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2 Université Bordeaux I,

351, cours de la Libération, 33 405 Talence cedex, France.
adrian.thillard@etu.u-bordeaux1.fr

Abstract. At CHES 2003, Piret and Quisquater published a very effi-
cient DFA on AES which has served as a basis for many variants pub-
lished afterwards. In this paper, we revisit P&Q’s DFA on AES and
we explain how this attack can be much more efficient than originally
claimed. In particular, we show that only 2 (resp. 3) faulty ciphertexts
allow an attacker to efficiently recover the key in the case of AES-192
(resp. AES-256). Our attack on AES-256 is the most efficient attack on
this key length published so far.
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1 Introduction

Since its publication in 1996, Fault Analysis has become the most efficient way
to attack cryptosystems implemented on embedded devices such as smart cards.
In October 2000, Rijndael was selected as AES and since then many researchers
have studied this algorithm in order to find very efficient differential fault attacks.
Amongst the dozen DFA on AES published so far, Piret and Quisquater’s attack
published at CHES 2003 [5] is now a reference which has been used as a basis
for several variants published afterwards. In this paper, we make some remarks
about P&Q’s method which allow us to improve the efficiency of their attack up
to the point that our DFA on AES-256 is the most efficient attack published so
far.

The rest of this paper is organized as follows. In Section 2, we briefly recall
the AES structure as well as the definition of each of its transformations. In Sec-
tion 3, we describe P&Q’s DFA on AES and we present their original results. In
Section 4 we present a way to improve P&Q’s attack on AES-128. Our proposal
divides the number of key candidates left by 26 compared to the original attack.
In Section 5 we present a method to reduce the number of faulty ciphertexts
required by the original P&Q attack in the 192 and 256-bit cases. Indeed, we
show that one can recover the AES-192 (resp. AES-256) key value by using only
2 (resp. 3) faulty ciphertexts. Finally, we summarize our results in Section 6.



2 AES Algorithm

2.1 General Description

The AES is a substitution-permutation block cipher algorithm. Its input and
output consist of sequences of 128 bits, while its cipher key is a sequence of 128,
192 or 256 bits, depending on the security level required. For each key length,
there will be 10, 12 or 14 rounds (resp. for 128, 192 and 256-bit key), each of
them being parameterized by a 128-bit round key provided by the key schedule.
At each moment, the temporary result can be represented as a 4 x 4 byte matrix,
called the State.

2.2 A Round

The structure of each round of AES can be reduced to four basic transforma-
tions occurring to the elements of the State. Each round consists in applying
successively to the State the SubBytes, ShiftRows, MixColumns and AddRound-
Key transformations. The last round does the same, with the exception of the
MixColumns transformation.

SubByte The SubByte transformation is a non-linear byte substitution, which
if often implemented by a substitution table. We call SubBytes the transforma-
tion SubByte applied to all the bytes of the State.

ShiftRows The ShiftRows transformation shifts cyclically to the left the last
three rows of the State over different numbers of bytes : the second row is shifted
over one byte, the third (resp. the fourth) is shifted over two bytes (resp. three
bytes).

MixColumn The MixColumn transformation applies a linear transformation
to a column of the State. The column is considered as a polynomial of degree 3
with coefficients inGF (28) and multiplied with the polynomial {03}x3+{01}x2+
{01}x+{02}modulo x4+1. We call MixColumns the transformation MixColumn
applied to each of the 4 columns of the State.

AddRoundKey The AddRoundKey transformation consists in xoring each
byte of the State with the corresponding byte of the round key.

2.3 Key Schedule

The role of the Key Schedule is to create a set of round keys (one per round).
To do so, the AES key is firstly expanded into a linear array of 4-byte columns,
this array being then split into the various round keys. For the 128-bit (resp.
192-bit) version, the first 4 (resp. 6) columns contain the AES key. The next
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columns are defined recursively by xoring the previous column and the column
4 (resp. 6) positions before. For columns in positions multiple of 4 (resp. 6), a
transformation is applied to the previous column before the xoring. This trans-
formation consists of a cyclical shift of one byte to the top followed by a SubByte
application to the 4 bytes of the column and a xor with a round constant.

For more information about the AES, the interested reader may refer to [1].

3 Description of P&Q’s DFA on AES

In [5], Piret and Quisquater describe a very efficient DFA on AES which has
served as a basis for many variants published afterwards. In this section, we
describe this attack on AES-128 as presented in [5].

3.1 Basic attack

The principle of this attack is to induce a fault resulting in a differential of 1
byte at the input of the last MixColumns. By guessing 4 bytes of the last round
key, the attacker tests if the corresponding differential at the output of the last
MixColumns corresponds to a 1-byte differential at its input.

Kr−1

SR

Kr

SBMC

Fig. 1. Propagation of the differential by assuming a byte fault at the input of
MixColumns of round r − 1.

To mount this attack, the attacker firstly computes a list D of possible dif-
ferences at the output of the MixColumn transformation, assuming a 1-byte
difference at its input. The list D thus contains 4 ∗ 255 4-byte elements. This
operation is done only once and can be used for future attacks.

Secondly, the attacker obtains a pair of correct and faulty ciphertext (C,C ),
C obtained from a random byte fault injected on the input of the MixColumns
transformation of round r−1. For the sake of simplicity, we assume that the fault
is injected on the first column of this State, the extension to other columns being
straightforward. In such a case, C differs from C in bytes at position 0, 7, 10
and 13. The attacker then considers the diagonal of the last round key composed
of the four key bytes Kr

0 , Kr
7 , Kr

10, Kr
13 and for each of the 232 candidates he
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computes:

�0 = SB−1(C0 ⊕Kr
0)⊕ SB−1(C 

0 ⊕Kr
0)

�13 = SB−1(C13 ⊕Kr
13)⊕ SB−1(C 

13 ⊕Kr
13)

�10 = SB−1(C10 ⊕Kr
10)⊕ SB−1(C 

10 ⊕Kr
10)

�7 = SB−1(C7 ⊕Kr
7)⊕ SB−1(C 

7 ⊕Kr
7)

(1)

The 4-byte result (�0, �13, �10, �7) is then compared with the 1020 elements
contained in the list D. The candidates (Kr

0 ,K
r
13,K

r
10,K

r
7) for which a match is

found are gathered in a list ℒ.
With one pair (C,C ), the list ℒ contains 1036 ≈ 210 elements on average3.

By using another pair (C,C ) with a fault injected on the same column, the
corresponding diagonal of the last round key is uniquely determined with a 98%
probability.

Therefore the last round key can be recovered by using 8 faulty ciphertexts
with faults induced at chosen locations.

3.2 Extended Attack

To extend the attack described above, Piret and Quisquater noticed that if a
random byte fault is induced between MixColumns of rounds r − 3 and r − 2,
the corresponding differential at the input of MixColumns of round r − 1 has 4
non-zero bytes, one per column of the State array (cf. Fig. 2).

Kr−2

MC SB SR

MC

SRSB

Kr−1Kr

Fig. 2. Propagation of the differential assuming a random byte fault at the input
of MixColumns of round r − 2.

Each of these non-zero bytes can thus be exploited by using the method
described in Section 3.1 and releases information about a diagonal of the last

3 In [5, §3.3], it is claimed that #ℒ = 1046, value obtained experimentally. However, we
find that the list ℒ contains 1036 elements on average by using 1 000 000 simulations.
This value matches the theoretical analysis done in [5, §2 Complexity Analysis].
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round key. By using such a fault, one pair of correct and faulty ciphertexts allows
the attacker to reduce the number of possible values for the last round key to
10364 ≈ 240 from which an exhaustive search to recover a 128-bit AES key can
be done. With two pairs of correct and faulty ciphertexts, the last round key is
uniquely identified with a 92% probability4.

4 Improvement of Extended Attack

In this section, we explain how the attack presented in Section 3.2 can be im-
proved by using the properties of ShiftRows and MixColumns transformations.

The set D has been defined as a list of possible differences at the output of the
MixColumn transformation, assuming a 1-byte difference at its input. Therefore
D can be seen as the union of the 4 lists Di, i = 0, ⋅ ⋅ ⋅ , 3, where Di corresponds to
the list of possible differences at the output of MixColumn assuming a difference
on the ith byte of its input.

In [5], the wrong-key distinguisher corresponds to the membership of the 4-
column differential at the output of the last MixColumns to {D,D,D,D}. How-
ever, one may note that due to the ShiftRows property, the differential belongs
to S = {D0,D3,D2,D1}∪{D3,D2,D1,D0}∪{D2,D1,D0,D3}∪{D1,D0,D3,D2}
which is a much smaller set (cf. Fig. 2). By using this remark, the attacker can
improve the wrong-key distinguisher used by Piret and Quisquater by testing if
the 4-column differential at the output of the last MixColumns belongs to S or
not.

By using this new wrong-key distinguisher, if the position of the disturbed
column is known, the number of candidates for each diagonal of the last round
key is then reduced to 28 by using 1 faulty ciphertext with a byte fault induced
between MixColumns of round r − 3 and r − 2. If the position of the disturbed
column is unknown, this number has to be multiplied by 4, i.e. the number of
candidates for the last round key is about 234 (to compare with the 240 candidates
indicated in the original paper).

From our experiments, an exhaustive search on AES-128 amongst 234 key
candidates takes about 8 minutes on average on a 4-core 3.2Ghz Xeon by using
a non-optimised C code. Therefore such an attack is practical.

One may note that this attack uses the same fault model and presents the
same efficiency as the attacks presented in [2, 4].

5 Improvement of P&Q’s DFA on AES-192 and AES-256

In this section, we firstly make a comment about the original extension of P&Q’s
attack to the 192 and 256-bit cases before presenting our method which signifi-
cantly improves P&Q’s attack on those key lengths.

4 In [5, §3.3], it is claimed that this probability is 77%, value obtained experimentally.
However, we find that this probability is in fact 92% by using 1 000 000 simulations.
We believe that our result is correct since the probability to uniquely identify 4 bytes
of the last round key is 98% (cf. Section 3.1) and we have (98%)4 ≈ 92%.
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5.1 A Remark About the Trivial Extension to 192 and 256-bit
Cases

In [5], it is written that the extension of the attack to the 192 and 256-bit cases
is “trivial” but no more details were given:

“In this paper we will only deal with the 128-bit block, 128-bit key variant, as it
is the most widely used. Our attack can be extended trivially to other variants.”

Since then, many researchers (including ourselves) have been asking why. In this
section, we report the explanation of Piret about this point.

The triviality of the extension of Piret and Quisquater’s attack comes from
the fact that, since MixColumns is linear, one can rewrite the last two rounds of
the AES as depicted in Fig. 3.

Kr−2

MC ∘ SR ∘ SBSR ∘ SB

Kr

C

MC−1(Kr−1)

Fig. 3. Another view of the last two rounds of the AES.

By using the above remark, one may note that the AES key can be uniquely
recovered by using 4 faulty ciphertexts whatever its length. Indeed, by using 2
faulty ciphertexts with a fault induced between MixColumns of round r− 3 and
r−2, one can uniquely identify the last round key by using the attack presented
in Section 3.2.
Then by using this information, one can decrypt any ciphertext by the last round
including the last MixColumns (cf. Fig. 3).

In a second step, the attacker obtains two other pairs of correct and faulty
ciphertexts (C,C ) by injecting random byte faults between MixColumns of
rounds r− 4 and r− 3. Therefore for each pair (C,C ), the attacker computes:{

A = MC−1(SR−1(SB−1(C ⊕Kr)))
A = MC−1(SR−1(SB−1(C ⊕Kr)))

(2)

and applies the method described in Section 3.2 with A (resp. A ) instead of C
(resp. C ) to recover MC−1(Kr−1). The penultimate round key Kr−1 is then
obtained by computing the image of MC−1(Kr−1) through MixColumns. Finally
the whole AES key is computed from the last two round keys.

To conclude, the original P&Q’s DFA on AES can uniquely identify the AES
key in the 192 and 256-bit cases by using 4 faulty ciphertexts.

In the next section, we show how this attack can be improved. In particular,
we show that the AES key in the 192 and 256-bit cases can be recovered by
using only 2 and 3 faulty ciphertexts respectively.
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5.2 Improved DFA on AES-256

When analysing the attacks of Sections 3.2, 4 and 5.1, we noticed that the faulty
ciphertexts with a byte fault induced between MixColumns of rounds x and x+1
are only used to recover information on the x+ 3th round key. Our main idea to
improve those results is to notice that these faulty ciphertexts can also be used
to recover information on the x+2th round key by using the method presented in
Section 3.1. As shown below, this methodology leads us to significantly improve
existing results.

By using 2 Faulty Ciphertexts Let us describe here how one can optimize the
number of faulty ciphertexts required by the attack described in Section 5.1. To
do so, the attacker re-uses the first 2 faulty ciphertexts to obtain information on
the penultimate round key instead of performing the second step of the attack.
Indeed, such faulty ciphertexts produce a 1-byte difference at the input of one
column of MixColumns of round r − 2. Therefore for each faulty ciphertext,
the attacker can apply the attack of Section 3.1 which reduces the number of
candidates for a diagonal of MC−1(Kr−1) to 210. With a 75% probability, these
2 faulty ciphertexts affect 2 different columns and thus reduce the number of
candidates for the AES-256 key to (210)2 ∗ (232)2 = 284.

By using 3 Faulty Ciphertexts Now let us assume that we have another
faulty ciphertext with a fault induced one round ahead (i.e. between MixColumns
of rounds r− 4 and r− 3). If the location of the disturbed column is known, one
can apply the attack of Section 4 to reduce the number of candidates for the two
diagonals of MC−1(Kr−1) which have 210 possibilities to 1 and the number of
candidates for the two other diagonals to 28. This gives a total number of possible
candidates for the penultimate round key of 12 ∗ (28)2 = 216. This number has
to be multiplied by 4 if the position of the disturbed column is unknown, i.e.
218.

5.3 Improved DFA on AES-192

In this section, we use the specificities of AES-192 key scheduling to adapt the
attacks of Section 5.2 to the AES-192 case.

By using 2 Faulty Ciphertexts In the 192-bit case, one may note that the
knowledge of the last round key allows the attacker to recover the first half of
the penultimate round key. In such a case, the attacker knows 2 bytes of each
diagonal of Kr−1. Therefore each diagonal of MC−1(Kr−1) has only 216 possible
values. By applying the first attack of Section 5.2, two diagonals of MC−1(Kr−1)
will have their number of possible candidates reduced to 25. Therefore, this
attack reduces the number of candidates for the AES-192 key to (25)2 ∗ (216)2 =
242 by using only 2 faulty ciphertexts.
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From our experiments, an exhaustive search on AES-192 amongst 242 key
candidates takes about 1.5 day on average on a 4-core 3.2Ghz Xeon by using a
non-optimised C code. Therefore such an attack can be classified as practical.

By using 3 Faulty Ciphertexts The efficiency of the attack described above
can be improved by using another faulty ciphertext with a byte fault induced
between MixColumns of round r − 4 and r − 3. As for the second attack of
Section 5.2, the attacker can thus apply the method of Section 4 to reduce
the number of candidates for the two diagonals of MC−1(Kr−1) which have 25

possibilities to 1 and the number of candidates for the two other diagonals to 25.
Therefore, this extra faulty ciphertext allows the attacker to reduce the number
of candidates for MC−1(Kr−1) to 12 ∗ (25)2 = 210.

To conclude, one can reduce the number of candidates for the AES-192 key
to 210 by using 3 faulty ciphertexts.

6 Summary Tables

Table 1 presents the results of Piret and Quisquater’s DFA on AES as originally
presented in their paper and Table 2 presents our improved version of their
attack.

Key length Fault Impact Fault Location Nb of faulty Number of key

ciphertexts candidates left

128 Random byte Random between MC of rounds 7 and 8 2 1

1 240

192 Random byte Random between MC of rounds 9 and 10 2 + 2 1

+ Random between MC of rounds 8 and 9

256 Random byte Random between MC of rounds 11 and 12 2 + 2 1

+ Random between MC of rounds 10 and 11

Table 1. Original Piret and Quisquater’s DFA on AES results.

Key length Fault Impact Fault Location Nb of faulty Number of key

ciphertexts candidates left

128 (§ 4) Random byte Random between MC of rounds 7 and 8 1 234

192 (§ 5.3) Random byte Random between MC of rounds 9 and 10 2 242

Random between MC of rounds 9 and 10 2 + 1 210

+ Random between MC of rounds 8 and 9

256 (§ 5.2) Random byte Random between MC of rounds 11 and 12 2 + 1 218

+ Random between MC of rounds 10 and 11

Table 2. Improved Piret and Quisquater’s DFA on AES results.

8



As shown in Table 3, our attack in the 256-bit case is the most efficient one
published on this key length in terms of number of faulty ciphertexts and number
of key candidates left.

Reference Fault Impact Fault Location Nb of faulty Number of key

ciphertexts candidates left

[6] Random byte Random on a chosen temporary variable 2 + 2 213

(input of round 12) in encryption

+ in decryption

[3] Random byte Random between MC of rounds 11 and 12 2 + 1 232

+ Random between MC of rounds 10 and 11

This paper Random byte Random between MC of rounds 11 and 12 2 + 1 218

(§ 5.2) + Random between MC of rounds 10 and 11

Table 3. Characteristics of the three most efficient DFA on AES-256.

7 Conclusion and Further Research

In this paper, we revisit Piret and Quisquater’s DFA on AES and we show that
the original attack can be widely improved for every key length. Indeed, when
using a 128-bit key, we show that only one faulty ciphertext reduces the number
of key candidates to 234. Concerning the AES-192, we present a method which
reduces the number of key candidates to 242 (resp. 210) by using only 2 (resp. 3)
faulty ciphertexts. Finally, our extension in the 256-bit case is the most efficient
attack published so far. Indeed by using 3 faulty ciphertexts only, one can reduce
the number of key candidates to 218.

Regarding possible improvements, one may note that the third faulty cipher-
text used in the 192 and 256 bits cases to obtain information on the r − 1th

round key can also be used to obtain information on the r− 2th round key. This
could be exploited to significantly reduce the number of key candidates left.
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