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Abstract

In this work, we show that strong leakage resilience for cryptosystems with advanced functionalities
can be obtained quite naturally within the methodology of dual system encryption, recently introduced
by Waters. We demonstrate this concretely by providing fully secure IBE, HIBE, and ABE systems which
are resilient to bounded leakage from each of many secret keys per user, as well as many master keys.
This can be realized as resilience against continual leakage if we assume keys are periodically updated and
no (or logarithmic) leakage is allowed during the update process. Our systems are obtained by applying a
simple modification to previous dual system encryption constructions: essentially this provides a generic
tool for making dual system encryption schemes leakage-resilient.

1 Introduction

Defining and achieving the right security models is crucial to the value of provably secure cryptography.
When security definitions fail to encompass all of the power of potential attackers, systems which are proven
“secure” may actually be vulnerable in practice. It is often not realistic or desirable to address such problems
solely at the implementation level. Instead, the ultimate goal of cryptography should be to provide efficient
systems which are proven secure against the largest possible class of potential attackers. Additionally, these
systems should provide the most advanced functionalities available.

Recently, much progress has been made in obtaining increasingly complex systems with stronger security
guarantees. The emergence of leakage-resilient cryptography has led to constructions of many cryptographic
primitives which can be proven secure even against adversaries who can obtain limited additional information
about secret keys and other internal state. This line of research is motivated by a variety of side-channel
attacks [49, 14, 7, 13, 55, 8, 50, 60, 35, 43], which allow attackers to learn partial information about secrets
by observing physical properties of a cryptographic execution such as timing, power usage, etc. The cold-
boot attack [43] allows an attacker to learn information about memory contents of a machine even after the
machine is powered down.

Leakage-resilient cryptography models a large class of side-channel attacks by allowing the attacker to
specify an efficiently computable leakage function f and learn the output of f applied to the secret key and
possibly other internal state at specified moments in the security game. Clearly, limits must be placed on
f to prevent the attacker from obtaining the entire secret key and hence easily winning the game. One
approach is to bound the total number of bits leaked over the lifetime of the system to be significantly less
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than the bit-length of the secret key. Another approach is to continually refresh the secret key and bound
the leakage between each update (this is called “continual leakage”). Both of these approaches have been
employed successfully in a variety of settings, yielding constructions of stream ciphers, signatures, symmetric
key encryption, public key encryption, and identity-based encryption (IBE) which are leakage-resilient under
various models of leakage [54, 48, 33, 59, 28, 1, 2, 34, 31, 26, 21, 32, 3, 17, 23, 18, 27].

Concurrently, the methodology of dual system encryption has emerged as a useful tool for improving the
security guarantees for efficient cryptosystems with advanced functionalities like identity-based encryption
(IBE), hierarchical identity-based encryption (HIBE), attribute-based encryption (ABE) [66, 52, 51]. These
works provide efficient systems with short parameters which are proven fully secure in the standard model
under static assumptions. Previous constructions of IBE and HIBE either used random oracles, had large
parameters, were only proven selectively secure (a weaker model of security where the attacker must declare
its target immediately instead of choosing it adaptively in the course of the security game), or relied on
“q-based” assumptions (where the size of the assumption depends on the number of the attacker’s queries)
[15, 24, 39, 20, 10, 11, 64, 12, 36, 38, 37]. All previous constructions of ABE were only proven selectively
secure [61, 42, 22, 6, 57, 41, 65]. Like leakage resilience, moving from selectively secure systems to fully
secure systems is important because it results in security against a more powerful class of attackers.

Our Contribution In this work, we show that the techniques of dual system encryption naturally lead to
leakage resilience. We demonstrate this by providing leakage-resilient constructions of IBE, HIBE, and ABE
systems which retain all of the desirable features of dual system constructions, like full security from static
assumptions and close resemblance to previous selectively secure schemes. We present our combination of
dual system encryption and leakage resilience as a convenient abstraction and reduce proving security to the
establishment of three properties.

Our approach not only combines the benefits of dual system encryption and leakage resilience, but also
qualitatively improves upon the leakage tolerance of previous leakage-resilient IBE schemes [18, 2, 23]. In
particular, our IBE system can tolerate leakage on the master key, as well as leakage on several keys for each
identity (this can be viewed as continual leakage, where secret keys are periodically updated and leakage is
allowed only between updates, and not during updates).1 The IBE schemes of [2, 23] only allow bounded
leakage on one secret key per identity, and allow no leakage on the master key. The IBE scheme of [18]
allows bounded leakage on each of many keys per identity, but allows no leakage on the master key.

We develop a simple and versatile methodology for modifying a dual system encryption construction
and proof to incorporate strong leakage resilience guarantees. The change to the constructions is minimal,
and can be viewed as the adjoining of a separate piece which does not interfere with the intuitive and
efficient structure of the original system. Essentially, we show that dual system encryption and leakage
resilience are highly compatible, and their combination results in the strongest security guarantees available
for cryptosystems with advanced functionalities, with no sacrifice of efficiency.

Our Techniques In a dual system encryption scheme, keys and ciphertexts can each take on two forms:
normal and semi-functional. Normal keys can decrypt both forms of ciphertexts, while semi-functional keys
can only decrypt normal ciphertexts. In the real security game, the ciphertext and all keys are normal.
Security is proven by a hybrid argument, where first the ciphertext is changed to semi-functional, and then
the keys are changed to semi-functional one by one. We must prove that the attacker cannot detect these
changes. Finally, we arrive at a game where the simulator need only produce semi-functional objects, which
cannot correctly decrypt. This greatly reduces the burden on the simulator and allows us to now prove
security directly.

There is an important challenge inherent in this technique: when we argue the indistinguishability of
games where a certain key is changing from normal to semi-functional, it is crucial that the simulator cannot
determine the nature of this key for itself by test decrypting a semi-functional ciphertext. However, the
simulator should also be prepared to make a semi-functional ciphertext for any identity and to use any

1For simplicity, we present our system as allowing no leakage during key updates, but our system can tolerate leakage which
is logarithmic in terms of the security parameter using the same methods employed in [18].
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identity for this particular key. This challenge is overcome by allowing the simulator to make nominal semi-
functional keys: these are keys that are distributed like ordinary semi-functional keys in the attacker’s view,
but in the simulator’s view they are correlated with the challenge ciphertext, so that if the simulator tries
to decrypt a semi-functional ciphertext, decryption will always succeed, and hence will not reveal whether
the key is normal or nominally semi-functional.

To keep nominal semi-functionality hidden from the attacker’s view, previous dual system encryption
constructions relied crucially on the fact that the attacker cannot ask for a key capable of decrypting the
challenge ciphertext. When we add leakage to this framework, the attacker is now able to ask for leakage
on keys which are capable of decrypting the challenge ciphertext: hence we need a new mechanism to hide
nominal semi-functionality from attackers who can leak on these keys.

We accomplish this by expanding the semi-functional space to form m dimensional vectors, where m ≥ 3
is a parameter determining the leakage tolerance. Nominality now corresponds to the vector in the semi-
functional space of the key being orthogonal to the vector in the semi-functional space of the ciphertext.
Because the leakage function on the key must be determined before the challenge ciphertext is revealed, an
attacker whose leakage is suitably bounded cannot distinguish orthogonal vectors from uniformly random
vectors in this context (this is a corollary of the result from [18], which shows that “random subspaces are
leakage-resilient”). Hence, the attacker cannot distinguish leakage on a nominally semi-functional key from
leakage on an ordinary semi-functional key. This allows us to obtain leakage resilience within the dual system
encryption framework.

Comparison to Previous Techniques One of the leakage-resilient IBE constructions of [23] also applied
the dual system encryption methodology, but ultimately relied on the technique of hash proof systems
[25, 54, 2] to obtain leakage resilience, instead of deriving leakage resilience from the dual system encryption
methodology itself, as we do in this work. More precisely, they used the dual system encryption framework
to allow the simulator to produce keys incapable of decrypting the challenge ciphertext, but did not apply
dual system encryption to handle leakage on keys which are capable of decrypting the challenge ciphertext.
Instead, they relied on a hash proof mechanism for this part of the proof. This leads them to impose
the restriction that the attacker can only leak from one key for the challenge identity, and no leakage
on the master key is allowed. Essentially, their application of dual system encryption is “orthogonal” to
their techniques for achieving leakage resilience. In contrast, our techniques allow us to handle all key
generation and leakage queries within the dual system encryption framework, eliminating the need for a
separate technique to achieve leakage resilience. This enables us to allow leakage from multiple keys which
can decrypt the challenge ciphertext, as well as leakage from the master key.

The leakage-resilient IBE construction of [18] in the continual leakage model relies on selective security to
allow the simulator to produce the keys incapable of decrypting challenge ciphertext. This is accomplished
with a partitioning technique. Their technique for handling leakage on secret keys for the challenge identity
is more similar to ours: they produce these keys and ciphertext in such a way that each is independently
well-distributed, but the keys for the challenge identity exhibit degenerate behavior relative to the challenge
ciphertext. This correlation, however, is information-theoretically hidden from the adversary because the
leakage per key is suitably bounded. We employ a similar information-theoretic argument to hide nominal
semi-functionality of leaked keys from the attacker’s view. However, their technique does not quite fit our
dual system encryption framework, and only achieves selective security in their implementation, with no
leakage allowed from the master key.

1.1 Related Work

Leakage resilience has been studied in many previous works, under a variety of leakage models [63, 58, 48,
3, 21, 26, 32, 30, 47, 31, 54, 1, 2, 19, 28, 33, 45, 53, 59, 34, 17, 29, 18, 27]. Exposure-resilient cryptography
[19, 30, 47] addressed adversaries who could learn a subset of the bits representing the secret key or internal
state. Subsequent works have considered more general leakage functions. Micali and Reyzin [53] introduced
the assumption that “only computation leaks information.” In other words, one assumes that leakage occurs
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every time the cryptographic device performs a computation, but that any parts of the memory not involved
in the computation do not leak. Under this assumption, leakage-resilient stream ciphers and signatures have
been constructed [33, 59, 34]. Additionally, [46, 40] have shown how to transform any cryptographic protocol
into one that is secure with continual leakage, assuming that only computation leaks information and also
relying on a simple, completely non-leaking hardware device.

Since attacks like the cold-boot attack [43] can reveal information about memory contents in the absence
of computation, it is desirable to have leakage-resilient constructions that do not rely upon this assumption.
Several works have accomplished this by bounding the total amount of leakage over the lifetime of the
system, an approach introduced by [1]. This has resulted in constructions of pseudorandom functions,
signature schemes, public key encryption, and identity-based encryption [28, 54, 3, 48, 2, 23] which are
secure in the presence of suitably bounded leakage. For IBE schemes in particular, this means that an
attacker can leak a bounded amount of information from only one secret key per user. This does not allow
a user to update/re-randomize his secret key during the lifetime of the system.

Recently, two works have achieved continual leakage resilience without assuming that only computation
leaks information [18, 27]. Dodis, Haralambiev, Lopez-Alt, and Wichs [27] construct one-way relations, signa-
tures, identification schemes, and authenticated key agreement protocols which are secure against attackers
who can obtain leakage between updates of the secret key. It is assumed the leakage between consecutive
updates is bounded in terms of a fraction of the secret key size, and also that there is no leakage during the
update process. Brakerski, Kalai, Katz, and Vaikuntanathan [18] construct signatures, public key encryption
schemes, and (selectively secure) identity-based encryption schemes which are secure against attackers who
can obtain leakage between updates of the secret key, and also a very limited amount of leakage during
updates and during the initial setup phase. The leakage between updates is bounded in terms of a fraction
of the secret key size, while the leakage during updates and setup is logarithmically small as a function of
the security parameter.

The dual system encryption methodology was introduced by Waters in [66]. It has been leveraged to
obtain constructions of fully secure IBE and HIBE from simple assumptions [66], fully secure HIBE with
short ciphertexts [52], fully secure ABE and Inner Product Encryption (IPE) [51], and fully secure functional
encryption combining ABE and IPE [56].

Independently, Alwen and Ibraimi [4] have proposed a leakage resilient system for a special case of
Attribute-Based Encryption, where the ciphertext policy is expressed as a DNF. Their work pursues a
different technical direction to ours, and provides an interesting application of hash proof systems to the
ABE setting. Security is proven from a “q-type” assumption.

1.2 Organization

In Section 2, we provide the necessary definitions and state our complexity assumptions. In Section 3, we
define the dual system encryption methodology for IBE schemes as an abstraction. In Section 4, we formalize
the relationship between our security model for leakage resilience and the model of continual leakage resilience
for IBE schemes. In Section 5, we present our IBE scheme. In Section 6, we prove its security. In Section 7,
we present our HIBE scheme. In Section 8, we present our Ciphertext-Policy Attribute-Based Encryption
(CP-ABE) scheme. In Section 9, we discuss the leakage bounds for our schemes.

2 Preliminaries

2.1 Notation

We denote by s
$← S the fact that s is picked uniformly at random from a finite set S and by x, y, z

$← S
that all x, y, z are picked independently and uniformly at random from S. By negl(λ) we denote a negligible
function of λ, i.e. a function f : N → R such that for every c > 0 and for all but a finite number of λ’s:
f(λ) ≤ λ−c. By |x| we denote the size/number of bits of term x. Also, the special symbol ⊥ is meant to serve
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as a unique dummy value in all our systems. Finally, by PPT we denote a probabilistic polynomial-time
algorithm.

2.2 Composite Order Bilinear Groups

Our construction uses composite order bilinear groups, first introduced in [16]. We use groups of order
N = p1p2p3, where p1, p2, p3 are three distinct prime numbers. We require that these groups, denoted G
from now on, admit an efficiently computable non-degenerate bilinear map e : G×G→ GT , where GT is a
target group of the same order:

Non-degenerate: For all generators g ∈ G e(g, g) 6= 1GT
Bilinear: For all a, b ∈ ZN e(ga, gb) = e(g, g)ab

Since G is of composite order, it includes three subgroups G1,G2,G3 of order p1, p2, p3, respectively. Any
element of G is of the form gx1

1 gx2
2 gx3

3 , where gi is a generator of subgroup Gi and xi ∈ Zpi . We will refer to
gx1

1 , gx2
2 , gx3

3 as the G1,G2,G3 part of the term, respectively. It is easily proved that if an element of Gi (i.e.
xk = 0 for k 6= i) is paired with an element of Gj with i 6= j, the result of the pairing is the identity element.

To see this, suppose that g is a generator of G. Then gp1p2 generates G3, gp1p3 generates G2, and gp2p3

generates G1. Suppose that u ∈ G1 and h ∈ G2. Then for some a, b we have that u = (gp2p3)a and
h = (gp1p3)b. But then

e(u, h) = e(gp2p3a, gp1p3b) = e(gp3a, gb)p1p2p3 = 1GT

We will make heavy use of this property in our constructions.

2.3 Complexity Assumptions

To prove the security of our system, we will use the following three assumptions in composite order groups,
also used in [52, 51]. These are static assumptions, which hold in the generic group model if finding a
nontrivial factor of the group order is hard. The proof of this can be found in [52].

For all assumptions, we require the existence of a group generator algorithm G that gets a security
parameter 1λ as input and produces a description of a composite order bilinear group. That is, it outputs
three primes p1, p2, p3, two groups G,GT of order N = p1p2p3, a map e : G × G → GT with the above
properties, and three generators g1, g2, g3 of subgroups G1,G2,G3, respectively. We also require that e is
polynomial-time computable with respect to λ.

The three assumptions are the following:

Assumption 2.1. Given D1 = (N,G,GT , e, g1, g3) no PPT adversary has a non-negligible advantage in
distinguishing

T 1
0 = gz1 from T 1

1 = gz1g
ν
2 ,

where z, ν $← ZN . The advantage of an algorithm A in solving Assumption 2.1 is defined as:

Adv2.1
A (λ) =

∣∣Pr[A(D1, T 1
0 ) = 1]− Pr[A(D1, T 1

1 ) = 1]
∣∣ .

We say that Assumption 2.1 holds if for all PPT A, Adv2.1
A (λ) ≤ negl(λ).

Assumption 2.2. Given D2 = (N,G,GT , e, g1, g3, g
z
1g
ν
2 , g

µ
2 g

ρ
3) where z, ν, µ, ρ $← ZN , no PPT adversary has

a non-negligible advantage in distinguishing

T 2
0 = gw1 g

σ
3 from T 2

1 = gw1 g
κ
2 g

σ
3 ,

where w, κ, σ $← ZN . The advantage of an algorithm A in solving Assumption 2.2 is defined as:

Adv2.2
A (λ) =

∣∣Pr[A(D2, T 2
0 ) = 1]− Pr[A(D2, T 2

1 ) = 1]
∣∣ .

We say that Assumption 2.2 holds if for all PPT A, Adv2.2
A (λ) ≤ negl(λ).
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Assumption 2.3. Given D3 = (N,G,GT , e, g1, g2, g3, g
α
1 g

ν
2 , g

z
1g
µ
2 ) where α, ν, z, µ $← ZN , no PPT adversary

has a non-negligible advantage in distinguishing

T 3
0 = e(g1, g1)αz ∈ GT from T 3

1
$← GT .

The advantage of an algorithm A in solving Assumption 2.3 is defined as:

Adv2.3
A (λ) =

∣∣Pr[A(D3, T 3
0 ) = 1]− Pr[A(D3, T 3

1 ) = 1]
∣∣ .

We say that Assumption 2.3 holds if for all PPT A, Adv2.3
A (λ) ≤ negl(λ).

2.4 Vector Notation

We will use angle brackets 〈·, ·, ·, ·〉 to denote vectors and parentheses (·, ·, ·, ·) to denote collections of elements
of different types. The dot product of vectors is denoted by · and component-wise multiplication is denoted
by ∗.

We define the exponentiation operator for vectors in the following way: For u ∈ G, ~u = 〈u1, u2, . . . , un〉 ∈
Gn, a ∈ ZN , and ~a ∈ ZnN where G is a group and N,n are integers, we define

u~a := 〈ua1 , ua2 , . . . , uan〉 , ~ua := 〈ua1 , ua2 , . . . , uan〉

The resulting terms are elements of Gn and all the above operations are efficiently computable if the under-
lying operations of G are efficiently computable.

For a bilinear group G, we define a pairing operation of vectors in Gn: For ~v1 = 〈v11, v12, . . . , v1n〉 ∈ Gn

and ~v2 = 〈v21, v22, . . . , v2n〉 ∈ Gn, their pairing is

en(~v1, ~v2) =
n∏
i=1

e(v1i, v2i) ∈ GT ,

where e : G×G→ GT is the bilinear mapping of G and the product is the group operation of GT .

2.5 Identity-Based Encryption

An Identity-Based Encryption system (first introduced in [62]) is a public key cryptosystem which allows
users to encrypt knowing only the recipient’s identity and some public parameters of the systems (this means
that individual public keys are not needed). Formally, an IBE scheme consists of four PPT algorithms. In
order to allow leakage on many master keys, we extend the functionality of the usual key generation algorithm
by allowing it to take the empty string, denoted by ε, as input.

Setup (1λ)→ (PP,MK) The setup algorithm takes an integer security parameter, λ, as input and outputs
the public parameters, PP, and the original master key, MK. The remaining algorithms take implicitly the
security parameter and the public parameters as inputs. The security parameter is encoded in unary, so that
all algorithms run in polynomial time in λ.

Keygen(MK′, X) → K The key generation algorithm takes in a master key, MK′, and either X = I, an
identity, or X = ε, the empty string2. In the former case, it outputs a secret key, K = SK, for the identity I.
In the latter case, it outputs another master key, K = MK′′, such that

∣∣MK′′
∣∣ =

∣∣MK′
∣∣ 3. This new master

key can now be used instead of the original key in calls of Keygen (either with I or with ε as input).

2This is not the standard definition of Keygen in IBE systems. We augmented it to accept the empty string in order to
work as an update algorithm for the master key and eventually achieve security in the Continual Leakage Model (see Section
4).

3This restriction prevents expansion of the master key.
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Encrypt(M, I)→ CT The encryption algorithm takes in a message, M , and an identity, I, and outputs a
ciphertext, CT.

Decrypt(CT,SK) → M The decryption algorithm takes in a ciphertext, CT, and a secret key, SK. It
outputs a message M .

The correctness requirement is that if the identity I used during encryption is the same as the identity
of the secret key used during decryption, then the output of Decrypt is the encrypted message M . That is,
for all MK,PP generated by a call to Setup, for all master keys MK′ generated by applying the Keygen
algorithm with the empty string and a previously generated master key, and for all M, I

Decrypt(Encrypt(M, I),Keygen(MK′, I)) = M.

2.6 Security Definition

The security of our system is based on a game, called MasterLeak. It is a modified version of the usual IbeCpa
security game. In that game, the attacker can make a polynomial number of Keygen queries for identities
other than the challenge identity. Each of these queries returns a secret key of the requested identity. The
main idea of our security game is to allow these queries and in addition allow leakage on the master key and
secret keys of the challenge identity. The only restriction we impose is that it can not get leakage of more
than `MK bits per master key (remember we can have many master keys) and `SK bits per secret key, where
`MK, `SK are parameters of the game.

The game starts with a setup phase, where the challenger runs the setup algorithm and gives the attacker
the public parameters. It also gives the attacker a handle (i.e. reference) to the master key. We now allow
the attacker to make three kinds of queries, called Create, Leak and Reveal. With a Create query, the
attacker asks the challenger to create a key and store it. The attacker supplies a handle that refers to a
master key to be used in the key generation algorithm. Each such query returns a unique handle-reference to
the generated key, so that the attacker can refer to it later and either apply a leakage function to it and/or
ask for the entire key. The original master key (the one created in the Setup algorithm) gets a handle of 0.

Using a handle, the attacker can make a leakage query Leak on any key of its choice. Since all queries
are adaptive (the attacker has the ability to leak from each key a few bits at the time, instead of requiring
the leakage to occur all at once) and the total amount of leakage allowed is bounded, the challenger has to
keep track of all keys leaked via these queries and the number of leaked bits from each key so far. Thus, it
creates a set T that holds tuples of handles, identities, keys, and the number of leaked bits. Each Create
query adds a tuple to this set and each Leak query updates the number of bits leaked.

The Reveal queries allow the attacker to get access to an entire secret key. They get as input a handle to
a key and the challenger returns this secret key to the attacker. The obvious restriction is that the attacker
can not get a master key, since it would trivially break the system. For the same reason, no key for the
challenge identity should be revealed and thus the challenger has to have another set to keep track of the
revealed identities. We will denote this set by R. We also note that the Reveal queries model the attacker’s
ability to “change its mind” in the middle of the game on the challenge identity. Maybe the attacker, after
getting leakage from a secret key, decides that it is better to get the entire key via a Reveal query. Thus
we achieve the maximum level of adaptiveness.

We now define our game formally. The security game is parameterized by a security parameter λ and
two leakage bounds `MK = `MK(λ), `SK = `SK(λ). The master keys’, secret keys’ and identities’ spaces
are denoted by MK, SK, and I, respectively. We assume that the handles’ space is H = N. The game
MasterLeak consists of the following phases:

Setup: The challenger makes a call to Setup(1λ) and gets a master key MK and the public parameters
PP. It gives PP to the attacker. Also, it sets R = ∅ and T = {(0, ε,MK, 0)}. Remember that R ⊆ I and
T ⊆ H × I × (MK ∪ SK) × N (handles - identities - keys - leaked bits). Thus initially the set T holds a
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record of the original master key (no identity for it and no leakage so far). Also a handle counter H is set
to 0.

Phase 1: In this phase, the adversary can make the following queries to the challenger. All of them can be
interleaved in any possible way and the input of a query can depend on the outputs of all previous queries
(adaptive security).

• Create(h,X): h is a handle to a tuple of T that must refer to a master key and X can be either an
identity I or the empty string ε.

The challenger initially scans T to find the tuple with handle h. If the identity part of the tuple is not
ε, which means that the tuple holds a secret key of some identity, or if the handle does not exist, it
responds with ⊥.

Otherwise, the tuple is of the form (h, ε,MK′, L). Then the challenger makes a call to Keygen(MK′, X)→
K and adds the tuple (H + 1, X,K, 0) to the set T . K is either a secret key for identity I or another
master key. After that, it updates the handle counter to H ← H + 1.

• Leak(h, f): In this query, the adversary requests leakage from a key that has handle h ∈ N with a
polynomial-time computable function f acting on the set of keys. The challenger scans T to find the
tuple with the specified handle. It is either of the form (h, I, SK, L) or

(
h, ε,MK′, L

)
4.

In the first case, it checks if L+ |f(SK)| ≤ `SK. If this is true, it responds with f(SK) and updates the
L in the tuple with L+ |f(SK)|. If the checks fails, it returns ⊥ to the adversary.

If the tuple holds a master key MK′, it checks if L+
∣∣f(MK′)

∣∣ ≤ `MK. If this is true, it responds with
f(MK′) and updates the L with L+

∣∣f(MK′)
∣∣. If the checks fails, it returns ⊥ to the adversary.

• Reveal(h): Now the adversary requests the entire key with handle h. The challenger scans T to
find the requested entry. If the handle refers to a master key tuple, then the challenger returns ⊥.
Otherwise, we denote the tuple by (h, I, SK, L). The challenger responds with SK and adds the identity
I to the set R.

Challenge: The adversary submits a challenge identity I∗ /∈ R and two messages M0,M1 of equal size.
The challenger flips a uniform coin c

$← {0, 1} and encrypts Mc under I∗ with a call to Encrypt(Mc, I
∗).

It sends the resulting ciphertext CT∗ to the adversary.

Phase 2: This is the same as Phase 1 with the restriction that the only queries allowed are Create
and Reveal queries that involve a (non-master) secret key with identity different than I∗. The reason for
forbidding Leak queries on a master key and on I∗ is that the adversary can encode the entire decryption
algorithm of CT∗ as a function on a secret key, and thus win the game trivially if we allow these queries.
For the same reason, the challenger can not give an entire secret key of I∗ to the adversary and hence no
Reveal queries involving I∗ are allowed too. Leak queries on keys of identities other than I∗ are useless,
since the adversary can get the entire secret keys.

Guess: The adversary outputs a bit c′ ∈ {0, 1}. We say it succeeds if c′ = c.

The security definition we will use is the following:

Definition 2.4. An IBE encryption system Π is (`MK, `SK)-master-leakage secure if for all PPT adversaries
A it is true that

AdvMasterLeak
A,Π (λ, `MK, `SK) ≤ negl(λ)

4It can be the case that MK′ is the original master key.
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where AdvMasterLeak
A,Π (λ, `MK, `SK) is the advantage of A in game MasterLeak with security parameter λ and

leakage parameters `MK = `MK(λ), `SK = `SK(λ) and is formally defined as

AdvMasterLeak
A,Π (λ, `MK, `SK) =

∣∣∣∣Pr[A succeeds]− 1
2

∣∣∣∣ ,
where the probability is over all random bits used by the challenger and the attacker.

3 Dual System IBE

We now define dual system IBE schemes as an abstraction and define three security properties which will
ensure leakage resilience. We show that these properties imply that a dual system IBE scheme is (`MK, `SK)-
master-leakage secure.

3.1 Definition

A dual system IBE scheme ΠD has the following algorithms:

Setup(1λ) → (PP,MK) The setup algorithm takes in the security parameter, λ, and outputs the public
parameters, PP, and a normal master key, MK.

Keygen(MK′, X) → K The key generation algorithm takes in a normal master key, MK′, and either an
identity, I, or the empty string ε. In the first case, it outputs a normal secret key, SK, for the identity I,
and in the second case, it outputs another normal master key, MK′′.

Encrypt(M, I)→ CT The encryption algorithm takes in a message M , and an identity I, and outputs a
normal ciphertext, CT.

Decrypt(CT,SK) → M The decryption algorithm takes in a ciphertext CT encrypted to identity I, and
a secret key SK for identity I. It outputs the message M , unless both the key and the ciphertext are
semi-functional.

KeygenSF(MK′, X)→ K̃ The semi-functional key generation algorithm works in a similar way to Keygen
but outputs semi-functional keys. If X = I, an identity, it outputs a semi-functional secret key, S̃K for
identity I. If X = ε, the empty string, it outputs a semi-functional master key, M̃K.

Notice that this algorithm takes in a normal master key; not a semi-functional one. Also, this algorithm
need not be polynomial time computable, in contrast to Setup, Keygen, Encrypt, and Decrypt.

EncryptSF(M, I)→ C̃T The semi-functional encryption algorithm takes in a message M , and an identity
I, and outputs a semi-functional ciphertext, CT. This algorithm need not be polynomial time computable.

3.2 Security Properties for Leakage Resilience

We now define three security properties for a dual system IBE scheme. For this, we define two additional
games which are modifications of the MasterLeak game.

The first game, called MasterLeakC, is exactly the same as the MasterLeak game except that in the
Challenge phase, the challenger uses EncryptSF instead of Encrypt to create a semi-functional ciphertext,
and returns this to the adversary.

In the second new game, called MasterLeakCK, the challenger again uses EncryptSF for the challenge
phase. However, the set of tuples T has a different structure. Each tuple holds for each key (master or
secret) a normal and a semi-functional version of it. In this game, all keys leaked or given to the attacker
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are semi-functional. As we have noted above, the semi-functional key generation algorithm takes as input
a normal master key. Thus the challenger stores the normal versions, as well the semi-functional ones so
that it can use the normal versions of master keys as input to Keygen calls. 5 More precisely, the challenger
additionally stores a semi-functional master key in tuple 0 by calling KeygenSF(MK, ε) after calling Setup.
Thereafter, for all Create(h,X) queries, the challenger makes an additional call to KeygenSF(MK′, X),
where MK′ is the normal version of the master key stored in tuple h. Leak and Reveal queries act always
on the semi-functional versions of each key.

Finally, notice that the same attackers that play game MasterLeak can play games MasterLeakC and
MasterLeakCK without any change in their algorithms - queries etc. The change in set T is irrelevant to the
attacker.

Semi-functional Ciphertext Invariance: We say that a dual system IBE scheme ΠD has (`MK, `SK)-
semi-functional ciphertext invariance if for any probabilistic polynomial time algorithm A, the advantage of
A in the MasterLeak game is negligibly close to the advantage of A in the MasterLeakC game. We denote
this by: ∣∣∣AdvMasterLeak

A,ΠD (λ, `MK, `SK)− AdvMasterLeakC
A,ΠD (λ, `MK, `SK)

∣∣∣ ≤ negl(λ).

Semi-functional Key Invariance: We say that a dual system IBE scheme ΠD has (`MK, `SK)-semi-
functional key invariance if for any probabilistic polynomial time algorithm A, the advantage of A in the
MasterLeakC game is negligibly close to the advantage of A in the MasterLeakCK game. We denote this by:∣∣∣AdvMasterLeakC

A,ΠD (λ, `MK, `SK)− AdvMasterLeakCK
A,ΠD (λ, `MK, `SK)

∣∣∣ ≤ negl(λ).

Semi-functional Security: We say that a dual system IBE scheme ΠD has (`MK, `SK)-semi-functional
security if for any probabilistic polynomial time algorithm A, the advantage of A in the MasterLeakCK game
is negligible. We denote this by:

AdvMasterLeakCK
A,ΠD (λ, `MK, `SK) ≤ negl(λ).

Theorem 3.1. If a dual system IBE scheme ΠD =(Setup, Keygen, Encrypt, Decrypt, KeygenSF, En-
cryptSF) has (`MK, `SK)-semi-functional ciphertext invariance, (`MK, `SK)-semi-functional key invariance,
and (`MK, `SK)-semi-functional security, then Π =(Setup, Keygen, Encrypt, Decrypt) is a (`MK, `SK)-
master-leakage secure IBE scheme.

Proof. The proof is straight-forward. We first observe that playing the MasterLeak game with system Π is
exactly the same as playing the MasterLeak game with system ΠD. The methods called are exactly the same.
Therefore we have that:

AdvMasterLeak
A,Π (λ, `MK, `SK) = AdvMasterLeak

A,ΠD (λ, `MK, `SK)

By semi-functional ciphertext invariance, we have that:∣∣∣AdvMasterLeak
A,ΠD (λ, `MK, `SK)− AdvMasterLeakC

A,ΠD (λ, `MK, `SK)
∣∣∣ ≤ negl(λ).

By semi-functional key invariance, we have that:∣∣∣AdvMasterLeakC
A,ΠD (λ, `MK, `SK)− AdvMasterLeakCK

A,ΠD (λ, `MK, `SK)
∣∣∣ ≤ negl(λ).

5As one should notice, we will never use the normal versions of non-master keys in this game. However, we have them here
because we will need them in the game of the next section and when we move to the HIBE setting.
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Thus, by the triangle inequality (and the fact that the sum of two negligible functions is also a negligible
function), we may conclude that∣∣∣AdvMasterLeak

A,ΠD (λ, `MK, `SK)− AdvMasterLeakCK
A,ΠD (λ, `MK, `SK)

∣∣∣ ≤ negl(λ).

By semi-functional security, we know that

AdvMasterLeakCK
A,ΠD (λ, `MK, `SK) ≤ negl(λ).

Hence,
AdvMasterLeak

A,ΠD (λ, `MK, `SK) ≤ negl(λ),

which implies that
AdvMasterLeak

A,Π (λ, `MK, `SK) ≤ negl(λ).

3.3 An Alternate Security Property

We additionally define a property called One Semi-functional Key Invariance. We will show that this implies
semi-functional key invariance, and so can be substituted for semi-functional key invariance in proving that
a system is (`MK, `SK)-master-leakage secure. The motivation for this is that proving semi-functional key
invariance directly will often involve a hybrid argument, and defining one semi-functional key invariance
allows us to include this hybrid as part of our abstraction and hence avoid repeating it for each system.

To define this property, we first define one more variation of our security game, called MasterLeakb. This
is similar to the MasterLeakCK game, with the main difference being that the attacker can choose on which
version of each key to leak or reveal. In other words, on the first leakage or reveal query on a key of the
augmented set T , the attacker tells the challenger whether it wants the normal or the semi-functional version
of the key. In order for the challenger to keep track of the attacker’s choice on each key, we further augment
each tuple of T with a lock-value denoted by V ∈ N that can take one of the three values:

• −1: That means that the attacker has not made a choice on this key yet and the key is “unlocked”.
This is the value the tuple gets, in a Create query.

• 0: The attacker chose to use the normal version of the key on the first leakage or reveal query on it.
All subsequent Leak and Reveal queries act on the normal version.

• 1: The attacker chose the semi-functional version and the challenger works as above with the semi-
functional version.

To summarize, each tuple is of the form (h,X,K, K̃, L, V ) i.e. handle - identity or empty string - normal
key - semi-functional key - leakage - lock. For example, the original master key is stored at the beginning of
the game in the tuple (0, ε,MK,KeygenSF(MK, ε), 0,−1).

At some point, the attacker must decide on a challenge key which is “unlocked”, V = −1, and tell this
to the challenger. The challenger samples a uniformly random bit b $← {0, 1} and sets V = b. Therefore, the
attacker has access to either the normal (if b = 0) or the semi-functional (if b = 1) version of this key via
Leak and Reveal queries. We note that if the attacker did not make a choice for the original master key in
tuple 0, it can choose this master key as the challenge key.

The attacker is then allowed to resume queries addressed to either normal or semi-functional keys, with
the usual restrictions (i.e. no leakage or reveal queries on keys capable of decrypting the challenge ciphertext
after the attacker has seen the challenge ciphertext).
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One Semi-functional Key Invariance: We say that a dual system IBE scheme ΠD has (`MK, `SK)-one
semi-functional key invariance if, for any probabilistic polynomial time algorithm A, the advantage of A in
the MasterLeakb game with b = 0 is negligibly close to the advantage of A in the MasterLeakb game with
b = 1. We denote this by:∣∣∣AdvMasterLeak0

A,ΠD (λ, `MK, `SK)− AdvMasterLeak1
A,ΠD (λ, `MK, `SK)

∣∣∣ ≤ negl(λ)

Theorem 3.2. If a dual system IBE scheme ΠD has (`MK, `SK)-one semi-functional key invariance, then it
also has (`MK, `SK)-semi-functional key invariance.

Proof. Suppose for contradiction that there is a PPT adversary A that breaks the semi-functional key
invariance property of our system, but ΠD has one semi-functional key invariance. This means by definition
that the difference ∣∣∣AdvMasterLeakC

A,ΠD (λ, `MK, `SK)− AdvMasterLeakCK
A,ΠD (λ, `MK, `SK)

∣∣∣ (1)

is non-negligible. Then we will construct another PPT algorithm B that breaks the one semi-functional key
invariance of ΠD, which is a contradiction.

We denote by Q− 1 the maximum number of Create queries that A makes. Thus, the total number of
different secret keys is Q (since we also count the original master key). Since A is assumed to be polynomial-
time, Q is a polynomial in λ.

For q ∈ [0, Q] we define the game SFq to be like the MasterLeakC game (with EncryptSF for the challenge
phase), semi-functional versions for the first q different keys, and normal versions for the remaining keys.
The order is defined by the first leakage or reveal query made on each key. As always, master keys input to
Keygen calls are normal. The semi-functional versions are passed to A via leakage or reveal queries.

Notice that SF0 is the MasterLeakC game and SFQ is the MasterLeakCK game. Hence, since the difference
in advantages of SF0 and SFQ is non-negligible in λ by (1) and Q is a polynomial in λ, there exists a
q∗ ∈ [0, Q− 1] such that the difference∣∣∣Adv

SFq∗
A,ΠD (λ, `MK, `SK)− Adv

SFq∗+1
A,ΠD (λ, `MK, `SK)

∣∣∣
is non-negligible. This means that the algorithm A has a non-negligible difference in the advantages when
playing game SFq∗ and game SFq∗+1.

So, to create an algorithm B that breaks the one semi-functional key invariance of ΠD, we use A in the
MasterLeakb game. When A makes a key request, B forwards this to the MasterLeakb challenger as follows.
B requests semi-functional keys for the first q∗ keys, chooses the (q∗+ 1)-th key to be the challenge key, and
requests normal keys for the remaining keys.

Notice that if the MasterLeakb challenger picked b = 0, then A plays the SFq∗ game. Otherwise, it plays
the SFq∗+1 game. This means that

AdvMasterLeakb
B,ΠD (λ, `MK, `SK) = Adv

SFq∗+b
A,ΠD (λ, `MK, `SK) for b ∈ {0, 1}

Therefore, B breaks the one semi-functional key invariance of ΠD, which is a contradiction.

4 Continual Leakage

If an IBE scheme also comes equipped with an update algorithm which takes in a secret key and outputs a
new, re-randomized key from the same distribution generated by a fresh call to KeyGen, then our security
definition yields resilience to continual leakage “for free”. Essentially, the many master keys and many keys
per identity that our definition allows to leak can be interpreted as updated versions of keys. Hence, each
time a key is updated, the attacker is allowed to obtain new leakage on the new version of the key.
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We now formally compare our security definition to the Continual Leakage Model (CLM) for leakage
resilience. Recent results in this model have appeared in [18] and [27]. This model allows for leakage on the
randomness generated during the calls of different methods, as well as leakage on the keys of the system. It
is essentially a combination of the types of leakage allowed in the “Only Computation Leaks” model and the
memory leakage model. We will show that our definition of security implies a form of continual leakage if
the IBE scheme in question has a specific re-randomization property (our scheme will have this property).

In the continual leakage model, there is only one master key and one secret key per user at any moment
in time. Continual leakage on many master and secret keys is achieved with two new additional algorithms,
called UpdateMK and UpdateSK. These update master and secret keys, respectively, and as a result
a brand new leakage “session” on the updated key is allowed. We will show that if an IBE scheme of
Section 3.1 has an extra UpdateSK algorithm and a specific re-randomization property, then our definition
of security implies security in the CLM. The UpdateMK algorithm is going to be implemented by our
Keygen algorithm with the empty string as input. The additional algorithm is:

UpdateSK(SK) → SK′ This algorithm takes in a secret key, SK, and outputs a re-randomized key, SK′,
such that |SK′| = |SK|.

Definition 4.1. An IBE scheme Π = (Setup,Keygen,Encrypt,Decrypt,UpdateSK) is called an IBE
with re-randomization if the following property holds:

For all MK,PP generated by a call to Setup, for all master keys MK′,MK′′ generated by applying the
Keygen algorithm with the empty string and a previously generated master key, for all identities I, the
distribution of a secret key SK′ generated by the UpdateSK(Keygen(MK′, I)) method is indistinguishable
from the distribution of a secret key SK generated by Keygen(MK′′, I).

The security definition of IBE schemes in the Continual Leakage Model is defined via the following game,
called ClmIbe. This is proposed (informally) in [18]. The game consists of three query phases, where in the
first the attacker can make Extract queries on identities (similar to our Reveal queries) and leakage queries
on the master key. Also, it can ask for an update on the master key. In the second phase, the attacker has
decided on the challenge identity and can make leakage or update queries on its secret key, in addition to the
previous queries. The third phase is like Phase 2 of the MasterLeak game; no leakage queries are allowed.

The game is parameterized by the security parameter λ and five leakage parameters (ρG, ρUM , ρM , ρUS , ρS).
These are meant to be leakage on the generation algorithm, on the update procedure of the master key, on
the master key, on the update procedure of a secret key, and on the secret keys, respectively. As in the
MasterLeak game, the challenger has to keep track of the total leakage on each master key and on every
secret key. Since we have only one master key at a time, there is no need for the challenger to store master
keys in T . It has a master key leakage counter denoted LMK. The phases of the game are:

Setup - CLM: The challenger chooses “secret randomness” r and “public randomness” p and calls
Setup(1λ; r, p) → (PP,MK). The adversary specifies a polynomial-time computable function f such that
|f(r, p)| ≤ ρG · |r| for all r, p. The challenger sends to the adversary the tuple (PP, f(r, p), p). Also it sets
the master leakage counter LMK = |f(r, p)| and a handle counter H = 0. It initializes R = ∅.

Phase 1 - CLM: In this phase, the adversary can make one of the following queries to the challenger. All
of them can be interleaved in any possible way and therefore the input of a query can depend on the outputs
of all previous queries (adaptive security).

• Keygen(I): The challenger adds the identity I to R, since it should be considered “revealed” from
now on and responds with the output of a call to Keygen(MK, I).

• MasterLeak(f): In this query, f is a function such that LMK + |f(MK)| ≤ ρM · |MK|. The adversary
requests leakage from the master key here. The challenger responds with the value f(MK) and updates
LMK to LMK + |f(MK)|. If LMK + |f(MK)| > ρM · |MK|, it responds with the dummy value ⊥.
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• UpdateMK(f): Now the attacker requests an update (and leakage) on the master key. It should be
true that |f(MK, r, p)| ≤ ρUM · (|MK| + |r|) for all MK, r, p where r, p are the secret and public ran-
domness, respectively, of the Keygen method. The challenger chooses randomness r, p and generates
a new master key, M̂K ← Keygen(MK, ε; r, p). If LMK + |f(MK, r, p)| ≤ ρM · |MK|, it gives to the
attacker f(MK, r, p). Finally, it sets LMK = |f(MK, r, p)| and MK← M̂K, in that order.

Challenge Identity - CLM: In this phase, the attacker chooses the challenge identity I∗ /∈ R and the
challenger creates a secret key for it: SKI∗ ← Keygen(MK, I∗). Also it sets a leakage counter LSK = 0.

Phase 2 - CLM: In this phase, we allow the following queries. The first three are similar to the respective
ones of Phase 1 -CLM.

• Keygen(I): Obviously I 6= I∗ is required.

• MasterLeak(f)

• UpdateMK(f)

• Leak(f): In this query, f is a function such that LSK + |f(SKI∗)| ≤ ρS · |SKI∗ |. The adversary requests
leakage from the secret key of I∗ here. The challenger responds with the value f(SKI∗) and updates
LSK to LSK + |f(SKI∗)|. If LSK + |f(SKI∗)| > ρS · |SKI∗ |, it responds with the dummy value ⊥.

• UpdateSK(f): Now the attacker requests an update (and leakage) on the secret key of I∗. It should
be true that |f(SKI∗ , r, p)| ≤ ρUS · (|SK|+ |r|) for all SK, r, p where r, p are the secret and public ran-
domness, respectively, of the Keygen method. The challenger chooses randomness r, p and generates
a new secret key, ŜKI∗ ← Keygen(MK, I∗; r, p). If LSK + |f(SKI∗ , r, p)| ≤ ρS · |SKI∗ |, it gives to the
attacker f(SKI∗ , r, p). Finally, it sets LSK = |f(SKI∗ , r, p)| and SKI∗ ← ŜKI∗ , in that order.

Challenge: The adversary submits two messages M0,M1 of equal size. The challenger flips a uniform coin
c

$← {0, 1} and encrypts Mc under I∗ with a call to Encrypt(M, I). It sends the resulting ciphertext CT∗

to the adversary.

Phase 3 - CLM: Now only Keygen(I) queries with I 6= I∗ are allowed.

Guess: The adversary outputs a bit c′ ∈ {0, 1}. We say it succeeds if c′ = c.

We say that a scheme Π = (Setup,Keygen,Encrypt,Decrypt,UpdateSK) is (ρG, ρUM , ρM , ρUS , ρS)-
secure in the CLM if any PPT adversary has at most a negligible advantage in winning the ClmIbe game.

We will prove the following theorem:

Theorem 4.2. If an IBE system Π = (Setup,Keygen,Encrypt,Decrypt,UpdateSKey) with re-randomization
is (`MK, `SK)-master-leakage secure, then it is also(

0, 0,
`MK

|MK|
, 0,

`SK

|SK|

)
- secure

in the Continual Leakage Model above.

Proof. To prove the theorem, we assume that we have a PPT attacker A that breaks our system in the
continual leakage model with parameters

(
0, 0, `MK

|MK| , 0,
`SK
|SK|

)
. Notice that this attacker gets no leakage from

the generation and update algorithms. We will construct a PPT algorithm B that uses A and breaks the
(`MK, `SK)-master-leakage security of our system. B will play the role of A’s challenger in the ClmIbe game.
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Essentially, the main strategy of the new algorithm is to merge phases 1, Challenge Identity, 2 of the
ClmIbe game into Phase 1 of the MasterLeak game. It will use a handle hMK to denote the “current” master
key and a handle hI∗ to denote the current secret key of the challenge identity. Also, we state here that B
chooses all randomness used to be private. Initially, it sets hMK = 0. B works as follows:

Setup: B executes the setup phase of MasterLeak game with its challenger and sends only the public
parameters to A. Since no leakage is allowed on the generation algorithm and our system does not use
public randomness, this is exactly what A expects.

Phase 1: For every Keygen(I) query made by A, B makes a Create(hMK, I) → h′ query first and a
Reveal(h′)→ SK′ query afterwards. It gives to A the secret key SK′. It is obvious that this is exactly the
output of Keygen(MK, I), where MK is the current master key.

For every MasterLeak(f) query made by A, B makes a Leak(hMK, f) query. Since LMK + |f(MK)| ≤
ρM · |MK| =⇒ LMK + |f(MK)| ≤ `MK, the challenger of the MasterLeak game has to provide B with the
requested leakage f(MK). Notice that the update it makes to the L of the tuple is the same as update A’s
challenger should make on LMK - thus legitimate in the view of A.

For every UpdateMK(f) query made by A, B has only to update the master key. That is because
ρUM = 0 and thus f outputs nothing. To simulate an update, it makes a Create(hMK, ε) → h′ query. It
sets hMK ← h′, which changes the current master key to the new one. The method called is exactly the
same, i.e. Keygen(MK, ε); hence A sees no difference.

At some point, A reaches the challenge phase. After sending the challenge identity I∗, B makes a
Create(hMK, I

∗)→ hI∗ query. The handle hI∗ will point to the current secret key of the challenge identity.
For the additional queries of Phase 2 - CLM, B works as follows:

For every Leak(f) query, B makes a Leak(hI∗ , f) query. Since LSK + |f(SKI∗)| ≤ ρS · |SKI∗ | =⇒
LSK + |f(SKI∗)| ≤ `SK, the challenger of the MasterLeak game has to provide B with the requested leakage
f(SKI∗). Notice that the update it makes to the L of the tuple is the same as update A’s challenger should
make on LSK - thus legitimate in the view of A.

For every UpdateSK(f) query, B has only to update the secret key of I∗. That is because ρUS = 0 and
thus f outputs nothing. Instead of updating, it makes a Create(hMK, I

∗) → h′ query. It sets hI∗ ← h′,
which changes the current secret key to the new one. However, now the method called is not what A
expected. It expected the UpdateSK method, but B implicitly called the Keygen method. Since the
output distributions of the two methods are indistinguishable by the property of re-randomization, A cannot
have a non-negligible change in its advantage. Thus, the advantage of B will still be non-negligible.

Challenge: Here, B simply forwards to its challenger the two messages and the challenge identity provided
by A. According to the MasterLeak game, the challenger encrypt the message under the challenge identity
and returns the ciphertext to B. It responds to A with this ciphertext. It is obvious that this is a correct
simulation for A.

Phase 2: In this phase A can make only Keygen queries for I 6= I∗. For each such query, B makes a
Create(hMK, I) → h′ query first and a Reveal(h′) → SK′ query afterwards. It gives to A the secret key
SK′. It is obvious that this is exactly the output of Keygen(MK, I), where MK is the current master key.

Guess: B outputs A’s guess bit.

The advantage of B in the MasterLeak game is exactly the same as the advantage of A in ClmIbe. Thus,
it breaks the (`MK, `SK)-master-leakage security.
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4.1 Leakage from Updates

We note here that using the same “guess and check” method of [18], we can tolerate a small amount leakage
on the generation and update procedures in the Continual Leakage Model. More specifically, we can tolerate
leakage which is logarithmic in the security parameter λ by guessing a value for the leakage and observing
whether the attacker’s advantage noticeably decreases. If not, we can use this value for the leakage during
the key generation or update in question, and continue the simulation. By limiting the leakage size to
logarithmic, we can efficiently check all possible leakage values and hence we will be able to find one that
works in polynomial time. The details of this argument are given in [18].

5 Master-Leakage Secure IBE Scheme

The IBE scheme we give here is an augmented version of the Lewko-Waters IBE [52], designed to sustain
master and secret key leakage from an arbitrary number of keys. The original version of the Lewko-Waters
IBE was proven secure (without leakage) using the dual system encryption framework, i.e. security was
proven by a hybrid argument where first the ciphertext was changed to the semi-functional, and then the
revealed keys were changed to semi-functional one at a time. At the step where a particular key is being
changed to semi-functional, it is crucial that the simulator cannot determine the nature of this key for itself,
and yet it seems that the simulator can make a semi-functional ciphertext for the same identity and test for
semi-functionality of the key by attempting to decrypt. This apparent paradox is resolved by only allowing
the simulator to make this key nominally semi-functional, meaning that even if it has some semi-functional
components, they will cancel out upon decryption. To the attacker, the key will still appear to be distributed
as a regular semi-functional key, since it cannot be for the same identity as the challenge ciphertext.

Now that we allow the attacker to request leakage on a secret key for the same identity as the challenge
ciphertext, it is more challenging to hide nominal semi-functionality in the attacker’s view. To accomplish
this, we add vectors of dimension n to the front of the ciphertexts and secret keys of the LW system. Nominal
semi-functionality now corresponds to the vector of exponents of the semi-functional components of the key
being orthogonal to the vector of exponents of the semi-functional components of the ciphertext. We can
then use the algebraic lemma of [18] to assert that this orthogonality is hidden from attackers with suitably
bounded leakage. Essentially, the attacker can learn limited information about the secret key vector through
leakage, and then cannot determine whether this vector is orthogonal to the ciphertext vector. It is crucial
here that the secret key leakage must occur before the attacker sees the ciphertext. This same strategy of
adding vectors to the front of the system to allow leakage is also sufficient to yield leakage-resilient HIBE
and ABE constructions, as we show in subsequent sections.

Finally, to allow leakage on the master key, we designed the master key to be similar in form to regular
secret keys, i.e. we added many new elements and randomness. As we will see, the only knowledge needed
to create secret keys is just an integer, denoted by α. However, small leakage from this integer compromises
the security of our system6. By setting up the master key in the form of the secret keys, we allowed our
simulator to create keys using α and use the challenge terms in the extra randomness we added. Essentially,
we set up the master key like a secret key of level 0 in an HIBE scheme. Obviously, the above discussion
implies that the master key authority should not store α in memory and should only store the master key
as we have defined it below. Hence, the authority now stores n+ 3 elements of the group as the master key.

5.1 Construction

Our dual system IBE scheme consists of the following algorithms:
6It can only sustain leakage logarithmic in the security parameter (see Section 4.1).
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Setup(1λ) The setup algorithm generates a bilinear group G of composite order N = p1p2p3, where
p1, p2, p3 are three different λ1,λ2,λ3-bit prime numbers respectively7. Therefore, for every i ∈ {1, 2, 3} we
have that 2λi−1 ≤ pi < 2λi . The subgroup of order pi in G is denoted by Gi. We assume that the identities
of users in our system are elements of ZN .

We let n be a positive integer greater than or equal to 2. The value of n can be varied - higher values of
n will lead to a better fraction of leakage being tolerated (see Section 9), while lower values of n will yield a
system with fewer group elements in the keys and ciphertexts.

The algorithm picks 3 random generators 〈g1, u1, h1〉 ∈ G1 × G1 × G1 and one generator g3 ∈ G3. It

also picks n+ 1 random exponents 〈α, x1, x2, . . . , xn〉
$← Zn+1

N . It picks 〈r, y1, y2, . . . , yn〉
$← Zn+1

N , a random

vector ~ρ = 〈ρ1, . . . , ρn+2〉
$← Zn+2

N , and a random element ρn+3
$← ZN . It outputs the following public

parameters and master key:

PP = (N, g1, g3, u1, h1, e(g1, g1)α, gx1
1 , gx2

1 , . . . , gxn1 )

MK =
(
~K∗,K∗

)
=

(〈
gy11 , . . . , gyn1 , gα1 h

−r
1

n∏
i=1

g−xiyi1 , gr1

〉
∗ g~ρ3 , ur1g

ρn+3
3

)

Keygen(MK,PP, X) We first consider when X = ε, the empty string. Then this algorithm re-randomizes

the master key by picking another 〈r′, y′1, y′2, . . . , y′n〉
$← Zn+1

N , a random vector ~ρ′ =
〈
ρ′1, . . . , ρ

′
n+2

〉 $← Zn+2
N ,

and a random element ρ′n+3
$← ZN . If MK =

(
~K∗,K∗

)
, it outputs the new (same-sized) master key:

MK′ =
(
~K ′,K ′

)
=

(
K∗ ∗

〈
g
y′1
1 , . . . , g

y′n
1 , h−r

′

1

n∏
i=1

g
−xiy′i
1 , gr

′

1

〉
∗ g~ρ′3 ,K∗ur

′

1 g
ρ′n+3
3

)

If X = I ∈ ZN , an identity, the algorithm picks n+ 1 random exponents 〈r′, z1, z2, . . . , zn〉
$← Zn+1

N . Also

it picks ~ρ′ $← Zn+2
N and outputs the secret key:

SK = ~K1 = ~K∗ ∗

〈
gz11 , g

z2
1 , . . . , g

zn
1 , (K∗)−I(uI1h1)−r

′
n∏
i=1

g−xizi1 , gr
′

1

〉
∗ g~ρ′3

The terms g−xiy
′
i

1 and g−xizi1 above are calculated by using the gxi terms of PP.
It is very important to notice that with knowledge of α alone, one can create properly distributed secret

keys, because the random terms r, y1, . . . , yn, ρn+3, ~ρ of the master key are all masked by the random terms
r′, z1, . . . , zn, ~ρ′ generated by the algorithm. However, instead of storing α, the master authority now stores
n+ 3 elements of G.

Encrypt(M, I) The encryption algorithm picks s $← ZN and outputs the ciphertext:

CT =
(
C0, ~C1

)
=

=
(
M · (e(g1, g1)α)s,

〈
(gx1

1 )s, . . . , (gxn1 )s, gs1, (u
I
1h1)s

〉)
∈ GT ×Gn+2

7The three λ’s depend on the security parameter and are chosen appropriately to get a better leakage fraction (see Section
9 for details).
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Decrypt(CT,SK) To calculate the blinding factor e(g1, g1)αs, one computes en+2( ~K1, ~C1). If the encryp-
tion and decryption are correct, we get:

en+2( ~K1, ~C1) = e(g1, g1)αse(g1, u
I
1h1)rse(g1, u

I
1h1)r

′s · e(h1, g1)−rse(uI1, g1)−rse(uI1h1, g1)−r
′s

·
n∏
i=1

e(g1, g1)−xiyis
n∏
i=1

e(g1, g1)−xizis ·
n∏
i=1

e(g1, g1)xiyis
n∏
i=1

e(g1, g1)xizis

= e(g1, g1)αs

(Note that the G3 parts of the key do not contribute anything because they are orthogonal to the ciphertext
under e.)

Hence, the message is computed as:

M =
C0

en+2( ~K1, ~C1)
.

5.2 Semi-Functionality

All the ciphertexts, master keys, and secret keys generated by the above algorithms are normal, where by
normal we mean that they have no G2 parts. On the other hand, a semi-functional key or ciphertext has
G2 parts. We let g2 denote a generator of G2. The remaining algorithms of our dual system IBE are the
following:

KeygenSF(MK, X)→ K̃ This algorithm calls first the normal key generation algorithm Keygen(MK, X)
to get a normal key MK =

(
~K∗,K∗

)
or SK = ~K1, depending on X.

In the former case, it picks ~θ $← Zn+2
N and θ

$← ZN and outputs

M̃K =
(
~K∗ ∗ g~θ2 ,K∗gθ2

)
.

In the latter case, it picks ~γ $← Zn+2
N and outputs

S̃K = ~K1 ∗ g~γ2 .

EncryptSF(M, I) → C̃T This algorithm calls first the normal encryption algorithm Encrypt(M, I) to

get the ciphertext CT =
(
C0, ~C1

)
. Then it picks ~δ $← Zn+2

N and outputs

C̃T =
(
C0, ~C1 ∗ g

~δ
2

)
.

Notice that the above algorithms need a generator g2 of the subgroup G2. We call the three terms(
~θ, θ
)
, ~γ, ~δ the semi-functional parameters of the master key, secret key, and ciphertext, respectively.

Notice that a secret key that has been constructed using a semi-functional master key is considered
semi-functional ; not normal. For example, if someone uses the master key M̃K, with parameters

(
~θ, θ
)

,
to construct a secret key for identity I with Keygen, then this will be semi-functional with parameters
~γ = ~θ + 〈0, . . . , 0,−Iθ, 0〉. Normal secret keys do not have a G2 part.

The semi-functional keys are partitioned in nominal semi-functional keys and in truly semi-functional
keys, with respect to a specific semi-functional ciphertext. In short, a nominal secret key can correctly
decrypt the ciphertext (by using Decrypt), while a nominal master key can generate a semi-functional
secret key that correctly decrypts the ciphertext.
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As a result, a semi-functional secret key of identity Ik with parameters ~γ is nominal with respect to a
ciphertext for identity Ic with parameters ~δ if and only if

~γ · ~δ = 0 mod p2 and Ik = Ic.

It is easy to see that only then the decryption is correct, because we get an extra term e(g2, g2)~γ·~δ by
the pairing. A semi-functional master key with parameters ~θ, θ is nominal with respect to a ciphertext for
identity I with parameters ~δ if and only if

~δ ·
(
~θ + 〈0, . . . , 0,−Iθ, 0〉

)
= 0 mod p2.

5.3 Continual Leakage

For completeness, we give here the update algorithm for the secret keys. It is clear that it satisfies the
re-randomization property.

UpdateSK(SK) → SK′ The update algorithm picks n + 1 random exponents 〈r′, z1, z2, . . . , zn〉
$← Zn+1

N

and ~ρ′
$← Zn+2

N . For SK = ~K1, it outputs the new secret key:

SK′ = ~K ′1 = ~K1 ∗

〈
gz11 , g

z2
1 , . . . , g

zn
1 , (uI1h1)−r

′
n∏
i=1

g−xizi1 , gr
′

1

〉
∗ g~ρ′3 .

6 Security Proof

We now prove the following theorem:

Theorem 6.1. For (`MK = (n− 1− 2c) log(p2), `SK = (n− 1− 2c) log(p2)), where c > 0 is a fixed positive
constant, our dual system IBE scheme is (`MK, `SK)-master-leakage secure.

In order to prove that our system is (`MK, `SK)-master-leakage secure, we have to prove that it has semi-
functional ciphertext invariance, one semi-functional key invariance, and semi-functional security. Then
according to Theorems 3.1 and 3.2, it is (`MK, `SK)-master-leakage secure. We will base each of properties
on one of our three complexity assumptions of subsection 2.3.

Our values of `MK and `SK are based on the following lemma, and will only become relevant in our proof
of one semi-functional key invariance.

6.1 A Useful Lemma for Leakage Analysis

Our analysis of the leakage resilience of our system will rely on the following lemma from [18], which is
proven using the techniques from [9]. Below, we let dist(X1, X2) denote the statistical distance of two
random variables X1 and X2.

Lemma 6.2. Let m, `, d ∈ N, m ≥ ` ≥ 2d and let p be a prime. Let X $← Zm×`p , let Y $← Zm×dp , and

let T $← Rkd
(
Z`×dp

)
, where Rkd

(
Z`×dp

)
denotes the set of ` × d matrices of rank d with entries in Zp. Let

f : Zm×dp →W be some function. Then:

dist ((X, f(X · T )), (X, f(Y ))) ≤ ε,

as long as

|W | ≤ 4 ·
(

1− 1
p

)
· p`−(2d−1) · ε2.
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More precisely, we will use the following corollary:

Corollary 6.3. Let m ∈ N, m ≥ 3, and let p be a prime. Let ~δ $← Zmp , ~τ $← Zmp , and let ~τ ′ be chosen
uniformly randomly from the set of vectors in Zmp which are orthogonal to ~δ under the dot product modulo
p. Let f : Zmp →W be some function. Then:

dist
(

(~δ, f(~τ ′)), (~δ, f(~τ))
)
≤ ε,

as long as

|W | ≤ 4 ·
(

1− 1
p

)
· pm−2 · ε2.

Proof. We apply Lemma 6.2 with d = 1 and ` = m− 1. Y then corresponds to ~τ , while X corresponds to a
basis of the orthogonal space of ~δ. We note that ~τ ′ is then distributed as X · T , where T $← Rk1

(
Zm−1×1
p

)
.

We note that X is determined by ~δ, and is distributed as X $← Zm×m−1
p , since ~δ is chosen uniformly randomly

from Zmp . It follows that:

dist
(

(~δ, f(~τ ′)), (~δ, f(~τ))
)

= dist ((X, f(X · T )), (X, f(Y ))) ≤ ε.

This corollary allows us to set `MK = `SK = (n−1−2c) log(p2) for our construction (we’ll have n+1 = m),
where c is any fixed positive constant (so that ε := p−c2 is negligible).

6.2 Semi-functional Ciphertext Invariance

Theorem 6.4. If assumption 2.1 holds, our system has (`MK, `SK)-semi-functional ciphertext invariance.

Proof. We will build a PPT simulator B that breaks assumption 2.1 with the help of a PPT attacker A that
breaks the semi-functional ciphertext invariance of our system.

The simulator B initially receives input from the assumption’s challenger, i.e. D1 = (N,G,GT , e, g1, g3)
and a challenge term T , which is equal either to gz1 or gz1g

ν
2 . Then it plays the MasterLeak or the MasterLeakC

game with A in the following way:

Setup phase: B picks 〈α, x1, x2, . . . , xn, a, b〉
$← Zn+3

N . It computes u1 = ga1 , h1 = gb1, e(g1, g1)α, gx1
1 , gx2

1 ,
. . ., and gxn1 . It gives the public parameters PP = (N, g1, g3, u1, h1, e(g1, g1)α, gx1

1 , gx2
1 , . . . , gxn1 ) to A where

N, g1 and g3 are given by the challenger.
B also picks 〈r, y1, y2, . . . , yn〉

$← Zn+1
N , a random vector ~ρ = 〈ρ1, . . . , ρn+2〉

$← Zn+2
N , and a random

element ρn+3
$← ZN . It stores in tuple 0 the normal master key:

MK =
(
~K∗,K∗

)
=

(〈
gy11 , . . . , gyn1 , gα1 h

−r
1

n∏
i=1

g−xiyi1 , gr1

〉
∗ g~ρ3 , ur1g

ρn+3
3

)
.

Phase 1: The simulator B can answer all of A’s queries, since it knows the master key of tuple 0. It works
according to the definition of the game, by making the appropriate calls.

Challenge Phase: The adversary A gives B two messages M0 and M1 and the challenge identity I∗. The
simulator B chooses c $← {0, 1} and outputs the ciphertext:

CT =
(
C0, ~C1

)
=
(
Mc · e (T, gα1 ) ,

(
T x1 , T x2 , . . . , T xn , T, T aI

∗+b
))

,

where T is the challenge term from the assumption.
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Phase 2: B works in the same way as Phase 1.

If T = gz1g
ν
2 , then the ciphertext is semi-functional, since

C0 = Mc · e (gz1g
ν
2 , g

α
1 ) = M · e(g1, g1)αz

T aI
∗+b = (uI

∗

1 h1)zgν(aI∗+b)
2

T = gz1g
ν
2

T xi = (gxi1 )zgνxi2 for i ∈ {1, 2, . . . , n}

This implicitly sets s = z and ~δ = (νx1, νx2, . . . , νxn, ν, ν(aI∗+b)). Obviously, s is properly distributed since

z
$← ZN according to the assumption. The vector ~δ is properly distributed in the attacker’s view because

the multiplying factors (aI∗ + b), x1, x2, . . . , xn are only seen modulo p1 in the public parameters and not
modulo p2. Thus, in A’s view, they are random modulo p2 by the Chinese Remainder Theorem. This means
that B has properly simulated the MasterLeakC game.

If T = gz1 , it is easy to see that the ciphertext is normal since it has no G2 part, and B has properly
simulated the MasterLeak game.

Hence, if A has a non-negligible difference in the advantages of these two games, B can use it and break
assumption 2.1 with non-negligible advantage.

6.3 One Semi-functional Key Invariance

Theorem 6.5. If assumptions 2.1 and 2.2 hold, our system has (`MK, `SK)-one semi-functional key invari-
ance.

Proof. In order to prove this theorem we need the following two lemmas:

Lemma 6.6. If assumptions 2.1 and 2.2 hold, then for any PPT adversary A, A’s advantage in the
MasterLeakb game changes only by a negligible amount if we restrict it to making queries only on the challenge
identity and on identities that are not equal to the challenge identity modulo p2 .

Proof. If there exists an adversary whose advantage changes by a non-negligible amount under this restriction,
we can find a non-trivial factor of N with non-negligible probability. This non-trivial factor can then be
used to break either Assumption 2.1 or Assumption 2.2 (same proof as [52]).

Lemma 6.7. We suppose the leakage is at most (`MK = (n−1−2c) log(p2), `SK = (n−1−2c) log(p2)), where
c > 0 is any fixed positive constant. Then, for any PPT adversary A, A’s advantage in the MasterLeak1 game
changes only by a negligible amount when the truly semi-functional challenge key is replaced by a nominal
semi-functional challenge key whenever A declares the challenge key to be either a master key or a key for
the same identity as the challenge ciphertext.

Proof. We suppose there exists a PPT algorithm A whose advantage changes by a non-negligible amount ε
when the MasterLeak1 game changes as described above. Using A, we will create a PPT algorithm B which
will distinguish between the distributions (~δ, f(~τ)) and (~δ, f(~τ ′)) from Corollary 6.3 with non-negligible
advantage (where m = n + 1 and p = p2). This will yield a contradiction, since these distributions have a
negligible statistical distance.
B simulates the game MasterLeak1 with A as follows. It starts by running the Setup algorithm for

itself, and giving A the public parameters. Since B knows the original master key and generators of all the
subgroups, it can make normal as well as semi-functional keys. Hence, it can respond to A’s non-challenge
Phase 1 queries by simply creating the queried keys.

With non-negligible probability, A must chose a challenge key in Phase 1 which is either a master key
or matches the identity of the challenge ciphertext. (If it only did this with negligible probability, then the
difference in advantages whenever it declared the challenge key to be either a master key or a key for the
same identity as the challenge ciphertext would be negligible.)
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B will not create this challenge key, but instead will encode the leakage A asks for on this key in Phase
1 as a single polynomial time computable function f with domain Zn+1

p2 and with an image of size 2`SK . It
can do this by fixing the values of all other keys and fixing all other variables involved in the challenge key
(more details on this below). B then receives a sample (~δ, f(~Γ)), where ~Γ is either distributed as ~τ or as ~τ ′,
in the notation of the corollary. B will use f(~Γ) to answer all of A’s leakage queries on the challenge key by
implicitly defining the challenge key as follows.

If the challenge key is not a master key, B chooses two more random values r1, r2 ∈ Zp2 . If the challenge
key is a master key, it chooses r1, r2, θ ∈ Zp2 . We let g2 denote a generator of G2. B implicitly sets the G2

components of the key to be g~Γ
′

2 , where ~Γ′ is defined to be
〈
~Γ, 0

〉
+ 〈0, . . . , 0, r1, r2〉 in the case of a key which

is not a master key, and is defined to be
〈
~Γ, 0, 0

〉
+ 〈0, . . . , 0, r1, r2, 0〉+ 〈0, . . . , 0, θ〉 in the case of a master

key. (Recall that ~Γ is of length n+ 1.) B defines the non-G2 components of the key to fit their appropriate
distribution.

At some point, A declares the identity for the challenge ciphertext. If the challenge key was not a master
key and the challenge ciphertext identity does not match the challenge key’s identity, then B aborts the
simulation and guesses whether ~Γ is orthogonal to ~δ randomly. However, the simulation continues with
non-negligible probability.
B chooses a random element t2 ∈ Zp2 subject to one of two constraints: if the challenge key is a master

key, it chooses t2 so that δn+1(r1 − Iθ) + t2r2 ≡ 0 mod p2, where I is the challenge ciphertext identity. If
the challenge key is for the identity I, it chooses t2 so that δn+1r1 + t2r2 ≡ 0 mod p2. It then constructs the
challenge ciphertext, using

〈
~δ, 0
〉

+ 〈0, . . . , 0, 0, t2〉 as the challenge vector (recall that ~δ is of length n+ 1).

Now, if ~Γ is orthogonal to ~δ, then the challenge key is nominally semi-functional (and well-distributed as
such). If ~Γ is not orthogonal to ~δ, then the challenge key is truly semi-functional (and also well-distributed).

It is clear that B can easily handle Phase 2 queries, since the challenge key cannot be queried on here
when it is a master key or has the same identity as the challenge ciphertext. Hence, B can use the output of
A to gain a non-negligible advantage in distinguishing the distributions (~δ, f(~τ)) and (~δ, f(~τ ′)). This violates
Corollary 6.3, since these distributions have a negligible statistical distance for f with this output size.

To prove Theorem 6.5, we will build a PPT simulator B that breaks assumption 2.2 with the help of
a PPT attacker A that breaks one semi-functional key invariance of our system. Notice that we included
assumption 2.1 in the theorem’s premise only for Lemma 6.6; not for the main body of the proof.
B will simulate the game MasterLeakb. Initially the simulator B receives input from the assumption’s

challenger, i.e. D2 = (N,G,GT , e, g1, g3, g
z
1g
ν
2 , g

µ
2 g

ρ
3) and a challenge term T , which is equal either to gw1 g

σ
3

or gw1 g
κ
2 g

σ
3 . Algorithm B works as follows:

Setup phase: B picks 〈α, x1, x2, . . . , xn, a, b〉
$← Zn+3

N . It computes u1 = ga1 , h1 = gb1, e(g1, g1)α, gx1
1 , gx2

1 ,
. . ., and gxn1 . It gives the public parameters PP = (N, g1, g3, u1, h1, e(g1, g1)α, gx1

1 , gx2
1 , . . . , gxn1 ) to A where

N, g1 and g3 are given by the challenger. No keys are stored in tuple 0.

Phase 1: We recall that in game MasterLeakb, the challenger has to store in each tuple both a normal and
a semi-functional version of each key. However, since for the challenge key our goal is to allow leakage on
an unknown version depending on the challenge, we postpone the creation of all keys until the point where
the attacker A decides that they should be normal, semi-functional, or challenge. Therefore, each Create
query returns a handle and stores an unlocked tuple, but with the two key fields empty. Since the attacker
only gets the handle from each such query, it cannot tell the difference.

Also, our simulator will not store both versions of each key in the tuple, in contrast to the game rules.
It will store only the version that the attacker chose to get leakage from (or reveal). But then one could
ask how the simulator is going to handle the Create(h,X) queries, when the h refers to a tuple with a
semi-functional master key. The answer is that for our system, knowledge of α alone allows the creation of
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any type of key. Since the simulator knows α, it always bypasses the normal Keygen algorithm and creates
totally legitimate keys.

Thus, in this phase, as well as in Phase 2, the simulator B has to successfully store the appropriate key
on six different types of first leakage or reveal queries:

• A requested a normal master key: In this case B creates a normal master key by picking 〈r, y1, y2, . . . , yn〉
$←

Zn+1
N , a random vector ~ρ = 〈ρ1, . . . , ρn+2〉

$← Zn+2
N , and a random element ρn+3

$← ZN . It stores the
following key in the tuple along with lock-value V = 0:

MK =
(
~K∗,K∗

)
=

(〈
gy11 , . . . , gyn1 , gα1 h

−r
1

n∏
i=1

g−xiyi1 , gr1

〉
∗ g~ρ3 , ur1g

ρn+3
3

)

Obviously, this is properly distributed, since it the same method used in the Setup algorithm and this
is also the same distribution that occurs when a normal master key is created by a call to the Keygen
algorithm with the empty string and a previously created master key as input.

• A requested a semi-functional master key: As in the previous case, B chooses 〈r, y1, y2, . . . , yn〉
$← Zn+1

N ,

~ρ = 〈ρ1, . . . , ρn+2〉
$← Zn+2

N , and ρn+3
$← ZN . Also it picks ~θ′ $← ZnN and θ′

$← ZN and generates the
following key:

M̃K =
(
~K∗,K∗

)
=

(〈
gy11 , . . . , gyn1 , gα1 h

−r
1

n∏
i=1

g−xiyi1 , gr1

〉
∗ (gµ2 g

ρ
3)~θ
′ ∗ g~ρ3 , ur1(gµ2 g

ρ
3)θ
′
g
ρn+3
3

)
,

where gµ2 g
ρ
3 is given by the assumption’s challenger. It is easy to see that the G1,G3 parts are properly

distributed. For the G2 part, the semi-functional parameters are ~θ = µ~θ′ and θ = µθ′. Thus, this part
is properly distributed as well.

• A requested a normal secret key: In this case, B picks 〈r′, z1, z2, . . . , zn〉
$← Zn+1

N , and a random vector
~ρ′

$← Zn+2
N . It creates the following key:

SK = ~K1 =

〈
gz11 , g

z2
1 , . . . , g

zn
1 , gα1 (uI1h1)−r

′
n∏
i=1

g−xizi1 , gr
′

1

〉
∗ g~ρ′3

• A requested a semi-functional secret key: Now B picks 〈r′, z1, z2, . . . , zn〉
$← Zn+1

N , a random vector
~ρ′

$← Zn+2
N , and a random vector ~γ′ $← Zn+2

N . It generates the following key:

S̃K = ~K1 =

〈
gz11 , . . . , g

zn
1 , gα1 (uI1h1)−r

′
n∏
i=1

g−xizi1 , gr
′

1

〉
∗ (gµ2 g

ρ
3)~γ
′ ∗ g~ρ′3

As before, it is easy to see that the G1,G3 parts are properly distributed and, for the G2 part, the
semi-functional parameters are ~γ = µ~γ′. Thus, this part is properly distributed as well.

• A requested to be challenged on a master key: Remember that now B is supposed to flip a coin
and store either a normal or a semi-functional master key. Instead of doing this, it will use the
assumption’s challenge term T to generate the master key. To do so, it picks 〈y′1, y′2, . . . , y′n〉

$← ZnN ,

~ρ = 〈ρ1, . . . , ρn+2〉
$← Zn+2

N , and ρn+3
$← ZN and generates:

MK =
(
~K∗,K∗

)
=

(〈
T y
′
1 , . . . , T y

′
n , gα1 T

−b
n∏
i=1

T−xiy
′
i , T

〉
∗ g~ρ3 , T ag

ρn+3
3

)
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As before, it is easy to see that the G3 part is properly distributed. We will now argue that the G1

and G2 parts are also well-distributed.

If T = gw1 g
κ
2 g

σ
3 , then for the G1 part, this sets (remember that u = ga1 and h = gb1):

r = w and yi = sy′i ∀i ∈ [1, n].

Thus, all parameters are properly distributed. For the G2 part, the semi-functional parameters are:

~θ = κ
〈
y′1, . . . , y

′
n,−b−

∑
xiy
′
i, 1
〉

and θ = κa.

Since all terms y′1, . . . , y
′
n, a, b are only seen modulo p1 in the public parameters, they appear random

modulo p2 here. Therefore, in this case, B has formed a properly distributed semi-functional master
key.

It is easy to see that if T = gw1 g
σ
3 , the G2 part above is omitted and B has formed a properly distributed

normal master key.

• A requested to be challenged on a secret key: Now B picks 〈z′1, z′2, . . . , z′n〉
$← ZnN , and a random vector

~ρ′
$← Zn+2

N . It stores the following key:

SK = ~K1 =

〈
T z
′
1 , T z

′
2 , . . . , T z

′
n , gα1 T

−(aI+b)
n∏
i=1

T−xiz
′
i , T

〉
∗ g~ρ′3 ,

where I is the identity of this key given by the adversary A.

If T = gw1 g
κ
2 g

σ
3 , then this key is semi-functional with

r′ = w and zi = sz′i ∀i ∈ [1, n]

~γ = κ
〈
z′1, . . . , z

′
n,−(aI + b)−

∑
xiz
′
i, 1
〉

For the same reasons as before, all vectors seem random in A’s view8.

That concludes Phase 1. We mention here that B works the same way in Phase 2.

Challenge Phase: In this phase, B has to create a semi-functional ciphertext with EncryptSF. It gets
two messages M0 and M1 and the challenge identity I∗ from A and chooses c $← {0, 1}. Then it generates
the following ciphertext:

C̃T =
(
C0, ~C1

)
=

=
(
Mc · e ((gz1g

ν
2 ), gα1 ) ,

〈
(gz1g

ν
2 )x1 , . . . , (gz1g

ν
2 )xn , (gz1g

ν
2 ), (gz1g

ν
2 )aI

∗+b
〉)

where gz1g
ν
2 is given by the assumption’s challenger.

It is easy to see that the ciphertext’s parameters are

s = z and ~δ = ν 〈x1, . . . , xn, 1, aI∗ + b〉 .

Although, the s is obviously properly distributed, the semi-functional parameters δ are not (if the chal-
lenge key is capable of decrypting the ciphertext). We can argue that the terms x1, . . . , xn seem random
modulo p2 to the adversary (and ν) as before, but we can not do the same for aI∗+b. This happens, because

8We recall that the last two cases exclude each other. We cannot have both a master key and a secret key picked by A as
the challenge key. Thus, for example the term κ is only seen once modulo p2.
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it might be the case that a, b have been seen modulo p2 (if the challenge key is the master key) or aI∗ + b
is seen (if the identity of the challenge key I is equal to I∗ modulo p2 or the identity of the challenge key is
the challenge identity). However, lemmas 6.6 and 6.7 assert that the change in any adversary’s advantage is
negligible.

Lemma 6.6 states that if the simulator B aborts and guesses a random value for the assumption in case
it detects that I = I∗ mod p2 and I 6= I∗ (it can do that with N), the loss in advantage is only a negligible
amount. Otherwise, the ciphertext is well-distributed when I 6= I∗, because the aI + b in the secret key is
uncorrelated to the aI∗ + b of the ciphertext.

On the other hand, notice that if A picks a master key as the challenge key, this will be nominally
semi-functional with respect to the challenge ciphertext:

~δ ·
(
~θ + 〈0, . . . , 0,−I∗θ, 0〉

)
= ν 〈x1, . . . , xn, 1, aI∗ + b〉 · κ

〈
y′1, . . . , y

′
n,−aI∗ − b−

∑
xiy
′
i, 1
〉

= 0 mod p2.

The same happens when the challenge key is a secret key for identity I∗:

~δ · ~γ = ν 〈x1, . . . , xn, 1, aI∗ + b〉 · κ
〈
z′1, . . . , z

′
n,−(aI∗ + b)−

∑
xiz
′
i, 1
〉

= 0 mod p2.

Therefore, since ~δ modulo p2 has all terms random but one, it is distributed the same modulo p2 as if it
were chosen uniformly at random from the orthogonal complement of the key’s semi-functional parameters
modulo p2. Remember that the above is true, only if T = gw1 g

κ
2 g

σ
3 and B simulates the MasterLeak1 game.

Then, according to Lemma 6.7, no PPT adversary can distinguish this from a truly random vector. Thus,
the ciphertext seems properly distributed to the attacker.

In summary, if T = gw1 g
σ
3 , algorithm B simulates a game in which A’s advantage is only negligibly

different from its advantage in the MasterLeak0 game, and if T = gw1 g
κ
2 g

σ
3 , B simulates a game in which A’s

advantage is only negligibly different from its advantage in the MasterLeak1 game. Hence, B can use the
output of A to break Assumption 2.2 with non-negligible advantage.

6.4 Semi-functional Security

Theorem 6.8. If assumption 2.3 holds, our system has (`MK, `SK)-semi-functional security.

Proof. We will build a PPT simulator B that breaks assumption 2.3 with the help of a PPT attacker A that
breaks the semi-functional security of our system.

The input from the assumption’s challenger to B is D3 = (N,G,GT , e, g1, g2, g3, g
α
1 g

ν
2 , g

z
1g
µ
2 ) and a chal-

lenge term T which is either e(g1, g1)αz or a random term of GT . Algorithm B works as follows:

Setup phase: B picks 〈x1, x2, . . . , xn, a, b〉
$← Zn+2

N . It computes u1 = ga1 , h1 = gb1, and gx1
1 , gx2

1 , . . ., gxn1 .
The term e(g1, g1)α is computed as e(gα1 g

ν
2 , g1). (Notice that now α is unknown to B.) It gives the public

parameters PP = (N, g1, g3, u1, h1, e(g1, g1)α, gx1
1 , gx2

1 , . . . , gxn1 ) to A.

Phase 1: Although our simulator does not know α, it can still create properly distributed semi-functional
keys, which are the only ones needed for this game. Now it bypasses the KeygenSF algorithm using the
challenge term gα1 g

ν
2 .

For Create queries on a master key (as well as the key of tuple 0), the simulator picks 〈r, y1, y2, . . . , yn, ρn+3, θ
′〉 $←

Zn+3
N and two random vectors ~ρ, ~θ′ $← ZnN and constructs:

MK =
(
~K∗,K∗u

)
=

(〈
gy11 , . . . , gyn1 , (gα1 g

ν
2 )h−r1

n∏
i=1

g−xiyi1 , gr1

〉
∗ g~θ′2 ∗ g

~ρ
3 , u

r
1g
θ′

2 g
ρ
3

)
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Remember that gα1 g
ν
2 is given by the assumption’s challenger. The above is a properly distributed semi-

functional master key, with semi-functional parameters ~θ = 〈0, . . . , 0, ν, 0〉+ ~θ′ and θ = θ′.
For all secret keys requested by the adversary on identity I, the simulator creates and stores the following

semi-functional keys:

SK = ~K1 =

〈
gz11 , . . . , g

zn
1 , (gα1 g

ν
2 )(uI1h1)−r

′
n∏
i=1

g−zixi1 , gr
′

1

〉
∗ g ~γ′2 ∗ g

~ρ′

3 ,

where the vectors ~ρ′, ~γ′ $← ZnN and 〈r′, z1, . . . , zn〉
$← Zn+1

N are picked independently for each generated key.
It is easy to see that the above is a properly distributed semi-functional key with semi-functional parameters
~γ = 〈0, . . . , 0, ν, 0〉+ ~γ′.

Challenge Phase: The adversary A gives B two messages M0 and M1 and the challenge identity I∗. The
simulator B chooses c $← {0, 1} and outputs the following ciphertext:

CT =
(
C0, ~C1

)
=

=
(
Mc · T,

〈
(gz1g

µ
2 )x1 , . . . , (gz1g

µ
2 )xn , (gz1g

µ
2 ), (gz1g

µ
2 )aI

∗+b
〉)

,

where gz1g
µ
2 is given by the assumption’s challenger and T is the challenge term.

Phase 2: B works in the same way as Phase 1.

If T = e(g1, g1)αz, then we get a semi-functional ciphertext of Mc with parameters:

s = z and ~δ = 〈µx1, . . . , µxn, µ, µ(aI∗ + b)〉

As before, ~δ is properly distributed since all terms x1, . . . , xn, aI
∗ + b are random modulo p2. Therefore, B

has properly distributed game MasterLeakCK.
On the other hand, if T $← GT , the term C0 is entirely random and we get a semi-functional ciphertext

of a random message. Therefore, the value of c is information-theoretically hidden and the probability of
success of any algorithm A in this game is exactly 1/2, since c $← {0, 1}. Thus, B can use the output of A
to break Assumption 2.3 with non-negligible advantage.

This concludes the proof of Theorem 6.1.

7 Master-Leakage Secure HIBE Scheme

In a Hierarchical Identity-Based Encryption Scheme (HIBE) (first introduced in [44]), users have vectors of
identities which represent their place in a hierarchy. A user has the ability to delegate secret keys to its
subordinates on lower levels, and hence can decrypt messages encrypted to these subordinates. The formal
definition of a HIBE scheme can be found in Appendix A.

We now present our construction of a HIBE scheme which is resilient to leakage from many secret keys
per user and many master keys. Our definition and proof of security can be found in Appendix A. Our
construction and proof employ the same techniques used in our IBE system: we modify the HIBE scheme of
[52] (which is a composite-order group version of the scheme in [12]) by adjoining n-dimensional vectors to
allow leakage. The parameter n can be varied to achieve desired leakage resilience and size of keys/ciphertexts.
As in our IBE scheme, nominal semi-functionality will correspond to orthogonality of vectors of exponents
in the Gp2 components. This will be hidden from the adversary for keys that are incapable of decrypting by
pairwise independence, and will be hidden for other keys by the leakage bound. We note that this scheme has
ciphertexts which are a constant number of group elements (i.e. independent of the level of the hierarchy).
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7.1 Construction

Setup(1λ) → (PP,MK) The setup algorithm chooses a bilinear group G of order N = p1p2p3. We will
assume that users are associated with vectors of identities whose components are elements of ZN . If the
maximum depth of the HIBE is D, the setup algorithm chooses D+2 generators of G1: 〈g1, h, u1, . . . , uD〉

$←
GD+2

1 and a generator g3
$← G3. It also picks n+1 random exponents 〈α, x1, x2, . . . , xn〉

$← Zn+1
N for the public

parameters. For the master key, it picks 〈r, y1, y2, . . . , yn〉
$← Zn+1

N , a random vector ~ρ = 〈ρ1, . . . , ρn+2〉
$←

Zn+2
N , and D random elements ρn+3, ρn+4, ..., ρn+D+2

$← ZN . It outputs the following public parameters
and master key:

PP = (N, g1, g3, h, u1, u2, . . . , uD, e(g1, g1)α, gx1
1 , gx2

1 , . . . , gxn1 )

MK =
(
~K∗, E∗1 , . . . , E

∗
D

)
=

(〈
gy11 , . . . , gyn1 , gα1 h

−r
n∏
i=1

g−xiyi1 , gr1

〉
∗ g~ρ3 , ur1g

ρn+3
3 , . . . , urDg

ρn+D+2
3

)

Keygen(MK, (I1, I2, . . . , Ij)),PP The key generation algorithm picks n+1 random exponents 〈r′, z1, z2, . . . , zn〉
$←

Zn+1
N , ~ρ′ $← Zn+2

N and ρ′n+3, . . . , ρ
′
n+2+D−j

$← ZN . It outputs the secret key

SK =
(
~K1, Ej+1, . . . , ED

)
=

=

 ~K∗ ∗

〈
gz11 , g

z2
1 , . . . , g

zn
1 , h−r

′
·
j∏
i=1

(E∗i )−Ii ·

(
j∏
i=1

uIii

)−r′
·
n∏
i=1

g−xizi1 , gr
′

1

〉
∗ g~ρ′3 ,

E∗j+1u
r′

j+1g
ρ′n+3
3 , . . . , E∗Du

r′

Dg
ρ′n+2+D−j
3

)
The terms g−xizi1 are calculated by using the gxi terms of PP.
Notice that if the second argument of the algorithm is the empty string (i.e. j = 0), this algorithm

outputs a re-randomized master key.

Delegate((I1, I2, . . . , Ij),SK′, Ij+1) Given a secret key SK′ =
(
~K ′1, E

′
j+1, . . . , E

′
D

)
for identity (I1, I2, . . . , Ij),

this algorithm outputs a key for (I1, I2, . . . , Ij+1). It works similar to Keygen: It picks n + 1 random ex-

ponents 〈r′, z1, z2, . . . , zn〉
$← Zn+1

N , ~ρ′ $← Zn+2
N , and ρ′n+3, . . . , ρ

′
n+1+D−j

$← ZN . It outputs the secret
key

SK =
(
~K1, Ej+2, . . . , ED

)
=

=

 ~K ′1 ∗

〈
gz11 , g

z2
1 , . . . , g

zn
1 , h−r

′
(E′j+1)−Ij+1 ·

(
j+1∏
i=1

uIii

)−r′
·
n∏
i=1

g−xizi1 , gr
′

1

〉
∗ g~ρ′3 ,

E′j+2u
r′

j+2g
ρ′n+3
3 , . . . , E′Du

r′

Dg
ρ′n+1+D−j
3

)
Encrypt(M, (I1, I2, . . . , Ij)) The encryption algorithm chooses s $← ZN and outputs the ciphertext:

CT =
(
C0, ~C1

)
=

=
(
M · (e(g1, g1)α)s,

〈
(gx1

1 )s, . . . , (gxn1 )s, gs1, (u
I1
1 · . . . · u

Ij
j h)s

〉)
∈ GT ×Gn+2
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Decrypt(CT,SK) To calculate the blinding factor, one computes en+2( ~K1, ~C1). If the encryption and
decryption are correct, we get:

en+2( ~K1, ~C1) = e(g1, g1)αse(g1, u
I1
1 · . . . · u

Ij
j h)−rse(g1, u

I1
1 · . . . · u

Ij
j h)rs·

·
n∏
i=1

e(g1, g1)−xizis
n∏
i=1

e(g1, g1)xizis

= e(g1, g1)αs,

where by r, zi we mean the combined exponents coming from the master key, the Keygen, and possibly
the Delegate algorithm. (The G3 parts do not contribute because they are orthogonal to the ciphertext
under e.) Notice that in order for the decryption algorithm to work correctly, the identity vector of the
ciphertext has to be the same as the identity vector of the secret key. However, if a user’s identity is a prefix
of this identity vector, he can use the delegate algorithm to get the same identity vector as the ciphertext
and then decrypt correctly.

7.2 Semi-functionality

KeygenSF(MK, (I1, I2, . . . , Ij))→ K̃ To create a semi-functional key, K̃, this algorithms calls first Key-
gen(MK, (I1, I2, . . . , Ij)) → K (Notice that this can be a master key, if j = 0). Then, for K of the form

K =
(
~K1, Ej+1, . . . , ED

)
, the algorithm picks ~γ $← Zn+2

N and θj+1, . . . , θD
$← ZN . It outputs

K̃ =
(
~K1 ∗ g~γ2 , Ej+1g

θj+1
2 , . . . , EDg

θD
2

)
.

EncryptSF(M, ~I) → C̃T This algorithm first calls the normal encryption algorithm Encrypt(M, ~I) to

get the ciphertext CT =
(
C0, ~C1

)
. Then it picks ~δ $← Zn+2

N and outputs

C̃T =
(
C0, ~C1 ∗ g

~δ
2

)
.

It is easy to see that a semi-functional key will correctly decrypt a semi-functional ciphertext (i.e. it
is nominal) if and only if ~γ · ~δ = 0 mod p2, assuming they have the same identity vectors. If the identity
vector of the secret key, say ~ISK = 〈I1, I2, . . . , Ik〉, is a prefix of the identity vector of the ciphertext, say
~ICT = ~ISK|| 〈Ik+1, . . . , Ij〉, then the user can use the delegate algorithm to get a secret key for identity vector
~ICT. Then the semi-functional parameters will become:

~γ +

〈
0, . . . , 0,−

j∑
i=k+1

θiIi, 0

〉
.

Thus, we say that this key is nominally semi-functional if
(
~γ +

〈
0, . . . , 0,−

∑j
i=k+1 θiIi, 0

〉)
· ~δ = 0 mod p2.

We note that our IBE construction in section 5.1 is just a special case of this HIBE scheme for D = 1.

8 Attribute-Based Encryption

Attribute-Based Encryption was first introduced in [61]. In [42], two kinds of ABE systems are defined:
Ciphertext-Policy ABE and Key-Policy ABE. In a Ciphertext-Policy Attribute-Based Encryption scheme,
ciphertexts are associated with access policies and keys are associated with sets of attributes. A key can
decrypt a ciphertext if its set of attributes satisfies the access policy of the ciphertext. We now provide a
construction of a Ciphertext-Policy Attribute-Based Encryption scheme which is resilient to leakage from

28



many keys capable of decrypting the challenge ciphertext, including master keys. Our system allows for
ciphertext policies which are expressed as LSSS matrices. (For background on these access structures, see
Appendix B.) Our construction is a modified version of the adaptively secure (without leakage) construction
of [51], which is a composite-order version of the construction in [65]. As for our IBE and HIBE constructions,
the modification consists of adjoining vectors of length n to the keys and ciphertexts. The formal definition of
CP-ABE, our security definition, and the proof of security for our system are in Appendix B. The parameter
n can be varied to achieve desired leakage resilience and ciphertext/key size. We note that these same
techniques could be applied to obtain an analogous Key-Policy Attribute-Based Encryption scheme.

8.1 Construction

The algorithms of our CP-ABE system are the following:

Setup(1λ, U)→ (PP,MK): The setup algorithm chooses a bilinear group of composite order N = p1p2p3,
where p1, p2, p3 are three distinct primes.

It picks random exponents α, a $← ZN , and a random subgroup generator g1 ∈ G1. We note that U denotes
the universe of attributes. For each attribute i ∈ U , it chooses random si

$← ZN . It also picks n random
exponents x1, x2, . . . , xn

$← ZN to get the required vectors. For the master key, it picks t∗, y1, . . . , yn ∈ ZN
and ~ρ

$← Zn+1
N , ρn+2

$← ZN ,∀i ∈ U ρ′i
$← ZN for the G3 part.

It outputs the following public parameters and master key:

PP = (N, g1, g3, g
a
1 , e(g1, g1)α, gx1

1 , . . . , gxn1 ,∀i ∈ U Ti = gsi1 )

MK =
(
U, ~K∗1 , L

∗,∀i ∈ U K∗i

)
=

=

(
U,

〈
gy11 , . . . , gyn1 , gα1 g

at∗

1

n∏
i=1

g−xiyi1

〉
∗ g~ρ3 , gt

∗

1 g
ρn+2
3 ,∀i ∈ U T t

∗

i g
ρ′i
3

)

Notice that ~K∗1 has n+ 1 elements.

Keygen(MK, S,PP) → SK: S denotes a set of attributes, S ⊆ U . The key generation algorithm chooses

random values t, z1, . . . , zn ∈ ZN and random exponents ~ρ $← Zn+1
N , ρn+2

$← ZN ,∀i ∈ S ρ′i
$← ZN for the G3

part. The secret key it generates is the following:

SK =
(
S, ~K1, L,∀i ∈ S Ki

)
=

=

(
S, ~K∗1 ∗

〈
gz11 , . . . , g

zn
1 , gat1

n∏
i=1

g−xizi1

〉
∗ g~ρ3 , L∗gt1g

ρn+2
3 ,∀i ∈ S K∗i T

t
i g
ρ′i
3

)

In case we want to re-randomize a master key, we use S = U (instead of the empty string as we used for
IBE and HIBE).

Encrypt(M, (A, ρ)) → CT: A is an n1 × n2 LSSS matrix and ρ is a mapping from each row Ax of A to

an attribute ρ(x) ∈ U . The algorithm picks a random vector ~v = 〈s, v2, . . . , vn2〉
$← Zn2

N . For each row Ax,

it picks a random exponent rx
$← ZN . The ciphertext generated is the following:

CT =
(

(A, ρ), C0, ~C1,∀x Cx,∀x Dx

)
=

=
(

(A, ρ),M · (e(g1, g1)α)s, 〈(gx1
1 )s, . . . , (gxn1 )s, gs1〉 ,∀x gaAx·~v1 T−rxρ(x) ,∀x grx1

)
.
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Decrypt(CT,SK) → M : First the decryption algorithm computes constants ωx ∈ ZN for every row of
A (note that A is given in the ciphertext) such that

∑
ρ(x)∈S ωxAx = 〈1, 0, . . . , 0〉 ∈ Zn2

N . To calculate the
blinding factor, it computes:

en+1( ~C1, ~K1)∏
ρ(x)∈S

(
e(Cx, L)e(Dx,Kρ(x))

)ωx =

=
e(g1, g1)αse(g1, g1)sat ·

∏n
i=1 e(g1, g1)−sxizi ·

∏n
i=1 e(g1, g1)sxizi∏

ρ(x)∈S (e(g1, g1)atAx·~ve(g1, g1)−rxsρ(x)te(g1, g1)rxsρ(x)t)ωx
=

=
e(g1, g1)αse(g1, g1)sat

e(g1, g1)at(
∑
ρ(x)∈S ωxAx)·~v =

= e(g1, g1)αs.

In the above calculation, the values t, zi are meant denote the exponents of the secret key.

8.2 Semi-functionality

In this section, we present the algorithms for creating semi-functional ciphertexts and secret keys for our
CP-ABE system. In contrast to our previous systems, we now have two different types of semi-functional
keys, called Type 1 and Type 2. Hence we have two different KeygenSF algorithms. Another difference
is that for every attribute i ∈ U , random values qi

$← ZN are chosen before the execution of any algorithm
and are shared by the semi-functional ciphertexts and keys - they work similar to public parameters for the
semi-functional algorithms. The algorithms are the following:

KeygenSF1(MK, S) → K̃ To create a semi-functional key of type 1, this algorithm first calls Key-
gen(MK, S) and gets the key K = (S, ~K1,L, ∀i ∈ S Ki) (Notice that this can be a master key, if S = U).

Then it picks ~γ $← Zn+1
N and θ

$← ZN and outputs

K̃ =
(
S, ~K1 ∗ g~γ2 , Lgθ2 ,∀i ∈ S Kig

θqi
2

)
KeygenSF2(MK, S) → K̃ A semi-functional key of type 2 is generated the same way but without the
terms gθ2 and gθqi2 (i.e. we now set θ = 0). It outputs

K̃ =
(
S, ~K1 ∗ g~γ2 , L,∀i ∈ S Ki

)
EncryptSF(M, (A, ρ))→ C̃T This algorithm first calls the normal encryption algorithm Encrypt(M, (A, ρ))

to get the ciphertext CT =
(

(A, ρ), C0, ~C1,∀x Cx,∀x Dx

)
. Then it picks ~δ $← Zn+1

N , a random vector

~u
$← Zn2

N (recall n2 is the number of columns of A), and for every row Ax of A, it chooses δ′x
$← ZN . It

outputs
C̃T =

(
(A, ρ), C0, ~C1 ∗ g

~δ
2,∀x Cxg

Ax·~u+δ′xqρ(x)
2 ,∀x Dxg

−δ′x
2

)
Notice the use of qρ(x), which are the same q’s used by the KeygenSF1 algorithm.

If we use the Decrypt algorithm to decrypt a semi-functional ciphertext with a semi-functional key, we
get the extra term

e(g2, g2)~γ·~δ−θu1 ,

where u1 denotes the first coordinate of vector ~u picked during EncryptSF. Hence we call a semi-functional
key (of type 1 or type 2) nominally semi-functional with respect to a semi-functional ciphertext if ~γ ·~δ−θu1 =
0 mod p2.
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8.3 Unique Attribute Restriction

In order to prove leakage resilience of the above system using our assumptions, we have to impose an extra
requirement on the structure of the LSSS matrices (A, ρ) used during the encryption (for a more elaborate
discussion see [52]). We require that in any access structure (A, ρ), no two rows of the matrix A are mapped
to the same attribute via ρ. That is, for every two different rows x1, x2 of A it is true that ρ(x1) 6= ρ(x2).
If we wanted to instead allow an attribute to be used up to k times for some fixed k, we could encode each
attribute, say B, as k different attributes B : 1, B : 2, . . . , B : k. When a user has this attribute, he gets
instead the entire set {B : i|i ∈ [1, k]}. In an access matrix, the first occurrence is mapped by ρ to B : 1, the
second to B : 2, and so on.

9 Our Leakage Bound

Our systems allow the same absolute amount of leakage for both the master and the secret keys. That is,
`MK = `SK = (n − 1 − 2c) log p2 bits, where n is an arbitrary integer greater than or equal to 2 and c is a
fixed positive constant. Notice that the leakage depends only on the size of the G2 subgroup, and not on the
size of p1 or p3. Thus by varying the relative sizes of the G1, G2, and G3 subgroups, we can achieve variable
key sizes and allow different fractions of the key size to be leaked. We use the term “leakage fraction” to
mean the number of bits allowed to be leaked from a key divided by the number of bits required to represent
that key.

Recall that p1, p2, p3 are primes of λ1, λ2, λ3 bits, respectively, and N = p1p2p3 is the order of our group
G. We assume that each group element is represented by approximately λ1 +λ2 +λ3 = Θ(logN) bits. Then,
by fixing λ1 = c1λ, λ2 = λ, and λ3 = c3λ, where λ is the security parameter and c1, c3 are arbitrary positive
constants, we get that the leakage fractions of our systems are the following:

Scheme Master Key Secret Key

IBE n−1−2c
n+3

· 1
1+c1+c3

n−1−2c
n+2

· 1
1+c1+c3

HIBE n−1−2c
n+2+D−i ·

1
1+c1+c3

for key of depth i in the hierarchy

ABE n−1−2c
n+2+|U | ·

1
1+c1+c3

n−1−2c
n+2+|S| ·

1
1+c1+c3

Table 1: c, c1, c3 are arbitrary positive constants and n is an integer greater than 2. For the HIBE scheme,
D is the maximum depth of the hierarchy and i is the depth of the key in question. The master key is
considered to be the root of the hierarchy tree and it is of depth 0. The keys at the leaves have depth D.
For the ABE scheme, |U | is the total number of attributes in the system, i.e. the size of the universe, and
|S| is the number of attributes of the key in question. Notice that in the ABE scheme we ignored the size
of the representations of U and S. They are included in the keys, but they are considered public; thus not
included in the leakage fraction.

One notable property of our HIBE scheme is that the higher our keys are in the hierarchy, the less leakage
is allowed from them. The master key which is at the top allows for a leakage fraction of (n− 1− 2c)/((n+
2 + D)(1 + c1 + c3)). This is because the base system we adapted, a HIBE system with short ciphertexts,
has keys which contain more group elements for users which are higher in the hierarchy. This feature could
be avoided by choosing a different base system.

As one can see, the leakage fraction can be made arbitrarily close to 1 by modifying n, c1 and c3 (if we
assume a fixed maximum depth for HIBE and a fixed universe size for ABE). As we have noted previously,
higher values of n give a better leakage fraction, but larger public parameters, keys, and ciphertexts. Smaller
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values of c1, c3 give a better leakage fraction, but also give fewer bits of security in the G1 and G3 subspaces
as a function of λ. We must choose λ so that c1λ and c3λ are sufficiently large.
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Appendices

A Hierarchical Identity Based Encryption

A.1 Preliminaries

Hierarchical Identity-Based Encryption was first introduced in [44] and is a generalization of Identity-Based
Encryption. In an HIBE system, identities form a structured hierarchy: a user can delegate keys to its
subordinate identities, and hence also decrypt any messages encrypted to its subordinate identities. More
specifically, the algorithms use identity vectors ~I = 〈I1, I2 . . . , Ij〉, and we organize these vectors in a tree-like
structure where the immediate children of ~I are all vectors ~I||Ix, where || denotes concatenation and Ix is
any identity. A user that has a secret key for vector ~I can create secret keys for all users that have identity
vectors whose prefix is ~I; i.e. in the subtree with root ~I.

The maximum number of levels in this tree, denoted by D, is the maximum length of the identity vectors
and is called the depth of the hierarchy. The master key is formulated as a secret key of level 0. This means
that the identity vector of the master key is the empty vector; thus a prefix of all vectors.

An HIBE scheme consists of the following five PPT algorithms:

Setup (1λ) → (PP,MK) The setup algorithm takes in the security parameter λ and outputs the public
parameters PP and the master key MK.

Keygen(MK, ~I,PP)→ K The key generation algorithm takes in the master key, and identity vector ~I, and
the public parameters. It outputs a secret key K for the identity vector. (Similar to our previous systems,
K can be either a secret key for identity vector ~I, or a master key if ~I is empty; ~I = 〈〉.)

Delegate(~I, SK~I , I,PP)→ SK~I||I The delegation algorithm allows a user that has a secret key for identity

vector ~I to construct secret keys down the hierarchy9. The algorithm takes in an identity vector ~I, a secret
key for that identity vector, an identity I, and the public parameters. It outputs a secret key for the identity
vector formed by concatenating ~I with I. Notice that this algorithm does not require the master key.

9Actually, one level down. To construct key further down the hierarchy, one can repeat the algorithm.
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Encrypt(M, ~I,PP)→ CT The encryption algorithm takes in a message M , an identity vector ~I, and the
public parameters PP. It outputs a ciphertext encrypted to ~I.

Decrypt(CT,SK) → M The decryption takes in a ciphertext for identity vector ~I, and a secret key for
identity vector ~I ′. If ~I ′ is a prefix of ~I, the algorithm will output the message M .

For a Dual System Encryption HIBE scheme, the following two algorithms are added:

KeygenSF(MK, ~I,PP) → K̃ The semi-functional key generation algorithm takes in the master key, an
identity vector ~I, and the public parameters. It outputs a semi-functional key for this identity vector. (Note
that this algorithm is not required to run in polynomial time.)

EncryptSF(M, ~I,PP)→ C̃T The semi-functional encryption algorithm takes in a messageM , and identity
vector ~I, and the public parameters. It outputs a semi-functional ciphertext for this identity vector. (Note
that this algorithm is not required to run in polynomial time.)

A.2 Security Definition

Our security game in the HIBE setting is similar to the MasterLeak game in the IBE setting. Instead of single
identities, we now have identity vectors and the set R with revealed keys holds identity vectors of length
up to D, where D is the maximum depth of the hierarchy. We let I∗ denote the set of all possible identity
vectors. The other difference is that we allow the attacker Delegate queries that work similar to Create
queries, but instead of using the Keygen algorithm to create a key, they use the Delegate algorithm. The
new security game, which is called MasterLeakHibe, goes as follows:

Setup: The challenger makes a call to Setup(1λ) and gets a master key MK and the public parameters
PP. It gives PP to the attacker. Also, it sets R = ∅ and T = {(0, 〈〉 ,MK, 0)}. Similarly to IBE, we note
that R ⊆ I∗ and T ⊆ H × I∗ × (MK ∪ SK) × N (handles - identity vectors - keys - leaked bits). Thus
initially the set T holds a record of the master key (empty identity vector for it and no leakage so far). Also
a handle counter H is set to 0.

Phase 1: In this phase, the adversary can make any of the following queries to the challenger. All of them
can be interleaved in any possible way and therefore the input of a query can depend on the outputs of all
previous queries (adaptive security).

• Create(h, ~I): h is a handle to a tuple of T that has to refer to a master key. The identity vector ~I
can be the empty vector 〈〉. In this case, the attacker asks for the creation of another master key.

The challenger initially scans T to find the tuple with handle h. If the identity part of the tuple is not
〈〉, which means that the tuple holds a secret key of some non-empty identity vector, or if the handle
does not exist, it responds with ⊥.

Otherwise, the tuple is of the form (h, 〈〉 ,MK′, L). Then the challenger makes a call to Keygen(MK′, ~I)→
K and adds the tuple

(
H + 1, ~I,K, 0

)
to the set T . After that, it updates the handle counter to

H ← H + 1.

• Leak(h, f): In this query, the adversary requests leakage from a key that has handle h ∈ N with a
polynomial-time computable function f acting on the set of keys. The challenger scans T to find the
tuple with the specified handle. It is either of the form

(
h, ~I, SK, L

)
or
(
h, 〈〉 ,MK′, L

)
10.

10It can be the case that MK′ is the original master key.

36



In the first case, it checks if L+ |f(SK)| ≤ `SK. If this is true, it responds with f(SK) and updates the
L in the tuple with L+ |f(SK)|. If the checks fails, it returns ⊥ to the adversary.

If the tuple holds a master key MK′, it checks if L+
∣∣f(MK′)

∣∣ ≤ `MK. If this is true, it responds with
f(MK′). Now it updates the L with L+

∣∣f(MK′)
∣∣. If the checks fails, it returns ⊥ to the adversary.

• Reveal(h): Now the adversary requests the entire key with handle h. The challenger scans T to
find the requested entry. If the handle refers to a master key tuple, then the challenger returns ⊥.
Otherwise, let’s say the tuple is (h, ~I, SK, L). The challenger responds with SK and adds the identity
vector ~I to the set R.

• Delegate(h, I ′): The challenger initially scans T to find the tuple with handle h. Let’s say it is(
h, ~I,K,L

)
. It makes a call to Delegate(~I,K, I ′) → K ′ and adds the tuple

(
H + 1, ~I||I ′,K ′, 0

)
to

the set T . After that, it updates the handle counter to H ← H + 1.

Challenge: The adversary submits a challenge identity vector ~I∗ with the restriction that no identity
vector in R is a prefix of it. It also submits two messages M0,M1 of equal size. The challenger flips a
uniform coin c

$← {0, 1} and encrypts Mc under ~I∗ with a call to Encrypt(Mc, ~I∗). It sends the resulting
ciphertext CT∗ to the adversary.

Phase 2: This is the same as Phase 1, except the only allowed queries are Create and Reveal queries
for secret keys with identity vectors which are not prefixes of ~I∗.

Guess: The adversary outputs a bit c′ ∈ {0, 1}. We say it succeeds if c′ = c.

Definition A.1. A Hierarchical Identity Based Encryption scheme is (`MK, `SK)-master leakage secure if all
PPT adversaries have at most a negligible advantage in the above security game.

A.3 Security properties

To prove security of our system, we will first define properties similar to those in Sections 3.2, 3.3. Namely, we
will give versions of semi-functional ciphertext invariance, the one semi-functional key invariance, and semi-
functional security adapted to the HIBE setting. However, now our security game has the extra Delegate
queries, which require one more property of our system, called delegate invariance. We define a game the
same as the MasterLeakHibe, with the new feature being that all Delegate(~I,K, I ′) calls are substituted
by Keygen(MK, ~I||I ′) calls, where MK is any master key of the system. The new game is denoted by
MasterLeakHibe∗.

Delegation Invariance: We say that a dual system HIBE scheme ΠD has (`MK, `SK)- delegate invariance
if for any probabilistic polynomial time algorithm A, the advantage of A in the MasterLeakHibe game is
negligibly close to the advantage of A in the MasterLeakHibe∗ game. We denote this by:∣∣∣AdvMasterLeakHibe

A,ΠD (λ, `MK, `SK)− AdvMasterLeakHibe∗

A,ΠD (λ, `MK, `SK)
∣∣∣ ≤ negl(λ).

We note that any HIBE system where the distribution of delegated keys is identical to the distribution of
keys produced by fresh calls to Keygen automatically has delegation invariance. The remaining properties
are defined the same way as in Sections 3.2, 3.3 with MasterLeakHibe∗ instead of MasterLeak.

The MasterLeakC game is exactly the same as the MasterLeakHibe∗ game except that in the Challenge
phase, the challenger uses EncryptSF instead of Encrypt to create a semi-functional ciphertext, and
returns this to the adversary.
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In the MasterLeakCK game the challenger again uses EncryptSF for the challenge phase. However, the
set of tuples T has a different structure. Each tuple holds for each key (master or secret) a normal and a
semi-functional version of it. In this game, all keys leaked or given to the attacker are semi-functional. As we
have noted above, the semi-functional key generation algorithm takes as input a normal master key. Thus the
challenger stores the normal versions, as well the semi-functional ones so that it can use the normal versions
of master keys as input to Keygen calls. More precisely, the challenger additionally stores a semi-functional
master key in tuple 0 by calling KeygenSF(MK, ε) after calling Setup. Thereafter, for all Create(h,X)
queries, the challenger makes an additional call to KeygenSF(MK′, X), where MK′ is the normal version
of the master key stored in tuple h. Leak and Reveal queries act always on the semi-functional versions of
each key.

The MasterLeakb game is similar to the MasterLeakCK game, with the main difference being that the
attacker can choose on which version of each key to leak or reveal. In other words, on the first leakage or
reveal query on a key of the augmented set T , the attacker tells the challenger whether it wants the normal
or the semi-functional version of the key. In order for the challenger to keep track of the attacker’s choice
on each key, we further augment each tuple of T with a lock-value denoted by V ∈ N that can take one of
the three values:

• −1: That means that the attacker has not made a choice on this key yet and the key is “unlocked”.
This is the value the tuple gets, in a Create query.

• 0: The attacker chose to use the normal version of the key on the first leakage or reveal query on it.
All subsequent Leak and Reveal queries act on the normal version.

• 1: The attacker chose the semi-functional version and the challenger works as above with the semi-
functional version.

To summarize, each tuple is of the form (h,X,K, K̃, L, V ) i.e. handle - identity or empty string - normal
key - semi-functional key - leakage - lock. For example, the original master key is stored at the beginning of
the game in the tuple (0, 〈〉 ,MK,KeygenSF(MK, 〈〉), 0,−1).

At some point, the attacker must decide on a challenge key which is “unlocked”, V = −1, and tell this
to the challenger. The challenger samples a uniformly random bit b $← {0, 1} and sets V = b. Therefore, the
attacker has access to either the normal (if b = 0) or the semi-functional (if b = 1) version of this key via
Leak and Reveal queries. We note that if the attacker did not make a choice for the original master key in
tuple 0, it can choose this master key as the challenge key.

The attacker is then allowed to resume queries addressed to either normal or semi-functional keys, with
the usual restrictions (i.e. no leakage or reveal queries on keys capable of decrypting the challenge ciphertext
after the attacker has seen the challenge ciphertext).

Semi-functional Ciphertext Invariance: We say that a dual system HIBE scheme ΠD has (`MK, `SK)-
semi-functional ciphertext invariance if for any probabilistic polynomial time algorithm A, the advantage
of A in the MasterLeakHibe∗ game is negligibly close to the advantage of A in the MasterLeakC game. We
denote this by: ∣∣∣AdvMasterLeakHibe∗

A,ΠD (λ, `MK, `SK)− AdvMasterLeakC
A,ΠD (λ, `MK, `SK)

∣∣∣ ≤ negl(λ).

Semi-functional Key Invariance: We say that a dual system HIBE scheme ΠD has (`MK, `SK)-semi-
functional key invariance if for any probabilistic polynomial time algorithm A, the advantage of A in the
MasterLeakC game is negligibly close to the advantage of A in the MasterLeakCK game. We denote this by:∣∣∣AdvMasterLeakC

A,ΠD (λ, `MK, `SK)− AdvMasterLeakCK
A,ΠD (λ, `MK, `SK)

∣∣∣ ≤ negl(λ).
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One Semi-functional Key Invariance: We say that a dual system HIBE scheme ΠD has (`MK, `SK)-one
semi-functional key invariance if, for any probabilistic polynomial time algorithm A, the advantage of A in
the MasterLeakb game with b = 0 is negligibly close to the advantage of A in the MasterLeakb game with
b = 1. We denote this by:∣∣∣AdvMasterLeak0

A,ΠD (λ, `MK, `SK)− AdvMasterLeak1
A,ΠD (λ, `MK, `SK)

∣∣∣ ≤ negl(λ)

Semi-functional Security: We say that a dual system HIBE scheme ΠD has (`MK, `SK)-semi-functional
security if for any probabilistic polynomial time algorithm A, the advantage of A in the MasterLeakCK game
is negligible. We denote this by:

AdvMasterLeakCK
A,ΠD (λ, `MK, `SK) ≤ negl(λ).

The following theorems are proved the same way as theorems 3.1 and 3.2.

Theorem A.2. If a dual system encryption HIBE scheme ΠD =(Setup, Keygen, Encrypt, Decrypt,
KeygenSF, EncryptSF, Delegate) has (`MK, `SK)- delegation invariance, (`MK, `SK)-semi-functional ci-
phertext invariance, (`MK, `SK)-semi-functional key invariance, and (`MK, `SK)-semi-functional security,
then Π =(Setup, Keygen, Encrypt, Decrypt) is a (`MK, `SK)-master-leakage secure HIBE scheme.

Theorem A.3. If a dual system encryption HIBE scheme ΠD has (`MK, `SK)-one semi-functional key
invariance, then it also has (`MK, `SK)-semi-functional key invariance.

A.4 Proof

We will prove the following theorem for the HIBE system of subsection 7.1:

Theorem A.4. For (`MK = (n−1−2c) log(p2), `SK = (n−1−2c) log(p2)), where c > 0 is any fixed positive
constant, our HIBE scheme is (`MK, `SK)-master-leakage secure.

As in the IBE case, we have to prove that it has semi-functional ciphertext invariance, one semi-functional
key invariance, and semi-functional security. For HIBE, we also have to prove delegation invariance. We
will base each of the properties on our three complexity assumptions of subsection 2.3. In all proofs, we will
treat the master key as a special form of secret keys.

Theorem A.5. Our system has (`MK, `SK)-delegation invariance.

Proof. It is easy to verify that the output of the Delegate algorithm for input (~I, SK~I , I
′) is identically

distributed to the output of Keygen(MK, ~I||I ′).

Theorem A.6. If assumption 2.1 holds, our system has (`MK, `SK)-semi-functional ciphertext invariance.

Proof. As in the proof of theorem 6.4, we will build a PPT simulator B that breaks assumption 2.1 using an
attacker A that breaks the semi-functional ciphertext invariance of the system.
B receives D1 = (N,G,GT , e, g1, g3) and a challenge term T . Then it plays the MasterLeak or the

MasterLeakC game with A in the following way:

Setup phase: B picks 〈α, x1, x2, . . . , xn, a1, . . . , aD, b〉
$← Zn+D+2

N . It computes ui = gai1 for i from 1 to D,
h = gb1, e(g1, g1)α, and gx1

1 , gx2
1 , . . ., gxn1 . It gives the public parameters PP = (N ,g1,g3,h,u1,u2,. . .,uD,e(g1, g1)α,

gx1
1 , gx2

1 , . . ., gxn1 ) to A where N , g1, and g3 are given by the challenger.

Phase 1: Knowing α, the simulator can generate a master key and execute all secret key queries (create,
leaked, keygen) with its master key.
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Challenge Phase: The adversary A gives B two messages M0 and M1 and a challenge identity vector〈
I∗1 , I

∗
2 , . . . , I

∗
j

〉
. The simulator B chooses c $← {0, 1} and outputs the ciphertext:

CT =
(
C0, ~C1

)
=
(
Mc · e (T, gα1 ) ,

〈
T x1 , T x2 , . . . , T xn , T, T a1I

∗
1 +a2I

∗
2 +...+ajI

∗
j +b
〉)

,

where T is the challenge term from the assumption.

Phase 2: B works in the same way as Phase 1.

If T = gz1g
ν
2 , then the ciphertext is semi-functional since

C0 = Mc · e (gz1g
ν
2 , g

α
1 ) = M · e(g1, g1)αz

T xi = (gxi1 )zgνxi2 for i ∈ {1, 2, . . . , n}
T = gz1g

ν
2

T b+
∑
aiI
∗
i = (h

∏
u
I∗i
i )zgν(b+

∑
aiI
∗
i )

2

This implicitly sets s = z and ~δ = (νx1, νx2, . . . , νxn, ν, ν(b+
∑
aiI
∗
i )). Obviously, s is properly distributed

since z
$← ZN according to the assumption. The vector ~δ is properly distributed in the attacker’s view

because the multiplying factors (b +
∑
aiI
∗
i ), x1, x2, . . . , xn are only determined modulo p1 by the public

parameters and not modulo p2. Thus they are random modulo p2 in A’s view. This means that B has
properly simulated the MasterLeakC game.

If T = gz1 , it is easy to see that the ciphertext is normal since it has no G2 parts. In this case, B has
properly simulated the MasterLeakHibe∗ game.

Theorem A.7. If assumptions 2.1 and 2.2 hold, our system has (`MK, `SK)-one semi-functional key invari-
ance.

Proof. We suppose there exists a PPT attacker A with non-negligible advantage in breaking one semi-
functional key invariance. B will simulate the game MasterLeakb and play it with A to break assumption
2.2. Initially, B receives input from the assumption’s challenger, i.e. D2 = (N,G,GT , e, g1, g3, g

z
1g
ν
2 , g

µ
2 g

ρ
3)

and a challenge term T , which is equal either to gw1 g
σ
3 or gw1 g

κ
2 g

σ
3 . Algorithm B works as follows:

Setup phase: It picks 〈α, x1, x2, . . . , xn, a1, . . . , aD, b〉
$← Zn+D+2

N . It computes ui = gai1 for i from 1 to D,
h = gb1, e(g1, g1)α, and gx1

1 , gx2
1 , . . ., gxn1 . It gives the public parameters PP = (N ,g1,g3,h,u1,u2,. . .,uD,e(g1, g1)α,

gx1
1 , gx2

1 , . . ., gxn1 ) to A, where N , g1, and g3 are given by the challenger.

Phase 1: In the HIBE setting, we treat the master key simply as a secret key at level 0 of the hierarchy.
Thus, the simulator has to answer successfully three different types of queries by A. In this game, all
Delegate calls have been substituted by Keygen calls (which is justified by delegation invariance).

• A requested a normal secret key leakage or reveal: B picks (once for each key) n+ 1 random exponents

〈r, z1, z2, . . . , zn〉
$← Zn+1

N , ~ρ $← Zn+2
N , and ρn+3, . . . , ρn+2+D−j

$← ZN . If the identity vector given by
A is 〈I1, . . . , Ij〉, then B generates the following secret key:

SK =
(
~K1, Ej+1, . . . , ED

)
=

=

〈gz11 , g
z2
1 , . . . , g

zn
1 , gαh−r ·

(
j∏
i=1

uIii

)−r
·
n∏
i=1

g−xizi1 , gr1

〉
∗ g~ρ3 ,

urj+1g
ρn+3
3 , . . . , urDg

ρn+2+D−j
3

)
It is easy to see that this is a properly distributed secret key. We remind here that if this is a master
key, then j = 0 and the adversary gives an empty identity vector.
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• A requested a semi-functional secret key leakage or reveal: Now B picks (once for each key) n + 1

random exponents 〈r, z1, z2, . . . , zn〉
$← Zn+1

N , ~ρ $← Zn+2
N , ρn+3, . . . , ρn+2+D−j

$← ZN , and for the

semi-functional parameters, ~γ′ $← Zn+2
N and θ′n+3, . . . , θ

′
n+2+D−j

$← ZN . It uses the secret key

SK =
(
~K1, Ej+1, . . . , ED

)
=

=

〈gz11 , g
z2
1 , . . . , g

zn
1 , gαh−r ·

(
j∏
i=1

uIii

)−r
·
n∏
i=1

g−xizi1 , gr1

〉
∗ (gµ2 g

ρ
3)
~γ′ ∗ g~ρ3 ,

urj+1 (gµ2 g
ρ
3)θ
′
n+3 g

ρn+3
3 , . . . , urD (gµ2 g

ρ
3)θ
′
n+2+D−j g

ρn+2+D−j
3

)
It is easy to see that the G1,G3 parts are properly distributed and, for the G2 part, the semi-functional
parameters are ~γ = µ~γ′ and θi = µθ′i for i ∈ [n+ 3, n+ 2 +D − j]. These are properly distributed as
well.

• A requested to be challenged on a secret key: Now B has to pick a bit b and give leakage to A either
from a normal or from a semi-functional secret key. Instead of doing this, it will use the assumption’s
challenge term T to generate the secret key. It picks 〈z′1, z′2, . . . , z′n〉

$← ZnN , and a random vector
~ρ′

$← Zn+2
N . It uses the following key for all subsequent queries on the same key:

SK =
(
~K1, Ej+1, . . . , ED

)
=

=

(〈
T z
′
1 , T z

′
2 , . . . , T z

′
n , gαT−b · T−

∑j
i=1 aiIi ·

n∏
i=1

T−xiz
′
i , T

〉
∗ g~ρ3 ,

T aj+1g
ρn+3
3 , . . . , T aDg

ρn+2+D−j
3

)
If T = gw1 g

κ
2 g

σ
3 , then this key is semi-functional with

r′ = w and zi = sz′i ∀i ∈ [1, n]

~γ = κ

〈
z′1, . . . , z

′
n,−b−

j∑
i=1

aiIi −
∑

xiz
′
i, 1

〉
and θi = κai ∀i ∈ [j + 1, D]

Since the public parameters only determine the a’s and b modulo p1, the semi-functional parameters
here are random modulo p2 in A’s view.

That concludes Phase 1. We mention here that B works the same way in Phase 2.

Challenge Phase: In this phase, B has to create a semi-functional ciphertext with EncryptSF. It gets
two messages M0 and M1 and a challenge identity vector

〈
I∗1 , I

∗
2 , . . . , I

∗
j

〉
from A and chooses c $← {0, 1}.

Then it generates the following ciphertext:

C̃T =
(
C0, ~C1

)
=

=
(
Mc · e ((gz1g

ν
2 ), gα1 ) ,

〈
(gz1g

ν
2 )x1 , . . . , (gz1g

ν
2 )xn , (gz1g

ν
2 ), (gz1g

ν
2 )a1I

∗
1 +...+ajI

∗
j +b
〉)

where gz1g
ν
2 is given by the assumption’s challenger.

It is easy to see that the ciphertext’s parameters are

s = z and ~δ = ν

〈
x1, . . . , xn, 1, b+

j∑
i=1

aiI
∗
i

〉
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The situation is similar to the one encountered in the proof of theorem 6.5: s is properly distributed, but
the semi-functional parameters are not (if the challenge key is capable of decrypting this ciphertext). One
can see that if the challenge key identity vector is a prefix of the challenge ciphertext identity vector, the
secret key is nominal with respect to the ciphertext. In this case (or if the prefix is equal to the challenge
identity’s prefix modulo p2), we have that(

~γ +

〈
0, . . . , 0,−

j∑
i=k+1

θiIi, 0

〉)
· ~δ = 0 mod p2

By modifying lemmas 6.6 and 6.7 in the following way, we get that the change in the simulator’s advantage
is only negligible.

Lemma A.8. If assumptions 2.1 and 2.2 hold, then for any PPT adversary A, A’s advantage in the
MasterLeakb game changes only by a negligible amount if we restrict it to make queries only on the challenge
identity vector and on identity vectors such that no component of them is equal to a respective component
from the challenge identity vector modulo p2 and not also equal modulo N .

Proof. If there exists such an adversary, we can find a non-trivial factor of N . This non-trivial factor can be
used to break either Assumption 2.1 or Assumption 2.2. (Same proof as [52])

Lemma A.9. We suppose the leakage is at most (`MK = (n−1−2c) log(p2), `SK = (n−1−2c) log(p2)), where
c > 0 is a fixed positive constant. Then, for any PPT adversary A, A’s advantage in the MasterLeak1 game
changes only by a negligible amount when the truly semi-functional challenge key is replaced by a nominal
semi-functional challenge key whenever A declares the challenge key to have an identity vector which is a
prefix of the challenge ciphertext identity vector.

Proof. The proof is similar to the proof of lemma 6.7, but the way we manipulate vectors ~Γ and ~δ is
generalized. Throughout this proof we treat the master keys as a special form of secret keys, i.e. the ones
with empty identity vector, which we consider to be a prefix of all identity vectors.

We suppose there exists a PPT algorithm A whose advantage changes by a non-negligible amount ε when
the MasterLeak1 game changes as described above. Using A, we will create a PPT algorithm B which will
distinguish between the distributions (~δ, f(~τ)) and (~δ, f(~τ ′)) from Corollary 6.3 with non-negligible advantage
(where m = n + 1 and p = p2). This will yield a contradiction, since these distributions have a negligible
statistical distance.
B simulates the game MasterLeak1 with A as follows. It starts by running the Setup algorithm for

itself, and giving A the public parameters. Since B knows the original master key and generators of all the
subgroups, it can make normal as well as semi-functional keys. Hence, it can respond to A’s non-challenge
Phase 1 queries by simply creating the queried keys.

With non-negligible probability, A must chose a challenge key in Phase 1 with its identity vector being
a prefix of the challenge ciphertext’s identity vector. (If it only did this with negligible probability, then the
difference in advantages whenever it gave a prefix would be negligible.)
B will not create this challenge key, but instead will encode the leakage A asks for on this key in Phase

1 as a single polynomial time computable function f with domain Zn+1
p2 and with an image of size 2`SK (or

2`MK). It can do this by fixing the values of all other keys and fixing all other variables involved in the
challenge key (more details on this below). B then receives a sample (~δ, f(~Γ)), where ~Γ is either distributed
as ~τ or as ~τ ′, in the notation of the corollary. B will use f(~Γ) to answer all of A’s leakage queries on the
challenge key by implicitly defining the challenge key as follows.
B chooses r1, r2, θk+1, . . . , θD ∈ Zp2 . We let g2 denote a generator of G2. B implicitly sets the G2

components of the key to be g~Γ
′

2 , where ~Γ′ is defined to be

~Γ′ =

〈
~Γ,

D−k+1︷ ︸︸ ︷
0, . . . , 0

〉
+

〈 n︷ ︸︸ ︷
0, . . . , 0, r1, r2, θk+1, . . . , θD

〉
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Recall that ~Γ is of length n + 1; thus r1 is added to the last component of ~Γ. B defines the non-G2

components of the key to fit their appropriate distribution.
At some point, A declares the identity for the challenge ciphertext. If the challenge key had an identity

vector which was not a prefix of the challenge ciphertext’s identity vector, then B aborts the simulation
and guesses whether ~Γ is orthogonal to ~δ randomly. However, the simulation continues with non-negligible
probability. Suppose the challenge key’s identity vector is 〈I1, I2, . . . , Ik〉 and the challenge ciphertext’s
identity vector is 〈I1, . . . , Ik, . . . , Ij〉. The challenge key is master if k = 0.
B chooses a random element t2 ∈ Zp2 subject to the constraint δn+1(r1−

∑j
i=k+1 Iiθi)+ t2r2 = 0 mod p2.

It then constructs the challenge ciphertext, using
〈
~δ, 0
〉

+ 〈0, . . . , 0, 0, t2〉 as the challenge vector (recall that
~δ is of length n+ 1). Now, if ~Γ is orthogonal to ~δ, then the challenge key is nominally semi-functional (and
well-distributed as such). If ~Γ is not orthogonal to ~δ, then the challenge key is truly semi-functional (and
also well-distributed).

It is clear that B can easily handle Phase 2 queries, since the challenge key cannot be queried on here
when it’s identity vector is a prefix of the ciphertext’s identity vector. Hence, B can use the output of A
to gain a non-negligible advantage in distinguishing the distributions (~δ, f(~τ)) and (~δ, f(~τ ′)). This violates
Corollary 6.3, since these distributions have a negligible statistical distance for f with this output size.

The above lemmas conclude the theorem.

Theorem A.10. If assumption 2.3 holds, our system has (`MK, `SK)-semi-functional security.

Proof. We will use a PPT attacker A with non-negligible advantage in breaking the semi-functional security
of our system to build a PPT simulator B that breaks assumption 2.3 with non-negligible advantage. The
input from the assumption’s challenger to B is D3 = (N,G,GT , e, g1, g2, g3, g

α
1 g

ν
2 , g

z
1g
µ
2 ) and a challenge term

T which is either e(g1, g1)αz or a random term of GT . Algorithm B works as follows:

Setup phase: It picks 〈x1, x2, . . . , xn, a1, . . . , aD, b〉
$← Zn+D+1

N . Notice that now α is unknown. It com-
putes ui = gai1 for i from 1 to D, h = gb1, and gx1

1 , gx2
1 , . . ., gxn1 . The term e(g1, g1)α is computed as

e(gα1 g
ν
2 , g1). It gives the public parameters PP = (N ,g1,g3,h,u1,u2,. . .,uD,e(g1, g1)α, gx1

1 , gx2
1 , . . ., gxn1 ) to

A, where N , g1, and g3 are given by the challenger.

Phase 1: For all secret keys requested by the adversary on identity vector 〈I1, . . . , Ij〉, the simulator B picks

(once for each key) n+1 random exponents 〈r, z1, z2, . . . , zn〉
$← Zn+1

N , ~ρ $← Zn+2
N , ρn+3, . . . , ρn+2+D−j

$← ZN ,

and for the semi-functional parameters ~γ′ $← Zn+2
N and θ′n+3, . . . , θ

′
n+2+D−j

$← ZN . It uses the secret key

SK =
(
~K1, Ej+1, . . . , ED

)
=

=

〈gz11 , g
z2
1 , . . . , g

zn
1 , (gαgν2 )h−r ·

(
j∏
i=1

uIii

)−r
·
n∏
i=1

g−xizi1 , gr1

〉
∗ g ~γ′2 ∗ g

~ρ
3 ,

urj+1g
θ′n+3
2 g

ρn+3
3 , . . . , urDg

θ′n+2+D−j
2 g

ρn+2+D−j
3

)
It is easy to see that the above is a properly distributed semi-functional key with semi-functional parameters
~γ = 〈0, . . . , 0, ν, 0〉+ ~γ′ and θi = µθ′i for i ∈ [n+ 3, n+ 2 +D − j].

Challenge Phase: The adversary A gives B two messages M0 and M1 and a challenge identity vector〈
I∗1 , I

∗
2 , . . . , I

∗
j

〉
. The simulator chooses c $← {0, 1} and outputs the following ciphertext:

CT =
(
C0, ~C1

)
=

=
(
Mc · T,

〈
(gz1g

µ
2 )x1 , . . . , (gz1g

µ
2 )xn , (gz1g

µ
2 ), (gz1g

µ
2 )a1I

∗
1 +...+ajI

∗
j +b
〉)

,
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where gz1g
µ
2 is given by the assumption’s challenger and T is the challenge term.

Phase 2: B works in the same way as Phase 1.

If T = e(g1, g1)αz, then we get a semi-functional ciphertext of Mc with parameters:

s = z and ~δ =

〈
µx1, . . . , µxn, µ, µ(b+

j∑
i=1

aiI
∗
i )

〉

As before, ~δ is properly distributed since all terms x1, . . . , xn, b+
∑j
i=1 aiI

∗
i are random modulo p2. Therefore,

B has properly simulated game MasterLeakCK.
On the other hand, if T $← GT the term C0 is entirely random and we get a semi-functional ciphertext

of a random message. Therefore, the value of c is information-theoretically hidden and the probability of
success of any algorithm A in this game is exactly 1/2, since c $← {0, 1}. Hence, B can use the output of A
to break 2.3 with non-negligible advantage.

B Attribute Based Encryption

B.1 Background

In this section, we define access structures and linear secret-sharing schemes (LSSS). Then we formally define
CP-ABE systems.

B.1.1 Access Structures

In the attribute-based encryption setting, a user has the ability to encrypt a message so that only users that
satisfy a specified access structure can decrypt (Ciphertext Policy). In our setting, we will deal with monotone
access structures, i.e. negated attributes are not allowed. We note that it is possible to (inefficiently) realize
general access structure with our techniques by having the negation of an attribute be a separate attribute
(so the total number of attributes will be doubled). Each access structure is defined as a set of subsets of
attributes, such that each subset “satisfies” the structure. More formally:

Definition B.1. (Access Structure [5]) Let {A1, . . . , An} be a set of attributes. A collection A ⊆ 2{A1,...,An}

is monotone if ∀B,C: if B ∈ A and B ⊆ C, then C ∈ A. An access structure (respectively, monotone
access structure) is a collection (respectively, monotone collection) A of non-empty subsets of {A1, . . . , An},
i.e., A ⊆ 2{A1,...,An}\∅. The sets in A are called the authorized sets, and the sets not in A are called the
unauthorized sets.

B.1.2 Linear Secret-Sharing Schemes

The access structures of our system will be linear secret-sharing schemes. We adapt the definition from [5].

Definition B.2. (Linear Secret-Sharing Schemes (LSSS)) A secret sharing scheme over a set of attributes
A is called linear (over Zp) if

1. The shares for each attribute form a vector over Zp.

2. There exists a matrix A called the share-generating matrix for the scheme. The matrix A has n1 rows
and n2 columns. For all i = 1, . . . , n1, the ith row of A is labeled by an attribute ρ(i) (ρ is a function
from {1, . . . , n1} to A). When we consider the column vector v = (s, r2, . . . , rn2), where s ∈ Zp is the
secret to be shared and r2, . . . , rn2 ∈ Zp are randomly chosen, then Av is the vector of n1 shares of the
secret s according to the scheme.
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We note the linear reconstruction property: we suppose that Π is an LSSS for access structure A. We
let S denote an authorized set, and define I ⊆ {1, . . . , n1} as I = {i|ρ(i) ∈ S}. There exist constants
{ωi ∈ Zp}i∈I such that, for any valid shares {λ}i of a secret s according to Π, we have:

∑
i∈I ωiλi = s.

These constants {ωi} can be found in time polynomial in the size of the share-generating matrix A [5].

Boolean Formulas Access structures might also be described in terms of monotonic boolean formulas.
LSSS access structures are more general and can be derived from such representations. More precisely, one
can use standard techniques to convert any monotonic boolean formula into a corresponding LSSS matrix.
We can represent a monotone boolean formula as an access tree, where the interior nodes are AND and OR
gates, and the leaf nodes correspond to attributes. The number of rows in the corresponding LSSS matrix
will be same as the number of leaf nodes in the access tree.

B.2 CP-ABE

A ciphertext-policy attribute-based encryption system consists of four algorithms: Setup, Encrypt, Key-
gen, and Decrypt.

Setup(1λ, U) → (PP,MK) This algorithms takes in the security parameter λ and a description of the
attributes’ universe U . It outputs the public parameters and the master key of the system.

Keygen(MK, S)→ SK The key generation algorithm takes in the master key MK, and a set of attributes
S ⊆ U . It outputs a private key SK. If the set of attributes is the entire universe U , this algorithm outputs
a master key.

Encrypt(M,A) → CT The encryption algorithm takes the message M , and an access structure A over
the universe of attributes. It outputs a ciphertext CT.

Decrypt(CT,SK)→M The decryption algorithm takes in a ciphertext CT, and a private key SK. If the
set of attributes of the private key satisfies the access structure of the ciphertext, it outputs the message M .

For a Dual System Encryption ABE scheme, the following two algorithms are added:

KeygenSF(MK, S,PP)→ K̃ The semi-functional key generation algorithm takes in the master key, a set
of attributes S, and the public parameters. It outputs a semi-functional key for this set of attributes. (Note
that this algorithm is not required to run in polynomial time.)

EncryptSF(M,A,PP)→ C̃T The semi-functional encryption algorithm takes in a message M , and an ac-
cess structure A, and the public parameters. It outputs a semi-functional ciphertext for this access structure.
(Note that this algorithm is not required to run in polynomial time.)

B.3 Security Definition

As in the HIBE case, we will define a new security game called MasterLeakAbe, which is a modification of
the usual MasterLeak game. The only difference is that now instead of identities we have sets of attributes.
Thus, R ⊆ 2U . The game is the following:

Setup: The challenger makes a call to Setup(1λ, U) and gets a master key MK and the public parameters
PP. It gives PP to the attacker. Also, it sets R = ∅ and T = {(0, U,MK, 0)}. Here, R ⊆ 2U and
T ⊆ H × 2U × (MK ∪ SK) × N (handles - sets of attributes - keys - leaked bits). Thus initially the set T
holds a record of the master key (universal attribute set for it and no leakage so far). Also a handle counter
H is set to 0.
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Phase 1: In this phase, the adversary can make the following queries to the challenger. All of them can be
interleaved in any possible way and therefore the input of a query can depend on the outputs of all previous
queries (adaptive security).

• Create(h, S): h is a handle to a tuple of T that has to refer to a master key. The attribute set S
can be any subset of the universe U , including U itself. If S = U , the attacker asks for the creation of
another master key.

The challenger initially scans T to find the tuple with handle h. If the attribute set field of the tuple is
not U , which means that the tuple holds a non-master key, or if the handle does not exist, it responds
with ⊥.

Otherwise, the tuple is of the form (h, U,MK′, L). Then the challenger makes a call to Keygen(MK′, S)→
K and adds the tuple (H + 1, S,K, 0) to the set T . After that, it updates the handle counter to
H ← H + 1.

• Leak(h, f): In this query, the adversary requests leakage from a key that has handle h ∈ N with a
polynomial-time computable function f acting on the set of keys. The challenger scans T to find the
tuple with the specified handle. It is either of the form (h, S,SK, L) or

(
h, U,MK′, L

)
11.

In the first case, it checks first if L+ |f(SK)| ≤ `SK. If this is true, it responds with f(SK) and updates
the L in the tuple with L+ |f(SK)|. If the checks fails, it returns ⊥ to the adversary.

If the tuple holds a master key MK′, it checks if L +
∣∣f(MK′)

∣∣ ≤ `MK. If this is true, and responds
with f(MK′) and updates the L with L+

∣∣f(MK′)
∣∣. If the checks fails, it returns ⊥ to the adversary.

• Reveal(h): Now the adversary requests the entire key with handle h. The challenger scans T to
find the requested entry. If the handle refers to a master key tuple, then the challenger returns ⊥.
Otherwise, let’s say the tuple is (h, S,SK, L). The challenger responds with SK and adds the subset S
to the set R.

Challenge: The adversary submits a challenge access structure A∗ with the restriction that no subset in R
satisfies it. It also submits two messages M0,M1 of equal size. The challenger flips a uniform coin c $← {0, 1}
and encrypts Mc under A∗ with a call to Encrypt(Mc,A∗). It sends the resulting ciphertext CT∗ to the
adversary.

Phase 2: This is the same as Phase 1, except with the restriction that the only allowed queries are
Create and Reveal queries for secret keys with attribute sets that do not satisfy A∗.

Guess: The adversary outputs a bit c′ ∈ {0, 1}. We say it succeeds if c′ = c.

Definition B.3. An Attribute-Based Encryption scheme is (`MK, `SK)-master leakage secure if all PPT
adversaries have at most a negligible advantage in the above security game.

B.4 Security properties

To prove security of our system, we will first define properties similar to those in Sections 3.2, 3.3. They
are defined exactly the same way with the only difference that instead of MasterLeak we use MasterLeakAbe.
Namely, we will give versions of semi-functional ciphertext invariance, the one semi-functional key invariance,
and semi-functional security adapted to the ABE setting.

The MasterLeakC game is exactly the same as the MasterLeakAbe game except that in the Challenge
phase, the challenger uses EncryptSF instead of Encrypt to create a semi-functional ciphertext, and
returns this to the adversary.

11It can be the case that MK′ is the original master key.
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In the MasterLeakCK game the challenger again uses EncryptSF for the challenge phase. However, the
set of tuples T has a different structure. Each tuple holds for each key (master or secret) a normal and a
semi-functional version of it. In this game, all keys leaked or given to the attacker are semi-functional. As we
have noted above, the semi-functional key generation algorithm takes as input a normal master key. Thus the
challenger stores the normal versions, as well the semi-functional ones so that it can use the normal versions
of master keys as input to Keygen calls. More precisely, the challenger additionally stores a semi-functional
master key in tuple 0 by calling KeygenSF(MK, ε) after calling Setup. Thereafter, for all Create(h,X)
queries, the challenger makes an additional call to KeygenSF(MK′, X), where MK′ is the normal version
of the master key stored in tuple h. Leak and Reveal queries act always on the semi-functional versions of
each key.

The MasterLeakb game is similar to the MasterLeakCK game, with the main difference being that the
attacker can choose on which version of each key to leak or reveal. In other words, on the first leakage or
reveal query on a key of the augmented set T , the attacker tells the challenger whether it wants the normal
or the semi-functional version of the key. In order for the challenger to keep track of the attacker’s choice
on each key, we further augment each tuple of T with a lock-value denoted by V ∈ N that can take one of
the three values:

• −1: That means that the attacker has not made a choice on this key yet and the key is “unlocked”.
This is the value the tuple gets, in a Create query.

• 0: The attacker chose to use the normal version of the key on the first leakage or reveal query on it.
All subsequent Leak and Reveal queries act on the normal version.

• 1: The attacker chose the semi-functional version and the challenger works as above with the semi-
functional version.

To summarize, each tuple is of the form (h,X,K, K̃, L, V ) i.e. handle - attribute set - normal key -
semi-functional key - leakage - lock. For example, the original master key is stored at the beginning of the
game in the tuple (0, U,MK,KeygenSF(MK, U), 0,−1).

At some point, the attacker must decide on a challenge key which is “unlocked”, V = −1, and tell this
to the challenger. The challenger samples a uniformly random bit b $← {0, 1} and sets V = b. Therefore, the
attacker has access to either the normal (if b = 0) or the semi-functional (if b = 1) version of this key via
Leak and Reveal queries. We note that if the attacker did not make a choice for the original master key in
tuple 0, it can choose this master key as the challenge key.

The attacker is then allowed to resume queries addressed to either normal or semi-functional keys, with
the usual restrictions (i.e. no leakage or reveal queries on keys capable of decrypting the challenge ciphertext
after the attacker has seen the challenge ciphertext).

Semi-functional Ciphertext Invariance: We say that a dual system ABE scheme ΠD has (`MK, `SK)-
semi-functional ciphertext invariance if for any probabilistic polynomial time algorithm A, the advantage of
A in the MasterLeakAbe game is negligibly close to the advantage of A in the MasterLeakC game. We denote
this by: ∣∣∣AdvMasterLeakAbe

A,ΠD (λ, `MK, `SK)− AdvMasterLeakC
A,ΠD (λ, `MK, `SK)

∣∣∣ ≤ negl(λ).

Semi-functional Key Invariance: We say that a dual system HIBE scheme ΠD has (`MK, `SK)-semi-
functional key invariance if for any probabilistic polynomial time algorithm A, the advantage of A in the
MasterLeakC game is negligibly close to the advantage of A in the MasterLeakCK game. We denote this by:∣∣∣AdvMasterLeakC

A,ΠD (λ, `MK, `SK)− AdvMasterLeakCK
A,ΠD (λ, `MK, `SK)

∣∣∣ ≤ negl(λ).
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One Semi-functional Key Invariance: We say that a dual system ABE scheme ΠD has (`MK, `SK)-one
semi-functional key invariance if, for any probabilistic polynomial time algorithm A, the advantage of A in
the MasterLeakb game with b = 0 is negligibly close to the advantage of A in the MasterLeakb game with
b = 1. We denote this by:∣∣∣AdvMasterLeak0

A,ΠD (λ, `MK, `SK)− AdvMasterLeak1
A,ΠD (λ, `MK, `SK)

∣∣∣ ≤ negl(λ)

Semi-functional Security: We say that a dual system ABE scheme ΠD has (`MK, `SK)-semi-functional
security if for any probabilistic polynomial time algorithm A, the advantage of A in the MasterLeakCK game
is negligible. We denote this by:

AdvMasterLeakCK
A,ΠD (λ, `MK, `SK) ≤ negl(λ).

The following theorems are proved the same way as theorems 3.1 and 3.2.

Theorem B.4. If a dual system ABE scheme ΠD =(Setup, Keygen, Encrypt, Decrypt, KeygenSF,
EncryptSF) has (`MK, `SK)-semi-functional ciphertext invariance, (`MK, `SK)-semi-functional key invari-
ance, and (`MK, `SK)-semi-functional security, then Π =(Setup, Keygen, Encrypt, Decrypt) is a (`MK, `SK)-
master-leakage secure ABE scheme.

Theorem B.5. If a dual system ABE scheme ΠD has (`MK, `SK)-one semi-functional key invariance, then
it also has (`MK, `SK)-semi-functional key invariance.

B.5 Proof

Our ABE construction has two types of semi-functional key generation algorithms instead of one. We define
here that the semi-functional key generation algorithm used by game MasterLeakb generates keys of type 2.
Essentially the main idea is to convert all keys to semi-functional keys of type 2. Type 1 keys serve as
a “stepping stone” between the games MasterLeak0 and MasterLeak1. Remember that if these two games
are indistinguishable, our scheme has one semi-functional key invariance. However, our assumptions do not
allow us to go in one step from one game to the other. To achieve that, we add an intermediate game,
called MasterLeak1/2, which is defined the exact same way as MasterLeakb, but with the difference that the
challenger always uses a semi-functional key of type 1 for the challenge key. All other semi-functional keys
are of type 2.

We now give the proofs of semi-functional ciphertext invariance, one semi-functional key invariance (split
in two parts), and semi-functional security for our system.

Theorem B.6. If assumption 2.1 holds, our system has (`MK, `SK)-semi-functional ciphertext invariance.

Proof. We assume we have a PPT attacker A which breaks semi-functional ciphertext invariance of our
system. We will create a PPT algorithm B which breaks 2.1 with non-negligible advantage. The simulator
B plays the MasterLeakAbe or the MasterLeakC game with the attacker A in the following way:

Setup phase: B picks α, a $← ZN and for each attribute i ∈ U , it chooses random si
$← ZN . It also picks

n random exponents x1, x2, . . . , xn
$← ZN . It gives the public parameters

PP = (N, g1, g3, g
a
1 , e(g1, g1)α, gx1

1 , . . . , gxn1 ,∀i ∈ U Ti = gsi1 )

to A, where N , g1, and g3 are given by the challenger.

Phase 1: Knowing α, the simulator can generate a normal master key as in the Setup algorithm and
execute all secret key queries (create, leaked, keygen) with this master key.
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Challenge Phase: The adversary A gives B two messages M0 and M1 and an access structure, encoded
as an n1×n2 LSSS matrix: (A∗, ρ∗). The simulator B chooses random values v′2, . . . , v

′
n2

$← ZN and for each

row A∗x of A∗ one value rx
$← ZN . Using the v′ values, it creates the vector ~v′ =

〈
1, v′2, . . . , v

′
n2

〉
. It flips a

random coin c
$← {0, 1} and outputs the ciphertext:

CT =
(

(A∗, ρ∗), C0, ~C1,∀x Cx,∀x Dx

)
=

=
(

(A∗, ρ∗),M · (e(T, gα1 ))s, 〈T x1 , . . . , T xn , T 〉 ,∀x T aA
∗
x·~v′T−r

′
xsρ∗(x) ,∀x T r

′
x

)
,

where T is the challenge term from the assumption.

Phase 2: B works in the same way as Phase 1.

If T = gz1g
ν
2 , then the ciphertext is semi-functional, since

C0 = Mc · e (gz1g
ν
2 , g

α
1 ) = M · e(g1, g1)αz

T xi = (gxi1 )zgνxi2 for i ∈ {1, 2, . . . , n}
T = gz1g

ν
2

T aA
∗
x·~v′T−r

′
xsρ∗(x) = g

aA∗x·z~v′
1 g

−zr′xsρ∗(x)
1 · gA

∗
x·aν ~v′−νr

′
xsρ∗(x)

2 for every row x of A∗

T r
′
x = g

zr′x
1 · gνr

′
x

2 for every row x of A∗

For the G1 part, this implicitly sets s = z, ~v = z~v′ and rx = zr′x. Thus all the G1 parts are properly
distributed (remember that the first coordinate of ~v should be z).

For the G2 parts, this sets ~δ = ν 〈x1, . . . , xn, 1〉, ~u = aν~v′, δ′x = −νr′x, and qρ∗(x) = sρ∗(x). All the
terms have been re-used only in the G1 part; hence they look random and uncorrelated modulo p2 in the
adversary’s view. In other words, uniform randomness of the semi-functional parameters follows from uniform
randomness modulo p2 of the following terms: x1, x2, . . . , xn, ν, a, v

′
2, . . . , v

′
n2
, r′x, sρ∗(x). So this is a properly

distributed semi-functional ciphertext, and B has properly simulated the MasterLeakC game.
If on the other hand, if T = gz1 , it is easy to see that the ciphertext is normal since it has no G2 parts

and B has properly simulated the MasterLeakAbe game.

Theorem B.7. If assumption 2.2 holds, the difference between the advantages of any PPT attacker when
playing the MasterLeak0 and MasterLeak1/2 games with leakage (`MK, `SK) on our ABE system with the
unique attribute restriction is negligible in λ.

Proof. We suppose we have a PPT attacker A whose advantage changes non-negligibly between these two
games. We will create a PPT algorithm B which breaks 2.2 with non-negligible advantage. The simulator B
will play either the MasterLeak0 or the MasterLeak1/2 game with the attacker A. Recall that in the former
game, all keys are either semi-functional of type 2 or normal (according to the attacker’s choice) and the
challenge key is normal. The latter game is the same, except the challenge key is semi-functional of type 1.

Setup phase: B picks α, a $← ZN and for each attribute i ∈ U , it chooses random si
$← ZN . It also picks

n random exponents x1, x2, . . . , xn
$← ZN . It gives the public parameters

PP = (N, g1, g3, g
a
1 , e(g1, g1)α, gx1

1 , . . . , gxn1 ,∀i ∈ U Ti = gsi1 )

to A, where N , g1, and g3 are given by the challenger.
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Phase 1: Knowing α, the simulator can generate a normal master key as in the Setup algorithm and
answer all secret key queries for normal keys (remember that A queries for either a semi-functional or a
normal key).

For semi-functional keys (of type 2), the simulator picks t, z1, . . . , zn ∈ ZN and random exponents ~ρ $←
Zn+1
N , ρn+2

$← ZN ,∀i ∈ S ρ′i
$← ZN for the G3 part. It uses the following secret key:

SK =
(
S, ~K1, L,∀i ∈ S Ki

)
=

=

(
S,

〈
gz11 , . . . , g

zn
1 , gα1 g

at
1

n∏
i=1

g−xizi1

〉
∗ (gµ2 g

ρ
3)~ρ, gt1g

ρn+2
3 ,∀i ∈ S T ti g

ρ′i
3

)
,

where S is the set of attributes given by A and gµ2 g
ρ
3 comes from the challenger. It is easy to see that this

is a properly distributed semi-functional key of type 2.
For the challenge key, the simulator has to either give a normal key or a semi-functional key of type 1.

To do this, it will use the assumption’s challenge term T . It picks z′1, . . . , z
′
n ∈ ZN and random exponents

~ρ
$← Zn+1

N , ρn+2
$← ZN ,∀i ∈ S ρ′i

$← ZN for the G3 part. It uses the secret key:

SK =
(
S, ~K1, L,∀i ∈ S Ki

)
=

=

(
S,

〈
T z
′
1 , . . . , T z

′
n , gα1 T

a
n∏
i=1

T−xiz
′
i

〉
∗ g~ρ3 , T g

ρn+2
3 ,∀i ∈ S T sig

ρ′i
3

)

It is easy to see that the G3 parts are properly distributed. For the G1 parts, this always sets t = w and
zi = sz′i for all i ∈ [1, n] (remember that T = gw1 g

σ
3 or gw1 g

κ
2 g

σ
3 ). Thus this part is always well-distributed.

If T = gw1 g
κ
2 g

σ
3 , the key has G2 parts as well and we can see that it is a semi-functional key of type 1

with parameters:
~γ = κ

〈
z′1, . . . , z

′
n, a−

∑
xiz
′
i

〉
, θ = κ and qi = si.

Since the terms z′1, . . . , z
′
n, κ, si are random modulo p2, the key is properly distributed.

Challenge Phase: The adversary A gives B two messages M0 and M1 and an access structure, encoded
as an n1×n2 LSSS matrix: (A∗, ρ∗). The simulator B chooses random values v′2, . . . , v

′
n2

$← ZN and for each

row A∗x of A∗ and one value r′x
$← ZN . Using the v′ values, it creates the vector ~v′ =

〈
1, v′2, . . . , v

′
n2

〉
. It flips

a random coin c
$← {0, 1} and outputs the ciphertext:

CT =
(

(A∗, ρ∗), C0, ~C1,∀x Cx,∀x Dx

)
=

= ((A∗, ρ∗),M · (e((gz1gν2 ), gα1 )), 〈(gz1gν2 )x1 , . . . , (gz1g
ν
2 )xn , (gz1g

ν
2 )〉 ,

∀x (gz1g
ν
2 )aA

∗
x·~v′(gz1g

ν
2 )−r

′
xsρ∗(x) ,∀x (gz1g

ν
2 )r
′
x

)
,

where gz1g
ν
2 is given from the assumption.

The ciphertext is semi-functional since

C0 = Mc · e (gz1g
ν
2 , g

α
1 ) = M · e(g1, g1)αz

(gz1g
ν
2 )xi = (gxi1 )zgνxi2 for i ∈ {1, 2, . . . , n}

(gz1g
ν
2 ) = gz1g

ν
2

(gz1g
ν
2 )aA

∗
x·~v′(gz1g

ν
2 )−r

′
xsρ∗(x) = g

aA∗x·z~v′
1 T

−zr′x
ρ∗(x) · g

A∗x·aν ~v′−νr
′
xsρ∗(x)

2 for every row x of A∗

(gz1g
ν
2 )r
′
x = g

zr′x
1 · gνr

′
x

2 for every row x of A∗
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For the G1 parts, this implicitly sets s = z, ~v = z~v′, and rx = zr′x. Thus all are properly distributed
(remember that the first coordinate of ~v should be z).

For the G2 parts, this sets ~δ = ν 〈x1, . . . , xn, 1〉, ~u = aν~v′, δ′x = −νr′x and qρ∗(x) = sρ∗(x).
First, notice that qρ∗(x) = sρ∗(x) as in the challenge key if it happens to be of type 1. This is what we

want since the qi values used by KeygenSF1 and EncryptSF should be the same. We recall here that
type 2 keys do not have qi terms.

The remaining semi-functional parameters of both the challenge key (if it is semi-functional of type 1)
and the ciphertext are shown in the following table:

Secret key
~γ = κ 〈z′1, . . . , z′n, a−

∑
xiz
′
i〉 θ = κ

Ciphertext
~δ = ν 〈x1, . . . , xn, 1〉 ~u = aν

〈
1, v′2, . . . , v

′
n2

〉
δx = −νr′x

We note that the first term of vector ~u is always equal to aν. Both a and ν are “seen” by the adversary
modulo p2: in the last coordinate of ~γ and ~δ, respectively (for the last of ~γ, we note that κ and all xi, z′i’s
are seen in other terms).

The first and easier case is when the attributes of the key satisfy the challenge access structure. Then
this is nominal with respect to the ciphertext because:

~γ · ~δ − θu1 = κ
〈
z′1, . . . , z

′
n, a−

∑
xiz
′
i

〉
· ν 〈x1, . . . , xn, 1〉 − κaν = 0 mod p2

According to the rules of the game, this key can not be revealed to the adversary12, but only leakage is
allowed on it. Then we can modify lemma 6.7 and show that no PPT attacker can have more than negligible
advantage in distinguishing these two keys. The modified lemma is the following:

Lemma B.8. We suppose the leakage is at most (`MK = (n − 1 − 2c) log(p2), `SK = (n − 1 − 2c) log(p2)),
where c > 0 is a fixed positive constant. Then, for any PPT adversary A, A’s advantage in the MasterLeak1

game changes only by a negligible amount when the truly semi-functional challenge key is replaced by a
nominal semi-functional challenge key whenever A declares the challenge key to have attributes which satisfy
the challenge ciphertext’s access structure.

Proof. The proof is similar to the proof of lemma 6.7, but the way we manipulate vectors ~Γ and ~δ is different.
Throughout this proof we treat the master keys as a special form of secret keys, i.e. the ones that have as
attributes the entire universe U , which satisfies all monotone access structures.

We suppose there exists a PPT algorithm A whose advantage changes by a non-negligible amount ε when
the MasterLeak1 game changes as described above. Using A, we will create a PPT algorithm B which will
distinguish between the distributions (~δ, f(~τ)) and (~δ, f(~τ ′)) from Corollary 6.3 with non-negligible advantage
(where m = n + 1 and p = p2). This will yield a contradiction, since these distributions have a negligible
statistical distance.
B simulates the game MasterLeak1 with A as follows. It starts by running the Setup algorithm for

itself, and giving A the public parameters. Since B knows the original master key and generators of all the
subgroups, it can make normal as well as semi-functional keys. Hence, it can respond to A’s non-challenge
Phase 1 queries by simply creating the queried keys.

With non-negligible probability, A must chose a challenge key in Phase 1 with attributes that satisfy
the challenge ciphertext’s access structure. (If it only did this with negligible probability, then the difference
in advantages whenever the attributes satisfy the access structure would be negligible.)
B will not create this challenge key, but instead will encode the leakage A asks for on this key in Phase

1 as a single polynomial time computable function f with domain Zn+1
p2 and with an image of size 2`SK (or

2`MK). It can do this by fixing the values of all other keys and fixing all other variables involved in the

12This situation is similar to IBE where the adversary can not get an entire key for I∗ or the master key.
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challenge key (more details on this below). B then receives a sample (~δ, f(~Γ)), where ~Γ is either distributed
as ~τ or as ~τ ′, in the notation of the corollary. B will use f(~Γ) to answer all of A’s leakage queries on the
challenge key by implicitly defining the challenge key as follows.
B chooses r1, r2 ∈ Zp2 . We let g2 denote a generator of G2. B implicitly sets the G2 components of the

key to be g~γ2 and gθ2 , where ~γ, θ are defined to be

~γ = ~Γ +

〈 n︷ ︸︸ ︷
0, . . . , 0, r1

〉
and θ = r2

Recall that ~Γ is of length n + 1; thus r1 is added to the last component of ~Γ. B defines the non-G2

components of the key to fit their appropriate distribution.
At some point, A declares the access structure for the challenge ciphertext. If the challenge key had

attributes that did not satisfy this access structure, then B aborts the simulation and guesses whether ~Γ is
orthogonal to ~δ randomly. However, the simulation continues with non-negligible probability.
B chooses a random element t2 ∈ Zp2 subject to the constraint δn+1r1 − t2r2 = 0 mod p2. It then

constructs the challenge ciphertext, using ~δ and u1 = t2 as the challenge vector (recall that ~δ is of length
n+ 1). The remaining parameters (semi-functional or not) are chosen according to EncryptSF algorithm.
Now, if ~Γ is orthogonal to ~δ, then the challenge key is nominally semi-functional (and well-distributed as
such). If ~Γ is not orthogonal to ~δ, then the challenge key is truly semi-functional (and also well-distributed).

It is clear that B can easily handle Phase 2 queries, since the challenge key cannot be queried on here
when its attributes satisfy the challenge ciphertext’s access structure. Hence, B can use the output of A
to gain a non-negligible advantage in distinguishing the distributions (~δ, f(~τ)) and (~δ, f(~τ ′)). This violates
Corollary 6.3, since these distributions have a negligible statistical distance for f with this output size.

However, if the attributes of the key do not satisfy the challenge access structure, the attacker can ask for
the entire key to be revealed. Remember that in the IBE case, we used the fact that the identities the attacker
asks for are not equal to the challenge identity modulo p2. This gave us the extra random term. In this
scheme, we use the unique attribute restriction to argue that the value of u1 = aν is information-theoretically
hidden modulo p2.

Since the attributes of the key do not satisfy the challenge access structure, the rowspace R ⊆ Zn2
N formed

by the rows of A∗, whose attributes are in S, does not include the vector 〈1, 0, . . . , 0〉. Otherwise, one could
find ωx’s such that

∑
ρ∗(x)∈S ωxA

∗
x = 〈1, 0, . . . , 0〉 and decrypt. This means that there is a vector ~w that is

in the orthogonal complement of R, but not orthogonal to 〈1, 0, . . . , 0〉. We can create a basis B of Zn2
N that

includes ~w. Then we can write ~u = f ~w+ ~u′ where f ∈ ZN and ~u′ is generated by all the vectors of B except
~w. But then we have that

u1 = ~u · 〈1, 0, . . . , 0〉 = f ~w · 〈1, 0, . . . , 0〉+ ~u′ · 〈1, 0, . . . , 0〉 .

Since ~u′ reveals no information about f and ~w is not orthogonal to 〈1, 0, . . . , 0〉, the value of f is needed to
determine the value of u1.

The only places where ~u (and hence f) appears modulo p2 are in the exponents of the form (see En-
cryptSF algorithm)

A∗x · ~u+ δ′xqρ∗(x) for every row x

However, not all of these are affected by the value of f . More specifically, we know that the rows for which
the attribute ρ∗(x) is in S (i.e. one of the key’s attributes), hide the value of f since ~w is orthogonal to R.

For the remaining rows, we know that with certainty minus a negligible probability, all multiplicative
factors δ′x are not equal to 0 mod p2 and thus the value of f is “masked” by the term δ′xqρ∗(x). Here is where
we use the restriction that each attribute in the access structure appears only once: Each of these qρ∗(x)

factors masks f entirely if it appears only once, since they are random modulo p2. But this is true because
they appear only in the access structure for which the unique attribute restriction holds and the only key
that could have these terms is the challenge key (type 1). Therefore, the value of u1 seems random to the
adversary, as well. (This is proven the same way in [51].)
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Phase 2: B works in the same way as in Phase 1.

The conclusion is that the attacker A plays either the MasterLeak0 or the MasterLeak1/2 game, depending
on the assumption. Thus, if it has a non-negligible difference in the advantages, B can break assumption 2.2
with non-negligible advantage.

Theorem B.9. If assumption 2.2 holds, the difference between the advantages of any PPT attacker when
playing the MasterLeak1/2 and MasterLeak1 games with leakage (`MK, `SK) on our ABE system is negligible
in λ.

Proof. We assume we have a PPT attacker A with a non-negligible difference in advantage between these
two games. We will build a PPT algorithm B which breaks assumption 2.2 with non-negligible advantage.
The simulator in this reduction works in the same way as in the previous one, with only one difference: it
picks ~h $← Zn+1

N and generates the challenge key as:

SK =
(
S, ~K1, L,∀i ∈ S Ki

)
=

=

(
S,

〈
T z
′
1 , . . . , T z

′
n , gα1 T

a
n∏
i=1

T−xiz
′
i

〉
∗ (gµ2 g

ρ
3)~h ∗ g~ρ3 , T g

ρn+2
3 ,∀i ∈ S T sig

ρ′i
3

)

The only difference from the previous simulator is the term (gµ2 g
ρ
3)~h, where gµ2 g

ρ
3 is given by the assump-

tion.
If T = gw1 g

κ
2 g

σ
3 , the semi-functional parameters of the challenge key and the ciphertext are:

~γ = κ 〈z′1, . . . , z′n, a−
∑
xiz
′
i〉+ µ~h θ = κ

~δ = ν 〈x1, . . . , xn, 1〉 ~u = aν~v′

As before, qi = si for both the key and the ciphertext as they should be. Also the new term re-randomizes
the G2 part of ~K1 so the key is no longer nominally semi-functional with respect to the ciphertext, i.e.
~γ · ~δ − θu1 = 0 no longer holds. It is obvious that the extra vector µ~h makes all parameters random and
uncorellated modulo p2. So in this case, the challenge key is a well-distributed semi-functional key of type 1
and A plays game MasterLeak1/2 (all requested semi-functional keys of type 2, type 1 challenge key and the
remaining keys normal).

If T = gw1 g
σ
3 , the key is semi-functional of type 2 with parameters ~γ = µ~h. ThusA plays game MasterLeak1

(all requested semi-functional keys and challenge key of type 2 and the remaining keys normal).

By the two previous theorems we get immediately one-semi-functional invariance:

Theorem B.10. If assumption 2.2 holds13, our system has (`MK, `SK)-one semi-functional key invariance.

Proof. By theorems B.7 and B.9, we have that for any PPT adversary A∣∣∣AdvMasterLeak0
A,ΠABE (λ, `MK, `SK)− Adv

MasterLeak1/2

A,ΠABE (λ, `MK, `SK)
∣∣∣ ≤ negl(λ)∣∣∣Adv

MasterLeak1/2

A,ΠABE (λ, `MK, `SK)− AdvMasterLeak1
A,ΠABE (λ, `MK, `SK)

∣∣∣ ≤ negl(λ).

By the triangle inequality and the fact that the sum of two negligible functions is negligible, we get one
semi-functional key invariance.

Theorem B.11. If assumption 2.3 holds, our system has (`MK, `SK)-semi-functional security.

Proof. We assume we have a PPT attacker A which breaks semi-functional security with non-negligible
advantage. We will construct a PPT algorithm B which breaks assumption 2.3 with non-negligible advantage.
As always, B that plays either the MasterLeakCK game or a final game with A, where the advantage of any
attacker is 0 in the final game because the ciphertext is an encryption of a random message, independent of
the bit c.

13Notice that in this case we don’t need assumption 2.1 - we have no identities.
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Setup phase: B picks a $← ZN and for each attribute i ∈ U , it chooses random si
$← ZN . It will use α

from the assumption’s term gα1 g
ν
2 . It also picks n random exponents x1, x2, . . . , xn

$← ZN . It gives the public
parameters

PP = (N, g1, g3, g
a
1 , e(g1, g1)α = e(gα1 g

ν
2 , g1), gx1

1 , . . . , gxn1 ,∀i ∈ U Ti = gsi1 )

to A, where N , g1, and g3 are given by the challenger.

Phase 1: All keys generated by B should be semi-functional keys of type 2. For each one, the simulator picks
t, z1, . . . , zn ∈ ZN , a random vector ~h $← Zn+1

N for the G2 part and ~ρ
$← Zn+1

N , ρn+2
$← ZN ,∀i ∈ S ρ′i

$← ZN
for the G3 part. It creates the following secret key:

SK =
(
S, ~K1, L,∀i ∈ S Ki

)
=

=

(
S,

〈
gz11 , . . . , g

zn
1 , (gα1 g

ν
2 )gat1

n∏
i=1

g−xizi1

〉
∗ g~h2 ∗ g

~ρ
3 , g

t
1g
ρn+2
3 ,∀i ∈ S T ti g

ρ′i
3

)
,

where S is the set of attributes given by A and gα1 g
ν
2 comes from the challenger. It is easy to see that this

is a properly distributed semi-functional key of type 2 with semi-functional parameters ~γ = ~h+ 〈0, . . . , 0, ν〉.

Challenge Phase: The adversary A gives B two messages M0 and M1 and an access structure, encoded
as a n1 × n2 LSSS matrix: (A∗, ρ∗). The simulator B chooses random values v′2, . . . , v

′
n2

$← ZN and for each

row A∗x of A∗, one value r′x
$← ZN . Using the v′ values, it creates the vector ~v′ =

〈
1, v′2, . . . , v

′
n2

〉
. It flips a

random coin c
$← {0, 1} and outputs the ciphertext:

CT =
(

(A∗, ρ∗), C0, ~C1,∀x Cx,∀x Dx

)
=

= ((A∗, ρ∗),M · e(T, gα1 ), 〈(gz1g
µ
2 )x1 , . . . , (gz1g

µ
2 )xn , (gz1g

µ
2 )〉 ,

∀x (gz1g
µ
2 )aA

∗
x·~v′(gz1g

µ
2 )−r

′
xsρ∗(x) ,∀x (gz1g

µ
2 )r
′
x

)
,

where gz1g
µ
2 is given from the assumption and T is the challenge term.

The ciphertext is semi-functional since

(gz1g
µ
2 )xi = (gxi1 )zgµxi2 for i ∈ {1, 2, . . . , n}

(gz1g
µ
2 )aA

∗
x·~v′(gz1g

µ
2 )−r

′
xsρ∗(x) = g

aA∗x·z~v′
1 T

−zr′x
ρ∗(x) · g

A∗x·aµ~v′−µr
′
xsρ∗(x)

2 for every row x of A∗

(gz1g
µ
2 )r
′
x = g

zr′x
1 · gµr

′
x

2 for every row x of A∗

For the G1 parts, this implicitly sets s = z, ~v = z~v′, and rx = zr′x. Thus all G1 parts are properly
distributed (remember that the first coordinate of ~v should be z).

For the G2 parts, this sets ~δ = µ 〈x1, . . . , xn, 1〉, ~u = aµ~v′, δ′x = −µr′x and qρ∗(x) = sρ∗(x). These are
properly distributed modulo p2 because the terms x1, . . ., xn, µ, a, v′2, . . ., v′n2

, r′x, sρ∗(x) are only seen
modulo p1 elsewhere.

Phase 2: Here B works in the same way as in Phase 1.

If T = e(g1, g1)αz, the above is a properly distributed semi-functional encryption of Mc. Otherwise, it is
an encryption of a random message. Thus, the advantage of any adversary in this case is 0.

By theorems B.6, B.10, B.11 we get that:

Theorem B.12. For (`MK = (n− 1− 2c) log(p2), `SK = (n− 1− 2c) log(p2)), where c > 0 is a fixed positive
constant, our dual system encryption ABE scheme is (`MK, `SK)-master-leakage secure.
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