
The PASSERINE Public Key Encryption and
Authentication Mechanism

Markku-Juhani O. Saarinen

Aalto University
Department of Communications and Networking

P.O.Box 13000, 00076 Aalto, FINLAND
m.saarinen@tkk.fi

Abstract. PASSERINE 1 is a lightweight public key encryption mechanism which
is based on a hybrid, randomized variant of the Rabin public key encryption
scheme. Its design is targeted for extremely low-resource applications such as
wireless sensor networks, RFID tags, embedded systems, and smart cards. As
is the case with the Rabin scheme, the security of PASSERINE can be shown
to be equivalent to factoring the public modulus. On many low-resource imple-
mentation platforms PASSERINE offers smaller transmission latency, hardware
and software footprint and better encryption speed when compared to RSA or
Elliptic Curve Cryptography. This is mainly due to the fact that PASSERINE
implementations can avoid expensive big integer arithmetic in favor of a fully
parallelizable CRT randomized-square operation. In order to reduce latency and
memory requirements, PASSERINE uses Naccache-Shamir randomized multipli-
cation, which is implemented with a system of simultaneous congruences modulo
small coprime numbers. The PASSERINE private key operation is of compara-
ble computational complexity to the RSA private key operation. The private key
operation is typically performed by a computationally superior recipient such as
a base station.

Keywords: Rabin Cryptosystem, Randomized Multiplication, RFID, Wireless
Sensor Networks.

1 Introduction

Public key encryption is often viewed as unimplementable for extremely low-resource
devices such as sensor network nodes and RFID tags. However, public key cryptog-
raphy offers clear security advantages as fixed secret keys do not have to be shared
between the two communicating parties. The PASSERINE public key encryption op-
eration is very light, but the private key operation is approximately as computationally
demanding as the private key operation of RSA.

For (RFID) authentication purposes a protocol can be devised that requires the tag
to only perform public key encryption using the interrogator’s public key.

In a military application a large number of sensors may be dispersed to an area of
operations to lay passively dormant until an a particular combination of events triggers

1 PASSERINE Version 0.5 September 23, 2010.

their activation. In such a scenario, key management with symmetric-only encryption
may become exceedingly difficult. A single captured and reverse-engineered sensor unit
may reveal all shared keys that it contains, possibly compromising the entire sensor
network. Use of public-key cryptography simplifies key management and also reduces
the need to protect keying information contained in the node. Each node only needs
to store its unique identifier and the public key of the secure receiving station. The
adversary can only impersonate a single physically captured sensor unit.

In this scenario the devices are controlled by a base station that stores their pri-
vate identifiers. The devices only need to be able to perform the public key operation
- to broadcast messages to the base station. A sensor unit can securely authenticate an
another node with the aid of the trusted base station.

1.1 Previous Work

The use of Rabin encryption in low-resource platforms has been investigated by Shamir
[17], Gaubatz et al. [6, 7] and more recently by Oren and Feldhofer [14]. The approaches
considered in these papers differ significantly from PASSERINE; Gaubatz et al. do not
consider randomized multiplication but only bit-serial multiplication. Shamir, Oren and
Feldhofer use randomized multiplication but not CRT arithmetic nor payload encod-
ing into the random mask. Systems described in [14, 17] require substantial amounts
of real randomness, which may be difficult to generate in a resource-strained device.
PASSERINE requires only a single random 128-bit key for each message. Naccache et
al. [12] use randomized multiplication and CRT arithmetic (which they call Brugia-di
Porto-Filipponi number system after [4]) in a low-resource implementation of a related
identification protocol which was subsequently broken in [5].

2 The PASSERINE Randomized Rabin Cryptosystem

Rabin’s public key cryptosystem [16] is in many ways similar to the RSA cryptosystem.
Let n be a product of two large primes p and q. In order to facilitate implementation,
these primes are often chosen so that p ≡ q ≡ 3 (mod 4). To encrypt a message x, one
simply squares it modulo the public modulus n:

z = x2 (mod n). (1)

The Rabin private key operation requires computation of modular square roots and is of
comparable complexity to the RSA private key algorithm. Since there are a total of four
possible square roots (

√
z ≡ ±x mod p and

√
z ≡ ±x mod q), a special mechanism

is required in to mark and find the correct root. We refer to standard cryptography
textbooks such as [9] for a discussion about implementation options.

The main distinguishing factor for the Rabin cryptosystem, in addition to being
slightly faster than RSA in encryption, is that it is provably as secure as factoring. This
equivalence may or may not hold for RSA [1, 3].

2.1 Shamir’s Randomized Variant

In Eurocrypt ’94 [17] Shamir proposed a randomized variant of the Rabin cryptosys-
tem that avoids arithmetic mod n by using a random masking variable r > n. The
encryption operation is

z = x2 + r · n. (2)

The private key operation is essentially the same as with the standard Rabin scheme.
Randomized multiplication was originally considered by Naccache [11], albeit for

a different application. Shamir proved that this randomized variant has equivalent se-
curity properties to the standard version. The main drawback from avoiding modular
arithmetic is that the ciphertext roughly doubles in size and that a large amount of high
quality random bits must be generated for r. We avoid this problem using an encoding
technique described in Section 2.3.

2.2 Arithmetic Modulo a Set of Coprime Numbers

A large majority of the implementation footprint of traditional public key encryption
schemes such as RSA or ECC tends to be consumed by implementing large finite field
multiplication and exponentiation. We avoid this by using arithmetic modulo a set of
coprime numbers.

Let b1, b2, . . . , bk denote a base, a set of coprime numbers, and B =
∏k

i=1 bi their
product. The Chinese Remainder Theorem (CRT) states that any number x, 0 ≤ x <
B can be uniquely expressed as a vector xi that represents a set of k congruences
xi = x mod bi when i = 1, 2, . . . , k. Furthermore, ring arithmetic modulo B can be
performed in this domain. To compute the sum, difference or a product of two numbers
mod B, all one needs to do is to is to add or multiply the individual vector components
i, each mod bi. Multiplication modulo B therefore has essentially linear complexity.
Looking at Equation 2, one notices that when z < B, the entire public key computation
can be performed in the CRT domain. This observation was first made in [4, 12].

Encryption Latency. One of the main advantages of a CRT implementation of PASSER-
INE is that serial transmission of encrypted data may be started immediately after the
first word of x2+r·n has been computed. This is not the case with RSA or in ECC cryp-
tography. This technique also helps to reduce the memory requirements of a PASSER-
INE implementation.

2.3 Carrying Payload Data in the Randomization Mask

An important and novel feature of PASSERINE is that r is used to carry payload data
that has been encrypted using a random symmetric key, contained in x. This encoding
technique allows us to essentially double the transmission bandwidth of the channel
when compared to the original proposal by Shamir in [17].

3 Implementing PASSERINE Public Key Operation on a
Low-Resource Platform

We targeted our implementation of PASSERINE encryption for low-end 8/16 - bit mi-
croprocessors and microcontrollers. We chose to use a 1025-bit public modulus, which
offers a reasonable level of security. For highly sensitive data, a larger modulus should
be used. For symmetric encryption, we use AES-128 in counter mode. The total code
size was 1030 bytes when compiled for x86, including the relevant S-Box tables and
the specially encoded prime table.

The CRT base (Section 2.2) was chosen to consist of 133 primes (6410th to 6542nd
prime). These primes fit into sixteen-bit words as their numerical value ranges from
63929 to 65521. We chose to use primes rather than coprime numbers as there seems
to be only a negligible encoding penalty from doing so. The encoding capacity is∏133

i=1 bi ≈ 22125.70, which is only 2.30 bits short of the maximum channel capacity
of 133× 16 = 2128 bits.

Encoding parameters:
n = A 1025-bit public modulus.

m = k c d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14

x = First 1024 bits of m.

r = Remaining 1088 bits of m.

Public Key Encryption Operation:
x2 = A 2048-bit square.

+
rn = A 2113-bit randomization mask.

=
z = Ciphertext (2113 bits).

Transmission in CRT format:
z′ = 133 sixteen-bit words (2128 bits, transmission capacity 2125.7)

Fig. 1. Encoding of key and payload in PASSERINE. Encryption is actually performed using CRT
representation (modulo small primes in base b), not in standard two’s complement representation.

Figure 1 illustrates PASSERINE data encoding. We use AES-128 [13] in counter
mode (CTR) for encryption of data blocks di

Table 1 describes the structure of the message m in our implementation. The first
1024 bits (m[0..63]) of the message are used as x and the latter 1088 bits (m[64..131]) as
r in Equation 2. The 64-bit authenticator c should ideally be a secure MAC that is com-
puted from all of the payload and key data. Our simple implementation sacrifices mes-
sage integrity protection for implementation simplicity, and uses the result of a XOR
operation between the upper and lower 64-bit halves of k as c. Adding good integrity

protection with the EAX [2], CCM [15] or other authenticated mode is straightforward,
but will slightly complicate implementation.

Table 1. Contents of the message m after symmetric encryption.

Symbol Words Contents
k m[0..7] A random 128-bit AES key, unique for each message.
c m[8..11] A 64-bit authenticator for message integrity and square root selection.
d0 m[12..19] First AES-encrypted block (payload bytes 0..15).
d1 m[20..27] Second AES-encrypted data block (payload bytes 16..31).

· · ·
d14 m[124..131] Fifteenth AES-encrypted data block (payload bytes 224..239).

4 PASSERINE Private Key Operation and Decryption

We implemented the private key operation in C using the OpenSSL library for both
fast big number arithmetic and AES. The implementation required only about 230 code
lines. In this section we will only give the relevant mathematics.

A straightforward method for converting the ciphertext to conventional two’s com-
plement binary representation is given in Equation 3. Here bi is the base with k = 133

coprime numbers, B =
∏k

i=1, and the CRT ciphertext vector zi satisfies 0 ≤ zi < bi
for each i.

z =

(
k∑

i=1

zi ·
B

bi
·
(B
bi

)−1

bi

)
mod B. (3)

The de-CRT coefficients di = (B/bi) · (B/bi)
−1
bi

in Equation 3 can be precomputed
as they do not depend on the private parameters used.

Computing the square root. For decryption, one needs the private factorization pq of
n. Rabin decryption is significantly easier to implement when p ≡ q ≡ 3 mod 4 and we
will assume that this is the case. There are four square roots for every quadratic residue
mod pq:

xp = (z
p+1
4 mod p) · q · q−1

p . (4)

xq = (z
q+1
4 mod q) · p · p−1

q . (5)

The four square roots of z are given by x = {xp + xq, xp − xq,−xp + xq,−xp −
xq} (mod n). The correct root can be recognized using the 64-bit authenticator c which
is contained in x.

Symmetric decryption. Once the correct square root x is found, the mask r can be
derived from

r =
z − x2

n
. (6)

We can then concatenate the two values and obtain the full message m = x || r, which
contains the symmetric decryption key and proceed to decrypt the entire data payload.

References
1. D. AGGARWAL AND U. MAURER. “Breaking RSA Generically Is Equivalent to Factoring.”

Eurocrypt 2009, LNCS 5479, Springer, pp. 36–53, 2009.
2. M. BELLARE, P. ROGAWAY, AND D. WAGNER. “The EAX Mode of Operation.” FSE 2004,

LNCS 3017, Springer, pp. 389–407, 2004.
3. D. BONEH AND R. VENKATESAN. “Breaking RSA may not be equivalent to factoring.”

Eurocrypt ’98, LNCS 1233, Springer, pp. 59–71, 1998.
4. O. BRUGIA, A. DI PORTO, AND P. FILIPONI. “Un metodo per migliorare I’efficienza

degli algoritmi di generazione delle chiavi crittografiche basati sull’impiego di grandi numeri
primi.” Note Recesioni e Notizie, Ministero Poste e Telecommunicazioni, Vol. 33, No. 1-2,
pp. 15–22, 1984.

5. J. CORON AND D. NACCACHE. “Cryptanalysis of a Zero-Knowledge Identification Protocol
of Eurocrypt ’95.” CT-RSA 2004, LNCS 2964, Springer, pp. 156–162, 2004.

6. G. GAUBATZ, J. KAPS, E. ÖZTURK, AND B. SUNAR. “State of the Art in Ultra-Low Power
Public Key Cryptography for Wireless Sensor Networks.” PerCom 2005 Workshops, IEEE,
pp. 146–150, 2005.

7. G. GAUBATZ, J. KAPS, AND B. SUNAR. “Public key Cryptography in Sensor Networks –
Revisited” Security in Ad-hoc and Sensor Networks – ESAS 2004, LNCS 3313, Springer,
pp. 2–18, 2005.

8. T. KLEINJUNG, K. AOKI, J. FRANKE, A. LENSTRA, E. THOMÉ, J. BOS, P. GAUDRY,
A. KRUPPA, P. MONTGOMERY, D.A. OSVIK, H. TE RIELE, A. TIMOFEEV AND P. ZIM-
MERMANN. “Factorization of a 768-bit RSA modulus.” http://eprint.iacr.org/
2010/006. IACR Cryptology ePrint Archive: Report 2010/006, 2010.

9. A. MENEZES, P. VAN OORSCHOT, AND S. VANSTONE. “Handbook of Applied Cryptogra-
phy.” CRC Press, 1996.

10. G. LOWE. “An Attack on the Needham-Schroeder Public-Key Authenticaion protocol.”
Information Processing Letters 56 (1995), Elsevier, pp. 131–131, 1995.

11. D. NACCACHE. “Method, Sender Apparatus And Receiver Apparatus For Modulo Op-
eration.” US patent: US5479511, 1995-12-26. European patent application: EP0611506,
1994-08-24. World publication: WO9309620, 1993.

12. D. NACCACHE, D. M’RAIHI, W. WOLFOWICZ, AND A. DI PORTO. “Are Crypto-
Accelerators Really Inevitable?” Eurocrypt ’95, LNCS 921, Springer, pp. 404–409, 1995.

13. NIST. “Specification for the Advanced Encryption Standard (AES)” Federal Information
Processing Standards Publication. FIPS-197, NIST, 2001.

14. Y. OREN AND M. FELDHOFER. “A Low-Resource Public-Key Identification Scheme for
RFID Tags and Sensor Nodes.” WiSec ’09, ACM, pp. 59–68, 2009.

15. NIST. “Recommendation for Block Cipher Modes of Operation: The CCM Mode for Au-
thentication and Confidentiality.” NIST Special Publication 800-38 C, NIST, 2004.

16. M. C. RABIN. “Digitalized Signatures and Public-Key Functions as Intractable as Factor-
ization.” MIT / LCS / TR-212, Massachusetts Institute of Technology, 1979.

17. A. SHAMIR. “Memory Efficient Variants of Public-Key Schemes for Smart Card Applica-
tions.” Eurocrypt ’94, LNCS 950, Springer, pp. 445–449, 1995.

