
The PASSERINE Public Key Encryption and
Authentication Mechanism

Markku-Juhani O. Saarinen

Aalto University
Department of Communications and Networking

P.O.Box 13000, 00076 Aalto, FINLAND
m.saarinen@tkk.fi

Abstract. PASSERINE1 is a lightweight public key encryption mechanism which
is based on a hybrid, randomized variant of the Rabin public key encryption
scheme. Its design is targeted for extremely low-resource applications such as
wireless sensor networks, RFID tags, embedded systems, and smart cards. As
is the case with the Rabin scheme, the security of PASSERINE can be shown
to be equivalent to factoring the public modulus. On most low-resource imple-
mentation platforms PASSERINE offers smaller transmission latency, hardware
and software footprint and better encryption speed when compared to RSA or
Elliptic Curve Cryptography. This is mainly due to the fact that PASSERINE
implementations can avoid expensive big integer arithmetic in favor of a fully
parallelizable CRT randomized-square operation. In order to reduce latency and
memory requirements, PASSERINE uses Naccache-Shamir randomized multipli-
cation, which is implemented with a system of simultaneous congruences modulo
small coprime numbers. The PASSERINE private key operation is of compara-
ble computational complexity to the RSA private key operation. The private key
operation is typically performed by a computationally superior recipient such as
a base station. The PASSERINE project is entirely open source (hardware and
software).

Keywords: Rabin Cryptosystem, Randomized Multiplication, RFID, Wireless
Sensor Networks.

1 Introduction

Public key encryption is often viewed as unimplementable for extremely low-resource
devices such as sensor network nodes and RFID tags. However, public key cryptog-
raphy offers clear security advantages as fixed secret keys do not have to be shared
between the two communicating parties. The PASSERINE public key encryption op-
eration is very light, but the private key operation is approximately as computationally
demanding as the private key operation of RSA.

1.1 Usage Scenarios

We will now describe two typical scenarios where it suffices that a lightweight device
is able to perform only the public key operation.

1 Version: August 10, 2010. This is work in progress.

Authentication and establishing a secure session. In case of authentication, the main
attack scenario is that an adversary eavesdrops on the communication link between the
authenticating station and the lightweight device. If the device leaks its authentication
code, then the device can be easily cloned.

A
Interrogator

B
Tag / Node

1. {Ia, Na} Host identity and nonce.

2. {Ia, Na, Ib, Nb}Ka PK encrypted data of both parties.

3. h(Ia, Na, Ib, Nb) Optional verification hash message.

Fig. 1. A Simple Authentication Protocol.

Figure 1 illustrates a simple three-message authentication protocol. We use a nota-
tion similar to that of Lowe [11]. In Step 1, Alice the Interrogator initializes the protocol
by sending her identity Ia (an identifier that can be mapped to Alice’s public key Ka)
and a random nonce Na to Bob (RFID Tag, sensor node or other light-weight device).
Bob responds in Step 2 by encrypting Alice’s information Ia and Na together with
his own secret identifier Ib and nonce Nb with Alice’s public key Ka. Alice then de-
crypts this data using her private key K−1

a and checks the nonce Na and identity Ia.
If successful, Alice may conclude the protocol by sending a hash (or a MAC such as
an AES-CBC-MAC) of all identity and nonce data back to Bob (Step 3). This is op-
tional, depending on the application. The secret nonce Nb can then be used to establish
a secure communication link between the two parties, if so desired.

We note that this protocol requires Bob to perform public key encryption, but no
private key operations. The protocol does not leak the secret identity Ib of the tag (typ-
ically a name and a password), even in a man-in-the-middle attack. The protocol also
allows Alice to store only a salted hash of the password in Ib, rather than the password
itself. Most importantly this limits the security implications if a single Alice interrogator
station has been hacked or physically compromised.

Wireless sensor networks. In a military application a large number of sensors may
be dispersed to an area of operations to lay passively dormant until an a particular
combination of events triggers their activation. In such a scenario, key management

with symmetric-only encryption may become exceedingly difficult. A single captured
and reverse-engineered sensor unit may reveal all shared keys that it contains, possibly
compromising the entire sensor network. Use of public-key cryptography simplifies key
management and also reduces the need to protect keying information contained in the
node. Each node only needs to store its unique identifier and the public key of the secure
receiving station. The adversary can only to impersonate a single physically captured
sensor unit.

In this scenario the devices are controlled by a base station that stores their pri-
vate identifiers. The devices only need to be able to perform the public key operation
- to broadcast messages to the base station. A sensor unit can securely authenticate an
another node with the aid of the trusted base station.

1.2 Previous Work

The use of Rabin encryption in low-resource platforms has been investigated by Shamir
[20], Gaubatz et al. [7, 8] and more recently by Oren and Feldhofer [17]. The approaches
considered in these papers differ significantly from PASSERINE; Gaubatz et al. do not
consider randomized multiplication but only bit-serial multiplication. Shamir, Oren and
Feldhofer use randomized multiplication but not CRT arithmetic nor payload encod-
ing into the random mask. Systems described in [17, 20] require substantial amounts
of real randomness, which may be difficult to generate in a resource-strained device.
PASSERINE requires only a single random 128-bit key for each message. Naccache et
al. [13] use randomized multiplication and CRT arithmetic (which they call Brugia-di
Porto-Filipponi number system after [4]) in a low-resource implementation of a related
identification protocol which was subsequently broken in [5].

1.3 Section Breakdown

Section 2 describes the basic tricks used by PASSERINE: Naccache-Shamir random-
ized multiplication, CRT arithmetic, and message encoding in the randomization mask.
Our very compact prototype PASSERINE-AES implementation is described in Section
3. This is followed by a discussion on security considerations in Section 4 and our
conclusions and ongoing further work in Section 5.

2 The PASSERINE Randomized Rabin Cryptosystem

Rabin’s public key cryptosystem [18] is in many ways similar to the RSA cryptosystem.
Let n be a product of two large primes p and q. In order to facilitate implementation,
these primes are often chosen so that p ≡ q ≡ 3 (mod 4). To encrypt a message x, one
simply squares it modulo the public modulus n:

z = x2 (mod n). (1)

The Rabin private key operation requires computation of modular square roots and is of
comparable complexity to the RSA private key algorithm. Since there are a total of four

possible square roots (
√
z ≡ ±x mod p and

√
z ≡ ±x mod q), a special mechanism

is required in to mark and find the correct root. We refer to standard cryptography
textbooks such as [10] for a discussion about implementation options.

The main distinguishing factor for the Rabin cryptosystem, in addition to being
slightly faster than RSA in encryption, is that it is provably as secure as factoring. This
equivalence may or may not hold for RSA [1, 3].

2.1 Shamir’s Randomized Variant

In Eurocrypt ’94 [20] Shamir proposed a randomized variant of the Rabin cryptosys-
tem that avoids arithmetic mod n by using a random masking variable r > n. The
encryption operation is

z = x2 + r · n. (2)

The private key operation is essentially the same as with the standard Rabin scheme.
Randomized multiplication was originally considered by Naccache [12], albeit for

a different application. Shamir proved that this randomized variant has equivalent se-
curity properties to the standard version. The main drawback from avoiding modular
arithmetic is that the ciphertext roughly doubles in size and that a large amount of high
quality random bits must be generated for r. We avoid this problem using an encoding
technique described in Section 2.3.

2.2 Arithmetic Modulo a Set of Coprime Numbers

A large majority of the implementation footprint of traditional public key encryption
schemes such as RSA or ECC tends to be consumed by implementing large finite field
multiplication and exponentiation. We avoid this by using arithmetic modulo a set of
coprime numbers.

Let b1, b2, . . . , bk denote a base, a set of coprime numbers, and B =
∏k

i=1 bi their
product. The Chinese Remainder Theorem (CRT) states that any number x, 0 ≤ x <
B can be uniquely expressed as a vector xi that represents a set of k congruences
xi = x mod bi when i = 1, 2, . . . , k. Furthermore, ring arithmetic modulo B can be
performed in this domain. To compute the sum, difference or a product of two numbers
mod B, all one needs to do is to is to add or multiply the individual vector components
i, each mod bi. Multiplication modulo B therefore has essentially linear complexity.
Looking at Equation 2, one notices that when z < B, the entire public key computation
can be performed in the CRT domain. This observation was first made in [4, 13].

Encryption Latency. One of the main advantages of a CRT implementation of PASSER-
INE is that serial transmission of encrypted data may be started immediately after the
first word of x2+r·n has been computed. This is not the case with RSA or in ECC cryp-
tography. This technique also helps to reduce the memory requirements of a PASSER-
INE implementation.

2.3 Carrying Payload Data in the Randomization Mask

An important and novel feature of PASSERINE is that r is used to carry payload data
that has been encrypted using a random symmetric key, contained in x. This encoding
technique allows us to essentially double the transmission bandwidth of the channel
when compared to the original proposal by Shamir in [20].

3 Implementing PASSERINE on a Low-Resource Platform

We targeted our implementation for low-end 8/16 - bit microprocessors and microcon-
trollers. We chose to use a 1025-bit public modulus, which offers a reasonable level
of security. For highly sensitive data, a larger modulus should be used. For symmetric
encryption, we use AES-128 in counter mode [14, 15]. These parameters are practi-
cal choices that were selected for demonstration purposes – alternative choices may be
more appropriate for some applications.

The CRT base (Section 2.2) was chosen to consist of 133 primes (6410th to 6542nd
prime). These primes fit into sixteen-bit words as their numerical value ranges from
63929 to 65521. We chose to use primes rather than coprime numbers as there seems
to be only a negligible encoding penalty from doing so. The encoding capacity is∏133

i=1 bi ≈ 22125.70, which is only 2.30 bits short of the maximum channel capacity
of 133× 16 = 2128 bits.

Encoding parameters:
n = A 1025-bit public modulus.

m = k c d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14

x = First 1024 bits of m.

r = Remaining 1088 bits of m.

Public Key Encryption Operation:
x2 = A 2048-bit square.

+
rn = A 2113-bit randomization mask.

=
z = Ciphertext (2113 bits).

Transmission in CRT formatx:
z′ = 133 sixteen-bit words (2128 bits, transmission capacity 2125.7)

Fig. 2. Encoding of key and payload in PASSERINE. Encryption is actually performed using CRT
representation (modulo small primes in base b), not in standard two’s complement representation.

Figure 2 illustrates PASSERINE data encoding. We use AES-128 [14] in counter
mode (CTR) [15] for encryption of data blocks di

Table 1 describes the structure of the message m in our implementation. The first
1024 bits (m[0..63]) of the message are used as x and the latter 1088 bits (m[64..131]) as
r in Equation 2. The 64-bit authenticator c should ideally be a secure MAC that is com-
puted from all of the payload and key data. Our simple implementation sacrifices mes-
sage integrity protection for implementation simplicity, and uses the result of a XOR
operation between the upper and lower 64-bit halves of k as c. Adding good integrity
protection with the EAX [2], CCM [16] or other authenticated mode is straightforward,
but will slightly complicate implementation.

It is clear that the secret key k can be used to encrypt more payload data than the
240-byte section contained in z. Once k has been securely transmitted, the rest of the
payload data can be sent directly using CTR encryption.

Table 1. Contents of the message m after symmetric encryption.

Symbol Words Contents
k m[0..7] A random 128-bit AES key, unique for each message.
c m[8..11] A 64-bit authenticator for message integrity and square root selection.
d0 m[12..19] First AES-encrypted block (payload bytes 0..15).
d1 m[20..27] Second AES-encrypted data block (payload bytes 16..31).

· · ·
d14 m[124..131] Fifteenth AES-encrypted data block (payload bytes 224..239).

3.1 An Experimental Small-Footprint Software Implementation

Algorithms are described using ANSI-C rather than pseudocode in this paper. Our small
software AES implementation is described (and included) in Appendix A as Listing
A.1. Note that only AES ECB encryption functionality is needed to implement counter
mode as AES-CTR essentially behaves like a stream cipher (encryption and decryption
operations are the same).

Listing 3.1. Modular reduction of a large integer stored as a vector of 16-bit words.

/ / r e du c e an l−word i n t e g e r s t o r e d i n d [] mod b
u16 red16 (c o n s t u16 d [] , u32 l , u16 b)
{

u32 i , x ;

x = d [0] ;
f o r (i = 1 ; i < l ; i ++) {

x = ((x << 16) ^ ((u32) d [i])) % b ;
}
re turn (u16) x ;

}

Listing 3.2. Prime Base as difference between consecutive primes in decreasing order.

/ / p r i m e s 6 5 4 2 , 6 5 4 1 . . 6 4 1 0 as n e g a t i v e d e l t a s from 0 x10000
u8 p b d e l t a [1 3 3] = {

15 , 2 , 22 , 18 , 30 , 2 , 10 , 14 , 4 , 6 , 6 , 14 , . . .
(v a l u e s removed)

. . . 10 , 14 , 4 , 26 , 4 , 14 , 6 , 6 , 10 , 20 , 28 , 20
} ;

The main workhorse of our public key encryption implementation is the red16()
function (Listing 3.1), which reduces a large integer to a single word mod b.

The input array d[] is interpreted as a big-endian integer in base 2w where w = 16
is the word size. We note that if b is close to 2w, it may be advantageous to break down
the modular reduction mod b to shifts, adds and a multiplication with a small constant
2w − b. Hardware implementations can reduce the gate count by choosing the set of
coprime numbers in a special way.

The base of consecutive primes is stored in decreasing order. The base is com-
pressed by only storing the difference of consecutive primes. Listing 3.2 gives the first
and last values of the pbdelta[] table.

Padding and encryption is performed by the srxenc() function (Listing A.2). The
function srxenc() returns the 133-word ciphertext in ct[]. Note that this imple-
mentation directly casts a byte array as an array of 16-bit words, and hence its behavior
differs on little- and big-endian platforms.

The computational complexity of the public key encryption is O(n2). The individ-
ual values of ct[i] can be computed in any order or in a fully parallel fashion as
the prime moduli are independent of each other. This is not possible with a traditional
public key algorithms. It is not necessary to store the entire ct[] table in memory; we
may start serially transmitting the ciphertext immediately when ct[0] is computed –
PASSERINE therefore has exceptionally low latency. The total RAM requirement of
the implementation can be decreased to around 300 bytes this way.

We also note that it is possible to precompute many of the variables, most impor-
tantly a vector containing the public modulus n as CRT residues. It is also possible
to precompute the variable containing a random pad with the key check authenticator.
Symmetric encryption can then be performed with a simple XOR operation, further
reducing the latency in encryption.

3.2 Implementation profile of PASSERINE Encryption

Even compiled and retargetable implementations of PASSERINE are very compact. A
breakdown of the code size of our particular implementation is given in Table 3.2. The
entire encryption code (mostly contained in this paper) was complied with gcc 4.4.1 for
an i386 target with optimization flags set to -Os.

Full sample code for both encryption and decryption is freely available from Au-
thor’s web page [19].

Table 2. Self-sufficient PASSERINE implementation size profile (ROM).

Bytes Function
256 AES S-Box table sbox[256].
338 AES encryption routine aesenc().
53 Modular reduction routine red16().
133 Prime table pbdelta[133].
361 Padding, CTR mode and public key encryption routine srxenc().
1141 Total implementation size.

It is possible to significantly decrease the implementation size by hand-programming
the implementation in assembler or by tweaking the algorithms (e.g. replace AES with
a simple stream cipher).

3.3 PASSERINE Private Key Operation and Decryption

Unlike the lightweight encoding routine, our implementation of the private key opera-
tion and decryption uses the OpenSSL library libcrypto for fast big integer arith-
metic and AES implementation. Decryption is more complicated than encryption (230
code lines) and we will only give the relevant math in this paper.

For ease of exposition we will denote by x−1
r the unique modular inverse that satis-

fies 0 < x−1
r < r and x · x−1

r ≡ 1 (mod r) for a given x with gcd(x, r) = 1.

Constructing z from the CRT representation zi. A straightforward method for con-
verting the ciphertext to conventional two’s complement binary representation is given
in Equation 3. Here bi is the base with k = 133 coprime numbers, B =

∏k
i=1, and the

CRT ciphertext vector zi satisfies 0 ≤ zi < bi for each i.

z =

(
k∑

i=1

zi ·
B

bi
·
(B
bi

)−1

bi

)
mod B. (3)

The de-CRT coefficients di = (B/bi) · (B/bi)
−1
bi

in Equation 3 can be precomputed
as they do not depend on the private parameters used.

Computing the square root. For decryption, one needs the private factorization pq of
n. Rabin decryption is significantly easier to implement when p ≡ q ≡ 3 mod 4 and we
will assume that this is the case. There are four square roots for every quadratic residue
modpq.

xp = (z
p+1
4 mod p) · q · q−1

p . (4)

xq = (z
q+1
4 mod q) · p · p−1

q . (5)

The four square roots of z are given by x = {xp + xq, xp − xq,−xp + xq,−xp −
xq} (mod n). The correct root can be recognized using the 64-bit authenticator c which
is contained in x.

Symmetric decryption. Once the correct square root x is found, the mask r can be
derived from

r =
z − x2

n
. (6)

We can then concatenate the two values and obtain the full message m = x || r, which
contains the symmetric decryption key and proceed to decrypt the entire data payload.

4 Security

PASSERINE is based on Shamir’s randomized variant of the Rabin cryptosystem [18,
20], which is provably as secure as factoring n. The 1025-bit modulus used by our
implementation may become susceptible to a GNFS factorization attack within the next
decade [9]. Hence we recommend the use of a larger modulus when a very high level
of confidentiality is required.

Secrecy in PASSERINE is also based on the AES algorithm, which has received
more than a decade of thorough cryptanalysis. If secret key k values are truly random
and not reused, a break of the CTR mode implies that AES itself is broken.

Our prototype PASSERINE implementation does not offer integrity protection. Full
message integrity protection can be achieved by switching from CTR to CCM, EAX or
similar authenticated mode of operation [2, 16]. These are essentially double modes of
operation, and hence there is a performance drawback. The code size would grow by
approximately 100 bytes.

5 Conclusions and Further Work

We have described PASSERINE, a practical variant of the Rabin public key cryptosys-
tem that utilizes Naccache-Shamir randomized multiplication, prime base arithmetic to
avoid big-integer arithmetic and uses a randomized mask to transmit payload data.

PASSERINE is exceptionally well suited for applications with limited computa-
tional capacity, such as embedded systems, RFID tags, smart cards and sensor network
nodes. On these platforms PASSERINE tends to offer smaller software and hardware
footprint, lower transmission latency, and greater encryption speed when compared to
RSA or Elliptic Curve cryptography.

Our self-contained experimental implementation of PASSERINE has very compact
implementation size. We have also described an experimental, very compact eight-bit
implementation of the AES-128 encryption algorithm, which is of independent research
value. We are currently designing an open-source hardware/software implementation of
PASSERINE (See Section A.1).

As a future research direction, we note that an interesting feature of an over-defined
small prime base representation of large integers is that if some of the individual ele-
ments are corrupt or missing, the large integer can still be reconstructed using the Chi-
nese Remainder Theorem. We are currently investigating the use of this mathematical
feature in conjunction with error detection and correction codes.

References

1. D. AGGARWAL AND U. MAURER. “Breaking RSA Generically Is Equivalent to Factoring.”
Eurocrypt 2009, LNCS 5479, Springer, pp. 36–53, 2009.

2. M. BELLARE, P. ROGAWAY, AND D. WAGNER. “The EAX Mode of Operation.” FSE 2004,
LNCS 3017, Springer, pp. 389–407, 2004.

3. D. BONEH AND R. VENKATESAN. “Breaking RSA may not be equivalent to factoring.”
Eurocrypt ’98, LNCS 1233, Springer, pp. 59–71, 1998.

4. O. BRUGIA, A. DI PORTO, AND P. FILIPONI. “Un metodo per migliorare I’efficienza
degli algoritmi di generazione delle chiavi crittografiche basati sull’impiego di grandi numeri
primi.” Note Recesioni e Notizie, Ministero Poste e Telecommunicazioni, Vol. 33, No. 1-2,
pp. 15–22, 1984.

5. J. CORON AND D. NACCACHE. “Cryptanalysis of a Zero-Knowledge Identification Protocol
of Eurocrypt ’95.” CT-RSA 2004, LNCS 2964, Springer, pp. 156–162, 2004.

6. M. DOWTY. “Using an AVR as an RFID tag.” Blog posting, 21 September 2008. http:
//micah.navi.cx/2008/09/using-an-avr-as-an-rfid-tag/

7. G. GAUBATZ, J. KAPS, E. ÖZTURK, AND B. SUNAR. “State of the Art in Ultra-Low Power
Public Key Cryptography for Wireless Sensor Networks.” PerCom 2005 Workshops, IEEE,
pp. 146–150, 2005.

8. G. GAUBATZ, J. KAPS, AND B. SUNAR. “Public key Cryptography in Sensor Networks –
Revisited” Security in Ad-hoc and Sensor Networks – ESAS 2004, LNCS 3313, Springer,
pp. 2–18, 2005.

9. T. KLEINJUNG, K. AOKI, J. FRANKE, A. LENSTRA, E. THOMÉ, J. BOS, P. GAUDRY,
A. KRUPPA, P. MONTGOMERY, D.A. OSVIK, H. TE RIELE, A. TIMOFEEV AND P. ZIM-
MERMANN. “Factorization of a 768-bit RSA modulus.” http://eprint.iacr.org/
2010/006. IACR Cryptology ePrint Archive: Report 2010/006, 2010.

10. A. MENEZES, P. VAN OORSCHOT, AND S. VANSTONE. “Handbook of Applied Cryptogra-
phy.” CRC Press, 1996.

11. G. LOWE. “An Attack on the Needham-Schroeder Public-Key Authenticaion protocol.”
Information Processing Letters 56 (1995), Elsevier, pp. 131–131, 1995.

12. D. NACCACHE. “Method, Sender Apparatus And Receiver Apparatus For Modulo Op-
eration.” US patent: US5479511, 1995-12-26. European patent application: EP0611506,
1994-08-24. World publication: WO9309620, 1993.

13. D. NACCACHE, D. M’RAIHI, W. WOLFOWICZ, AND A. DI PORTO. “Are Crypto-
Accelerators Really Inevitable?” Eurocrypt ’95, LNCS 921, Springer, pp. 404–409, 1995.

14. NIST. “Specification for the Advanced Encryption Standard (AES)” Federal Information
Processing Standards Publication. FIPS-197, NIST, 2001.

15. NIST. “Recommendation for Block Cipher Modes of Operation.” NIST Special Publication
800 - 38 A, NIST, 2001.

16. NIST. “Recommendation for Block Cipher Modes of Operation: The CCM Mode for Au-
thentication and Confidentiality.” NIST Special Publication 800-38 C, NIST, 2004.

17. Y. OREN AND M. FELDHOFER. “A Low-Resource Public-Key Identification Scheme for
RFID Tags and Sensor Nodes.” WiSec ’09, ACM, pp. 59–68, 2009.

18. M. C. RABIN. “Digitalized Signatures and Public-Key Functions as Intractable as Factor-
ization.” MIT / LCS / TR-212, Massachusetts Institute of Technology, 1979.

19. M.-J. SAARINEN. PASSERINE Demonstration Package. Available from
http://www.netlab.tkk.fi/~mjos/passerine/

20. A. SHAMIR. “Memory Efficient Variants of Public-Key Schemes for Smart Card Applica-
tions.” Eurocrypt ’94, LNCS 950, Springer, pp. 445–449, 1995.

A Implementation Tricks and Details

Listing A.1 gives our 8-bit ANSI-C implementation of AES-128 [14] in full. The vector
sbox[] should contain the 256-byte AES S-Box. Due to its simple algebraic struc-
ture, the code required to generate the S-Box can be implemented in much less than
256 bytes, so if you have very little ROM but plenty of RAM, you may want generate
the S-Box on the fly. Our implementation utilizes various symmetries and the relatively
simple structure of the AES MDS matrix to reduce code size. These optimizations are
not as readily applicable for AES decryption. This is especially true for the key sched-
ule, which we compute “on the fly” to reduce the RAM requirement.

A.1 Microcontrollers as RFID Tags

Micah Dowty has demonstrated that an RFID tag can be constructed from an 8-bit
Atmel AVR microcontroller (the ATtiny85) with very few external components [6].
Figure 3 shows the scale of these devices. While this “hack” only implements passive
EM 4102 - compatible authentication, it clearly demonstrates that experimental RFID
protocols can be built using cheap off-the-shelf components. We are currently designing
an open-source hardware and software implementation of PASSERINE based on an
AVR microcontroller.

Fig. 3. A very simple RFID tag designed from an ATtiny85 microcontroller communicating with
a Parallax RFID reader. c© 2008 Micah Dowty. Published with permission.

Listing A.1. A size- and memory-optimized eight-bit AES-128 implementation. Round
keys are computed on the fly.

/ / m u l t i p l y by 0 x02 i n GF(2 5 6)
d e f i n e AESLS(x) (x & 0x80 ? (x << 1) ^ 0x1B : x << 1)

/ / AES−128 e n c r y p t i o n o f b l o c k b w i t h a 128− b i t key
void a e s e n c (u8 ∗b , c o n s t u8 key [1 6])
{

u8 i , t [1 6] , k [1 6] , u , c ;

f o r (i = 0 ; i < 1 6 ; i ++) / / copy t h e key
k [i] = key [i] ;

f o r (c = 0x01 ; c != 0x6C ; c = AESLS(c)) {

/ / AddRoundKey , SubBytes , S h i f t R o w s
f o r (i = 0 ; i < 1 6 ; i ++) {

t [(i − (i << 2)) & 15] = sbox [k [i] ^ b [i]] ;
b [i] = 0 ;

}

/ / MixColumns (n o t on t h e l a s t round)
i f (c != 0x36) {

f o r (i = 0 ; i < 1 6 ; i ++) {
u = t [i] ;
b [i ^ 1] ^= u ;
b [i ^ 2] ^= u ;
b [i ^ 3] ^= u ;
u = AESLS(u) ;
b [i] ^= u ;
b [(i & 12) + ((i + 3) & 3)] ^= u ;

}
}
/ / k e y i n g
k [0] ^= sbox [k [1 3]] ^ c ;
k [1] ^= sbox [k [1 4]] ;
k [2] ^= sbox [k [1 5]] ;
k [3] ^= sbox [k [1 2]] ;
f o r (i = 4 ; i < 1 6 ; i ++)

k [i] ^= k [i − 4] ;
}
/ / f i n a l AddRoundKey
f o r (i = 0 ; i < 1 6 ; i ++)

b [i] = t [i] ^ k [i] ;
}

Listing A.2. PASSERINE Encryption Function. Our implementation does not require
“big integer” arithmetic.

/ / e n c r y p t and send a pay load o f up t o 240 b y t e s

void s r x e n c (u16 c t [1 3 3] , / / r e s u l t i n g c i p h e r t e x t words
c o n s t u8 p t [] , i n t l , / / p l a i n t e x t da ta & l e n g t h
c o n s t u8 key [1 6] , / / AES key i n p u t
c o n s t u16 mod [6 5]) / / 1025− b i t p u b l i c modulus

{
u32 i , j , b , x , y ;
u8 pad [2 6 4] ;

/ / s t o r e t h e key k and a u t h e n t i c a t o r c
f o r (i = 0 ; i < 1 6 ; i ++)

pad [i] = key [i] ;
f o r (i = 0 ; i < 8 ; i ++)

pad [i + 16] = key [i] ^ key [i + 8] ;

/ / AES−CTR
f o r (i = 2 4 ; i < 264 ; i += 16) {

f o r (j = 0 ; j < 1 5 ; j ++)
pad [i + j] = 0 ;

pad [i + 15] = (i >> 4) − 1 ; / / 0 , 1 , 2 . .
a e s e n c (&pad [i] , key) ;

}

/ / XOR t h e pay load over t h e pad
f o r (i = 0 ; i < l ; i ++)

pad [i + 24] ^= p t [i] ;

/ / p u b l i c key e n c r y p t i o n
b = 0 x10000 ;
f o r (i = 0 ; i < 133 ; i ++) {

b −= p b d e l t a [i] ;
x = (u32) red16 ((u16 ∗) pad , 64 , b) ; / / x
y = (((u32)

red16 ((u16 ∗) &pad [1 2 8] , 68 , b)) ∗ / / r
r ed16 (mod , 65 , b)) % b ; / / n

c t [i] = (x ∗ x + y) % b ; / / x ^2 + rn
}

}

