (in the sense of polynomial-time reduction)

[15]. Since we only employ the one-wayness of a trapdoor function, the trapdoor

information (i.e., p and q) should be safely destroyed as soon as the public parameters are

generated.

6 SECURITY ANALYSIS

In the following, for
[,]V t t

x − , we use t- to denote the time of the last update of xV before t;

for
[,]V t t

x + , we use t+ to denote the time of the first update of xV before t. We first prove

that an arbitrary pair of colluding members cannot compute any useful information about

a group key not already known. To that purpose, we use Figure 4 to analyse all possible

node keys that can be computed by a pair of colluding members. We need to consider all

possible collusion scenarios as follows:

(1) Eviction-eviction scenario

In this case, we consider the collusion between a pair of members who was

individually removed in different leave-rekeying operations. Suppose that in Figure 4, A

is first removed at time tA and later C is removed at time tC. And we also suppose that

there is no other membership changes between tA and tC. Because C stays in the group

longer than A, their knowledge about the shared node secrets in the intersection of their

paths (e.g., xI and xI’) and the siblings (xR’ and xR’’) is no more than C’s. In addition, those

shared node secrets in the intersection of their paths are changed after C is removed

according to our MKD scheme. Therefore, for these node secrets, colluding with A does

not help C. On the other hand, the unique knowledge held by A is about node secrets in

the subtree B, but this knowledge cannot be combined with C’s knowledge about node

secrets in subtree D to compute any new node secret, except A’s knowledge about L and

R that may be combined with C’s to compute xI (and consequently xI’ and so on).

However, according to our MKD scheme, A’s knowledge about L and R is
[,]A AL t t

x − and

[,]A CR t ty (recall that y is the blinded version of x), which is useless for computing new

node secret
[,]C CI t t

x + . Therefore, in this scenario, the colluding members cannot compute

any node secret not already known (including any group key).

 30

When performing leave rekeying in our MKD scheme, the key server strictly controls

access to the incremental secret chain (or key tree) not only to prevent every evictee from

accessing any part of it, but also to restrict every legitimate member to the incremental

secrets it is entitled to. Otherwise, if we grant every legitimate member full access to the

incremental secret chain (key tree) like in join rekeying, collusion between evictees is

possible. Referring to Figure 4, suppose that C has full access to the incremental secret

chain after A is removed, denoted by
AtC . Since

AtC contains the incremental secret

corresponding to
[,]A AL t t

x − , denoted by A

L

t
xc , collectively knowing A

L

t
xc and

[,]A AL t t
x − , C and

A can collude to compute
[,] [,]

A

LA A A A

t
xL t t L t t

x c x+ −= ∗ . While after C is removed (suppose

that after A and C are removed, subtrees B and D both still contain at least one legitimate

member),
[,]A AL t t

K + will be used to encrypt the incremental secret C

R

t
xc in the rekeying

message according to our scheme (Recall that
[,] [,]

()
A A A AL t t L t t

K g x+ = ＋). After

extracting C

R

t
xc from the rekeying message, C can compute C

Root

t
xc by repeatedly applying

OWF f to C

R

t
xc . Now, C can obtain

[,]C CRoot t t
x + by

computing
[,] [,]

C

RootA A A A

t
xRoot t t Root t t

x c x+ −= ∗ . Thus, group forward secrecy is violated.

(2) Collusion between a pair of members both removed in a same bulk operation

Suppose that A and C are both removed at time tAC in a same bulk operation. Referring

to Figure 4, since xL, xR and all the shared node secrets in the intersection of their paths

are changed after tAC, A and C cannot collude to compute group key
[,]AC ACRoot t t

x + and group

key at any time interval beyond tAC
+, although their knowledge about the blinded node

secrets associated with the siblings of those shared node secrets may be still effective for

a certain interval after tAC.

(3) Joining-joining scenario

We consider collusion between a pair of joining members individually added in

different join-rekeying operations. Suppose that A is added at time tA and later C is added

at time tC in Figure 4. We also suppose that there is no other membership changes

between tA and tC. The group backward secrecy is violated only when A and C can

collude to compute any past group key before tA. According to our MKD scheme, before

 31

the leaf node of A or C is added to a secret tree X, the secret tree X will be refreshed as a

whole by a tree-blinding operation. A’s (resp. C’s) knowledge relates to secret tree X after

tA (resp. X after tC). Due to the one-wayness of tree-blinding operation, no information

about X before tA (including group key) can be obtained using knowledge about X after tA

and X after tC in the sense of computational security.

(4) Collusion between a pair of members added in the same operation

In Figure 4, suppose that A and C are jointly added at time tAC in a join rekeying

operation. The group backward secrecy is violated only when A and C can collude to

compute any past group key before tAC. According to our MKD scheme, before they are

added, the key tree will be refreshed as a whole by a tree-blinding operation. That is to

say, their knowledge acquired at the time of joining is about secret tree X after tAC. Due to

the one-wayness of tree-blinding operation, no information about X before tAC (including

group key) can be obtained using knowledge about X after tAC in the sense of

computational security.

(5) Joining-eviction scenario

In Figure 4, suppose that A first joins the group at time tA and later C is removed at

time tC. If A and C collude, they trivially know the group key before A joins and after C is

removed, because C is in the group before A joins and A stays in the group after C is

removed. Therefore, colluding A and C can never compute any group key besides what

they already know.

(6) Eviction-joining scenario

Suppose that A is removed at time tA and later C joins the group at time tC. We also

suppose that there is no other membership changes between tA and tC. The time when

tree-blinding is performed is denoted by tBlind. Note that tBlind is before tC, the time when

C’s leaf node is actually added to the blinded tree. The group backward secrecy/group

forward secrecy is violated by collusion attack only when A and C can collude to

compute the group key [,]A BlindRoot t tx . After eviction, A still holds partial knowledge about

[,]A Blindt tX . After joining, C holds partial information about [,]Blind Ct tX . In fact, A can

transform his knowledge about [,]A Blindt tX into that about [,]Blind Ct tX by performing OWF f

on the former. According to Xu’s proposition 1, A and C may collude to compute certain

 32

nodes secrets of [,]Blind Ct tX (including the root node secret [,]Blind CRoot t tx). However,

[,]Blind CRoot t tx is a transient secret that never acts as a group key in our scheme. Due to one-

wayness of tree blinding, A and B can at most collude to compute new information about

[,]Blind Ct tX rather than [,]A Blindt tX (including the group key [,]A BlindRoot t tx).

Thus, the above analysis follows that an arbitrary pair of colluding members cannot

compute any useful information about a group key not already known. Furthermore, it is

easy to prove that an arbitrary collection of removed members and joining members

cannot collude to compute any group key not already known by using the same argument

as in proposition 3.1.

7. COMPARISON WITH OTHER SCHEMES

We summarize relevant discussions in section 2 and section 5 to present a comparison

between our scheme and related schemes, covering the following measures: collusion

attack, broadcast size (in bits), key server’s computational overhead and maximum

member computational cost. The two solutions to improve OFT respectively proposed by

Ku et al. and Xu et al are referred as Ku&Chen scheme and Xu scheme. Since both

schemes did not give the specific algorithms for processing multiple membership changes,

we omit them from relevant comparison. Cost analysis for batch group rekeying using

LKH is based on scheme proposed by Li et al. [18]. In Table 1, n is the number of

members in the group, SL is the size of the CAT when l changes in membership happen,

and K is the size of a cryptographic key or secret in bits. According to [7], the size of the

incremental secret tree SL satisfies 2l+log2(n/l)-2<SL<2l+l∗log2(n/l)-1. CE, Ch, Cf, and CM

denote the computational cost of one evaluation of the encryption function E, one

evaluation of hash function, one evaluation of trapdoor OWF f, and one modular

multiplication respectively. Note that for every entry associated with broadcast size,

besides the cost for cryptographic keys, the additive log2n (or l∗log2n) bits are cost of

position information used to locate a leaf node (or l leaf nodes) associated with a

changing member (or l changing members).

 33

Table 1 Comparison with related scheme

(1) Adding a member
LKH OFT Ku&Chen Xu HOFT

Collusion attack no yes no no no

Broad. size(bits) 2log 2n*K+log 2n 2log 2n *K+log 2n 2log 2n *K+log 2n
2log 2n *K+log 2n or

((log 2n)2+2log 2n)*K+log 2n
(log 2n +1)*K+log 2n

Server comp. 2log 2n *C E 2log 2n *(C E +C h) 2log 2n *(C E +C h)
2log 2n *(C E +C h) or

((log 2n)2+2log 2n)*(C E +C h)
(log 2n +1)*C E + (2n+log 2n-

1)C f + (log 2n+ 2)*C M

Max. Pre-existng
mem. comp.

log 2n *C E C E +log 2n *C h C E +log 2n *C h C E +log 2n *C h C E +log 2n* (2C f +C M)

(2) Removing a member
LKH OFT Ku&Chen Xu HOFT

Collusion attack no yes no no no

Broad. size(bits) 2log 2n*K+log 2n log 2n *K+log 2n ((log 2n)2+log 2n)*K+log 2n log 2n *K+log 2n (log 2n +1)*K+log 2n

Server comp. 2log 2n *C E log 2n *(C E + 2C h) ((log 2n)2+2log 2n)*(C E +C h) log 2n *(C E + 2C h)
(log 2n +1)*C E +log 2n*

C f + (log 2n+ 2)*C M

Max. mem. comp. log 2n *C E C E +log 2n*C h log 2n* (C E +C h) C E +log 2n*C h
C E +log 2n*C f + (log 2n

+ 1)*C M
(3) Adding l members

Collusion attack no yes no

Broad. size(bits) (2S L -l)*K+l*log 2n (S L +l*log 2n)*K+l*log 2n (l +l *log 2n)*K+l*log 2n

Server comp. (2S L -l)*C E S L *C E + (2S L -l)*C h
(l + l*log 2n)*C E + (2n -l +S L -

3)*C f + (2S L + 2l)*C M

Max. mem. comp. log 2n *C E log 2n *(C E +C h) l *C E +log 2n* (2C f +C M)

LKH OFT HOFT

 (4) Removing l members

Collusion attack no yes no

Broad. size(bits) (2S L -l)*K+l*log 2n (S L +l- 1)*K+l*log 2n (S L +l- 1)*K+l*log 2n
Server comp. (2S L -l)*C E (S L +l- 1)*C E + 2S L *C h (S L +l- 1)*C E + (S L - 1)*C f + 2S L C M

Max. mem. comp. log 2n *C E log 2n *(C E +C h) log 2n *(C E +C f)+ (2log 2n+ 1)*C M

LKH OFT HOFT

OFT based schemes have better leave-rekeying efficiency than LKH scheme. Another

advantage of OFT-based schemes in processing single membership change over LKH is

that members without membership change have less computational overhead. It is worth

noting that this merit possessed by OFT has been noticed neither by its inventors nor by

existing literatures. Due to using a trapdoor OWF (e.g., Rabin function) instead of a much

faster hash function (e.g., SHA1), HOFT has higher computational overhead than original

 34

OFT scheme, especially in conducting join rekeying. But it is worth trading off

computational cost for collusion-freeness as well as lower communication overhead.

What’s more, for network based group communication, the communication efficiency is

the main concern rather than computational efficiency within a computer, especially

considering Moore's law. Among all collusion-free schemes (even including OFT),

HOFT has best join-rekeying communication efficiency. Because in join rekeying based

on HOFT, the key server only needs to broadcast all the leaf nodes of an incremental

secret tree (or key chain) rather than a whole CAT (which has the same size as the

incremental secret tree) as required by the original OFT scheme. Ku & Chen scheme

prevents collusion attack by changing all the keys known by an evictee on every member

eviction, which require a broadcast of quadratic size. Whereas Xu scheme only performs

additional secret update when detecting a possible collusion between an evictee and a

joining member, it has lower communication overhead than Ku & Chen scheme.

8. CONCLUSION AND FUTURE RESEARCH

In this paper, we introduce a new cryptographic construction — HOFT. Employing

HOFTs and related algorithms, we propose a MKD scheme which not only prevents

collusion attack on OFT scheme without compromising its leave-rekeying

communication efficiency, but also improves its join-rekeying communication efficiency.

If we want to construct a homomorphic authentication tree based on Merkle

authentication tree, the multiplication operation that is substituted for the concatenation

operation should be non-commutative, and a self-homomorphic OWF with respect to this

non-commutative operation (e.g., Cantor pairing function) must be found. Adding,

modifying or removing a leaf node in a homomorphic authentication tree will be more

efficient than in original Merkle authentication tree. We leave as an open problem the

existence of homomorphic authentication tree.

In our scheme, a HOFT is constructed in a bottom-up manner. We also can construct a

top-down homomorphic one-way function tree based on the binary hash tree proposed by

Briscoe in [19]. In MARKS, each leaf node in a binary hash tree serves as a group key in

a corresponding time slice in the group’s lifetime. In a top-down HOFT, updating leaf

node secrets can also be performed by tree product too. However, the sequence of leaf

 35

node secrets lacks pseudo-randomness and key independency among them due to

introduction of homomorphic OWF. Finding meaningful application for top-down HOFT

is a future research topic.

So far, a few of group key distribution protocols – OFT, MARKS [19] , the algorithm

proposed by Chang et al. [20], LORE [21] have been shown to be vulnerable to collusion

attacks. Developing rigorous analysis methodology and formal verification method for

these protocols are necessary. For group key exchange protocols, rigorous analysis

methodology for their provable security based on DDH (Decisional Deffie-Hellman) or

CDH (Computational Deffie-Hellman) assumption has been established [22],[23],[24].

Works on formal verification of group key exchange protocols have been done as well

[25],[26]. In contrast, we don’t see any research result related to formal verification of

group key distribution protocols. To the best of our knowledge, the only result related to

provable security of group key distribution protocols is [14]. In their work [14], Panjwani

proves that a corrected version of LKH is provably-secure against adaptive adversaries in

computational security model. We can foresee that proving that OFT is secure against

adaptive adversaries would be more difficult than LKH due to the functional dependency

among secrets in a one-way function tree. Developing formal methods to verify group

key distribution protocols as well as rigorous analysis methodology for provable security

of OFT and HOFT is the focus of ongoing work.

ACKNOWLEDGEMENT

The author thanks Ronald L. Rivest for illuminating discussions.

REFERENCE

[1] S. Deering, “Host Extensions for IP Multicasting,” RFC 1112, 1989.

[2] L. Cheung, J. A. Cooley, R. Khazan, and C. Newport, “Collusion-Resistant Group Key

Management Using Attribute-Based Encryption,” in First International Workshop on Group-

Oriented Cryptographic Protocols (GOCP), 2007.

[3] S. Rafaeli, and D. Hutchison, “A survey of key management for secure group communication,”

ACM Computing Surveys, vol. 35, no. 3, pp. 309-329, Sep, 2003.

[4] Y. Challal, and H. Seba, “Group Key Management Protocols: A Novel Taxonomy,” International

Journal of Information Technology, vol. 2, no. 2, pp. 105-118, 2005.

 36

[5] C. K. Wong, M. Gouda, and S. S. Lam, “Secure group communications using key graphs,” IEEE-

ACM Transactions on Networking, vol. 8, no. 1, pp. 16-30, Feb, 2000.

[6] D. M. Wallner, E. J. Harder, and R. C. Agee, "Key Management for Multicast: Issues and

rchitectures," Internet Draft, Internet Eng. Task Force, 1998.

[7] A. T. Sherman, and D. A. McGrew, “Key establishment in large dynamic groups using one-way

function trees,” IEEE Transactions on Software Engineering, vol. 29, no. 5, pp. 444-458, May,

2003.

[8] D. Micciancio, and S. Panjwani, “Optimal communication complexity of generic multicast key

distribution,” IEEE-ACM Transactions on Networking, vol. 16, no. 4, pp. 803-813, Aug, 2008.

[9] D. Balenson, D. McGrew, and A. Sherman, “Key management for large dynamic groups: One-

way function trees and amortized initialization,” draft-irtf-smug-groupkeymgmt-oft-00.txt, Internet

Research Task Force, August 2000.

[10] G. Horng, “Cryptanalysis of a Key Management Scheme for Secure Multicast Communications,”

IEICE Transactions on Communications, vol. E85-B, no. 5, pp. 1050-1051, 2002.

[11] W. C. Ku, and S. M. Chen, “An improved key management scheme for large dynamic groups

using one-way function trees,” in Proceedings of International Conference on Parallel Processing

Workshops 2003, pp. 391-396.

[12] X. Xu, L. Wang, A. Youssef, and B. Zhu, “Preventing Collusion Attacks on the One-Way

Function Tree (OFT) Scheme,” in Proceedings of the 5th international conference on Applied

Cryptography and Network Security, Zhuhai, China, 2007, pp. 177-193.

[13] R. C. Merkle, Secrecy, Authentication, and Public-Key Cryptosystems, Technical Report No.

1979-1, Information Systems Laboratory, Stanford University Palo Alto, Calif, 1979.

[14] S. Panjwani, “Tackling adaptive corruptions in multicast encryption protocols,” Theory of

Cryptography, Proceedings, vol. 4392, pp. 21-40, 2007.

[15] M. O. Rabin, Digitalized signatures and public-key functions as intractable as factorization,

Cambridge: Massachusetts Institute of Technology, Laboratory for Computer Science, 1979.

[16] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and public-

key cryptosystems,” Commun. ACM, vol. 21, no. 2, pp. 120-126, 1978.

[17] R. Rivest, L. Adleman, and M. Dertouzos, “On Data Banks and Privacy Homomorphisms,” in

Foundations of Secure Computation, 1978, pp. 169-180.

[18] X. S. Li, Y. R. Yang, M. G. Gouda, and S. S. Lam, “Batch rekeying for secure group

communications,” in Proceedings of the 10th international conference on World Wide Web, Hong

Kong, Hong Kong, 2001, pp. 525-534.

[19] B. Briscoe, “MARKS: Zero side effect multicast key management using arbitrarily revealed key

sequences,” in Proceedings of Networked Group Communication 1999, pp. 301-320.

[20] I. Chang, R. Engel, D. Kandlur, D. Pendarakis, and D. Saha, “Key management for secure lnternet

multicast using Boolean function minimization techniques,” in INFOCOM '99. Eighteenth Annual

 37

Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE, 1999,

pp. 689-698 vol.2.

[21] J. Fan, P. Judge, and M. H. Ammar, “HySOR: group key management with collusion-scalability

tradeoffs using a hybrid structuring of receivers,” in Proceedings of Eleventh International

Conference on Computer Communications and Networks 2002, pp. 196 - 201.

[22] E. Bresson, M. Manulis, and J. Schwenk, “On security models and compilers for group key

exchange protocols (Extended abstract),” Advances in Information and Computer Security,

Proceedings, vol. 4752, pp. 292-307, 2007.

[23] E. Bresson, and M. Manulis, “Contributory group key exchange in the presence of malicious

participants,” IET Information Security, vol. 2, no. 3, pp. 85-93, Sep, 2008.

[24] E. Bresson, O. Chevassut, and D. Pointcheval, “Provably secure authenticated group Diffie-

Hellman key exchange,” ACM Transactions on Information and System Security, vol. 10, no. 3, pp.

-, Jul, 2007.

[25] A. Gawanmeh, A. Bouhoula, and S. Tahar, “Rank Functions based Inference System for Group

Key Management Protocols Verification,” International Journal of Network Security, vol. 8, no. 2,

pp. 187-198, 2009.

[26] A. Gawanmeh, S. Tahar, and L. Ayed, “Event-B based invariant checking of secrecy in group key

protocols,” in Local Computer Networks, 2008. LCN 2008. 33rd IEEE Conference on, 2008, pp.

950-957.

