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Abstract— Providing security services for multicast, such as traffic integrity, authentication, and confidentiality 
requires securely distributing a group key to group receivers. In literature, this problem is called multicast key distribution 
(MKD). A famous MKD protocol — OFT (One-way Function Tree) has been found vulnerable to collusion attacks. 
Solutions to prevent these attacks have been proposed, but at the cost of a higher communication overhead than the 
original protocol. In this paper, we prove falsity of a recently-proposed necessary and sufficient condition for a collusion 
attack on the OFT protocol to exist by a counterexample and give a new necessary and sufficient condition for 
nonexistence of any type of collusion attack on it. We instantiate the general notion of OFT to obtain a particular type of 
cryptographic construction named homomorphic one-way function tree (HOFT). We propose two structure-preserving 
graph operations on HOFTs, tree product and tree blinding. One elegant quality possessed by HOFTs is that handling 
(adding, removing, or changing) leaf nodes in a HOFT can be achieved by using tree product without compromising its 
structure. We provide algorithms for handling leaf nodes in a HOFT. Employing HOFTs and related algorithms, we put 
forward a collusion-resistant MKD protocol without losing any communication efficiency compared to the original OFT 
protocol. We also prove the security of our MKD protocol in a symbolic security model. 
 

Index Terms— Multicast key distribution, One-way function tree, Homomorphism, Collusion 
 

I. INTRODUCTION 

Many emerging group-oriented applications, for instance, IPTV, DVB (Digital Video Broadcast), 

videoconferences, interactive group games, collaborative applications, and so on all require a 

one-to-many or many-to-many group communication mechanism. One of the most efficient 

approaches to ensure confidentiality of group communications is employing a symmetric-key 

encryption scheme. But before the sender encrypts and transmits the data over a group 

communication channel to a group of privileged users, a shared key called group key must be 
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established among them. Group key establishment can be subdivided into group key distribution 

(GKD) and group key exchange (or group key agreement). Two parallel lines of research, 

commonly referred to as broadcast encryption (BE) [1] and multicast key distribution (MKD) (or 

multicast encryption), have been established to study the GKD problem. This paper only focuses 

on MKD protocols. In contrast with stateless receivers in BE protocols,  each receiver in MKD 

protocols is stateful, which means that they are allowed to maintain a personal state and make 

use of previously learned keys for decrypting current transmissions. Generally speaking, for 

large dynamic groups, MKD protocols are often more efficient and scalable than BE protocols. 

Rather than tackling the general GKD problem as BE protocols, most MKD protocols aim to 

solve a more specific problem in the multicast encryption setting, called immediate group 

rekeying. To prevent a new member from decoding messages exchanged before it joins a group, 

a new group key must be distributed to the group when a new member joins. This security 

requirement is called group backward secrecy [2]. On the other hand, to prevent a departing 

member from continuing access to the group’s communication (if it keeps receiving the 

messages), the key should be changed as soon as a member leaves. This security requirement is 

called group forward secrecy [2]. To provide both group backward secrecy and group forward 

secrecy, the group key must be updated upon every membership change and distributed to 

legitimate members. This process is referred to as immediate group rekeying in literature. 

Respectively, the rekeying process due to a joining membership change (resp. a departing 

membership change) is referred to as join rekeying (resp. leave rekeying). For large dynamic 

groups with frequent changes in membership, it is a big challenge to design a scalable MKD 

protocol. 
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Among all generic MKD protocols in which rekey messages are built using traditional 

cryptographic primitives (symmetric-key encryption and pseudorandom generators), a class of 

protocol called tree-based protocol [3],[4],[5] is the most efficient one to date in terms of 

communication overhead. They have a communication complexity of O(log2n) for a group size 

of n. A recent result by Micciancio et al. [6] has also confirmed that log2n is the optimal lower 

bound on the communication complexity of generic MKD protocols. The first tree-based MKD 

protocol is the Logical Key Hierarchy (LKH) [3],[4]. The OFT protocol [7],[5] halves the 

communication overhead of LKH in case of leaving rekeying by deriving its key tree in a 

bottom-up manner. However, Horng [8] showed that OFT is vulnerable to a particular kind of 

collusion attack. Soon after, Ku and Chen [9] found new types of collusion attacks, and they 

proposed an improved protocol to prevent any collusion attack. But leaving rekeying using their 

approach requires a communication complexity of O((log2n)2+log2n). Recently, Xu et al. [10] 

showed that all the known attacks on OFT can be subsumed by a generic collusion attack. They 

also derived a necessary and sufficient condition for such an attack to exist and further proposed 

a protocol to prevent collusion attacks while minimizing the average broadcast size of rekeying 

message. However their protocol requires a storage linear to the size of the key tree (O(2n-1)) 

and still has a much bigger broadcast size than the original OFT protocol. 

In this paper, we prove falsity of Xu et al.’s necessary and sufficient condition for existence of 

a collusion attack on the OFT protocol by a counterexample and give a new necessary and 

sufficient condition. We introduce a new cryptographic construction named homomorphic one-

way function trees (HOFT) by respectively substituting a homomorphic trapdoor function and a 

modular multiplication for the one-way function and the exclusive-or mixing function in the 

original one-way function trees. We propose two tree operations —  tree product and tree 
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blinding —  for HOFTs and prove that both are structure-preserving. Then, we provide 

algorithms for adding/removing/changing leaf nodes in a HOFT without compromising its 

structure (i.e., functional dependency between node secrets) by performing a tree product of the 

HOFT and a corresponding incremental tree. Utilizing HOFTs and related algorithms, we put 

forward a collusion-resistant MKD protocol without losing any communication efficiency 

compared to the original OFT protocol. In contrast, two existing solutions [9], [10] to improve 

the OFT protocol have to trade off communication efficiency for collusion resistance. We also 

prove the security of our protocol in a symbolic security model. 

The remainder of this paper is organized as follows. Section II reviews related research results. 

In section III, we prove the falsity of Xu et al.’s necessary and sufficient condition for a collusion 

attack on OFT to exist by a counterexample. We give a new necessary and sufficient condition 

for nonexistence of an arbitrary type of collusion attack. In sections IV, we introduce a new 

cryptographic construction – Homomorphic OFT and related algorithms. Section V presents a 

collusion-resistant MKD protocol based on HOFTs and related algorithms. Section VI proves the 

security of our MKD protocol in a symbolic security model. Section VII gives a comparison 

between our protocol and other related protocols. Section VIII concludes this paper and gives 

some topics for future research. 

II. RELATED RESEARCH 

A. Tree-based MKD protocols 

The Logical Key Hierarchy (LKH) protocol was independently proposed by Wong et al. [3] 

and Wallner et al. [4]. In the LKH protocol, each internal node in the key tree represents a key 

encryption key (KEK), each leaf node of the key tree is associated with a group member and the 
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root node represents the group key. A key associated with the internal node is shared by all 

members associated with its descendant leaf nodes. Every member is assigned to the keys along 

the path from its leaf to the root. When a member leaves the group, all the keys that the member 

knows should be changed. The key server generates new keys to replace those keys and sends 

the newly-generated keys encrypted with keys that the departing member does not have access to. 

If n represents the current number of members in a group and we consider a full and balanced 

binary tree, leave rekeying using LKH requires at least 2log2n key encryptions and transmission 

by the key server. When a member joins, the key server creates a leaf node for it, and changes all 

the keys from this leaf node to the root. In addition to sending the newly-generated keys 

encrypted with the new member’s leaf node key, the key server sends each new internal node 

key encrypted under the key it is replacing, to the other members. Join rekeying using LKH 

requires encryptions and transmission of 2log2n keys by key server. 

The OFT protocol was proposed by Sherman, Balenson and McGrew [5],[7]. Each internal 

node i of a key tree is associated with a node secret xi, a blinded node secret yi and a node key Ki. 

Let x2i and x2i+1 denote the left child and right child of xi, respectively. The node secret of the root 

node is the group key. There exist two different pseudorandom functions f and g. The function f 

is used to compute a corresponding blinded node secret from a node secret, i.e., yi = f(xi); The 

function g is used to compute a corresponding node key from a node secret, i.e., Ki = g(xi). A 

node key rather than a node secret is used as a key encryption key (KEK) in a rekeying message. 

Unlike in the LKH protocol, the key server does not send each member those node secrets along 

the path from its associated leaf node to the root. Instead, it supplies each member with the 

blinded node secrets associated with the siblings of the nodes in its path to the root. Each 

member uses these blinded node secrets and its leaf node secret to compute the other node 
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secrets in its path to the root according to a functional relationship as below. A one-way function 

key tree is computed in a bottom-up manner using the pseudorandom functions f and a bitwise 

exclusive-or operation denoted by ‘’. Specifically, each internal node secret xi is computed by 

exclusive-oring y2i with y2i+1, i.e., xi = y2i  y2i+1. When a new member joins/leaves the group, all 

the node secrets in its path to the root must change (and therefore the corresponding blinded node 

secrets along this path also change). The key server sends the joining member the blinded node 

secrets it is entitled to, after encrypting them with this member’s leaf node key. In addition, the 

key server encrypts each of those changed blinded node secrets under the corresponding sibling’s 

node key, and sends them to old group members in the case of join rekeying or remaining 

members in the case of leave rekeying. Consider a full and balanced OFT with n members (after 

the join/leave). The key server needs to encrypt and send 2log2n blinded node secrets when a 

member joins. It needs to encrypt and send log2n blinded node secrets when a member leaves. 

B. Collusion attacks on the OFT protocol 

 
The functional dependency relationship among the node secrets in a one-way function tree 

allows leave rekeying using OFT to save half of communication cost as compared to that using 

LKH. However, the same relationship also renders it vulnerable to collusion attacks. 

 
Fig. 1 Scenarios of collusion attacks on OFT 



 7

The first collusion attack on the OFT protocol attributes to Horng [8]. Referring to Figure 1, 

suppose that Alice, associated with node 8, leaves at time tA, and later Candy joins the group at 

time tC and is associated with node 13 (ignore Bob’s joining for the time being). We use [ , ]A Ci t tx  to 

denote the node secret associated with node i in the time interval between tA and tC. Suppose that 

there are no changes in group membership between time tA and tC. Since after the eviction of 

Alice, x3 is not changed until Candy joins, Alice holds its blinded version 3[ , ]A Ct ty . Since x2 is 

changed when Alice leaves, and then remains unchanged at least until Candy joins, Candy 

receives its blinded version 2[ , ]A Ct ty at the time of joining. Collectively knowing 2[ , ]A Ct ty and 3[ , ]A Ct ty , 

Alice and Candy can collude to obtain the group key in the time interval [tA, tC] by 

computing 1 [ , ] 2[ , ] 3[ , ]A C A C A Ct t t t t tx y y  . Therefore, the OFT protocol fails to provide not only group 

forward secrecy against Alice but also group backward secrecy against Candy. Horng thus 

proposed two necessary conditions for a collusion attack to exist: (1) the two colluding nodes 

must be evicted and join at different subtree of the root; (2) no key update happens between time 

tA and tC. Later, Ku and Chen [9] showed that neither of these two conditions is necessary by 

proposing two new kinds of collusion attacks. Referring to Figure 1 again, the first kind of 

collusion attack can be described as follows. Suppose that Alice leaves at time tA, and later Bob 

joins the group at time tB and is associated with node 11. Also suppose that there are no changes 

in group membership between time tA and tB. For the same reason as above, Alice and Bob can 

collude to compute 2[ , ]A Bt tx . Since x3 remains unchanged during the time interval [tA, tB], Alice and 

Bob both hold its blinded version 3[ , ]A Bt ty . Therefore, both can further compute the group 

key 1[ , ]A Bt tx by 1 [ , ] 2[ , ] 3[ , ]( )
A B A B A Bt t t t t tx f x y  . This attack refutes Horng’s necessary condition (1). The 

second kind of collusion attack given by them is described as follows. Suppose that Alice leaves 
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at time tA, later Bob joins the group at time tB, and Candy joins the group last at time tC. We also 

assume that there are no changes in group membership not only between time tA and tB, but also 

between time tB and tC. After the eviction of Alice, x3 is not changed until Candy joins the group. 

Therefore, Alice holds its blinded version 3[ , ]A Ct ty even after her eviction. Since x2 is changed when 

Bob joins the group, and then remains unchanged at least until Candy joins the group, Candy 

receives its blinded version 2[ , ]B Ct ty  at the time of joining. Collectively knowing 3[ , ]A Ct ty and 2[ , ]B Ct ty , 

Alice and Candy can collude to compute the group key 1[ , ]B Ct tx (note that [ , ] [ , ]B C A Ct t t t ). This 

attack refutes Horng’s necessary condition (2). 

C. Improvements on the OFT protocol 

When a new member joins, it will be supplied with the blinded node secrets that were once 

used to compute the past group key. On the other hand, when a member leaves, it brings out the 

blinded node secrets that may be used to compute the future group key. It is thus possible for a 

pair of evicted member and joining member to combine their knowledge together to compute a 

valid group key between the time of eviction and that of joining. Therefore, it becomes 

reasonable to devise a solution to prevent collusion attacks either by preventing a departing 

member from bringing out any blinded node secrets that contain any information about the future 

group key or by supplying joining member with blinded node secrets that contain no information 

about the past group key. Each of the following two improvements on the OFT protocol is just 

aiming at one aspect to achieve collusion-resistance. 

Ku and Chen improve the OFT protocol by changing all the keys known by a departing 

member. That is to say, when a member leaves, not only all the node secrets in its path to the 

root, but also all the blinded node secrets associated with the siblings of those nodes in that path 
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must be changed. The additional updates of node secrets increase the broadcast size by (log2n)2 

keys. The key server needs to encrypt and send (log2n)2+log2n+1 keys in total.  

Xu et al. [10] observed that collusion between an evicted member and a joining member is not 

always possible and its success depends on a temporal relationship between them. It is not 

necessary to always change additional blinded node secrets as above unless a collusion attack is 

indeed possible. They proposed a stateful approach in which the key server tracks all evicted 

members and records all the knowledge held by them. Every time a new member joins, the key 

server checks against that knowledge to decide whether this joining member could have a 

successful collusion with any previous evicted member. For that purpose, their protocol has a 

storage requirement linear to the size of the key tree. The key server will not change additional 

blinded node secrets as Ku and Chen’s protocol until a successful collusion is detected. 

Therefore it has a communication overhead lower than Ku and Chen’s protocol, but still bigger 

than the original OFT protocol. 

In their paper [10], Xu et al. put forward three propositions to support the correctness and 

security of their protocol. They first consider a generic collusion attack on the OFT protocol 

(depicted in Figure 2, and notice that this figure actually combines two different key trees 

respectively at tA and tC). Before introducing their propositions, let us get familiar with some 

notations to be used. Suppose that A leaves at time tA and C joins at a later time tC. Let B, D, E, 

and F respectively denote the subtrees rooted at nodes L, R, R’, and R”. Let tDMIN, tEMIN, and tFMIN 

denote the time of the first group key update after tA that happens in D, E, and F, respectively. 

Let tBMAX, tEMAX, and tFMAX denote the time of the last group key update before tC that happens in 

B, E, and F, respectively. 
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Xu’s proposition 1: For the OFT protocol, referring to Figure 2, the only node secrets that 

can be computed by A and C when colluding are: 

- xI in the time interval [tBMAX, tDMIN], 

- xI’ in [tBMAX, tDMIN]∩([tA, tEMIN]∪[tEMAX, tC]), 

- xI” in [tBMAX, tDMIN]∩([tA, tEMIN]∪[tEMAX, tC]) ∩([tA, tFMIN]∪[tFMAX, tC]) , 

and so on, up to the root. 

In fact, it is easy to verify that all kinds of collusion attacks presented in Section II-B are 

subsumed by this generic attack. 

Xu’s proposition 2: A pair of colluding members A and C cannot compute any node secret 

which they are not supposed to know by the OFT protocol, if one of the following conditions 

holds 

- A is removed after C joins. 

- A and C both join. 

- A and C are both removed. 

Root

R”

I”

F
R’

I’

E

R

I

D

L

A C

B

Fig. 2 A generic collusion attack on OFT
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This proposition confirms that the above generic collusion attack is the only pattern of two-

party collusion attack. The same authors also give the following sufficient and necessary 

condition for a collusion attack to exist. 

Xu’s proposition 3: For the OFT protocol, an arbitrary collection of removed members and 

joining members can collude to compute some node secret not already known, if and only if the 

same node secret can be computed by a pair of members in the collection. 

Unfortunately, in their proof of this proposition, the authors claim that to compute a node 

secret not already known, the set of colluding members must already know both child blinded 

node secrets of it. This claim is wrong, since the colluding members may not know those child 

blinded node secrets at first, but can collude to compute them. 

III. A NEW NECESSARY AND SUFFICIENT CONDITION 

In this section, we first present an interesting counterexample that refutes the necessity of Xu’s 

proposition 3, and then propose a new necessary and sufficient condition for the nonexistence of 

an arbitrary type of collusion attack on the OFT protocol. At last, we reveal that for OFT-based 

protocols, security against collusion attacks follows from security against collusion between an 

arbitrary pair of evicted member and later-joining member. 



 12

A. A counterexample 

 
We consider a collusion scenario depicted in Figure 3 (notice that this figure actually 

combines multiple key trees respectively at different time ti (i =1, , 7)). Suppose that Alice (A) 

and Colin (C) leave the group at time t1 and t2, respectively, and Dean (D) and Bob (B) join the 

group at time t7 and t8, respectively. It is assumed that the chronological order of t1, t2,  , and t8 

corresponds with the numerical order of  their subscripts. Let α, β, γ, δ, μ, and ν denote the 

subtrees rooted at node 4, 5, 6, 7, 2, and 3, respectively. In addition to the above changes in 

group membership, there are changes at time t3, t4, t5, and t6, which happened in α, γ, δ, and β, 

respectively. Let X
MAXt denote the time of the last group key update before X joins the group that 

happens in α. Let Y
MINt denote the time of the first group key update after Y leaves the group that 

happens in β. Recall that xv denotes the node secret associated with node v and yv denotes the 

blinded version of it. Moreover, xv [t1, t2] denotes the value of node secret xv in the time interval [t1, 

t2]. 

According to Xu’s proposition 1, Alice and Bob can collude to compute x2 in the time interval 

[ B
MAXt , A

MINt ], i.e.,
3 62[ , ]t tx ; Colin and Dean can collude to compute x3 in the time interval [ D

MAXt , C
MINt ], 

i.e., 
4 53[ , ]t tx . Thus, collectively knowing 

3 62[ , ]t tx and
4 53[ , ]t tx , Alice, Bob, Colin and Dean can collude 

Fig. 3 A counterexample against Xu’s proposition 3
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to compute
4 51[ , ]t tx . However, we shall show that each pair of evicted member and joining member 

cannot collude to compute
4 51[ , ]t tx . 

According to Xu’s proposition 1, all the node secrets that can be computed by Alice and Bob 

when colluding are: 

- x2 in the time interval [ B
MAXt , A

MINt ], i.e.,
3 62[ , ]t tx , 

- x1 in the time interval [ B
MAXt , A

MINt ]∩([t1, A
MINt ]∪[ B

MAXt ,t8]), but evaluation of this formula results 

in [t3, t6] ∩([t1,t2]∪[t7,t8])= φ.  

Thus, Alice and Bob cannot collude to compute
4 51[ , ]t tx . By the same argument, we can prove 

that for the rest of eviction-joining scenarios, i.e., the collusion between Colin and Dean, that 

between Alice and Dean, or that between Colin and Bob, 
4 51[ , ]t tx cannot be computed either. This 

counterexample thus falsifies the necessity of Xu’s proposition 3. 

B. A new necessary and sufficient condition 

For OFT-based protocols, the functional dependency between node secrets follows an important 

result concerning collusion attacks as follows. 

Theorem 1: For a One-way Function Tree X with n legitimate members, an arbitrary collection 

of k (2≤k≤n) parties cannot collude to compute any node secret not already known (including 

the group key), if and only if an arbitrary pair of parties cannot collude to compute any node 

secret not already known. 

Proof: For an arbitrary node secret xi in a key tree X, we use x2i and x2i+1 to denote its left child 

and right child respectively. The blinded version of xi is denoted by yi. The necessity is trivial. 

We prove sufficiency using induction over k. It is trivially true for k=2. Now suppose that it is 
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true for any arbitrary k<m (m<n), we prove it is true for k=m by contradiction. Suppose that there 

exists a key tree X0 and a group of m parties (denoted by S) who can collude to compute a node 

secret xi[a,b] not already known, we divide S into an arbitrary sub-group S’ of size m-1 and a 

remaining party mi. According to the inductive hypothesis, an arbitrary collection of parties in S’ 

cannot collude to compute any node secret not already known (including xi[a,b]). On the other 

hand, xi[a,b]  is unknown to mi itself since xi[a,b] is unknown to the group S (including mi). In this 

case, the only possible way for parties in S to produce a new node secret xi[a,b] on the one-way 

function tree X0 is that some party mi’ in S’ already knows x2i[c,d] ([a,b][c,d]) (or x2i+1[e,f] 

([a,b][e,f])) and mi already knows x2i+1[e,f] ([a,b][e,f]) (or x2i[c,d] ([a,b][c,d])) such that they 

can collude to compute xi[a,b]= f(x2i[c,d]) f(x2i+1[e,f]). But that is a contradiction to the initial 

assumption that an arbitrary pair of parties cannot collude to compute any node secret not 

already known.           

According to Theorem 1, preventing an arbitrary collusion attack on an OFT-based protocol 

(Notice that here we mean preventing any collection of parties from colluding to compute any 

not-already-known node secret on an OFT tree) is reduced to preventing collusion between an 

arbitrary pair of parties. Furthermore, Xu’s proposition 2 confirms that the latter can be reduced 

to preventing collusion between an arbitrary pair of evicted member and later-joining member. 

Thus, if one is interested in analyzing the security of an OFT-based protocol against collusion 

attacks, it suffices to prove it secure against collusion between an arbitrary pair of evicted 

member and later-joining member only; immunity to an arbitrary collusion attack follows from 

this automatically! Thus, we have the following theorem. 

Theorem 2: An OFT-based protocol is secure against collusion attacks if it is secure against 

collusion between an arbitrary pair of evicted member and later-joining member. 
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As we discussed in Section II-C, both Ku and Chen’s improvement on OFT protocol and Xu’s 

are meant to prevent collusion between an arbitrary pair of evicted member and later-joining 

member. It is easy to prove that both are secure against this type of collusion attack using Xu’s 

proposition 1. 

IV. HOMOMORPHIC ONE-WAY FUNCTION TREES 

A. Definition 

Before we give the definition of a homomorphic one-way function tree, let’s review some 

basic mathematical concepts. A group G with its operation “” is denoted by (G, ). Given two 

groups (G, ) and (H, ·), a group homomorphism from (G, ) to (H, ·) is a function f : G → H 

such that for all u and v in G, it holds that f(uv) = f(u)·f(v). One can easily deduce that a group 

homomorphism f maps the identity element eG of G to the identity element eH of H, and maps 

inverses to inverses in the sense of f(u-1) = f(u)-1. According to this definition, the Rabin function  

[11] and the RSA function [12] are both homomorphic. 

Since all nodes in an OFT are homogeneous (i.e., cryptographic keys), we choose to use self-

homomorphism that maps an Abelian group G to G. If every node secret in an OFT X is an 

element of an Abelian group G, we say X is defined over G.  

Definition 1 Homomorphic OFT — A homomorphic OFT (HOFT) over an Abelian group (G, 

) is a binary key tree that is computed using a self-homomorphic OWF f and the multiplicative 

operation “” in a bottom-up manner as follows. For an arbitrary node secret xi in a HOFT X, 

suppose that its left child and right child are denoted by x2i and x2i+1 respectively, and we have xi 

= f(x2i)  f(x2i+1). 
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B. Two structure-preserving operations on HOFTs 

 
A binary operation (resp. unary operation) is said to be structure-preserving if the operation 

takes two HOFTs (resp. one HOFT) as inputs (resp. input) and outputs a HOFT. For convenience, 

we shall interchangeably use the same notation “xi” or “yi” to denote either a node itself or its 

associated node secret in Section IV. 

Definition 2 Tree product — Given two arbitrary HOFTs X and Y, both defined over an 

Abelian group (G, ), if X and Y are isomorphic, a tree product of X and Y, denoted by X  Y, is 

computed by multiplying their corresponding node secrets (see Figure 4). 

Note that although we use the same notation “” for both group operation and tree product, its 

meaning is context-evident.  

Theorem 3: Given two arbitrary isomorphic HOFTs X and Y, both defined over an Abelian 

group (G, ), the result of a tree product X  Y is also a HOFT. 

Proof: Let X and Y are two arbitrary HOFTs defined over an Abelian (G, ), and Z = X  Y. We 

prove Z is also a HOFT. For an arbitrary node secret zi  Z, we have 

zi = xi  yi                                                     (Definition 2) 

= (f(x2i)  f(x2i+1))  (f(y2i)  f(y2i+1))          (Definition 1) 

= (f(x2i)  f(y2i)) (f(x2i+1)  f(y2i+1))           (“” is commutative and associative) 

= f(x2i  y2i)  f(x2i+1  y2i+1)                        (f is homomorphic) 

Fig. 4 Tree product 
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= f(z2i)  f(z2i+1)                                          (Definition 2). 

Thus, Z is a HOFT according to Definition 1.       

It follows that tree product is structure-preserving. 

 
Definition 3 Tree blinding — For an arbitrary HOFT X defined over an Abelian group (G, ) 

in conjunction with a homomorphic one-way function (HOWF) f, a tree blinding operation based 

on f maps X to another key tree Y, denoted by Y = f(X). Y is computed by applying f to every node 

of X (see Figure 5). We call Y a blinded tree of X. 

Theorem 4: For an arbitrary HOFT X over (G, ), the blinded tree of X, i.e.,  f(X) is also a 

HOFT. 

Proof: Let X is an arbitrary HOFT and Y = f(X). We prove Y is also a HOFT. For an arbitrary 

node secret yi  Y, we have 

yi = f(xi) 

   = f(f(x2i)  f(x2i+1))                          (X is a HOFT) 

= f(y2i  y2i+1)                                   (Y = f(X)) 

= f(y2i)  f(y2i+1)                               (f is homomorphic) 

Thus, Y is a HOFT according to Definition 1.       

x1

x3

x5

x2

x4

y1

y3

y5

y2

y4

X Y=f(X)

(yi = f(xi))

f

Fig. 5 Tree blinding
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It follows that tree blinding is also a structure-preserving operation. Due to one-wayness of f, 

tree blinding operation helps conceal information about each node secrets of a key tree without 

compromising its structure. 

C. Algorithms for handling leaf nodes in HOFTs 

In tree-based MKD protocols, adding or removing members involves adding or removing 

corresponding leaf nodes in a key tree. In this section, we provide algorithms for handling 

(adding, removing, or changing) leaf nodes in a HOFT X without compromising its structure by 

performing a tree product of X and an incremental tree (or incremental chain). First of all, we 

introduce a concept called Combined Ancestor Tree that was proposed by Sherman and McGrew 

[5]. For a set of leaf nodes, the subtree consisting of all ancestors of those leaf nodes is called a 

Combined Ancestor Tree (CAT). Especially, an ancestor chain is an instance of a CAT that has 

one single leaf node. In below, we only discuss the general (complicate) case —

adding/removing/changing multiple leaf nodes in a HOFT. Algorithms for 

adding/removing/changing a single leaf node can be easily derived from those given here. 

1) Algorithm 1— adding multiple leaf nodes 

 

 

Fig. 6 Normalization for multiple additions
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Referring to Figure 6, we want to add leaf nodes x9, x25, and x31 to X. To maintain the balance 

of a key tree, we prefer to choose those shallowest nodes as the growing points (i.e., the place 

where a new node will be added), for example, x4, x12, and x15 in this case. We use T{4,12,15}to 

denote the CAT induced by x4, x12, and x15. Adding multiple leaf nodes to a HOFT without 

compromising its structure takes two steps. The first step called normalization (depicted in 

Figure 6) is in fact to perform a tree product of X and a normalizing tree T(1). The purpose is to 

turn the value of each leaf node secret of the CAT T{4,12,15} into the identity element of G. The 

normalizing tree T(1) is constructed from T{4,12,15} by first changing the value of each leaf node 

secret of T{4,12,15} into its corresponding inverse in G, and then computing all the other internal 

node secrets in a bottom-up manner as described in Definition 1. 

 
The second step called expansion (illustrated in Figure 7) is to perform a tree product of the 

output of the first step, i.e., X’ and an expanding tree T(2). New leaf nodes are actually added onto 

X in this step. The expanding tree T(2) is also constructed from T{4,12,15} by first creating two new 

child nodes for each leaf node xi of T{4,12,15} such that the node secret formerly associated with xi 

is now associated with the left child of xi, and a new node secret is associated with the right child 

Xnew

x5

x13 x14

x26 x27 x28 x29

x56 x57

x4 x9

x12 x25 x15 x31

Expanding tree T(2)

x4 x9

x12 x25 x15 x31

e e

e

=

X’

x1'

x2' x3'

x6' x7'

t1
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(2)

t4
(2) t6

(2)
t7

(2)
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t15
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Fig. 7 Expansion for multiple additions 
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of xi, and then computing all the other internal node secrets in a bottom-up manner. The output of 

expansion is the final result — an updated key tree Xnew. 

 
To simplify the two-step process, we introduce a concept called incremental tree. From X to 

Xnew, the corresponding incremental tree T depicted in Figure 8 is obtained by performing a tree 

product of the normalizing tree T(1) and its counterpart in the expanding tree T(2). Notice that in 

Figure 8, we use a dotted circle (shaded or not shaded) to denote node that does not directly 

involve in a tree product computation, but whose position should be remembered. Now, Xnew can 

be obtained from X by first directly performing a tree product of X and T, then creating two new 

child nodes for each node whose place is formerly a growing point, such that the node secret 

formerly associated with a growing point is now associated with one child, and a new node 

secret is associated with the other child. 

 

Fig. 8 An incremental tree for multiple additions 
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2) Algorithm 2 — removing multiple leaf nodes 

 
As illustrated in Figure 9, to remove x9, x11 and x13 from a key tree X without compromising its 

structure, the first step is similar to the normalization step for adding multiple leaf nodes.  

 
  The second step called contraction as illustrated in Figure 10, is to perform a tree product of the 

output of the first step, i.e., X’ and a contracting tree T(2). The contracting tree T(2) is constructed 

from CAT T{4,5,6} by first replacing each leaf node of T{4,5,6} with its child in X not to be removed, 

and then computing all the other internal node secrets in a bottom-up manner. 

  Similar to the incremental tree for multiple additions (Figure 8), the incremental tree T for these 

multiple removals can also be obtained by performing a tree product of the normalizing tree T(1) 

and the contracting tree T(2). Now, the updated new key tree Xnew can be obtained from X by first 

deleting each leaf node in need of removing and its corresponding sibling (even if it is a subtree), 

then performing a tree product of the resulting tree and T. 

 

Fig. 9 Normalization for multiple removals 

Fig. 10 Contraction for multiple removals
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3) Algorithm 3 — changing the value of multiple leaf nodes 
 

 
As illustrated in Figure 11, to change the value of leaf nodes x4, x5, x12, x26, x29, and x15 in Xnew 

into a new value without affecting other leaf nodes and compromising the structure of Xnew, we 

randomly select seeds s4, s5, s12, s26, s29, and s15. Then we compute an increment tree S in the 

bottom-up manner and perform a tree product of Xnew and S. Of course, the value of all the 

internal nodes in the path from the changed leaf node to the root node is also changed. Obviously, 

to trigger changing the value of the root node of a HOFT T without compromising T’s structure, 

we can choose to change a shallowest leaf node in T using the above algorithm. An efficient way 

to change all leaf nodes of a HOFT without compromising it structure is using the tree blinding 

operation. 

V. A COLLUSION-RESISTANT MKD PROTOCOL BASED ON HOFTS 

Employing the three algorithms provided in Section IV, we are able to put forward a 

collusion-resistant MKD protocol (we call it the HOFT protocol). When members join or leave, 

all the node secrets on the corresponding CAT should be changed. The key server uses 

algorithms provided in Section IV to construct an incremental tree (or chain), and update the key 

Xnew

x5

x13 x14

x26 x27 x28 x29

x56 x57

x4 x9

x12 x25 x15 x31

increment tree S

s5

s13 s14

s26 s29

s4

s12 s15

Node in need of change

 

Fig. 11 Changing the value of multiple leaf node 
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tree by performing a tree product of it and the incremental tree. After that, the key server needs 

to communicate all the changes in the key tree to group members by broadcasting the 

incremental tree (or chain) such that legitimate members can update their rekeyed node secrets 

and rekeyed blinded node secrets by multiplying those secrets by their corresponding 

incremental secrets. The essential task of a MKD protocol based on HOFTs is to strictly control 

access to the incremental tree (or chain) to ensure group forward secrecy and group backward 

secrecy.  

Bursty behaviour (a number of membership changes happen simultaneously), periodic group 

rekeying or batch group rekeying all require a bulk operation that can process multiple 

membership changes simultaneously. The broadcast size and computational effort of multiple 

additions and removals can be substantially reduced by using a bulk operation that removes and 

adds multiple members simultaneously rather than repeatedly applying individual adding or 

removing operations. This reduction results from the fact that a set of individual operations may 

repeatedly change node secrets along common segments of the key tree. Although we only 

present the protocol for adding/removing multiple members, group rekeying protocol for 

adding/removing a single member can be easily derived from those given here. 

In the following passages, for any leaf node of a key tree, we shall interchangeably refer to it 

and its associated member for simplicity. Similar to OFT, we also use a pseudorandom OWF g to 

compute each node key Kv from its corresponding node secret xv, i.e, Kv = g(xv).  

A. Removing multiple members in a bulk operation 

  Taking the scenario depicted in Figure 9 as an example, to remove members x9, x11 and x13 from 

the current key tree X, the key server uses algorithm 2 provided in Section IV to compute a 

incremental tree T except that during contraction operation, it needs to replace each leaf node of 
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CAT T{4,5,6} (resp. x4, x5, x6) with a rekeyed sibling of an evictee (resp. x8’, x10’, x12’). Then the 

key server sends the blinded version of each incremental secret ti encrypted under the node key 

associate with the sibling of xi
new (if exists) in the updated key tree Xnew, for example, 

{f(t2)}_K3
new, {f(t3)}_K2

new, {f(t4)}_K5
new

 (recall that Ki
new = g(xi

new)). In addition, the key server 

sends the sibling of each evictee a new node secret encrypted under its old value, i.e., {x8’}_K8, 

{x10’}_K10, {x12’}_K12 (recall that Ki = g(xi)).  

After every legitimate member receives the rekeying message, it extracts all blinded 

incremental secrets it is entitled to, and computes all incremental secrets it is entitled to in the 

incremental tree T in a bottom-up manner, and then updates its own rekeyed node secrets/ 

blinded node secrets by multiplying their old values by their corresponding incremental secrets. 

Consider a full and balanced HOFT with n members. When l members leave, we can compute 

the broadcast overhead by the size of the induced incremental tree. We denote the size of the 

incremental tree induced by l leaving (joining or changing) members by S(l). According to [5], 

S(l) satisfies      2 22 1 log / 2 1 log /l n l S l l l n l             . To remove l members, the key server 

needs to encrypt and send S(l)+l-1 secrets. In addition, the key server needs to perform 2S(l) 

modular multiplication computations and S(l)-1 OWF computations. 

B. Adding multiple members in a bulk operation 

At first, we give the following concept.  

Definition 4 Dangling subtree — For a tree X and a subtree T of X, let v be a vertex in T. If v 

has a child not in T then every subtree rooted at a child of v not in T is called a dangling subtree 

of T in X. 
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For example, referring to the right part of Figure 7, all the dangling subtrees of T{9, 25, 31} in 

Xnew
 are subtrees respectively rooted at x4, x5, x12, x13, x14, and x15 (Notice that some subtree may 

contain only one node). For a full binary tree with n leaves, the number of dangling subtrees of 

an arbitrary subtree with l leaves are at most llog2(n/l) (this claim immediately follows from 

Claim 1 of [13]). 

Taking the scenario depicted in Figure 6 as an example, to add members x9, x25, and x31 to a 

HOFT X, the key server needs to perform the following two steps: 

(1) Add x9, x25, and x31 onto X 

The key server uses the same algorithm 1 provided in Section IV on X to compute the 

corresponding incremental tree T (refer to Fig. 8, and here we call it the first incremental tree) 

and update the key tree X. Let Xnew denote the updated key tree obtained after the first step (Fig. 

7).  

(2) Change all the blinded node secrets before supplying them to each joining member 

As mentioned in Section II-C, to prevent the possible collusion between a pair of evicted 

member and joining member, one of solutions is changing all the blinded node secrets before 

supplying them to each joining member. Referring to the HOFT Xnew in Figure 7, all the 

corresponding node secrets in need of change are accordingly the root nodes of all the dangling 

subtrees of CAT T{9,25,31}, i.e., x4, x5, x12, x13, x14, and x15. As stated in algorithm 3 in Section VI, 

to trigger changing the root node of each dangling subtree, we can choose to change a shallowest 

leaf node of it. Therefore, to change the root nodes of all the dangling subtrees of CAT T{9,25,31}, 

the leaf nodes in need of change accordingly are x4, x5, x12, x26, x29, and x15. Now we use 

algorithm 3 provided in Section IV to compute an increment tree S (see Fig. 11, here we call it 
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the second incremental tree) and update the tree Xnew. Let XFin denote the final updated key tree 

obtained after the second step.  

 To distribute the first incremental tree T to old members, the key server sends every leaf node 

secret of T encrypted under the old group key K1 [recall that K1 =g(x1)], i.e., {t4, t12, t15}_K1. To 

distribute the second incremental tree S to old members, the key server sends every leaf node 

secret of S encrypted under the old group key K1, , i.e., {s4, s5, s12, s26, s29, s15}_K1. After 

decrypting these two messages, every old member can reconstruct these two incremental trees T 

and S. Therefore, they can accordingly update their own rekeyed node secrets and rekeyed 

blinded node secrets. In addition, the key server also needs to supply every joining member with 

blinded node secrets it is entitled to, i.e., {f(x4
Fin), f(x5

Fin), f(x3
Fin)}_K9, {f(x12

Fin), f(x13
Fin), 

f(x2
Fin)}_K25, {f(x15

Fin), f(x14
Fin), f(x6

Fin) , f(x2
Fin)}_K31 (recall that the final updated key tree is 

denoted by XFin). 

Consider a full and balanced OFT with n members (after l members join). When l members 

join the group, the key server needs to encrypt and send (l+llog2(n/l)+llog2n) (Keys). Recall 

that S(l) denotes the size of the incremental tree induced by l leaving (joining, or changing) 

members. Also recall that the number of leaf nodes of the second incremental tree equals to the 

number of dangling trees of the CAT, i.e., llog2(n/l) at most. Therefore, the size of the first 

increment tree and the second incremental tree are respectively S(l) and S(llog2(n/l)). In addition, 

the key server needs to perform l+S(l)+S(llog2(n/l)) OWF computations and 2(S(l)+ 

S(llog2(n/l))+l) multiplication computations.  
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VI. SECURITY PROOF 

In [14], Panjwani develops a symbolic security model for studying GKD protocols. In this 

model, all keys and messages generated by a GKD protocol are treated as abstract data types and 

cryptographic primitives as abstract functions over such data types. Security notions for GKD 

protocols are defined in such a model. Panjwani also proves the security of the LKH protocol [3] 

and subset cover protocols [13] using a straightforward inductive argument. We prove the 

security of the HOFT protocol under this model as well. Since a rigorous treatment will occupy a 

full-length paper, we prove it in a less rigorous (i.e., heuristic) manner. In the following 

discussion, we will use some notations given by [14]. Consider a multicast group of n users, 

labelled 1, 2,  , n. Each user i shares a long-lived key Ki with the key server. At any time t, 

users in a specific set S(t)
  {1,2,  , n }, referred to as legitimate members at that time, are 

authorized to receive information sent over the multicast channel. The key used to encrypt all the 

information sent to S(t) is called the group key, denoted by K(t). The HOFT corresponding to S(t) is 

denote by Tr(t). Let [n] denote the set {1, , n} and let 2[n] denote the power set of [n]. 

Obviously, the group dynamics up to time t can be represented by a sequence of sets 

( ) (0) (1) ( ) [ ]( , , , ) (2 )t t n tS S S S 


 . A sequence ( ) [ ](2 )t n tS 


is called simple, if for all t1, S(t-1) changes 

into S(t) through a single change in membership. According to [14],we only need to consider 

simple sequence as arbitrary group membership updates can be simulated using simple 

sequences only. 

We present the following security definitions adapted from the related security definitions 

given by [14]. 
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Definition 5: A n-user OFT-based protocol  (including the HOFT protocol) is called correct, 

if for all t≥0, for all simple sequence ( ) [ ](2 )t n tS 


, iS(t), i always knows the node secrets on the 

path from its associated leaf node to the root (and therefore the corresponding blinded keys along 

this path) in Tr(t), and the blinded node secrets that are siblings to this path, and no other node 

secrets nor blinded secrets in Tr(t). 

Definition 6: An n-user GKD protocol  is called secure against single user attack, if for all 

t0, for all simple sequence ( ) [ ](2 )t n tS 


, iS(t), i can never recover (compute) any node secret in 

Tr(t) (including K(t)) from Ki and the entire rekeying messages throughout the lifetime of the 

group. 

Definition 7: An n-user GKD protocol  is called secure against collusion attacks, if for all 

t0, for all simple sequence ( ) [ ](2 )t n tS 


, an arbitrary set of users Col={i|iS(t)}, Col can never 

recover any node secret in Tr(t) (including K(t)) from {Ki| iCol} and the entire rekeying 

messages throughout the lifetime of the group. 

It is easy to derive that security against collusion attacks implies group forward secrecy and 

group backward secrecy for a GKD protocol. 

Theorem 5: The HOFT protocol is correct and secure against single user attack. 

Proof: We prove this claim using induction over t. For t=0, since S(0)= φ, the claim is trivially 

true. Now we argue that if the claim is true for some t-1≥0, then it is true for t as well. For any 

simple sequence ( ) (0) (1) ( 1) ( )( , , , , )t t tS S S S S


 , we only need to consider the following cases:  

Case 1 (iS(t-1)∧iS(t), and S(t-1) changes into S(t) due to a member’s leaving): According to the 

HOFT protocol, i can only recover all those incremental secrets corresponding to its rekeyed 

node secrets in Tr(t-1) and all the blinded incremental secrets corresponding to its rekeyed blinded 
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node secrets in Tr(t-1) from the rekeying messages. From inductive hypothesis, i holds all the node 

secrets and blinded node secrets in Tr(t-1) as required by Definition 5. Therefore, it still holds and 

only holds all the node secrets and blinded node secrets in Tr(t) as required by Definition 5. 

Case 2 (iS(t-1)∧iS(t), and S(t-1) changes into S(t) due to a member’s joining): According to the 

HOFT protocol, even though i can recover all the incremental secrets in the first incremental 

chain (notice that ( )tS


is simple) and the second incremental tree at time t from the rekeying 

messages, it can only update those rekeyed node secrets and blinded node secrets it holds in Tr(t-

1). From inductive hypothesis, i holds all the secret materials in Tr(t-1) as required by Definition 5. 

Therefore, it still holds and only holds all the secret materials in Tr(t) as required by Definition 5. 

Case 3 (iS(t-1)∧iS(t)): That is to say, i joins the group at time t. According to the HOFT 

protocol, every newly joining member i can recover just the same secret materials as required by 

Definition 5 from the rekeying messages. 

Case 4 (iS(t-1)∧iS(t)): That is to say, i is evicted at time t. From the inductive hypothesis, all 

secrets that i knows are the node secrets on its path to the root and the blinded node secrets that 

are siblings to this path in Tr(t-1). However, according to the HOFT protocol, all the node secrets 

on i’s path to the root in Tr(t-1) are changed at time t. Even though some blinded node secrets in 

Tr(t-1) that i brings out may not change at time t, each incremental secret in the incremental chain 

at time t is encrypted not by any blinded node secret, but by a node secret that is one of the 

siblings to i’s path to the root in Tr(t-1), and thus unknown to i. Therefore the whole incremental 

chain at time t is inaccessible to i, i can never compute any node secret on Tr(t). 

Case 5 (iS(t-1)∧iS(t)): That is to say, i is evicted before time t-1. From the inductive hypothesis, 

i can never recover (compute) any node secret in Tr(t-1). While in the rekeying message at time t, 



 30

every incremental secret is encrypted by a node secret in Tr(t-1) (in the case of both leave 

rekeying and join rekeying). Therefore, the whole incremental chain in the case of leave rekeying 

at time t (resp. the first incremental chain and the second incremental tree in the case of join 

rekeying at time t) is inaccessible to i, and thus i can never compute any node secret on Tr(t).   

In fact, the OFT protocol can also be proved to be correct and secure against single user attack 

in the same way. In their proof of Xu’s proposition 1 and Xu’s proposition 2, Xu et al. implicitly 

assume that the OFT protocol is correct and secure against single user attack. 

Theorem 6: An arbitrary pair of colluding members A and C cannot compute any node secret 

which they are not supposed to know by a HOFT protocol that is correct and secure against 

single user attack. 

Proof: As in the proof of Xu’s proposition 2, we use Figure 2 to analyse all possible node keys 

that can be computed by a pair of colluding members. In the following three cases: (1) A is 

evicted after C joins; (2) C joins after A joins; (3) C is evicted after A is evicted, our proof is just 

the same as Xu’s proposition 2 and thus omitted. We only consider the remaining cases as below.  

(4) A and C are both evicted at the same time. Referring to Figure 2, according to the HOFT 

protocol, all the node secrets on their paths to the root are changed after A and C are evicted. 

Furthermore, their knowledge about the siblings (such as node R’ and R’’) to the intersection of 

their paths is same. Therefore, they cannot compute any node secret besides what they already 

know. 

(5) A and C join at the same time. This case is similar to case (4). Thus the proof is omitted. 

(6) C joins after A is evicted. Referring to Figure 2, suppose that A is evicted at time tA and later 

C joins the group at time tC. According to the HOFT protocol, all the blinded node secrets of 

siblings (such as L, R’, and R’’) to C’s path to the root are changed at time tC. Therefore, 
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according to Xu’s proposition 1, we have [tBMAX, tDMIN]= φ. Thus, A and C cannot compute any 

node secret besides what they already know.        

Theorem 7: The HOFT protocol is secure against collusion attacks. 

Proof: We prove this claim by contradiction. According to Definition 7, suppose that there 

exist a t00 and a simple sequence 0 0( ) [ ](2 )t tnS 


such that a set of users 0( )
0 { }tCol i i S  can recover 

a node secret xi in 0( )tTr  using their long-lived keys and the entire rekeying messages. Because 

the HOFT protocol is secure against single user attack (according to Theorem 5), for each 

0( )
0

ti Col i S    , i can never recover any node secret in 0( )tTr . Therefore, users in Col0 must 

collude to compute the node secret xi. According to Theorem 1, there exists a pair of users (who 

may not belong to Col0) who can collude to compute a node secret not already known. This 

contradicts Theorem 6.          
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VII. COMPARISON WITH OTHER PROTOCOLS 

  

 

We summarize related discussions in Section II and Section V to present a comparison 

between our protocol and related protocols, covering the following measures: collusion attack, 

TABLE 1 COMPARISON WITH RELATED PROTOCOLS 
(1) ADDING A MEMBER 

LKH OFT Ku&Chen Xu HOFT
Collusion attack no yes no no no

Broad. size(bits) 2log 2n*K (2log 2n+ 1)*K (2log 2n+ 1)*K

(2log 2n+ 1)*K

or ((log 2n )2+2log 2n+ 1)*K

(when detecting collusion)

(2log 2n +1)*K

Server comp. 2log 2n *C E

(2log 2n+ 1)*C E +

(log 2n+ 1)*C h

(2log 2n+ 1)*C E +

(log 2n+ 1)*C h

(2log 2n+ 1)*C E + (log 2n+ 1)*C h

or ((log 2n )2+2log 2n+ 1)*C E +

((log2n )2+log2n +1)*C h (when detecting

collusion)

(2log 2n +1)*C E + (1+log 2n+S (log2n ))*C f +

(2S (log2n )+1)*C M (at most)

Max. old mem.
comp.

log 2n *C D 2C D +log 2n *C h 2C D +log 2n *C h

2C D +log 2n *C h

or (log2n+ 1)*C D +0.5*(log2n )2*C h

(when detecting collusion)

(1+log 2n )*C D + (log 2n +S (log 2n ))*C f +

2log 2n*C M (at most)

(2) REMOVING A MEMBER
LKH OFT Ku&Chen Xu HOFT

Collusion attack no yes no no no

Broad. size(bits) 2log 2n*K (log 2n+ 1)*K ((log 2n )2+log 2n+ 1)*K (log 2n+ 1)*K (log 2n +1)*K

Server comp. 2log 2n *C E (log 2n+ 1)*C E +log 2n*C h
((log 2n )2+log 2n+ 1)*C E +

((log2n )2+log2n )*C h

(log 2n+ 1)*C E +log 2n*C h
(log 2n+ 1)*C E + (log 2n- 1)*C f +

(log 2n+ 2)*C M

Max. mem. comp. log 2n *C D C D +log 2n*C h log 2n*C D + 0.5*(log 2n )2*C h C D +log 2n*C h C D +log 2n*C f + (log 2n+ 1)*C M

(3) ADDING l MEMBERS

Collusion attack no yes no

Broad. size(bits) (2S (l )-l )*K (S (l )+l*log 2n )*K (l +l *log2(n/l )+l *log 2n )*K (at most)

Server comp. (2S (l )-l )*C E S (l )*C E + (2S (l )-l )*C h
(l+l*log 2(n/l )+l*log 2n )*C E + (l+S (l )+S (l*log 2(n/l )))*C f +

2(S (l )+S (l*log 2(n/l ))+l )*C M  (at most)

Max. old mem. 
comp.

log 2n *C D (l+ 1)*C D +log 2n*C h

(l+l*log 2(n/l ))*C D + (S (l )+S (l*log 2(n/l )))*C f +

2log 2n*C M (at most)

LKH OFT HOFT

(4) REMOVING l MEMBERS

Collusion attack no yes no

Broad.
size(bits)

(2S (l )-l)*K (S (l )+l- 1)*K (S (l )+l )*K

Server comp. (2S (l )-l)*C E (S (l )+l -1)*C E +2S (l )*C h (S (l )+l )*C E +(S (l )-1)*C f +2S (l )*C M (at most)

Max. mem.
comp.

log 2n *C D l *C D +log 2n*C h l*C D +log 2n*C f + (2log 2n+ 1)*C M (at most)

LKH OFT HOFT
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broadcast size (in bits), key server’s computational overhead and maximum (old) member 

computational cost. The two solutions to improve the OFT protocol respectively proposed by Ku 

et al. and Xu et al. are referred to as Ku&Chen protocol and Xu protocol. Since both protocols 

did not give the specific algorithms for processing multiple membership changes, we omit them 

from relevant comparison. Cost analysis for batch group rekeying using LKH is based on 

protocol proposed by Li et al. [15]. In Table 1, n is the number of members in the group and S(l) 

is the size of the CAT induced by l leaving (joining or changing) members (Recall that 

     2 22 1 log / 2 1 log /l n l S l l l n l             ). K is the size of a cryptographic key or (blinded) 

node secret in bits. CE, CD, Ch, Cf, and CM respectively denote the computational cost of one 

evaluation of the encryption function E, one evaluation of the decryption function D, one 

evaluation of hash function, one evaluation of trapdoor OWF f, and one modular multiplication 

respectively.  

In case of leave rekeying, the OFT protocol and the HOFT protocol nearly half the 

communicational overhead of the LKH protocol. Another advantage of the OFT protocol over 

LKH lies in member’s computational overhead. Surprisingly, this merit possessed by OFT has 

been noticed neither by its inventors nor by existing literatures. Unfortunately the OFT protocol 

is subject to collusion attack. Ku & Chen protocol improves the OFT protocol to prevent 

collusion attack by changing all the node secrets and blinded node secrets known by an evictee 

on every member eviction, which require a broadcast of quadratic size. Xu protocol only 

performs additional blinded node secret update when detecting a possible collusion between an 

evictee and a joining member, thus it has lower communication overhead than Ku & Chen 

protocol. Among all collusion-resistant protocols based on OFT, HOFT is the only one that 

achieves collusion resistance without losing communicational efficiency compared to the 



 34

original OFT protocol. Moreover, when adding l multiple members in a bulk operation, the 

worst-case communication cost of HOFT protocol is less than that of the original OFT protocol 

by (l-1)K bits. However, due to using a trapdoor OWF (e.g., Rabin function) and modular 

multiplication instead of a much faster hash function (e.g., SHA1) and exclusive-or operation as 

in the original OFT protocol, HOFT has higher computational overhead than the original one, 

especially in conducting join rekeying. However, according to Canetti et al. [16], among all 

measures used to evaluate a MKD protocol, communication complexity is probably the most 

important one, as it is the biggest bottleneck in current applications. Therefore, it is worth trading 

off moderate computational cost for achieving collusion resistance and at the same time, not 

losing the communication efficiency compared to the original OFT protocol. 

VIII. CONCLUSION AND FUTURE RESEARCH 

In this paper, we instantiate the general notion of One-way Function Tree to obtain a new 

cryptographic construction named HOFT. Employing HOFTs and related algorithms, we propose 

a collusion-resistant MKD protocol without losing the communication efficiency compared to 

the OFT protocol. Finding other meaningful application of HOFT is a worthwhile topic. In our 

protocol, a HOFT is constructed in a bottom-up manner. We can construct a top-down 

homomorphic one-way function tree. But its meaningful application should receive further study 

either. To instantiate the general concept of the famous Merkle authentication tree [17] to obtain 

a homomorphic authentication tree, we must find a self-homomorphic OWF with respect to a 

non-commutative operation at first. We leave as an open problem the existence of homomorphic 

authentication tree. 
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Several GKD protocols — OFT, MARKS [18], the protocol proposed by Chang et al. [19], 

and LORE [20] — have been shown to be vulnerable to collusion attacks. Developing rigorous 

analysis methodology and formal verification method for these protocols are necessary. We 

don’t see any research result related to formal verification of GKD protocols. To the best of our 

knowledge, the only result related to provable security of GKD protocols is [21]. In this work, 

Panjwani proves that a modified version of the LKH protocol is provably-secure against adaptive 

adversaries in computational security model. Our future work will focus on the provable security 

of OFT-based protocols (especially the HOFT protocol). Developing a formal method for 

automatic verification of GKD protocols is also an ongoing work. 

ACKNOWLEDGMENT 

The authors would like to thank R. L. Rivest for valuable discussion. The authors also would 

like to thank anonymous referees whose comments helped to improve this paper greatly. 

REFERENCES 

[1] A. Fiat, and M. Naor, "Broadcast encryption," Advances in Cryptology - Crypto’93, Lecture Notes in Computer Science D. R. Stinson, 
ed., USA-Santa Barbara, California: Springer-Verlag, August 1993. 
[2] L. Cheung, J. A. Cooley, R. Khazan, and C. Newport, “Collusion-Resistant Group Key Management Using Attribute-Based 
Encryption,” in First International Workshop on Group-Oriented Cryptographic Protocols (GOCP), 2007. 
[3] C. K. Wong, M. Gouda, and S. S. Lam, “Secure group communications using key graphs,” IEEE-ACM Transactions on Networking, 
vol. 8, no. 1, pp. 16-30, Feb, 2000. 
[4] D. M. Wallner, E. J. Harder, and R. C. Agee, "Key Management for Multicast: Issues and rchitectures," Internet Draft, Internet Eng. 
Task Force, 1998. 
[5] A. T. Sherman, and D. A. McGrew, “Key establishment in large dynamic groups using one-way function trees,” IEEE Transactions 
on Software Engineering, vol. 29, no. 5, pp. 444-458, May, 2003. 
[6] D. Micciancio, and S. Panjwani, “Optimal communication complexity of generic multicast key distribution,” IEEE-ACM Transactions 
on Networking, vol. 16, no. 4, pp. 803-813, Aug, 2008. 
[7] D. Balenson, D. McGrew, and A. Sherman, “Key management for large dynamic groups: One-way function trees and amortized 
initialization,” draft-irtf-smug-groupkeymgmt-oft-00.txt, Internet Research Task Force, August 2000. 
[8] G. Horng, “Cryptanalysis of a Key Management Scheme for Secure Multicast Communications,” IEICE Transactions on 
Communications, vol. E85-B, no. 5, pp. 1050-1051, 2002. 
[9] W. C. Ku, and S. M. Chen, “An improved key management scheme for large dynamic groups using one-way function trees,” in 
Proceedings of International Conference on Parallel Processing Workshops 2003, pp. 391-396. 
[10] X. Xu, L. Wang, A. Youssef, and B. Zhu, “Preventing Collusion Attacks on the One-Way Function Tree (OFT) Scheme,” in 
Proceedings of the 5th international conference on Applied Cryptography and Network Security, Zhuhai, China, 2007, pp. 177-193. 
[11] M. O. Rabin, Digitalized signatures and public-key functions as intractable as factorization, Cambridge: Massachusetts Institute of 
Technology, Laboratory for Computer Science, 1979. 
[12] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and public-key cryptosystems,” Commun. ACM, 
vol. 21, no. 2, pp. 120-126, 1978. 



 36

[13] D. Naor, M. Naor, and J. B. Lotspiech, "Revocation and tracing schemes for stateless receivers," Advances in Cryptology—
CRYPTO ’2001, Lecture Notes in Computer Science, pp. 41–62, New York, 2001. 
[14] S. Panjwani, “Private Group Communication: Two Perspectives and a Unifying Solution,” Computer Science and Engineering 
Department, University of California, San Diego, San Diego, 2007. 
[15] X. S. Li, Y. R. Yang, M. G. Gouda, and S. S. Lam, “Batch rekeying for secure group communications,” in Proceedings of the 10th 
international conference on World Wide Web, Hong Kong, Hong Kong, 2001, pp. 525-534. 
[16] R. Canetti, T. Malkin, and K. Nissim, "Efficient communication-storage tradeoffs for multicast encryption," Advances in Cryptology - 
Eurocrypt'99, Lecture Notes in Computer Science J. Stern, ed., pp. 459-474, 1999. 
[17] R. C. Merkle, Secrecy, Authentication, and Public-Key Cryptosystems, Technical Report No. 1979-1, Information Systems Laboratory, 
Stanford University Palo Alto, Calif, 1979. 
[18] B. Briscoe, “MARKS: Zero side effect multicast key management using arbitrarily revealed key sequences,” in Proceedings of 
Networked Group Communication 1999, pp. 301-320. 
[19] I. Chang, R. Engel, D. Kandlur, D. Pendarakis, and D. Saha, “Key management for secure lnternet multicast using Boolean function 
minimization techniques,” in INFOCOM '99. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies. 
Proceedings. IEEE, 1999, pp. 689-698 vol.2. 
[20] J. Fan, P. Judge, and M. H. Ammar, “HySOR: group key management with collusion-scalability tradeoffs using a hybrid structuring of 
receivers,” in Proceedings of Eleventh International Conference on Computer Communications and Networks 2002, pp. 196 - 201. 
[21] S. Panjwani, “Tackling adaptive corruptions in multicast encryption protocols,” in Proceedings of the 4th conference on Theory of 
cryptography, Amsterdam, The Netherlands, 2007, pp. 21-40. 
 
 

Jing Liu received the Ph.D. degree in computer application technology from University of Electronic Science and 
Technology of China, Chengdu, China, in 2003. From September 2003 to July 2005, he was with No.30 Institute of 
China Electronics Technology Group Corporation, Chengdu, China, as a postdoctoral fellow. Since 2005, he has been a 
lecturer at School of Information Science and Technology, Sun Yat-Sen University, China. He has also been affiliated 
with Guangdong Key Laboratory of Information Security and Technology, Guangzhou, China, since 2005. His current 
research interests mainly focus on applied cryptography and network security. 
 
 
 
 

 
Bo Yang received the B. S. degree from Peking University in 1986, and the M. S. and Ph. D. degrees from Xidian 
University in 1993 and 1999, respectively. From July1986 to July 2005，he had been at Xidian University, from 2002, he 
had been a professor of National Key Lab. of  ISN in Xidian University, supervisor of Ph.D. In May 2005, he has served as 
a Program Chair for the fourth China Conference on Information and Communications Security (CCICS’2005). He is 
currently dean, professor and supervisor of Ph.D. at College of Informatics and College of Software, South China 
Agricultural University. He is a senior member of Chinese Institute of Electronics (CIE), a member of specialist group on 
information security in Ministry of Information Industry of P.R.China and a member of specialist group on computer 
network and information security in Shanxi Province. His research interests include information theory and cryptography. 


