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Abstract

We construct an algebraic pseudorandom function (PRF) that is more efficient than the classic Naor-
Reingold algebraic PRF. Our PRF is the result of adapting the cascade construction, which is the basis of
HMAC, to the algebraic settings. To do so we define an augmented cascade and prove it secure when the
underlying PRF satisfies a property called parallel security. We then use the augmented cascade to build
new algebraic PRFs. The algebraic structure of our PRF leads to an efficient large-domain Verifiable
Random Function (VRF) and a large-domain simulatable VRF.

1 Introduction

Pseudorandom functions (PRFs), first defined by Goldreich, Goldwasser, and Micali [GGM86], are a fun-
damental building block in cryptography and have numerous applications. They are used for encryption,
message integrity, signatures, key derivation, user authentication, and many other cryptographic mecha-
nisms. Beyond cryptography, PRFs are used to defend against denial of service attacks [Ber96, CW03] and
even to prove lower bounds in learning theory.

In a nutshell, a PRF is indistinguishable from a truly random function. We give precise definitions in the
next section. The fastest PRFs are built from block ciphers like AES and security is based on ad-hoc inter-
active assumptions. In 1996, Naor and Reingold [NR97] presented an elegant PRF whose security can be
deduced from the hardness of the Decision Diffie-Hellman problem (DDH) defined in the next section. The
Naor-Reingold PRF takes as input an m-bit string b = b1 . . . bm ∈ {0, 1}m and a secret key (h, x1, . . . , xm)
and outputs

FNR
(

(h, x1, . . . , xm)︸ ︷︷ ︸
key

, (b1 . . . bm)︸ ︷︷ ︸
input

)
:= hw where w :=

m∏
i=1

xbii . (1)
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We define this PRF more precisely in Section 4.1. Evaluating this PRF amounts to m modular multiplica-
tions plus one exponentiation. This PRF was recently generalized by Lewko and Waters [LW09] to work in
groups where DDH may be easy, but where a weaker assumption called k-linear may hold. While this has
clear security benefits, there is a cost in performance compared to Naor-Reingold.

The algebraic structure of the Naor-Reingold PRF leads to several beautiful applications that are much
harder to construct with generic PRFs built from block ciphers. Some examples include Verifiable Random
Functions (VRFs) [HW10], oblivious PRFs (used for private keyword search [FIPR05] and secure com-
putation of set-intersection [JL09]), and distributed PRFs [NR97], to name a few. Another algebraic PRF
due to Dodis and Yampolskiy [DY05] (based on the signature scheme from [BB04c]) also has many useful
applications. However, this PRF is only known to be secure when the domain is small (i.e. polynomial size).

Our results. We describe a new algebraic PRF that has the same domain as Naor-Reingold, but requires
fewer multiplications to evaluate and uses shorter private keys. For parameters ` and n our PRF takes inputs
(u1, . . . , un) in Zn` along with a key (h, x1, . . . , xn) and outputs

F
(

(h, x1, . . . , xn), (u1 . . . un)
)

:= h1/w where w :=
n∏
i=1

(xi + ui) . (2)

For a domain of size 2m we have n = m/ log2 ` and therefore evaluating this PRF requires a factor of log2 `
fewer multiplications than (1) to compute w. Since computing w often takes roughly the same time as the
final exponentiation, evaluating this PRF is about twice as fast as evaluating the Naor-Reingold PRF. The
secret key is shorter by a factor of log2 `. We prove security of this PRF from the `-DDH assumption defined
in the next section. The larger ` gets the stronger the assumption becomes and therefore one should keep `
small. Setting ` = 16 or 256 for example is a reasonable choice.

Techniques. We prove security of the PRF by developing a PRF composition theorem that generalizes the
classic cascade construction of Bellare, Canetti and Krawczyk [BCK96b]. The cascade construction, shown
in Figure 1(a), constructs a PRF with a large domain from a PRF with a small domain and is the basis for
the NMAC and HMAC PRFs [BCK96a, Bel06].

Unfortunately, the cascade construction is insufficient for our purposes because it requires the output
of the underlying PRF to be at least as long as the secret key. We therefore define the augmented cascade,
shown in Figure 1(b), which eliminates this requirement by using supplemental secret information in every
block. The augmented cascade can be applied directly to PRFs whose output is much smaller than the secret
key. Suprisingly, security of the augmented cascade does not follow from security of the underlying PRF. We
therefore develop a sufficient condition on the underlying PRF, called parallel security, that implies security
of the augmented cascade.

Armed with the augmented cascade theorem, we build our large-domain PRF by plugging the Dodis-
Yampolskiy small-domain PRF [DY05] into the augmented cascade. To prove security, we prove that the
Dodis-Yampolskiy PRF is parallel secure. As a short aside, we show the power of the augmented cascade
theorem by using it to quickly prove security of the Naor-Reingold and Lewko-Waters PRFs.

Verifiable Random Functions. The algebraic structure of the PRF in (2) enables many of the same ap-
plications as the Naor-Reingold PRF. In Sections 6.2 and 7 we show how to convert this PRF into an
efficient Verifiable Random Function (VRF) with a large domain in groups with a bilinear map. A VRF,
as defined in [MRV99], is a PRF that also outputs a proof that it was evaluated correctly. VRFs give sig-
nature schemes where every message has a unique signature. They were also used to construct e-cash
schemes [BCKL09, ASM07].
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Hohenberger and Waters [HW10] recently constructed an elegant VRF with a large domain. Our VRF
is a little less efficient, but surprisingly is based on a weaker assumption. Their construction requires an
assumption where the problem instance has size O(mQ) where 2m is the size of the domain and Q is the
number of adversarial queries. We only require a problem instance of size O(m). Our security proof makes
use of admissible hash functions as in [BB04b]. We also describe a large-domain simulatable VRF, as
defined in [CL07].

2 Preliminaries

2.1 Pseudorandom Functions

We begin by reviewing the definition of pseudorandom functions [GGM86]. Informally, a pseudorandom
function is an efficiently computable function such that no efficient adversary can distinguish the function
from a truly random function given only black-box access.

More precisely, a PRF is an efficiently computable function F : K ×X → Y where K is called the key
space,X is called the domain, and Y is called the range. Security for a PRF is defined using two experiments
between a challenger and an adversary A. For b ∈ {0, 1} the challenger in Expb works as follows.

When b = 0 the challenger chooses a random key k ∈ K and sets f(·) := F (k, ·).
When b = 1 the challenger chooses a random function f : X → Y .
The adversary (adaptively) sends input queries x1, . . . , xq in X to the challenger and the challenger
responds with f(x1), . . . , f(xq). Eventually the adversary outputs a bit b′ ∈ {0, 1}.

For b ∈ {0, 1} let Wb be the probability that A outputs 1 in Expb.

Definition 1. A PRF F : K ×X → Y is secure if for all efficient adversaries A the quantity

PRFadv[A, F ] := |W0 −W1|

is negligible.

As usual, one makes the terms “efficient” and “negligible” precise using asymptotic notation by equating
efficient with probabilistic polynomial time and equating negligible with functions smaller than all inverse
polynomials. Here, we use non-asymptotic language to simplify the notation.

2.2 Complexity assumptions

Notation. In this section and in Section 4.2 it is convenient to use vector notation defined as follows. Let G
be a group of prime order p with generator g.

• for vectors ḡ = (g1, . . . , gn) ∈ Gn and x̄ = (x1, . . . , xn) ∈ Znp define ḡx̄ :=
(
gx11 , . . . , gxnn

)
∈ Gn.

For a scalar g ∈ G define gx̄ := (gx1 , . . . , gxn).

• for a matrix A = (ai,j) ∈ Zn×mp and a vector ḡ ∈ Gm define

A · ḡ := h̄ ∈ Gn where hi :=
m∏
j=1

g
ai,j
j for i = 1, . . . , n.

and for a scalar g ∈ G define gA := (g(ai,j)) ∈ Gn×m.
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We also use [k] to denote the set {1, . . . , k}.
The k-linear assumption. Let Vk be the linear subspace of Zk+1

p containing all vectors orthogonal to
(−1, 1, 1, . . . , 1); its dimension is k. A vector v = (v0, . . . , vk) is in Vk if v0 is the sum of the remaining
coordinates. When k = 1 a vector v = (v0, v1) is in V1 if and only if v0 = v1.
For an algorithm A define

LIN(k)
adv[A,G] :=

∣∣Pr[A(ḡ, ḡx̄) = 1]− Pr[A(ḡ, ḡȳ) = 1]
∣∣

where ḡ is uniform in Gk+1, x̄ is uniform in Vk, and ȳ is uniform in Zk+1
p .

Definition 2. For k ≥ 1 we say that the k-linear assumption holds for the group G if for all efficient
algorithms A the advantage LIN(k)

adv[A,G] is negligible.

The 1-linear assumption is identical to the standard Decision Diffie-Hellman (DDH) problem in G and
we write DDHadv[A,G] to denote LIN(1)

adv[A,G]. For k = 2 we obtain the decision linear assumption defined
in [BBS04]. For larger k we obtain the generalized linear assumption defined in [Sha07, HK07].

It is not difficult to show that if the k-linear assumption holds for G then so does the `-linear assumption
for all ` > k. It is believed that the larger k is the weaker the assumption becomes. In particular, the 2-linear
assumption may hold in groups where the 1-linear assumption (a.k.a DDH) is false.

The k-DDH assumption. For x ∈ Zp let pow(x, k) be the vector (1, x, x2, . . . , xk) ∈ Zk+1
p . The k-

DDH assumption states that g1/x is indistinguishable from a random group element given gpow(x,k). More
precisely, for an algorithm A define

DDH(k)
adv[A,G] :=

∣∣Pr[A(gpow(x,k), g1/x) = 1]− Pr[A(gpow(x,k), h) = 1]
∣∣

where g, h are uniform in G and x is uniform in Zp. When x = 0 we define g1/x to be 1 in G.

Definition 3. For k ≥ 1 we say that the k-DDH assumption holds for the group G if for all efficient
algorithms A the advantage DDH(k)

adv[A,G] is negligible.

This assumption was previously used in [BB04a, DY05] where it was called k-DDHI. The 1-DDH
assumption implies the standard DDH assumption. Moreover, for k > 1 the k-DDH assumption implies the
`-DDH assumption for ` < k.

A hierarchy. From the facts stated above we obtain a hierarchy of complexity assumptions from the k-linear
and k-DDH assumptions:

. . . ≤ k-lin ≤ . . . ≤ 1-lin ≡ DDH ≤ 1-DDH ≤ . . . ≤ k-DDH ≤ . . .

The assumptions becomes stronger as one moves from left to right. In the generic group model this hierarchy
can be shown not to collapse [BBG05].

A useful lemma. We will need the following lemma from [BHHO08] (Lemma 1). Let Zn×mp be the set of
n×m matrices over Zp and let Rk1(Zn×mp ) be the set of matrices in Zn×mp of rank 1.

Let G be a group of order p with generator g. Let A0 be uniform in RK1(Zn×mp ) and A1 be uniform in
Zn×mp . For an algorithm A : Gn×m → {0, 1} define

adv[A] :=
∣∣Pr[A(g(A0)) = 1]− Pr[A(g(A1)) = 1]

∣∣
The following lemma shows that when DDH is hard in G, no efficient adversary can distinguish a rank 1

matrix in the exponent from a random matrix in the exponent.

4



F F F

x1 x2 xn

Outputk ........

(a) The cascade construction, key = k

F F F

x1 x2 xn

Output

s1 sns2

k ........

(b) The augmented cascade, key = (s1, . . . , sn, k)

Figure 1: Cascade and augmented cascade

Lemma 1. For every algorithm A there exists an algorithm B with about the same running time as A so
that

adv[A] ≤ min(m,n) · DDHadv[B,G]

2.3 Bilinear maps

We briefly review the necessary facts about bilinear maps and bilinear map groups [Mil04]. Let G and GT

be two (multiplicative) cyclic groups of prime order p and let g be a generator of G. A bilinear map is a
map e : G×G→ GT with the following properties:

1. Bilinear: for all u, v ∈ G and a, b ∈ Z we have e(ua, vb) = e(u, v)ab.
2. Non-degenerate: e(g, g) 6= 1.

We say that G is a bilinear group if the group action in G can be computed efficiently and there exists
a group GT and an efficiently computable bilinear map e : G × G → GT as above. Note that e(·, ·) is
symmetric since e(ga, gb) = e(g, g)ab = e(gb, ga).

The k-BDH assumption. For x ∈ Zp, let gpow(x,k) be the vector (g, gx, . . . , g(xk)). The k-BDH assumption
states that e(g, u)1/x is indistinguishable from a random group element in GT given u and gpow(x,k). More
precisely, for an algorithm A define

BDH(k)
adv[A,G] :=

∣∣Pr[A(u, gpow(x,k), e(g1/x, u)) = 1]− Pr[A(u, gpow(x,k), γ) = 1]
∣∣

where g, u are uniform in G, x is uniform in Zp, and γ is uniform in GT .

Definition 4. For k ≥ 1, we say that the k-BDH assumption holds for the group G if for all efficient
algorithms A, the advantage BDH(k)

adv[A,G] is negligible.

3 The Augmented Cascade

3.1 The cascade PRF

The cascade pseudorandom function, defined in [BCK96b], constructs a secure PRF with domain Xn from
a secure PRF with domain X . The cascade construction is shown in Figure 1(a). More precisely, let
F : K ×X → K be a secure PRF. We define the cascade of F denoted F ∗n : K ×Xn → K as:
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input: key k0 ∈ K, and (x1, . . . , xn) ∈ Xn

for i = 1, . . . , n do:
ki ← F (ki−1, xi)

output kn

Here the output range of F must equal the key space K.
Cascade is the basis for the NMAC and HMAC message authentication codes [BCK96b, Bel06]. Cas-

cade is a generalization of the GGM PRF [GGM86], which can be viewed as a method to convert a PRF
with a 1-bit domain into a PRF with an n-bit domain. The security of the cascade construction is stated
concretely in the following theorem, which is shown in [BCK96b].

Theorem 2. For every q-query PRF adversary A attacking F ∗n there exists a q-query PRF adversary B
attacking F such that

PRFadv[A, F ∗n] ≤ nq · PRFadv[B, F ]

where B runs in about the same time as A.

3.2 Augmented Cascade PRF

The cascade construction works with a PRF F whose output is as long as the PRF key. When constructing
algebraic PRFs, the starting point is often a PRF F whose output is shorter than required for cascade. We
therefore need to augment the output of F so that its output is a valid key for F . Consider a PRF F operating
on the following spaces:

F : (S ×K)︸ ︷︷ ︸
key

×X → K

Notice that the key for F is a pair in (S,K) while the output is in K and therefore not a complete key. In
the augmented cascade we append a fresh random string to the output to make it into a valid key.

We define the augmented cascade, denoted F̂ ∗n, as a function

F̂ ∗n : (Sn ×K)︸ ︷︷ ︸
key

×Xn → K

The function’s domain is Xn and its keys are tuples of the form (s1, . . . , sn, k) ∈ Sn ×K. The augmented
cascade is shown in Figure 1(b) and is defined as follows:

input: key (s1, . . . , sn, k0) ∈ Sn ×K, and
value (x1, . . . , xn) ∈ Xn

for i = 1, . . . , n do:
ki ← F ( (si, ki−1), xi)

output kn

Security. Unfortunately, the augmented cascade can be insecure even if the underlying function F is a
secure PRF. For example, F can be a secure PRF even if it ignores the part of the key in K (i.e. F only uses
the part of the key in S). In this case, since we ignore ki (for all i), the last block of the augmented cascade
construction is evaluated independently of the first n − 1 blocks. Thus, the resulting augmented cascade
construction F̂ ∗n ignores the first n − 1 input blocks and hence cannot be a secure PRF. In the next two
sections we establish sufficient conditions for security of the augmented cascade.
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3.3 Parallel composition security

In Theorem 3 below we will show that the augmented cascade is a secure PRF provided that the underlying
function F satisfies a property we call parallel security. This property says that F remains a secure PRF
when the adversary has access to multiple instances of the function with different but related keys.

For a function F : (S×K)×X → K and an integer q > 0 we define q related keys (s, k1), . . . , (s, kq)
where s ∈ S and k1, . . . , kq ∈ K. These keys are related since they all share the same s. We say that
the function F is q-parallel secure if the resulting set of q functions is indistinguishable from q random
independent functions.
More precisely, let F (q) be the function: F (q) : (S ×Kq)×

(
X × [q]

)
→ K defined by

F (q)
(

(s, k1, . . . , kq)︸ ︷︷ ︸
key

, (x, i)︸ ︷︷ ︸
input

)
:= F

(
(s, ki) , x

)
Here i ∈ [q] selects the key (s, ki) to be used in the function F . Thus, F (q) emulates q functions F whose
keys are (s, ki) for i = 1, . . . , q.

Definition 5. We say that F : (S ×K)×X → K is a q-parallel secure PRF if F (q) is a secure PRF.

The function F need not be q-parallel secure even if it is secure as a PRF. For example, as above, a
secure PRF F : (S ×K) ×X → K that ignores the part of the key in K (i.e. only uses the S part of the
key) is clearly not 2-parallel secure. Even when S is small (e.g. S = {0, 1}) the function F may not be
2-parallel secure even though F is a secure PRF.

3.4 Security of the augmented cascade

We now prove security of the augmented cascade provided that the underlying PRF is parallel-secure.

Theorem 3. If F is q-parallel secure then the augmented cascade F̂ ∗n is a secure PRF against q-query
adversaries.

In particular, for every q-query PRF adversaryA attacking F̂ ∗n there is a q-query PRF adversary B attack-
ing F (q) such that

PRFadv[A, F̂ ∗n] ≤ n · PRFadv[B, F (q)]

where B runs in about the same time as A.

The proof uses a hybrid argument similar to the proof of the original cascade [BCK96b], but is suffi-
ciently different to require its own proof.

Proof of Theorem 3. Given an adversary A we construct an adversary B as required. The intuition for the
construction of B comes from the following sequence of n + 1 hybrid experiments between a challenger
and adversaryA. In hybrid i, the challenger replaces the first i stages of the augmented cascade with a truly
random function, while the last n− i stages are carried out as in the standard augmented cascade.

More precisely, for i = 0, . . . , n define the challenger in hybrid experiment Pi as follows:

setup: the challenger chooses a random function f : Xi → K and random keys s1, . . . , sn in S.

queries: to respond to a query (x1, . . . , xn) ∈ Xn from A do:
let ki ← f(x1, . . . , xi) ∈ K
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for j = i+ 1, . . . , n do:
kj ← F ( (sj , kj−1), xj)

send kn to A

For i = 0, . . . , n, let Wi be the probability that A outputs 1 in hybrid number i. Observe that in hybrid
P0 the adversaryA interacts with the function F̂ ∗n while in hybrid Pn the adversary interacts with a random
function f : Xn → K. Therefore,

PRFadv[A, F̂ ∗n] = |Wn −W0|

It follows by the standard hybrid argument that there exists a t ∈ [1, n] such that

PRFadv[A, F̂ ∗n] ≤ n · |Wt−1 −Wt| (3)

We construct a q-query PRF adversary B such that

PRFadv[B, F (q)] = |Wt−1 −Wt| (4)

Combining (3) and (4) proves the theorem.
Adversary B emulates the challenger in hybridPt orPt+1. This requires B to emulate a random function

f : Xt → K. To do so, it is convenient to describe B using an associative array T that maps elements of Xt

to numbers in {1, . . . , q}. Initially the array T is empty.

Adversary B interacts with its F (q) challenger and emulates a F̂ ∗n challenger for A. B works as follows:

setup: T ← ∅, ctr← 0, choose random st+2, . . . , sn in S

queries: to respond to a query for (x1, . . . , xn) ∈ Xn from A do:

if T [x1 . . . xt] = ⊥ (i.e. x1 . . . xt is a new prefix)
increment ctr by 1 and set T [x1 . . . xt] := ctr

let u← T [x1 . . . xt] ∈ {1, . . . , q}
B queries its F (q) challenger at (xt+1, u) and obtains some kt+1 ∈ K

note: kt+1 is either random in K or is equal to F ((s, k∗u), xt+1) for some random key (s, k∗u)
chosen by B’s challenger.

for j = t+ 2, . . . , n do: (finish the cascade)
kj ← F ( (sj , kj−1), xj)

send kn to A

eventually A outputs a bit b′ ∈ {0, 1}. B outputs the same bit and terminates.

Since A makes at most q queries the variable u is always in the range [1, q] and therefore all of B’s queries
to its challenger are in the proper range.

When B’s challenger emulates a random function then B emulates a Pt+1 challenger to adversary A.
When B’s challenger emulates F (q) then B emulates a Pt challenger to adversary A. Therefore (4) holds
which completes the proof of the theorem.
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4 Existing Algebraic PRFs

We briefly review two existing algebraic PRFs in the literature and explain how their security neatly follows
from the security of the augmented cascade construction.

4.1 The Naor-Reingold PRF

We start with the Naor-Reingold PRF [NR97]. Let G be a group of order p and let f : (Zp×G)×{0, 1} → G
be the function

f
(
(x, h), b

)
:= h(xb) =

{
h if b = 0
hx if b = 1

(5)

Plugging f into the augmented cascade we obtain the following PRF whose domain is {0, 1}n and range is
G:

FNR := f̂∗n
(

(x1, . . . , xn, h)︸ ︷︷ ︸
key

, (b1 . . . bn)︸ ︷︷ ︸
input

)
= h

(
x
b1
1 ···x

bn
n

)

To show that FNR is a secure PRF it suffices to show that f is parallel secure. Naor and Reingold do so
implicitly in their proof. We state this in the following lemma.

Lemma 4. If the DDH assumption holds for the group G then the function f defined in (5) is q-parallel
secure for all q polynomial in the security parameter.

Proof. To prove that f is q-parallel secure we need to show that f (q) is a secure PRF. The function f (q) has
domain {0, 1} × [q] which is a set of size 2q. Hence, it suffices to show that enumerating the 2q outputs of
f (q) gives a secure pseudorandom generator. In particular, all we need to show is that

G(x, h1, . . . , hq) := (h1, h
x
1 , . . . , hq, h

x
q )

is a secure PRG, assuming DDH holds in G. This is a direct application of the random self reduction of
DDH [NR97]. For completeness, we briefly review the reduction.

Let A be an algorithm that distinguishes the output of G on a random seed from a random tuple in G2q.
We build an algorithm B that breaks DDH in G. Given a tuple (g, h, u, v) as input, algorithm B chooses
random a1, . . . , aq and b1, . . . , bq in Zp and computes(

ga1ub1 , ha1vb1 , . . . , gaqubq , haqvbq
)
∈ G2q (6)

Naor and Reingold show that if (g, h, u, v) is a DDH tuple then (6) is distributed as the output of G on
a random seed. If (g, h, u, v) is a random tuple then (6) is random in G2q. Algorithm B runs A on the
tuple (6) and outputs whateverA outputs. Then DDHadv[B,G] = PRFadv[A, f (q)] as required. The running
time overhead of B is polynomial in q.

Combining Theorem 3 with Lemma 4 proves that the function FNR is a secure PRF whenever DDH
holds in G.
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4.2 The Lewko-Waters PRF

Lewko and Waters construct a PRF from the k-linear assumption [LW09]. While their PRF is not as efficient
as the PRF of Naor and Reingold, their construction can remain secure in groups where DDH is false.

Let G be a group of order p. Let k > 0 be a parameter and define f : (Zk×kp × Gk) × {0, 1} → Gk as
the function

f
(
(A, h), b

)
:= Ab · h =

{
h if b = 0
A · h if b = 1

(7)

Recall that the notation A · h is defined in Section 2.2. Plugging f into the augmented cascade we obtain
the following PRF whose domain is {0, 1}n:

FLW := f̂∗n
(
(A1, . . . , An, h), (b1 . . . bn)

)
= (Ab11 · · ·A

bn
n ) · h ∈ Gk

To show that FLW is a secure PRF it suffices to show that f is parallel secure. Lewko-Waters do so implicitly
in their proof. We state this in the following lemma.

Lemma 5. If the k-linear assumption holds for the group G, then the function f with parameter k defined
in (7) is q-parallel secure for all q polynomial in the security parameter.

Proof sketch. As in the proof of Lemma 4, it suffices to show that

G(A, h1, . . . , hq) := (h1, A · h1, . . . , hn, A · hn)

is a secure pseudorandom generator, assuming k-linear holds in G. To prove this, one first shows that this G
is a secure PRG when A is a random row vector in Zkp . This uses the random self reduction of the k-linear
problem described in [LW09]. Then one extends this to a k × k matrix using a hybrid argument over the k
rows of the matrix A. Both ingredients are given in the Lewko-Waters proof of security.

Combining Theorem 3 with Lemma 5 proves that the function FLW with parameter k is a secure PRF
whenever the k-linear assumption holds in G.

5 A New Algebraic PRF

Our starting point is a secure PRF due to Dodis and Yampolskiy [DY05] with a domain of size ` for some
small `. The PRF is proven secure under the `-DDH assumption. Recall that we use [`] to denote the set
{1, . . . , `} and consider the PRF f : (Zp ×G)× [`]→ G defined as follows:

f( (s, h)︸ ︷︷ ︸
key

, x ) := h1/(s+x) (8)

As before we define h1/0 = 1. Dodis and Yampolskiy prove the following theorem.

Theorem 6 ([DY05]). Suppose the `-DDH assumption holds in G. Then f is a secure PRF provided the
domain size ` is polynomial in the security parameter.

In particular, for every PRF adversary A there is an `-DDH algorithm B such that

PRFadv[A, f ] = DDH(`)
adv[B,G] and time(B) = time(A) +O(` · T )

where T is the maximum time for exponentiation in G.
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Plugging f into the augmented cascade we obtain a PRF whose domain [`]n has exponential size. The
resulting PRF is defined as follows:

F := f̂∗n( (s1, . . . , sn, h)︸ ︷︷ ︸
key

, (x1, . . . , xn)︸ ︷︷ ︸
input

) := h[1/
∏n

i=1(si+xi)] (9)

As discussed in the introduction, this PRF is more efficient than the Naor-Reingold PRF since it processes
log2 ` bits per block rather than just one bit per block. The cost of this increased efficiency is reliance on a
stronger assumption, namely `-DDH.

Theorem 7. The PRF defined in (9) is secure assuming the `-DDH assumption holds in G.

To prove the theorem it suffices to show that f defined in (8) is parallel secure; namely that f (q) is a
secure PRF for all polynomial q. We state this in the following lemma.

Lemma 8. If the function f defined in (8) is a secure PRF and the DDH assumption holds in G then f is
q-parallel secure for all q polynomial in the security parameter.

In particular, for every PRF adversary A there are adversaries B1 and B2, whose running time is about the
same as A’s up to a polynomial factor, such that

PRFadv[A, f (q)] ≤ PRFadv[B1, f ] + q · DDHadv[B2,G]

Note that the DDH assumption is implied by the k-DDH assumption and hence the DDH assumption
used in Lemma 8 does not add an assumption beyond the one already used to prove that the underlying f is
a secure PRF.

Proof of Lemma 8. Our goal is to show that f (q) is a secure PRF. We present the proof as a sequence of
three games between a challenger and a PRF adversary A that attacks f (q). For i = 0, 1, 2, let Wi be the
probability that A outputs 1 at the end of Game i.

Game 0. The challenger in this game behaves as a standard challenger presenting the adversary with an
oracle for the pseudorandom function f (q) with a random key (s, h1, . . . , hq).

Game 1. The challenger in this game chooses a random function u : [`] → G. It also chooses random
r1, . . . , rq in Zp. Now, given a query (x, i) ∈ [`] × [q] from the adversary, the challenger responds with
u(x)ri .

We show that Games 0 and 1 are indistinguishable, assuming f is a secure PRF. In particular, there is a
PRF adversary B1, whose running time is about the same as A’s, such that

|W0 −W1| = PRFadv[B1, f ] (10)

Adversary B1 interacts with a PRF challenger for f and plays the role of an f (q) PRF challenger for A.
Adversary B1 works as follows:

choose random r1, . . . , rq in Zp.

given a query (x, i) ∈ [`]× [q] from A do:
issue a query to B1’s challenger with input x and

obtain y in response.
respond on A with yri .

finally, output whatever A outputs.
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When B1’s challenger emulates an oracle for the function f with random key (s, h) it responds to query
x with y = h1/(s+x). For i = 1, . . . , q define hi := hri . Then B1’s response to A’s query for (x, i) is
simply h1/(s+x)

i which is precisely f (q)( (s, h1, . . . , hq), (x, i) ). Hence, in this case B1 emulates a Game 0
challenger for A.

When B1’s challenger emulates a random function u : [`] → G then B1’s response to A’s query for
(x, i) is simply u(x)ri which is precisely how a Game 1 challenger would respond. These two arguments
prove (10), as required.

Game 2. The challenger presents the adversary with an oracle for a random function w : [`]× [q]→ G.

We use Lemma 1 to argue that Games 1 and 2 are indistinguishable assuming the DDH assumption
holds in G. In particular, there is a DDH algorithm B2 such that

|W1 −W2| ≤ q · DDHadv[B2,G] (11)

Let (x1, i1), . . . , (xq, iq) be A’s queries to its challenger. Recall that in Game 1 the challenger responds to
A’s queries using a random function u : X → G and random r1, . . . , rq ∈ Zp. Let A ∈ Zq×qp be the matrix
A := (risj)1≤i,j≤q. Clearly A has rank 1.

In Game 1 the adversary is given q entries in the matrix gA ∈ Gq×q. In Game 2 the adversary is given
q random values in G which we treat as q entries in a random q × q matrix in G. By Lemma 1 there is an
algorithm B2 that satisfies (11), as required.

Summary. Combining (10) and (11) shows that

PRFadv[A, f (q)] = |W0 −W2| ≤ |W0 −W1|+ |W1 −W2| ≤ PRFadv[B1, f ] + q · DDHadv[B2,G]

which completes the proof of the theorem.

The proof of Theorem 7 follows by combining Theorem 3 with Lemma 8, which shows that the function
F with parameter ` is a secure PRF whenever the `-DDH assumption holds.

6 Verifiable Random Functions

Verifable Random Functions, introduced by Micali, Rabin, and Vadhan [MRV99] are PRFs where the party
holding the secret key can produce a non-interactive proof that the PRF was evaluated correctly. The proof
should not interfere with the pseudorandom properties of the PRF.

We give two VRF constructions from the augmented cascade. In this section, for a parameter `, we
use the Dodis-Yampolskiy small-domain VRF to construct VRFs for a domain of size `n for constant n.
Security is based on the n`-BDH assumption in bilinear groups. In comparison, the core Dodis-Yampolskiy
construction requires the `n-BDH assumption for a VRF on a domain of size `n.

In Section 7 we construct a VRF for a domain of size 2m for arbitrary m from the O(m)-BDH assump-
tion. Our construction makes use of admissible hash functions introduced in [BB04b].

Hohenberger and Waters [HW10] recently constructed an elegant large domain VRF from the Naor-
Reingold PRF for domain of size 2m for arbitrary m. Security against a Q-query adversary relies on the
O(mQ)-BDHE assumption, where t-BDHE is an assumption of the same flavor as the t-BDH assumption.
While the efficiency of our VRF is worse than that of Hohenberger and Waters, the required complexity
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assumption is weaker: O(m) vs. O(mQ). The proof techiques for the two constructions are quite differ-
ent. Hohenberger and Waters use the pile-up approach of Waters [Wat05] while we use admissible hash
functions [BB04b].

Other VRFs include Abdalla et al. [ACF09] who give a construction using the m-wBDH assumption
in blinear groups for a domain of size 2m. The construction is limited to polynomial size domains since
security degrades exponentially in m. Early VRFs outputting one bit were given by Lysyanskaya [Lys02]
and Dodis [Dod03] based on stronger assumptions.

6.1 Definition of VRFs

A VRF is an efficiently computable function F : K ×X → Y equipped with three algorithms:

• Gen(1λ) outputs a pair of keys (pk, sk) for a security parameter λ.

• Prove(sk, x) computes
(
F (sk, x), π(sk, x)

)
, where π(sk, x) is a proof of correctness.

• Verify(pk, x, y, π) verifies that y = F (sk, x) using the proof π.

Security for a VRF is defined using two experiments between a challenger and an adversary A. For
b ∈ {0, 1}, the challenger in Expb works as follows:

The challenger chooses a random key (pk, sk)← Gen(1λ).
The adversary (adaptively) sends queries x1, . . . , xq inX to the challenger who responds withF (sk, xi)
and proof π(sk, xi) for i = 1, . . . , q.
The adversary issues a special challenge query x∗. If b = 0, the challenger responds with F (sk, x∗).
If b = 1, the challenger chooses random y ∈ Y and responds with y.
Eventually the adversary outputs a bit b′ ∈ {0, 1}.

For b ∈ {0, 1} let Wb be the probability that A outputs 1 in Expb. Define VRFadv[A, F ] := |W0 −W1|.

Definition 6. A VRF is said to be secure if it satisfies the following properties.

1. Pseudorandomness: For every efficient adversary A, VRFadv[A, F ] is a negligible function.

2. Verifiability: For (y, π)← Prove(sk, x), Verify(pk, x, y, π) = 1.

3. Uniqueness: no values of (pk, x, y1, y2, π1, π2) satisfy
Verifypk(x, y1, π1) = Verifypk(x, y2, π2) = 1 for y1 6= y2.

6.2 Building a VRF using augmented cascade

We construct a secure VRF with domain of size `n using the n`-BDH assumption and the augmented cas-
cade. Evaluating the VRF takes n multiplications and one exponentiation. Our VRF is built from the
augmented cascade using the Dodis-Yampolskiy VRF as the underlying function. The Dodis-Yampolskiy
VRF uses pairings and outputs elements in GT while its key uses elemets in G. We therefore need to slightly
tweak the augmented cascade to compensate for the difference between GT and G, but this is easily done.
The resulting VRF is defined as follows:
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Algorithm Gen(1λ): Fix a group G of prime order p with a bilinear pairing. Choose random generators
g, u ∈ G and random values s1, s2, . . . , sn ∈ Zp. Set ti := gsi for i = 1, . . . , n and output the keys

pk = (g, u, t1, . . . , tn), sk = (g, u, s1, . . . , sn).

Function F : (G2 × Znp )× [`]n → GT. On input sk and x = (x1, . . . , xn) ∈ [`]n output

F (sk,x) := e( g[1/
∏n

i=1(xi+si)], u) .

Algorithm Prove(sk,x): This algorithm outputs F (sk,x) along with a proof π as follows: for i = 1 to n,
compute πi = g[1/

∏i
j=1(xj+sj)] ∈ G and output the proof π := (π1, π2, . . . , πn) ∈ Gn .

Algorithm Verify(pk,x, y, π): First verify that the proof π contains legal encodings of elements in G. Next,
check that

e(πi, g
xi ti) = e(πi−1, g) for i = 1, . . . , n,

where π0 := g. Finally, check that e(πn, u) = y, where y is the output of the VRF. Verify returns 1 iff all
the checks are satisfied.

6.3 Proof of VRF security

We prove security for a polynomial size domain. For a domain of size `n we use the n`-BDH assumption.

Theorem 9. Suppose the n`-BDH assumption holds in a bilinear group G (of order p). If `n is polynomial
in the security parameter then the VRF defined in section 6.2 is secure. In particular, for every VRF adver-
sary A there is an n`-DDH algorithm B, whose running time is about the same as A’s up to a polynomial
factor, such that

VRFadv[A, F ] ≤ `n · BDH(n`)
adv [B,G].

Proof. Verifiability of the VRF is straightforward. Uniqueness follows from the group structure: for any
input there is only one group element in G that is a valid output, and moreover, it is not possible (even for an
unbounded adversary) to devise a valid proof for another element. It remains to prove pseudorandomness.

Intuition. Given a n`-BDH instance, enumerate all possible inputs for each of the n input blocks. Consider
an n × ` matrix where the (i, j)th entry corresponds to the monomial (x + j − b∗i ), for randomly chosen
b∗i . Any query from the adversary can be seen as a path through the matrix that visits exactly one cell in
each column (corresponding to each input block). The simulator chooses n random cells called “mines,”
one mine per column, and constructs a public key that lets it answer any query from the adversary that
does not visit all n mines. If the adversar’s challenge query hits each and every mine, which happens with
probability `−n, then the simulator can use the adversary to solve the given n`-BDH instance. We formalize
this intuition below and in Section 7 extend this idea, with error-correcting codes, to construct a VRF with
a large domain.

LetA be a VRF adversary attacking F . We construct the following algorithm B that breaks the n`-BDH
assumption in G with advantage VRFadv[A, F ]/`n.

Input: Algorithm B is given a tuple (g, u, gx, . . . , gx
n`
, y) ∈ (G)n`+2 × GT and is to determine if y is

e(g, u)1/x or drawn randomly from GT.
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Key generation: In this step, the algorithm B chooses a random b∗ = (b∗1, . . . , b
∗
n)

R← [`]n and constructs
an instance of the VRF as follows: First, B constructs the polynomials

pi(z) =
∏
a∈[`]

(z + a− b∗i ) and p(z) = z−1
n∏
i=1

pi(z)

in Zp[z]. Since the product
∏n
i=1 pi(z) is over all possible inputs a ∈ [`] the product is divisible by zn and

therefore p(z) is in Zp[z]. Write

p(z) =
n`−1∑
j=0

cj · zj

for some cj in Zp. B then constructs the generator h as:

h = gp(x) =

n`−1∏
j=0

(
g(xj)cj

)
Next, B constructs the public key values

ti = h(x−b∗i ) = gp(x)(x−b∗i ) =

n∏̀
j=1

((
g(xj)

)cj−1−b∗i cj
)

for i = 1, . . . , n and sends A the public key pk = (h, u, t1, . . . , tn). The secret key values s1, . . . , sn
corresponding to this public key (and are unknown to B) are:

si = x− b∗i for i = 1, . . . , n.

Responding to Oracle Queries: Without loss of generality, assume A never repeats a query. Consider the
ith query (1 ≤ i < `n) on message b(i) = (b

(i)
1 , . . . , b

(i)
n ) ∈ [`]n. Every j such that b(i)j = b∗i contributes a

factor z to the denominator in the definition of F . As long as b(i) 6= b∗, B successfully answers the query,
as follows. Construct n polynomials, p(i,1) through p(i,n) as

p(i,j)(z) =
p(z)

(z + b
(i)
1 − b∗1) · · · (z + b

(i)
j − b∗j )

=

n`−j−1∑
k=0

dj,kz
k ∈ Zp[z] (12)

for some constants dj,k ∈ Zp, j = 1, . . . , n. Note p(i,j)(z) is a polynomial in Zp[z] since p(z) is divisible
by the denominator in (12) unless the denominator is zn which only happens when b(i) = b∗.

To compute proofs, B computes:

πj =

n`−j−1∏
k=0

(
g(xj)

)dj,k
= h

1/
[∏j

k=1(x+b
(i)
k −b

∗
k)
]

for j = 1, . . . , n and sets π = (π1, . . . , πn). Finally B computes the function on the query,

F (sk,b(i)) = e(πn, u) = e(h
1/
[∏n

k=1(sk+b
(i)
k )
]
, u)
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and responds on A’s query with F (sk,b(i)) and π. In the unlikely event that b(i) = b∗ algorithm B aborts
the simulation and outputs ⊥.

Challenge: Eventually,A outputs a message b̂ on which it wants to be challenged. If b̂ 6= b∗, then B aborts
and outputs ⊥. If b̂ = b∗, B proceeds as follows.

Since A is a VRF adversary, it can distinguish between e(h, u)1/[
∏n

i=1(si+b
∗
i )] = e(h, u)1/xn and a

random element in GT with VRFadv[A, F ]. Now, recall that p(z) is divisible by zn−1 but not by zn. Thus,
there are scalars ρ 6= 0 and ρ0, . . . , ρn`−n−1 in Zp such that:

s(z) =
p(z)

zn
− ρ

z
=

n`−n−1∑
j=0

ρjz
j .

Now, using the challenge y, algorithm B computes:

y∗ = yρ ·
n`−n−1∏
j=0

e
(

(g(xj))ρj , u
)

If y R← GT, then y∗ is random in GT. However, if y = e(g, u)1/x then y∗ is F (sk,b∗) = e(h, u)1/xn .
Therefore, B responds to A’s challenge query with y∗.

Guess: Algorithm A makes more queries, if required, to which B responds as before, and then finally
outputs a guess bit b′ ∈ {0, 1}. B outputs b′ as its guess.

Success probability. The running time of B is dominated by responding to oracle queries. Each query
requires one exponentiation and polynomially many multiplications. A queries B at most a polynomial
many number of times therefore B’s running time is roughly a polynmial factor off the running time of A.

Correctness of the algorithm B follows in a fairly straightforward manner. If the challenge query is b∗,
B distinguishes the n`-BDH challenge with the same advantage the adversary A has against the VRF. This
occurs with a probability of `−n because b∗ is chosen uniformly at random by B. Therefore

BDH(n`)
adv [B,G] ≥ VRFadv[A, F ]

`n

which completes the proof of the theorem.

7 VRFs with large input domains

In this section, we show how to construct a secure VRF with an input domain of {0, 1}m for arbitrary m.
Security depends on the O(m)-BDH assumption. Evaluating the VRF requires about 48m multiplications
and one exponentiation. Our construction uses error correcting codes with a large minimum distance.

Definition 7. A (m,n, d)`-error correcting code is an injective function H : {0, 1}m → [`]n such that for
every two words c1, c2 ∈ {0, 1}n we have:

HDist (H(c1), H(c2)) ≥ d,

where HDist(·, ·) denotes the hamming distance between the codewords (the number of co-ordinates where
the two codewords differ). We say that an error-correcting code is efficient if the function H is efficiently
computable.
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We need the following lemma from [BS98].

Lemma 10. For any positive integers `,m, let n = 8m`. Then there exists a (m,n, d)`-error correcting
code with d > n(1− 2/`).

In particular, for the construction of the VRF it suffices to take ` = 6. Therefore,

Corollary 11. For any positive integer m, there exists a (m,n, d)6-error correcting code with d > 2n/3
and n = 48m.

We will need the function H defining the error-correcting code to be efficiently computable. We can
make Corollary 11 efficient using an appropriate pseudo-random function or by using an explicit low rate
error-correcting code from [ABN+92].

7.1 VRF construction

In this section, we construct a class of verifiable random functions parametrized by the output alphabet size
` ≥ 6. For ` = 6 we obtain (using Corollary 11) an efficient VRF on domain {0, 1}m requiring 48m
multiplications per function evaluation and the O(m)-BDH assumption for security.

Algorithm Gen(1λ): Fix a group G of prime order p with a bilinear pairing. Select random generators
g, u ∈ G, random values s1, s2, . . . , sn ∈ Zp and set ti = gsi . Choose an efficient error correcting code
H : {0, 1}m → [`]n with a minimum distance d > n(1 − 1/e) ; (for ` = 6 taking n = 48m is sufficient
by Corollary 11). Output the keys:

pk = (g, u, t1, . . . , tn), sk = (g, u, s1, . . . , sn).

Function F : (G2 × Znp ) × {0, 1}m → GT. On input sk and a bit string x = (x1, x2, . . . , xm) in {0, 1}m
output:

F (sk, x) := e
(
g[1/

∏n
i=1(H(x)i+si)], u

)
where H(x)i refers to the ith coordinate of H(x).

Algorithm Prove(sk, x): Upon input sk and x output F (sk, x) along with a proof π as follows. For i = 1

to n, compute πi = g[1/
∏i

j=1(H(x)j+sj)]. Output the proof:

π := (π1, π2, . . . , πn) ∈ Gn .

Algorithm Verify(pk, x, y, π): First verify that π contains legal encodings of elements in G. Next, check
that:

e(πi, g
H(x)i · ti) = e(πi−1, g),

where π0 := g. Finally, check that e(πn, u) = y, where y is the output of the VRF. Verify returns 1 iff all
the checks are true.

Theorem 12. If H : {0, 1}m → [`]n is a (m,n, d)`-error correcting code with d > n(1 − 1/e) and
` = o(

√
n/ lnn), the VRF constructed in section 7.1 is secure under the n`-BDH assumption.

In particular, for every VRF adversary A there is an n`-DDH algorithm B such that

VRFadv[A, F ] ≤ O(n) · BDH(n`)
adv [B,G].
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Proof Outline. Recall the intuition behind the proof of Theorem 9. Given an n`-BDH instance, construct
an n × ` matrix where the (i, j)th entry corresponds to the monomial (x + j − b∗i ), for randomly chosen
b∗i . In the proof of Theorem 9 the public parameters were constructed to enable the simulator to answer any
query that does not visit all n mines. An adversary whose special query visits all n mines can be used to
solve the n`-BDH instance. Since the fraction of challenge queries that do not cause the adversary to abort
is exponentially small in n (i.e. `−n), this proof technique works only for small n.

In this proof, for a parameter k, we choose a random integer r ∈ [k, n] and modify the simulated public
parameters to enable the simulator to use challenge queries that visit at least r (rather than all n) mines. k is
chosen so that the challenger fails on a (1/n) fraction of all possible inputs with high probability, which can
then be used to break the n`-BDH assumption. This requires k to be O(logQ). To mitigate an adversary
forcing the simulator to abort by constructing highly correlated queries, a code with large minimum distance
is used which lower bounds the success probability to at least Ω(1/n) which is sufficient for the simulation.

Proof. Along the lines of the previous proof, given an adversaryA that distinguishes the VRF from a random
function with non-negligible probability, we construct an algorithm B that solves the n`-BDH instance.

Input: Algorithm B given a tuple (g, gx, . . . , gx
n`
, y) ∈ (G)n`+1 ×GT is to determine if y is e(g, u)1/x or

y is random in GT.

Key generation: B sets a parameter k = O(logQ) and picks a number r uniformly at random from
{k + 1, . . . , n} and constructs the VRF as follows. B chooses b∗ = (b∗1, . . . , b

∗
n) uniformly at random from

[`]n. The public and private keys for algorithmA are generated as follows: B enumerates all possible inputs
in time ` to construct

pi(z) =
∏
a∈[`]

(z + a− b∗i ) and p(z) = z−(n−r+1)
n∏
i=1

pi(z) =

n`−(n−r+1)∑
j=0

cj · zj ,

for some coefficients cj in Zp. The product
∏
pi(z) is over all possible inputs a ∈ [`] which implies zn is

a factor. Therefore, it can be divided by zn−r+1. The construction implies that B cannot answer any query
that matches b∗ on more than r values. B then computes the generator h:

h = gp(x) =

n`−(n−r+1)∏
j=0

(
g(xj)cj

)
.

The secret keys si (unknown to B) are x− b∗i for i = 1, . . . , n. The public key component ti corresponding
to the secret key component si is:

ti = h(x−b∗i ) = gp(x)(x−b∗i ) =

n`−n+r∏
j=1

((
g(xj)

)cj−1−b∗i cj
)
.

B computes ti for i = 1, . . . , n and sends the public key pk = (h, u, t1, . . . , tn) to A.

Responding to Oracle Queries: B responds to queries in a manner almost identical to the one in the proof
of Theorem 9. Let qi be the ith query fromA. B first computes b(i) = H(qi). If HDist(b(i),b∗) ≤ (n− r)
(i.e., they agree on at least r coordinates), as before, the query cannot be answered because the polynomial
p(z) is not divisible by the denominator in (12). In this case B outputs⊥ and aborts. Otherwise, B evaluates
the function and responds to A in a manner identical to the one in the proof of Theorem 9.
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Challenge: Eventually A outputs a message b̂ on which it wants to be challenged.

If HDist(H(b̂),b∗) 6= (n − r), B outputs ⊥ and aborts. Otherwise, let w denote the product (si + H(b̂)i)
over the n− r coordinates that H(b̂) and b∗ differ. Since A is a VRF adversary, it can distinguish between
e(h, u)1/[

∏n
i=1(si+H(b̂)i)] = e(h, u)1/(xr·w) and a random element in GT with VRFadv[A, F ]. Now, recall

that p(z) is divisible by zr−1 ·w but not by zr ·w. Thus, there are scalars ρ 6= 0 and ρ0, . . . , ρn`−2n+r−1 in
Zp such that:

s(z) :=
p(z)

zr · w
− ρ

z
=

n`−2n+r−1∑
j=0

ρjz
j ∈ Zp[z].

Now, using the challenge y, algorithm B computes:

y∗ = yρ ·
n`−2n+r−1∏

j=0

e
(

(g(xj))ρj , u
)
.

Now, note that if y R← GT, then y∗ is distributed randomly in GT. However, if y = e(g, u)1/x, then
y∗ = e(g, u)p(z)/(x

r·w) = e(h, u)1/(xr·w) = F (sk, b̂). Therefore, B gives A the value y∗ as computed
above.

Guess: At the end of the interaction, algorithm A makes a guess and outputs a bit b′ ∈ {0, 1} which B also
returns.

Success Probability. If B does not abort, correctness follows in a straightfoward manner. B successfully
simulates the challenge query only if HDist(H(b̂),b∗) = n − r. Since B guesses r uniformly at random
from [k, n] this happens with probability at least 1/n. Given a correct guess for r, we estimate the probability
that A can force B to output ⊥.

Let Ai be the event that the ith query issued by the adversary cannot be answered by the simulator
and (Ai | r) be the event Ai given a particular value r. The (Q + 1)th query is the challenge query. The
probability of the simulator successfully simulating the adversary without aborting is:

Pr[Success] = Pr
[
Ā1 ∧ . . . ∧ ĀQ ∧AQ+1

]
.

We can bound this using the inclusion-exclusion principle:

Pr
[
Ā1 ∧ . . . ∧ ĀQ ∧AQ+1

]
≥ Pr [AQ+1]−

Q∑
i=1

Pr [Ai ∧AQ+1] (13)

One can easily verify that:

Pr [AQ+1 | r] =

(
n

r

)
· (`− 1)n−r

`n
.

Recall that H has minimum distance d > n(1− 1/e). For the rest of the analysis, let the minimum distance
of the code d be n(1 − α), for some α < 1/e. Both Ai and AQ+1 can occur simultaneously iff there are
exactly r mines in the α fraction of coordinates on which they coincide, and the rest of the mines were
placed randomly in the remaining coordinates. Thus, we get:

Pr [Ai ∧AQ+1 | r] ≤
(
nα

r

)
(`− 1)n−r

`n
.
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Therefore, plugging in the value of Pr [AQ+1], we get:

Pr[Success | r] ≥
(
n

r

)
(`− 1)n−r

`n
−Q

(
nα

r

)
(`− 1)n−r

`n

≥
(
n

r

)
(`− 1)n−r

`n

(
1−Q

(
nα

r

)
·
(
n

r

)−1
)

(14)

Now, using the fact that binomials satisfy
(
n
r

)r ≤ (nr) ≤ (ner )r and the fact that k = O(logQ) and therefore
r ≥ k ≥ log 2Q/(log (1/eα)) we obtain that

Q

(
nα

r

)(
n

r

)−1

≤ Q(αe)r ≤ 1/2

Plugging this bound into (14) we get:

Pr[Success | r] ≥
(
n

r

)
(`− 1)n−r

`n

(
1− 1

2

)
.

Since B guesses a particular r with probability more than 1/n, defining β such that β · n = k and summing
over all possible values of r we get

Pr[Success] =
∑
r≥β·n

{
1

n
· Pr [Success |r]

}
≥ 1

2n


(

1− 1

`

)n ∑
r≥βn

(
n

r

)
(`− 1)−r


=

1

2n

∑
r≥βn

(
n

r

)(
1

`

)r (`− 1

`

)n−r (15)

The quantity inside the paranthesis in (15) is the tail of a Binomial distribution. Since A runs in polynomial
time, Q is poly(n) from which it follows β is O(log n/n) which allows us to get a lower bound using a
Chernoff inequality with a large deviation. We get:∑

r≥βn

(
n

r

)(
1

`

)r (`− 1

`

)n−r ≥ 1−
{

exp

(
−n(`− 1)

8`3

)}
.

Substituting this bound in equation (15), we obtain:

Pr[Success] ≥ 1

2n
·
{

1− exp

(
−n(`− 1)

8`3

)}
=

1

2n
− negl(n) (16)

where the last equality follows since ` = o(
√
n/ lnn). Thus, if algorithm A breaks the VRF, algorithm B

breaks the n`-BDH assumption with probability at least Ω(1/n). Therefore,

VRFadv[A, F ] ≤ O(n) · BDH(n`)
adv [B,G],

which concludes the proof of the theorem.
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7.2 Simulatable VRFs

Chase and Lysyanskaya [CL07] introduced simulatable VRFs (sVRF), which they used to convert single-
theorem non-interactive zero knowledge (NIZK) to many-theorem NIZK. Their simulatable VRF, secure
under the k-BDH assumption and the subgroup decision assumption (SDA), has a polynomial size domain.
We briefly outline how the augmented cascade gives a large-domain sVRF using the same assumptions.

Stated informally, Chase and Lysyanskaya show that by modifying the proof π of the Dodis-Yampolskiy
VRF, there exist algorithms (SimG, SimSample,SimProve) (analogous to (Gen, F,Prove) in the definition
of VRFs) and a way to simulate parameters SimParam with the following properties:

1. SimSample, using the parameters output by SimParams, produces a random distribution (that is
indistinguishable from the distribution of the outputs of F , since F is a sVRF).

2. SimProve is able to simulate proofs for these random outputs that are indistinguishable from proofs
produced by Prove, and any adversary that is able to distinguish between the simulated proofs and
real proofs can be used to break SDA.

The augmented cascade theorem generalizes to sVRFs and can be used to construct large-domain sVRFs
from small-domain ones, provided the underlying sVRF has parallel-security. The simulatability of the
sVRF makes it possible to push the hybrid proof of the augmented cascade (Theorem 3) to the settings
of sVRFs. We note that this was not possible for VRFs since the simulator cannot provide proofs in the
hybrid experiments. Now, plugging the Chase-Lysyanskaya sVRF into this augmented cascade, we obtain a
large-domain sVRF.

8 Conclusions

We presented a generalization of the cascade construction called the augmented cascade. We used the
augmented cascade to construct large-domain PRFs from small-domain algebraic PRFs. The augmented
cascade provides a unified framework for analysing the constructions of Naor-Reingold and Lewko-Waters.
We used the augmented cascade to extend the Dodis-Yampolskiy PRF to a PRF on large domains, resulting
in the most efficient algebraic PRF to date.

The new large-domain PRF can be converted into a large-domain VRF in a bilinear group and proven
secure based on the m-BDH assumption for some parameter m that depends on the domain size. For small
domains the resulting VRF uses a weaker assumption than its Dodis-Yampolskiy origin. We obtain an
efficient large domain VRF using error correcting codes. The algebraic structure of these constructions will
likely find many applications, as was the case for the Naor-Reingold PRF. As an example, we briefly noted
a simulatable-VRF for large domains.

References

[ABN+92] Noga Alon, Jehoshua Bruck, Joseph Naor, Moni Naor, and Ron M. Roth. Construction of
asymptotically good low-rate error-correcting codes through pseudo-random graphs. IEEE
Transactions on Information Theory, 38(2):509–, 1992.

[ACF09] Michel Abdalla, Dario Catalano, and Dario Fiore. Verifiable random functions from identity-
based key encapsulation. In EUROCRYPT’09, pages 554–571, 2009.

21



[ASM07] Man Ho Au, Willy Susilo, and Yi Mu. Practical compact e-cash. In proc. of ACISP’07, pages
431–445, 2007.

[BB04a] Dan Boneh and Xavier Boyen. Efficient selective-ID identity based encryption without random
oracles. In Advances in Cryptology—EUROCRYPT 2004, volume 3027 of LNCS, pages 223–
38. Springer-Verlag, 2004.

[BB04b] Dan Boneh and Xavier Boyen. Secure identity based encryption without random oracles. In
Matt Franklin, editor, Advances in Cryptology—CRYPTO 2004, volume 3152 of LNCS, pages
443–59. Springer-Verlag, 2004.

[BB04c] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Advances in
Cryptology—EUROCRYPT 2004, volume 3027 of LNCS, pages 56–73. Springer-Verlag, 2004.

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with con-
stant size ciphertext. In Advances in Cryptology—EUROCRYPT 2005, volume 3494 of LNCS.
Springer-Verlag, 2005.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Advances in
Cryptology—CRYPTO 2004, volume 3152 of LNCS, pages 41–55. Springer, 2004.

[BCK96a] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for message authenti-
cation. In CRYPTO’96, pages 1–15, 1996.

[BCK96b] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Pseudorandom functions revisited: The cas-
cade construction and its concrete security. In FOCS’96, 1996.

[BCKL09] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya. Compact e-cash
and simulatable vrfs revisited. In Pairing’09, pages 114–131, 2009.

[Bel06] Mihir Bellare. New proofs for NMAC and HMAC: Security without collision-resistance. In
Crypto’06, pages 602–619, 2006.

[Ber96] Dan Bernstein. Syn cookies, 1996. http://cr.yp.to/syncookies.html.

[BHHO08] Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Ostrovsky. Circular-secure encryption
from decision diffie-hellman. In CRYPTO’08, pages 108–125, 2008.

[BMR10] Dan Boneh, Hart Montgomery, and Ananth Raghunathan. Algebraic pseudorandom functions
with improved efficiency from the augmented cascade. In ACM Conference on Computer and
Communications Security—CCS 2010 (to appear), 2010.

[BS98] Dan Boneh and James Shaw. Collusion-secure fingerprinting for digital data. IEEE Transac-
tions on Information Theory, 44(5):1897–1905, 1998.

[CL07] Melissa Chase and Anna Lysyanskaya. Simulatable VRFs with applications to multi-theorem
NIZK. In CRYPTO’07, pages 303–322, 2007.

[CW03] Scott Crosby and Dan Wallach. Denial of service via algorithmic complexity attacks. In 12th
Usenix Security Symposium, 2003.

22



[Dod03] Yevgeniy Dodis. Efficient construction of (distributed) verifiable random functions. In Public
Key Cryptography, pages 1–17, 2003.

[DY05] Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with short proofs
and keys. In Public Key Cryptography, pages 416–431, 2005.

[FIPR05] Michael Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword search and obliv-
ious pseudorandom functions. In TCC, pages 303–324, 2005.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. J.
ACM, 34(4):792–807, 1986.

[HK07] Dennis Hofheinz and Eike Kiltz. Secure hybrid encryption from weakened key encapsulation.
In CRYPTO’07, pages 553–571, 2007.

[HW10] Susan Hohenberger and Brent Waters. Constructing verifiable random functions with large
input spaces. In Eurocrypto 2010, 2010.

[JL09] Stanislaw Jarecki and Xiaomin Liu. Efficient oblivious pseudorandom function with applica-
tions to adaptive ot and secure computation of set intersection. In TCC’09, pages 577–594,
2009.

[LW09] Allison Lewko and Brent Waters. Efficient pseudorandom functions from the decisional linear
assumption and weaker variants. In ACM CCS, pages 112–120, 2009.

[Lys02] Anna Lysyanskaya. Unique signatures and verifiable random functions from the DH-DDH
separation. In Advances in Cryptology—CRYPTO 2002, LNCS. Springer-Verlag, 2002.

[Mil04] Victor Miller. The Weil pairing, and its efficient calculation. Journal of Cryptology, 17(4),
2004.

[MRV99] Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random functions. In FOCS,
pages 120–130, 1999.

[NR97] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random
functions. In FOCS’97, pages 458–67, 1997.

[Sha07] H. Shacham. A cramer-shoup encryption scheme from the linear assumption and from pro-
gressively weaker linear variants. Cryptology ePrint Archive, Report 2007/074, 2007. http:

//eprint.iacr.org/.

[Wat05] Brent Waters. Efficient identity-based encryption without random oracles. In Advances in
Cryptology—EUROCRYPT 2005, volume 3494 of LNCS. Springer-Verlag, 2005.

23


