
Secure Committed Computation

Amir Herzberg∗ and Haya Shulman†

Bar Ilan University

Department of Computer Science

Ramat Gan, 52900, Israel

August 18, 2010

Abstract

We introduce secure committed computation, where n parties commit in advance to compute a function over
their private inputs; we focus on two party computations (n = 2). In committed computation, parties initially
commit to the computation by providing some (validated) compensation, such that if a party fails to provide
an appropriate input during protocol execution, then the peer receives the compensation. Enforcement of the
commitments requires a trusted enforcement authority (TEA); however, the protocol protects con�dentiality
even from the TEA. Secure committed computation has direct practical applications, such as sensitive trading
of �nancial products, and could also be used as a building block to motivate parties to complete protocols, e.g.,
ensuring unbiased coin tossing.

The commitment can be either symmetric (both parties commit) or asymmetric (e.g., only a server commits
to a client). Symmetric commitment should also be fair, i.e., one party cannot obtain commitment by the other
party without committing as well. Our secure committed computation protocols are optimistic, i.e., the TEA is
involved only if and when a party fails to participate (correctly).

The protocols we present use two new building blocks, which may be of independent interest. The �rst is
a protocol for optimistic fair secure computation, which is simpler and more e�cient than previously known.
The second is a protocol for two party computation secure against malicious participants, which is simple and
e�cient, and relies on a weakly-trusted third party. This protocol can be useful where a trusted third party is
unavoidable, e.g., in secure committed or fair computation protocols.

Keywords: Two-party computation, trusted third party, optimistic protocols, cryptographic protocols.

1 Introduction

This work investigates the combination of two important areas of research related to secure distributed systems:
the beautiful theory of secure computation, and the applied area of committed network services. As we explain, this
combination is natural and interesting; furthermore, it has important practical applications, as well as theoretical
signi�cance.

Secure computation, beginning with the seminal papers of Yao [32] and Goldreich et al. [17], investigates how to
securely compute functionalities over inputs from multiple players, under di�erent circumstances and in the presence
of di�erent adversaries. Such computation can trivially be done securely by a trusted third party; the goal of secure
computation is to achieve the same security impact without a trusted party, running only a protocol between the
parties. However, as shown in [10], two-party protocols cannot achieve fairness for general computation without
an honest majority. Our focus is on the problem of delivery failures, aka abort attacks, and fairness. Namely, what
should the result of a secure computation be, when a party fails to deliver (`valid') input?

Committed network services focus on the problem of delivery failures. As network services become more and
more important, failure to provide services can become a serious concern. Many works (and systems) address the
basic concerns of unintentional failures and congestion, as well as (intentional) denial-of-service attacks. A more
di�cult issue is the intentional delivery failures by one of the parties, e.g., a service provider. For example, suppose
a customer bought, say from his broker, an option to buy or sell some shares (or other �nancial product) at a �xed

∗Amir.Herzberg@gmail.com
†Haya.Shulman@gmail.com

1

price; and suppose the customer sends an order to execute the option, close to its expiration time. If the broker
fails to process the order, this could cause signi�cant loss to the customer (and illegitimate gain to the broker).

Secure committed computation, introduced in Section 5, provides an interesting variant, where parties have
an incentive to complete the protocol. This incentive is achieved, by running the computation in two phases. In
the �rst, commitment, phase, a party commits to participate in the second, execution, phase, by inputing some
secret value whose exposure would penalise that party (and compensate the other party); in the second phase, if
a party does not participate correctly, then the protocol exposes its commitment from the �rst phase. To provide
compensation we involve an additional, weakly trusted, participant, which we call the TEA (Trusted Enforcement
Authority), who does not provide inputs, but helps to identify and penalise faulty participants. Speci�cally, in the
commitment phase, the parties agree on the terms and send to the TEA a pre-agreed compensation, e.g., as a signed
payment order. Later, in the execution phase, either the service is performed correctly, or if the other participant
fails to deliver the agreed upon service or content, e.g., digitally signed payment, (either due to early abort, i.e.,
if it is malicious, or due to communication failures), the TEA compensates the honest party. The compensation
is based on the inputs sent to the TEA in advance by both parties. This provides an incentive for the parties to
complete protocol execution correctly, i.e., to provide the services that they committed to provide. The solution
can extend secure computation protocol to be used as a building block in design of more complex incentive-based
protocols, ensuring security goals which involve rational adversaries.

In a naive implementation, the TEA is aware of the terms of the service, as well as of the inputs provided by the
parties and of the compensation. This limits the use of sensitive transactions to situations where a fully trusted
intermediary is available, or where the service provider or peer is su�ciently trusted. As a result, the potential
of the Internet, to allow arbitrary parties to perform commerce, with automated, trustworthy dispute-resolution
and compensation mechanisms, is only partially used. We believe that in this paper, we make a signi�cant, if yet
initial, step towards this goal.

Our focus is on minimising the exposure of the private inputs and outputs. Speci�cally, we use secure compu-
tation techniques to ensure that the TEA is oblivious to the terms, inputs and compensation. Namely, the TEA

engages in secure computation with the parties, and as a result either the service is provided correctly, or compen-
sation is given, while the TEA is unaware of the inputs and outputs of the process, which contain sensitive data of
the parties.

The de�nition of correct service is trivial, e.g., when the service is exchange of well de�ned signed documents,
such as contracts, or payment orders (e.g., in di�erent currencies). This case is related to existing works on certi�ed
mail, non-repudiation (evidences) and on fair exchange (esp. of signed documents), see [1, 2]. Note, however, that
these works do not ensure con�dentiality against the TEA (TTP). Yet con�dentiality can be very important, e.g.,
the exposure of (future) trading positions can allow entities to react, possibly harming the customer.

Often, the correct service is more complex, and may involve computation based on inputs from both parties.
For example, a customer sends a complex order involving multiple stocks, and the broker has to provide updated,
valid (signed) quotas, and if there is a match then the result will be speci�c buy and/or sell transactions.

The discussion above focused on the case of asymmetric commitment: only Bob commits to Alice. We also
present a protocol, in Section 5.2, for symmetric commitment, where both peers initially `deposit' some `compensa-
tion' at the TEA, and can later participate in the transaction. This protocol also ensures fairness, i.e., Bob receives
Alice's commitment if and only if Alice receives Bob's commitment.

Our secure committed computation protocols make use of two sub-protocols, that may be of independent
interest. The �rst is a simple and e�cient protocol for optimistic fair secure two-party computation, in Section 4.2,
which we use as a module in our committed fair secure computation protocol to ensure that the commitment
process is fair, i.e., one party cannot obtain commitment by other party without committing as well. As other
protocols for optimistic fair secure computation, our protocol also involves a third party, however this party is both
very simple and also only weakly trusted, i.e., even if it is rogue, the implication would be on fairness only, but not
on correctness or privacy. The protocol is optimistic in the sense that the third party is involved only if one of the
two parties fails to complete the protocol properly. Note that a weakly-trusted third party is necessary to support
fairness for computation of arbitrary functionalities (although it may be avoided for some speci�c functionalities, see
[21]). Optimistic fair secure computation protocols were presented before [7], however, our protocol is signi�cantly
more e�cient (also, the protocol in [7] was not proven secure yet).

1.1 Related Work

There are many works, beginning with Yao [32], investigating two-party secure computation. Yao's work showed
that any two-party function can be securely evaluated, while ensuring privacy and correctness, by using a garbled

2

circuits, but only against passive adversaries, i.e., when honest or semi-honest behaviour of the participants is
assumed. This was extended by Goldreich et al. [17] to ensure security against malicious adversaries, and several
works improved e�ciency [7, 25, 22, 9].

In malicious model, an adversary can always abort after receiving its output and before the honest party receives
output. Cleve [10] showed that fairness cannot be achieved for general computation without an honest majority.
Hence, di�erent approaches towards achieving fairness for general computations were considered. One approach,
the gradual release, see [6, 3, 11, 5, 19, 12, 30, 14, 20], considers a relaxed notion of fairness, where the output is
revealed gradually, and a cheating party does not obtain a signi�cant advantage over the honest party, by aborting.
In order to release the output gradually many rounds of interaction are required, which may render this approach
impractical for realistic applications.

A second approach is to provide only a relaxed notion of fairness. In particular, in [23] Lindell presented legally
enforceable fair secure two-party computation, where either both parties receive the output, or only one receives
the output while the other receives a digitally signed check from the other party which can be then used at a court
of law or a bank. Our results support `real' fair computation.

Another approach is to use a trusted third party, preferably, with limited trust and/or limited involvement. This
approach is highly e�cient compared to the gradual release of secrets and allows to restore complete fairness in case
one of the parties aborts. In particular, optimistic protocols involve the third party only in case one of the parties
misbehaves. Optimistic protocols were mostly proposed for speci�c tasks, esp. fair exchange [1, 2, 27]. Cachin and
Camenisch, [7], presented optimistic fair secure computation protocol, with constant number of interactions. Our
protocols essentially improve over this earlier work, in e�ciency, see comparison in Section 4.2.1, provable security,
and most notably, by allowing commitment to the computation.

Organisation and Contributions

In Section 2 we present preliminaries (model, notations, building blocks) and an outline of our results. In Section
3, we present a basic building block used by our protocols: an e�cient, practical protocol to securely compute any
two-party functionality, using a trusted third party, but limiting the involvement of the third party to preprocessing
prior to receiving inputs, i.e., o�-line. We also mention how the same goal can be achieved using a group of `third
parties', if their majority is honest, or using a secure two-party computation protocol; these solutions would be less
e�cient, of course. In Section 4 we present an optimistic fair secure computation protocol. The resulting protocol
is practical - simple, e�cient and optimistic, i.e., it makes use of a Trusted Third Party only when faults occur.
It improves on the known optimistic secure computation protocol of [7] in e�ciency and security1.In Section 5 we
de�ne ideal functionality for committed fair secure computation, and present a protocol realising it.

2 Preliminaries and Overview

This section provides a high level overview of the constructions, presents the model along with cryptographic
assumptions and notations.

Model

We prove security of our protocols in the universal composability framework, which ensures that security of the
protocols is maintained under a composition with arbitrary other protocols in the system, see [8] for more details.
The functionality expected from the protocol is captured by a universally trusted party, that performs the compu-
tation on behalf of the participants. The algorithm run by the trusted party is called an ideal functionality. The
protocol is secure if real protocol execution can be emulated by the ideal functionality. In real protocol execution,
the parties run the protocol and the adversary controls the communication channels and the corrupt parties. We
consider static corruptions, i.e., corrupted party is �xed prior to protocol execution; and assume malicious and
semi-honest adversaries. Malicious adversary can arbitrarily deviate from the protocol, while semi-honest adver-
sary follows the prescribed steps of the protocol, but may try to infer additional information based on its view, and
all intermediate steps of the protocol.

We assume synchronous communication model with bounded delay. Let ∆C be a bound on the channel com-
munication delay, then ζ(∆C) (for some function ζ) is the maximal waiting time. For instance, after sending a

1Security is not proven in [7], in fact, their protocol appears amenable to the `corrupt encoding of 0 value' attack, where a party
holding the encodings of bits, w.l.o.g., corrupts just the encoding of the 0 value of an input bit, to detect the bit its peer has provided
in an input to the oblivious transfer protocol.

3

message to Alice, Bob has to wait ζ(∆C) = 2∆C , for his message to reach Alice and for Alice's response to arrive to
him. We assume faulty channels between Alice and Bob and that messages that the parties exchange may be lost
or delayed by at most a factor of ζ(∆C). We assume ideal channels between ideal functionalities and participants
in the protocol, i.e., the messages are never lost and are delivered within the assumed delay bound.

Notations and Building Blocks

We use the following cryptographic schemes as building blocks for our protocols:
In all our constructions we use an authenticated encryption scheme (K, E ,D) to ensure con�dentiality and integrity
of the inputs and outputs of the participants. For ease of exposition, we consider the message authentication code
(MAC) key and the secret encryption key as one key K comprised of K1 for authentication and K2 for encryption,
e.g., see authenticated encryption in [4]; an alternative implementation can be based on a one-time pad encryption
with information theoretic MAC, see [25]. When applying EKP

(x) we perform an authenticated encryption of input
x using the key KP of party P . In the implementation of the resolver we use a non-malleable encryption (see [13]
for details) (NG,NE ,ND) to ensure fairness. We also use a signature scheme (G, E ,D), to ensure integrity: in
Section 3.1, Algorithm 1, Section 4.2, Algorithm 4, Section 5.2, Algorithm 8. When validating authenticated inputs,
we use ⊥ to denote authentication failure. In subsequent sections we use ideal functionality F2

ot (a functionality
implementing a two-party (1-2) oblivious transfer protocol), and Fca (representing certi�cation authority). We
use parameters n and m (in Section 5) to de�ne the inputs' length to functions throughout the work. The length
parameters may di�er depending on the de�nition of the function at hand.

Outline of the Results and Techniques

In this section we provide a high level overview of our protocols for two-party computation, and the techniques
that underly their construction. In Section 3 we present a protocol with output at one party only, secure against
malicious adversaries. The protocol relies on a weakly trusted third party Fe

o�ine
, that generates the garbled

circuit during the preprocessing phase; the construction ensures integrity and con�dentiality. The garbled circuit
is then used for the evaluation of the function during the execution phase. Next, in Section 4 de�ne a ∆-delayed
fairness where a malicious party can delay the output of the honest party by at most a factor of ∆. We then
construct a protocol with output at both parties, using any two-party protocol secure against malicious adversaries
with output at one party. The resulting fair protocol involves a resolver FResolve only in case one of the parties
misbehaves, or in case of faults. The resolver is an oblivious and optimistic, and performs the resolution without
learning the private inputs or outputs of the participants. Note that we assume that the resolver is trusted to
perform its functionality correctly, and to restore fairness in case of malicious behaviour. However, even if the
resolver is malicious, and deviates from the protocol or colludes with one of the parties, it can only breach fairness,
but con�dentiality and integrity of the inputs and the corresponding outputs of the parties are ensured, and the
resolver cannot make the honest party accept an incorrect input or output; this is a direct implication of the fact
that the resolver is oblivious, and its view is comprised of the private inputs and outputs of the parties encrypted
and authenticated with their respective secret keys. Eventually, in Section 5, we present the notion of guaranteed
output delivery, that ensures that a malicious party will compensate honest party in case of malicious behaviour
or faults using a Ftea (trusted enforcement authority). This is accomplished by having the parties commit to
participate in protocol execution, and the commitment is executed in case of failures. If the Ftea is malicious, it
will not be able to learn the inputs or the outputs of the parties and will not be able to generate an incorrect result
without the parties detecting this.

3 Secure Two-Party Computation in Malicious Setting

Two-party computation involves two parties, Alice and Bob, that wish to evaluate a common function on their
private inputs, while ensuring privacy of inputs and integrity of computation (correctness), see e.g., [24, 25], for
standard de�nitions of two-party computation. In this section we consider functionalities with output only at Bob
(the circuit evaluator). Let e : {0, 1}n × {0, 1}n → {0, 1}n be a two-party functionality, and let a, b be the inputs
of Alice and Bob respectively. Then, after evaluating the functionality e on a and b, Bob obtains e(a, b), while Alice
learns nothing at all.

Secure function evaluation based on garbled circuits, see [32], allows to perform such a computation in a
secure manner, i.e., ensuring privacy, correctness and inputs independence (see proof in [24]). Speci�cally, during
the generation phase, Alice (the originator) constructs the garbled circuit, and then during protocol execution,

4

Alice transfers the circuit along with the encodings of the inputs, to Bob, that evaluates the circuit and obtains the
result. The basic protocol based on Yao's garbled circuits, ensures security only against semi-honest adversaries, i.e.,
adversaries that follow the steps of the protocol, but may try to infer additional information from the inputs-outputs.
When considering malicious adversaries, additional security concerns arise. In particular, Alice may attempt to
expose secret inputs of Bob by providing incorrect encodings of his input bits, and based on Bob's reaction (abort or
successful completion of protocol) will learn his input. Alternately, Alice may provide an incorrect circuit, e.g., one
that computes a di�erent function which may expose the input of Bob. Although, any two-party protocol can be
securely computed in the malicious setting, e.g., see [17, 15], they are ine�cient for practical purposes, and a series
of works [28, 31, 25, 29] attempt to improve on the e�ciency, by reducing the computation and the communication
complexity, as well as the number of rounds required by the two-party protocol. We take an alternative approach,
and attempt to improve e�ciency by using an additional o�ine third party, with reduced trust, i.e., it does not
learn anything about the inputs of the participants or of the result of the computation.

3.1 O�ine Functionality F e
o�ine

An O�ine Party functionality Fe

o�ine
, in Algorithm 1, represents an o�ine third party. The O�ine Party is used

during the preprocessing phase to ensure privacy and correctness against malicious Alice. The functionality Fe

o�ine
runs with two security parameters n and s (presented below), and is parametrised by a function e : {0, 1}n ×
{0, 1}n → {0, 1}n. Upon request, Fe

o�ine
generates a garbled circuit that computes e. Speci�cally, Fe

o�ine
receives

the IDA, IDB from Alice (the originator) and Bob (the circuit evaluator) respectively, and generates a circuit C that
computes e. Then it modi�es the circuit C to a circuit C where each input wire of Bob is replaced with a xor-gate
with s input wires; Bob later uses this redundancy, to thwart the attempts by a malicious Alice to expose his secret
inputs, by providing Bob with incorrect random strings for input his values (during the oblivious transfer protocol);
see [25] for details of this threat and defense mechanism. Next, Fe

o�ine
garbles the circuit C, by selecting random

encodings for each possible value of each of Alice's and Bob's input and output bits, and sends the random input
strings (corresponding to all possible inputs) to Alice, and the garbled gates and output decryption tables to Bob.
The fact that a trusted party generates the circuit ensures that the garbled circuit computes the correct function.
We use an ideal functionality computing the function in Algorithm 2.

Input: IDA from Alice, or IDB from Bob, security parameters n, s

Registration Phase

generate signature key-pair: (vkT , skT)← G(1n)
register the veri�cation key: (register, o�ine, vkT) to Fca

end

Computation Phase

1. Construct a circuit C that computes e
2. Construct C from C, by replacing each input wire of Bob with a xor-gate of s new input wires of Bob
3. Garble the resulting circuit C and obtain C, consisting of:

a. Random strings corresponding to all possible input bits of Alice: K̄A = ((K0
A[0],K1

A[0]), ..., (K0
A[n],K1

A[n]))
b. Random strings corresponding to all possible input bits of Bob: K̄B = ((K0

B [0],K1
B [0]), ..., (K0

B [sn],K1
B [sn]))

c. Garbled boolean tables T̄G for each garbled gate G of the circuit C
d. Output decryption tables T̄D mapping output strings to bits

4. Sign the random input strings K̄A of Alice: σ̄A = ((σ0
A[0], σ1

A[0]), ..., (σ0
A[n], σ1

A[n])) where ∀i, j, σj
A[i] = SskT

(Kj
A[i], i)

5. Sign the random input strings K̄B of Bob: σ̄B = ((σ0
B [0], σ1

B [0]), ..., (σ0
B [sn], σ1

B [sn])) where

∀i, j, σj
B [i] = SskT

(Kj
B [i], i, j)

end

Output: send (K̄A, σ̄A), (K̄B , σ̄B) to Alice

send T̄G, T̄D to Bob

Algorithm 1: The functionality Fe
o�ine

for generating a garbled circuit C that computes e, in order to ensure integrity of

computation and prevent exposure of the input of Bob.

3.2 Secure Two-Party Protocol Against Malicious Adversaries

We next present an implementation, in Algorithm 2, of Yao's protocol using an o�ine third party for the prepro-
cessing phase. The protocol allows for output at Bob only and securely realises two-party computation against
static malicious adversaries with security with abort (see [23, 20, 21] for standard de�nition of security with abort).
During the preprocessing phase Fe

o�ine
is used to generate the garbled circuit, and sends the signed random strings

5

to Alice and garbled tables along with output decryption tables to Bob. This phase ensures that the circuit was
correctly constructed and prevents cheating by either party, essentially replacing the computation and communi-
cation overhead, which are required against malicious adversaries, with a weakly trusted third party. Next, at the
execution phase, Alice sends the strings representing her input to Bob, and runs an oblivious transfer protocol with
Bob for his input bits. Once Bob obtains all the inputs, he evaluates the function, and obtains the result of the
computation, thus concluding the protocol.

Input: security parameters n, s

Output: yB = e(a, b)

O�ine Generation Phase

Alice receives ā = [ai]
n
i=1

Bob receives b̄ = [bi]
n
i=1

(b11, ..., b
1
s, ..., b

n
1 , ..., b

n
s)← encodeInput(b̄)

(see implementation in Algorithm 8)
Alice and Bob send IDA, IDB (respectively) to Fe

o�ine
Alice receives (K̄A, σ̄A), (K̄B , σ̄B)
Bob receives T̄G, T̄D

end

Computation Phase

Alice: sends to Bob: ((Ka[0]
A [0], σ

a[0]
A [0]), ..., (Ka[n]

A [n], σ
a[n]
A [n])), (∀i),Ka[i]

A [i] ∈ K̄A, σ
a[i]
A [i] ∈ σ̄A

Bob:

send (retrieve, o�ine) to Fca and obtain vkT

if ∃(Ka[i]
A [i], σ

a[i]
A [i]), s.t., VvkT

(Ka[i]
A [i], i, σ

a[i]
A [i]) = false then

output ⊥ and halt

for i← 1 to n · s do
run with Alice F2

ot((K
0
B [i], σ0

B [i]), (K1
B [i], σ1

B [i]), b′i)

//run oblivious transfer, Alice provides (K0
B [i], σ0

B [i]), (K1
B [i], σ1

B [i]) and Bob b′i

receive (Kb′[i]
B [i], σ

b′[i]
B [i])

if VvkT
(Kb′[i]

B [i], σ
b′[i]
B [i]) == false then

output ⊥ and halt

(yB = (yB [0], ..., yB [n]))← C(K̄A, K̄B)
(see implementation in Algorithm 8)

end

end

Algorithm 2: Secure Two Party Protocol ΠE
e in the (Fe

o�ine
,F2

ot,Fca)-hybrid model, for computing e(a, b) = yB , where

e : {0, 1}n × {0, 1}n → {0, 1}n.

Claim 1 Let e : {0, 1}n×{0, 1}n → {0, 1}n be a polynomial time two-party functionality. Assume that the signature
scheme (G,S,V) is existentially unforgeable under chosen-message attack. Then protocol ΠE

e securely realises a
two-party functionality with abort, with output at Bob only, in the presence of malicious static adversaries in the
(Fe

o�ine
,F2

ot,Fca)-hybrid model with abort.

Proof: see Appendix, Section A.1, Propositions 4 and 5.

3.2.1 E�ciency Analysis and Comparison

Classical way, see [16], of making two-party protocols secure against malicious adversaries, is based on running a
zero-knowledge protocol, see [17, 18], which renders them ine�cient for practical purposes. In [28] the authors apply
the cut-and-choose approach to Yao's protocol, which reduces the probability of evaluating an incorrect circuit, and
the e�ciency is correlated to the cheating probability; speci�cally, their protocol has a communication overhead of
O(s|C|s + sn2) (where n is the number of input bits to the circuit C and s is the statistical security parameter).
Then [31] improved the communication complexity of [28] to O(s|C|) using expanders. However as [25] observed
the protocol in [28] is susceptible to `input corruption' attack (see [25]) for details); [25] also present a protocol
with roughly the same communication complexity as [28], of O(s|C| + s2n) (this protocol was also implemented
in [26]). Another improvement to two-party computation in malicious setting was made by [] using homomorphic
encryption; their protocol has a constant number of rounds, and has a communication complexity of O(|C|) (cf.
O(s|C| + s2n) in [25]) and computational complexity of O(|C|) (as opposed to O(n) in [25]). Subsequently, the

work of [29], also followed the cut-and choose approach and improved the complexity to O(s|C|
log(|C|)).

6

Our protocol, in Algorithm 2, is computationally e�cient as it uses public key operations only for signing
(by Fe

o�ine
) and verifying (by Bob) the strings supplied by Alice to Bob, and for oblivious transfer (for every

input bit of Bob). The communication and computational overhead is O(|C|) (roughly as that of the original
Yao's protocol). Speci�cally during the (o�ine) preprocessing the Fe

o�ine
sends the corresponding random strings

and tables of the circuit to Alice and Bob, then during the execution Alice sends to Bob strings corresponding
to her input, and they run an oblivious transfer protocol only for every input bit of Bob. Note that we added
(to the original construction of Yao's protocol) the signatures on input strings of Bob by the Fe

o�ine
during the

preprocessing phase, and a veri�cation thereof later by Bob. Thus the resulting protocol is of similar computational
and communication complexity as the construction of Yao's garbled circuit, [32, 24]. Our protocol is e�cient in
that it has only a constant number of rounds and uses one oblivious transfer per input bit only. This is in contrast
to the complexity of [25], which due to the cut-and-choose incur a multiplicative increase by a factor of s (the
second security parameter) and results in communication complexity of O(s|C|+ s2n).

4 Fair Two-Party Protocol Against Malicious Adversaries

In Section 3, we considered scenario where only one party receives the output. Yet in many applications it is
desirable to allow for output at both participants. In this case, an additional property of fairness is required.
Speci�cally, Alice receives her result if and only if Bob receives his, or no party receives the output. Fairness is
trivial to achieve in honest or semi-honest setting. However, this is not so when considering malicious adversaries
that may arbitrarily deviate from the protocol.

In this section, in Algorithm 5, we present an optimistic weakly trusted (oblivious) third party, involved only
for resolution in case one of the parties misbehaves. We believe that the model based on the separation between
the functionality the o�ine generation and evaluation phases, is suitable for protocols that are to be run by ad-
hoc parties in order to execute a variety of transactions over the Internet, while ensuring privacy, correctness and
fairness. Speci�cally, the (o�ine) third party that is used during the generation phase, ensures correctness and
privacy, and the optimistic third party, involved during the evaluation phase in case of malicious behaviour, ensures
fairness of the computation. Neither party of the third parties learns anything about the inputs or the result of
the computation. In Algorithm 3 we present the notion of ∆-delayed fairness, where a corrupt party may delay the
output of the honest party by at most a factor of ∆. We then construct a protocol ΠF

f , that computes functionality
f : {0, 1}n ×{0, 1}n → {0, 1}n ×{0, 1}n, providing output at both Alice and Bob while ensuring ∆-delayed fairness,
i.e., either no one receives output or both participants do, such that honest party's output will be delayed by at
most a factor of ∆. To construct ΠF

f we use the protocol ΠE
e , in Section 3, that allows to compute securely any

functionality e : {0, 1}n × {0, 1}n → {0, 1}n with output only at Bob. Let e(a, b) = y, then construct f as follows:
fekR

(a||KA, b||KB) = {EKA
(e(a, b), EKB

(e(a, b))),NEekR
(EKA

(e(a, b)), EKB
(e(a, b)))}.

4.1 ∆-delayed fairness

In the ∆-delayed fairness model in Algorithm 3, either both parties receive the output or no one does. Alice receives
her output �rst, and should send to Bob his output (encrypted with his secret key). The delay ∆ is the maximal
time till Bob obtains his part of the output. If Bob does not receive the output from Alice after 2∆C (the maximal
delay on the channel from himself to Alice, and then from Alice back to him), he contacts the resolver FResolve
and obtains the result (this takes another 2∆C). In the worst case, after at most 4∆C Bob obtains his part of
the output. Since Alice receives her output �rst, Bob cannot breach fairness, thus fairness should be ensured w.r.t.
malicious Alice. Malicious Bob can either abort without obtaining the result (in which case neither does Alice), or
may contact the FResolve (in which case Alice also receives her output). Thus fairness is preserved.

4.2 Fair Two-Party (FResolve,Fca)-Hybrid Protocol ΠF
f

We use the protocol in Algorithm 2 to evaluate a family of functions E = {epk}pk∈G(1n), i.e., functions de�ned
by a public encryption key. Let (dkR, ekR) ← G(1n) be the key pair of the resolver FResolve (see Algorithm 5).

We take the function e for ΠE
e (that provides input at Bob only) to be the function computing the following:

eekR
((a,KA), (b,KB)) = EekR

(cA||cB)||(EKA
(fA(a, b), cB)), where cA = EKA

(fA(a, b)) and cB = EKB
(fB(a, b)).

In Algorithm 4, we construct the protocol ΠF
f using protocol ΠE

e . Alice and Bob retrieve the public encryption
key ekR of the resolver FResolve, and use a symmetric authenticated encryption scheme (K, E ,D) with secret keys

KA and KB respectively. Alice and Bob run protocol ΠE
e and provide their inputs (a||KA) and (b||KB) respectively.

7

Input: n,∆C ,∆
a from Alice, b from Bob

Computation Phase

if a == ⊥ ∨ b == ⊥ then

send ⊥ to Alice and to Bob, and halt

else

send yA = fA(a, b) to Alice

sleep(`wait for response', 2∆C)
onReceive(fair)
stopTimer(`wait for response')
send(yB = fB(a, b)) to Bob

onWakeup(`wait for response')
sleep(∆− 2∆C)
send(yB = fB(a, b)) to Bob

end

Algorithm 3: The ideal functionality F∆-delayed-fairness for computing a function f(a, b) = (fA(a, b), fB(a, b)) in ∆-delayed

fairness model, running with Alice and Bob, and an adversary S.

The inputs consist of their private inputs, and their respective secret encryption keys. The protocol evaluates the
function on the inputs and generates output at Bob. The output consists of two parts: one encrypted with Alice's

key and another encrypted with the key ekR of the FResolve (containing both the output of Bob and of Alice).
Since Bob performed the computation, he is assured that the output is constructed correctly. Bob sends the output
(without the part of the resolver) to Alice. If Alice misbehaves, Bob runs contacts the resolver with the part of the
output encrypted with the key of the resolver. The FResolve validates, decrypts and sends to Alice her output, and
to Bob his (restoring fairness). The resolver uses a non-malleable encryption scheme (NG,NE ,ND) (see [13] for
details), which encrypts the part of the output of the resolver (with the encryption key ekR), which is essential to
ensure that its part of the output cannot be maliciously changed in a meaningful way. This part of the output is
sent to resolver by Bob in case Alice misbehaves.

Upon receipt of an output from Bob, Alice decrypts and obtains her part of the output and Bob's output
encrypted with his secret key, and send this part to Bob. Bob obtains and decrypts his part of the output, which
concludes the protocol. Thus fairness is ensured.

Claim 2 Let f : {0, 1}n × {0, 1}n → {0, 1}n × {0, 1}n be a polynomial two-party functionality, let (K, E ,D) be a
secure symmetric authenticated encryption scheme, and let (NG,NE ,ND) be a secure non-malleable encryption
scheme. Then, the protocol ΠF

f securely realises F
∆-delayed-fairness in the presence of malicious static adversaries

in the (FResolve,Fca,Fe)-hybrid model with ∆-delayed fairness.

Proof: see Appendix, Section A.2, Propositions 6 and 7.

4.2.1 E�ciency Analysis and Comparison

There are two central approaches to fairness, the gradual release of secrets and the optimistic model. The number
of rounds in a two-party protocol in [30] (that ensures fairness by gradually releasing the secrets) is high and
proportional to the security parameter. The high communication complexity is required even in case the parties
are honest. In [7], the authors designed an e�cient optimistic fair protocol using proofs of knowledge. In contrast
to [30] the number of rounds in their protocol is constant, and does not depend on the security parameter. Yet
their protocol incurs a signi�cant e�ciency degradation, since the zero-knowledge proofs are required for every
gate of the circuit, resulting in O(s|C|) communication and computational complexity. However, the protocol of [7]
seems to be susceptible to `inputs corruption' attack, whereby Alice corrupts one of the inputs to oblivious transfer
protocol, and based on the behaviour of Bob learns the corresponding value of his input bit. In addition, their
paper lacks a full proof of security. To date we are not aware of other works on optimistic fair secure computation,
that provide proofs of security and reasonable e�ciency.

In our protocol, when the parties are honest and follow the steps of the protocol, the computation complexity is
roughly as that of the Yao's original protocol (see Section 3.2.1 for discussion and analysis). When one of the parties
misbehaves, the protocol requires an additional round, to send the encrypted input to the resolver and top receive
a decrypted response back. The analysis and comparison of the initial steps are the same as in Section 3.2.1.

8

Input: security parameters n, s, maximal communication delay ∆C , maximal fairness delay ∆
a = [ai]

n
i=1 from Alice

b = [bi]
n
i=1 from Bob

Output: y = (yA, yB)

Computation Phase

Alice and Bob do:
send (retrieve, resolve) to Fca and obtain ekR (each)
generate secret keys KA and KB respectively
run a protocol ΠE

eekR
(a||KA, b||KB) (in Algorithm 2)

Alice provides (a||KA) and Bob provides (b||KB)

Bob:

onReceive(yB)
if(yB == EKA

(fA(a, b), cB)||NEekR
(cA, cB)) then

send(EKA
(fA(a, b), cB)) to Alice

sleep(`time to Alice', 2∆C)
else output ⊥ and halt
onReceive(cB)
if (cB == valid) then
stopTimer(`time to Alice')
recover and output yB = fB(a, b)

onWakeup('time to Alice')
send NEekR

(cA, cB) to FResolve
onReceive(cB)
stopTimer(`time to FResolve')
recover and output yB = fB(a, b)

end

Alice:

onReceive(c)
if (c == valid) then
recover and output yA = fA(a, b)
if (c == EKA

(fA(a, b), cB)) then
send(cB) to Bob

end

end

Algorithm 4: Secure Two Party Protocol ΠF
f in the (FResolve,Fca,Fe)-hybrid model for computing f(a, b) = (fA(a), fB(b)),

where f : {0, 1}n × {0, 1}n → {0, 1}n × {0, 1}n.

Input: n

generate encryption key-pair: (ekR, dkR)← K(1n)
register the encryption key: (register, resolver, ekR) to Fca
Computation Phase

receive c
set yA = ⊥, yB = ⊥
if NDdkR

(c) 6= ⊥ then

(yA, yB)← NDdkR
(c)

end

Output: send yA to Alice

send yB to Bob

Algorithm 5: The ideal functionality FResolve

5 Committed Two-Party Computation

In Section 4 we constructed a protocol that achieves fairness in two party computation, i.e., either both receive the
result of the computation or no one does. However, fairness alone may not su�ce for some applications. Speci�cally,
a participant may decide to abort the protocol, not provide an input to the protocol or provide an invalid input.
Such an outcome may not be plausible in many applications, e.g., online market. In addition, parties often agree to
participate in some computation in advance, possibly before they have inputs to that computation, by exchanging
each others commitments, e.g., by signing a contract together. The commitment phase should ensure fairness and
prevent a malicious party from aborting after it receives its commitment, if the honest party has not received a
commitment. In addition, the commitments should be validated to prevent the malicious party from providing
an invalid commitment, e.g., one that expired. To encompass these requirements we introduce the Ftea (trusted
enforcement authority), that is used to compensate the honest party in case of failure to participate by the other.

For applications based on the client-server architecture, it su�ces to ensure one sided, asymmetric, commitment,
since most Internet transactions are asymmetric. In this section we focus on symmetric commitments, where both

9

parties commit to participate in the protocol. We present the symmetric commitment functionality, ensuring
guaranteed output delivery, de�ned in Algorithm 6, and then construct a protocol, in Algorithm 8.

During the second, computation phase, the protocol relies on the TEA, in Algorithm 7, to restore guaranteed
output property of misbehaviour.

5.1 Committed Two-Party Computation Functionality Fv,g
commited-computation

The committed two-party computation functionality Fv,g

commited-computation
, in Algorithm 6, consists of two-

phases: during the �rst phase the parties commit to participate in protocol execution, and during the second
phase, they evaluate a function over their inputs. Both the commitments and the inputs are validated by the
functionality. This functionality is reactive, i.e., parties can adaptively choose their inputs to the second phase,
based on the output from the commitment phase. During the commitment phase, both Alice and Bob provide their
inputs a1 and b1, respectively, to validation function v1 that validates the inputs. If inputs are valid both parties
receive each others' commitments, i.e., v1(a1) and v1(b1) respectively, and can participate in the second phase, i.e.,
the evaluation of agreed upon function g. During the computation phase the functionality may not receive inputs
from both parties at the same time. Thus upon input from one party, it records the time, and waits for input from
the other party; and if no input from the other party arrives within the interval de�ned in the validation function,
the functionality validates the input that it received (along with the commitment of the other party) and if valid,
recovers the commitment and grants it to the party which sent the input.

When functionality receives both inputs, the input of each party is validated against the commitment of the
other party, and the time that both inputs were received. In case one of the inputs is invalid, the party with the
valid input is compensated. Otherwise, when both inputs are valid, the functionality evaluates the function g on
the inputs, and sends the result to Bob (since he is the �rst to receive the output). If Bob is malicious he can delay
the output of Alice by at most a factor of 2∆C .

5.2 Two-Party (F e
o�ine

,Fca,Ftea)-Hybrid Protocol ΠG
(v,g)

Committed two-party computation, in Algorithm 8, is a two-phase protocol, s.t., during the �rst phase the parties
commit to participate in protocol execution, and in second phase, they evaluate a function over their inputs. Both
the commitments and the inputs are validated using validations functions v1 and v2 for �rst and second phases
respectively. If the commitment of one of the parties is not valid, the execution is terminated. Once the commitment
phase completed, the parties can engage in computation of the second phase. At this stage each party holds the
commitment by the other, and can contact the trusted enforcement authority functionality Ftea (in Algorithm 7) in
case a malicious party fails to participate, and provide an input, or provides an incorrect input to the computation.
The Ftea attempts to complete the protocol with the other party on behalf of the party originating resolution. In
case of failure, the Ftea opens the commitment and sends it to the originating party. Otherwise, it concludes the
protocol, and returns the result of the computation to the originating party. Let ΠF

f (Algorithm 4) be a protocol
that computes f : {0, 1}n × {0, 1}n → {0, 1}n × {0, 1}n, and allows for outputs at both parties, while ensuring
fairness. We use it to construct a protocol ΠG

(g,v) that computes function g, v = (v1, v2) with output at both parties

and ensures Guaranteed Output Delivery. The Ftea uses a non-malleable encryption scheme (NG,NE ,ND), and
Alice and Bob use an authenticated encryption scheme (K, E ,D).

Claim 3 Let G : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ be a polynomial two-party functionality, and let (G, E ,D)
be a secure shared key encryption scheme, and (NG,NE ,DE) be a non-malleable encryption scheme. Then
protocol ΠG

(v,g) securely realises Fv,g

commited-computation
in the presence of malicious static adversaries in the

(Fe

o�ine
,Fca,Ftea)-hybrid model with Guaranteed Output Delivery.

Proof: see Appendix, Section A.3, Propositions 8 and 9.

10

Input: n, maximal channel delay ∆C , fairness delay ∆

Commitment Phase

Input: a1 from Alice, b1 from Bob

V1(a1, b1) == (y1
A, y

1
B)

if y1
A == ⊥ ∨ y1

B == ⊥ then

send ⊥ to Alice and Bob and halt
else

send y1
A, y

1
B to Alice and Bob respectively

end

Computation Phase

onReceive(a2) from Alice

tA ← getT ime()
sleep(`wait for input from Bob')
onWakeup(`wait for input from Bob')
if (V2(a2, y1

A, tA, getT ime()) 6= ⊥) then
send (b1) to Alice

onReceive(b2) from Bob

tB ← getT ime()
sleep(`wait for input from Alice')
onWakeup(`wait for input from Alice')
if (V2(b2, y1

B , tA, getT ime()) 6= ⊥) then
send (a1) to Bob

if V2(a2, y1
A, tA, tB) == ⊥ then

send a1 to Bob and halt

if V2(b2, y1
B , tA, tB) == ⊥ then

send b1 to Alice and halt

(y2
A, y

2
B)← g(a2, b2)

send y2
B to Bob

sleep(`wait for response', 2∆C)
onReceive(fair)
stopTimer(`wait for response')
send(y2

A) to Alice

onWakeup(`wait for response')
sleep(∆− 2∆C)
send(y2

A) to Alice

end

Algorithm 6: The ideal functionality Fv,g

commited-computation
for computing (v, g) with guaranteed output delivery, runs with

Alice and Bob, and an adversary S, where v = (v1, v2) is inputs validation function used at each phase.

References

[1] N. Asokan, M. Schunter, and M. Waidner. Optimistic protocols for fair exchange. In Proceedings of the 4th ACM
conference on Computer and communications security, page 17. ACM, 1997.

[2] N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital signatures. Advances in Cryptology EURO-
CRYPT 1998, pages 591�606, 1998.

[3] Donald Beaver and Sha� Goldwasser. Multiparty computation with faulty majority. In G. Brassard, editor, Proc.
CRYPTO 89, pages 589�590. Springer-Verlag, 1990. Lecture Notes in Computer Science No. 435.

[4] M. Bellare and C. Namprempre. Authenticated Encryption: Relations among Notions and Analysis of the Generic
Composition Paradigm. LECTURE NOTES IN COMPUTER SCIENCE, pages 531�545, 2000.

[5] M. Ben-Or, O. Goldreich, S. Micali, and R. Rivest. A fair protocol for signing contracts. Automata, Languages and
Programming, pages 43�52, 1985.

[6] Ernest F. Brickell, David Chaum, Ivan B. Damgård, and J. van de Graaf. Gradual and veri�able release of a secret. In
Carl Pomerance, editor, Proc. CRYPTO 87, pages 156�166. Springer-Verlag, 1988. Lecture Notes in Computer Science
No. 293.

[7] Christian Cachin and Jan Camenisch. Optimistic fair secure computation. In Mihir Bellare, editor, Advances in Cryp-
tology � CRYPTO ' 2000, volume 1880 of Lecture Notes in Computer Science, pages 93�111. International Association
for Cryptologic Research, Springer-Verlag, Berlin Germany, 2000.

[8] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols. In Proceedings of the
42nd IEEE symposium on Foundations of Computer Science, page 136. IEEE Computer Society, 2001.

11

Input: n, s,∆C ,∆

generates (ekT , dkT)
R← K(1n) and sends (register, TEA, ekT) to Fca

send (retrieve, o�ine) to Fca and obtains vkT
send (retrieve, Alice) to Fca and obtains vkA
Computation Phase

yB = ⊥
onReceive(NEekT

(EKB
(a1)))

send (`garbled inputs') to Alice

sleep(`response from Alice', 2∆C)
onWakeup(`response from Alice')
yB ← NDdkT

(EKB
(a1))

send (yB) to Bob

onReceive(((K̄a
A, σ̄

a
A), (K̄B , σ̄),NEekT

(EKA
(b1))))

if ∀i : (VvkT
(Ka[i]

A [i], σ
a[i]
A [i]) 6= ⊥) ∨ (VvkT

(Kb[i]
B [i], σ

b[i]
B [i]) 6= ⊥) then

send (K̄a
A, σ̄

a
A) to Bob

for i← 1 to n · s do
run F2

ot((K
0
B [i], σ0

B [i]), (K1
B [i], σ1

B [i]), bi) with Bob, Bob receives (Kb[i]
B [i], σ

b[i]
B [i])

sleep(`time to Bob',2∆C)
onReceive(cA)
if (VvkA

(cA, σA) 6= ⊥) then
stopTimer(`time to Bob')
send (cA, σA) to Alice

onWakeup(`time to Bob')
send EKA

(b1) to Alice

else

if yB 6= ⊥ then

send (yB) to Bob

end

Algorithm 7: The ideal functionality Ftea

[9] S.G. Choi, A. Elbaz, A. Juels, T. Malkin, and M. Yung. Two-party computing with encrypted data. In Proceedings
of the Advances in Crypotology 13th international conference on Theory and application of cryptology and information
security, pages 298�314. Springer-Verlag, 2007.

[10] R. Cleve. Limits on the security of coin �ips when half the processors are faulty. In Proceedings of the eighteenth annual
ACM symposium on Theory of computing, pages 364�369. ACM, 1986.

[11] R. Cleve. Controlled gradual disclosure schemes for random bits and their applications. In Proceedings on Advances in
cryptology, pages 573�588. Springer-Verlag New York, Inc., 1989.

[12] I.B. Damgård. Practical and provably secure release of a secret and exchange of signatures. Journal of Cryptology, 8
(4):201�222, 1995.

[13] D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. In Proceedings of the twenty-third annual ACM
symposium on Theory of computing, pages 542�552. ACM, 1991.

[14] J. Garay, P. MacKenzie, M. Prabhakaran, and K. Yang. Resource Fairness and Composability of Cryptographic
Protocols. LECTURE NOTES IN COMPUTER SCIENCE, 3876:404, 2006.

[15] O. Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University Press New York,
NY, USA, 2004.

[16] O. Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Basic Applications, 2004.

[17] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a completeness theorem for protocols with
honest majority. In 19th ACM Symposium on the Theory of Computing, pages 218�229, 1987.

[18] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity or all languages in NP have
zero-knowledge proof systems. Journal of the ACM (JACM), 38(3):690�728, 1991.

[19] S. Goldwasser and L. Levin. Fair computation of general functions in presence of immoral majority. Advances in
Cryptology-CRYPT0'90, pages 77�93, 1990.

[20] D. Gordon and J. Katz. Partial fairness in secure two-party computation. Technical report, Cryptology ePrint Archive,
Report 2008/206, 2008, 2008.

12

Input: security params n, s, maximal communication delay ∆C , maximal fairness delay ∆

Commitment Phase

Input: a1 from Alice, b1 from Bob

Alice and Bob do:
send (retrieve, tea) to Fca and both obtain ekT
generate secret keys KA and KB respectively
run ΠF

v1
((a1,KA, ekT), (b1,KB , ekT)) (in Algorithm 4), to generate and validate commitments

Bob receives (NEekT
(EKB

(a1))||EKB
(v1(a1))), Alice receives (NEekT

(EKA
(b1))||EKA

(v1(b1)))
if ((EKA

(v1(b1)) == ⊥ ∧ EKB
(v1(a1)) == ⊥) ∨ ((v1(b1) == ⊥) ∧ (v1(a1) == ⊥)) then

Alice and Bob output ⊥ and halt

end

Computation Phase

Input: a2 from Alice, b2 from Bob

Bob encodes b2 as (b11, ..., b
1
s, ..., b

n
1 , ..., b

n
s): [b′i]

n·s
i=1 ← encodeInput(b2)

Alice and Bob run functionality Fe
o�ine

(in Algorithm 1) to generate circuit G computing function g

Bob sends (retrieve, o�ine) to Fca and obtains vkT
Alice generates signature key-pair: (skA, vkA)← G(1n), and registers: (register, Alice, vkA) with Fca
Alice sends to Bob her encoded input a2,KA, skA: ((Ka[0]

A [0], σ
a[0]
A [0]), ..., (Ka[n]

A [n], σ
a[n]
A [n]))

if ∃(Ka[i]
A [i], σ

a[i]
A [i]), s.t., VvkT

(Ka[i]
A [i], i, σ

a[i]
A [i]) == ⊥ then Bob sends NEekT

(EKB
(a1)) to Ftea

for i← 1 to s · n do
Alice and Bob run F2

ot((K
0
B [i], σ0

B [i]), (K1
B [i], σ1

B [i]), bi), Bob receives (Kb[i]
B [i], σ

b[i]
B [i])

if VvkT
(Kb[i]

B [i], σ
b[i]
B [i]) == ⊥ then Bob sends NEekT

(EKB
(a1)) to Ftea

Bob:
((EKA

(yA), σA)||yB)← C(K̄A, K̄B)
(see implementation in Circuit Evaluation below)
if yB == ⊥ then send NEekT

(EKB
(a1)) to Ftea

else output yB , send (EKA
(yA), σA) to Alice

onReceive(K̄a
A, σ̄

a) from Ftea
run F2

ot with Ftea
obtain ∀i, (Kb[i]

B [i], σ
b[i]
B [i])

((EKA
(yA), σA)||yB)← C(K̄A, K̄B)

send (EKA
(yA), σA) to Ftea

onReceive(EKB
(a1)) from Ftea

recover and output a1

Alice:
sleep(`response from Bob',2∆C)
onReceive(EKA

(yA), σA)
if ((EKA

(yA), σ) 6= ⊥) then
stopTimer(`response from Bob')
recover and output yA

onWakeup(`response from Bob')
send ((K̄A, σ̄A), (K̄B , σ̄B),NEekT

(EKA
(b1))) to Ftea

onReceive(EKA
(b1)) from Ftea

recover and output b1
onReceive(`garbled inputs')
send ((K̄A, σ̄A), (K̄B , σ̄B),NEekT

(EKA
(b1))) to Ftea

Circuit Evaluation

C(K̄A, K̄B) {
(Ka[0]

A [0], ...,Ka[n]
A [n])← K̄A, (Kb[0]

B [0], ...,Kb[sn]
B [sn])← K̄B

(Ky[0]
Y [0], ...,Ky[n]

Y [n])← T̄G((Ka[0]
A [0], ...,Ka[n]

A [n]), (Kb[0]
B [0], ...,Kb[sn]

B [sn]))

return ω ← T̄D(Ky[0]
Y [0], ...,Ky[n]

Y [n]) }
end

Input Encoding

encodeInput([bi]
n
i=1) { b′ = ∅

for i← 1 to n do
Let bi1, ..., b

i
s ∈R {0, 1} s.t. bi = bi1 ⊕ ...⊕ bis

b′ = b′||bi1, ..., bis
return b′ }//after n iterations b′ = [b′i]

n·s
i=1 = (b11, ..., b

1
s, ..., b

n
1 , ..., b

n
s)

end

end

Algorithm 8: Committed fair secure two-party protocol ΠG
(v,g)

in the (Fe
o�ine

,Fca,Ftea,F∆-delayed-fairness)-hybrid model for

computing v : {0, 1}m × {0, 1}m → {0, 1}m × {0, 1}m and g : {0, 1}n × {0, 1}n → {0, 1}n × {0, 1}n.

13

[21] D.S. Gordon, H. Carmit, J. Katz, and Y. Lindell. Complete fairness in secure two-party computation. In Proceedings
of the 40th annual ACM symposium on Theory of computing, pages 413�422. ACM, 2008.

[22] S. Jarecki and V. Shmatikov. E�cient two-party secure computation on committed inputs. Advances in Cryptology-
EUROCRYPT 2007, pages 97�114, 2007.

[23] A.Y. Lindell. Legally-enforceable fairness in secure two-party computation. Lecture Notes in Computer Science, 4964:
121, 2008.

[24] Y. Lindell and B. Pinkas. A Proof of Yao Protocol for Secure Two-Party Computation. In Electronic Colloquium on
Computational Complexity, volume 11, page 063, 2004.

[25] Y. Lindell and B. Pinkas. An E�cient Protocol for Secure Two-Party Computation in the Presence of Malicious
Adversaries. LECTURE NOTES IN COMPUTER SCIENCE, 4515:52, 2007.

[26] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay - secure two-party computation system. In
Proceedings of the 13th USENIX Security Symposium, pages 287�302. USENIX, 2004. URL http://www.usenix.org/

publications/library/proceedings/sec04/tech/malkhi.html.

[27] S. Micali. Simple and fast optimistic protocols for fair electronic exchange. In Proceedings of the twenty-second annual
symposium on Principles of distributed computing, page 19. ACM, 2003.

[28] P. Mohassel and M. Franklin. E�ciency tradeo�s for malicious two-party computation. Public Key Cryptography-PKC
2006, pages 458�473, 2006.

[29] J.B. Nielsen and C. Orlandi. LEGO for Two-Party Secure Computation. In Proceedings of the 6th Theory of Cryptography
Conference on Theory of Cryptography, pages 368�386. Springer-Verlag, 2009.

[30] B. Pinkas. Fair Secure Two-Party Computation. LECTURE NOTES IN COMPUTER SCIENCE, pages 87�105, 2003.

[31] D. Woodru�. Revisiting the e�ciency of malicious two-party computation. Advances in Cryptology-EUROCRYPT
2007, pages 79�96, 2007.

[32] A. C. Yao. How to generate and exchange secrets. In Proc. 27th IEEE Symp. on Foundations of Comp. Science, pages
162�167, Toronto, 1986. IEEE.

A Security Proofs

A.1 Security Analysis of Protocol ΠE
e (Section 3.2)

We analyse Πe in a hybrid model where there is a trusted party computing Fe

o�ine
, F2

ot and Fca. The simulator

S interacts with the ideal functionality Fe and uses the adversary A in a black-box manner, simulating for A the
real protocol execution and emulating the ideal functionalities Fe

o�ine
, F2

ot and Fca.

Proposition 4 (Security Against Malicious Alice) For every polynomial time adversary A corrupting Alice

and running with Πf with abort in a hybrid model with access to Fe

o�ine
, F2

ot and Fca, there exists a probabilistic

polynomial-time simulator S corrupting Alice and running in the ideal model with access to an ideal functionality
Ff , such that for every a, b, z ∈ {0, 1}∗ holds:{

idealf,S(z)(a, b, n)
}
n∈N

=
{
hybrid

Foffline,Fca,Fot

Πf ,A(z) (a, b, n)
}
n∈N

Proof Let A be a malicious static adversary with Alice and Bob running the protocol in Algorithm 2. We construct
an ideal model simulator S which has access to Alice and to the trusted party computing Fe, and can simulate
the view of the execution of the protocol. Assume that Alice is corrupted by a hybrid model adversary A. In
Algorithm 9 we construct a simulator S given a black-box access to A. The view of A in a simulation with S is
identical to its view in an (Fe

o�ine
,Fca,F2

ot)-hybrid execution of Πe with a honest Bob. The joint distribution of

A's view and Bob's output in a hybrid execution is identical to the joint distribution of S and Bob's output in an
ideal model. In addition, there is a negligible probability for the adversary to forge the signature, thus the output
distribution of the simulator and the honest party in the ideal model is identical to that of the adversary and the
honest party in the real protocol execution.

14

http://www.usenix.org/publications/library/proceedings/sec04/tech/malkhi.html
http://www.usenix.org/publications/library/proceedings/sec04/tech/malkhi.html

S(a, IDA, 1
n)

IDA′
OfflineParty←− A(a, IDA, 1

n)
if IDA′ = ⊥ ∨ IDA′ 6= IDA then

send ⊥ to the trusted party computing Ff as Alice's input
send ⊥ to A as its input from Fe

o�ine
output whatever A outputs and halt

else

simulate functionality Fe
o�ine

for A:

1. choose a key pair (vk, sk)← G(1n)
2. construct a circuit C computing f ′A
3. construct C from C, by replacing each input wire of Bob with a xor-gate consisting of s input wires of Bob
4. garble the resulting circuit C and obtain C, consisting of:

a. Random strings corresponding to all possible input bits of Alice: K̄A = ((K0
A[0],K1

A[0]), ..., (K0
A[n],K1

A[n]))
b. Random strings corresponding to all possible input bits of Bob: K̄B = ((K0

B [0],K1
B [0]), ..., (K0

B [n],K1
B [n]))

c. Garbled boolean tables T̄G for each garbled gate G of the circuit C
Output decryption tables T̄D mapping output strings to bits

5. sign the random input strings K̄B of Bob: σ̄ = SskT
(K̄B), where σ̄ = ((σ0

0 , σ
1
0), ..., (σ0

n, σ
1
n))

6. send K̄A, (K̄B , σ̄) to A as its output from Fe
o�ine

A sends K̄′A, intended for Bob and (¯K′B , σ̄′) for ideal functionality F2
ot

if ((K̄′A 6= K̄A) ∨ ((¯K′B , σ̄′) 6= (K̄B , σ̄))) then
send input ⊥ to the trusted party computing Ff as Alice's input
send ⊥ to A as its input from F2

ot
output whatever A outputs and halt

A outputs its view and halts, S outputs the same and halts

end

Algorithm 9: Simulator S, simulating the view of Alice.

Proposition 5 (Security Against Malicious Bob) For every polynomial time adversary A corrupting Bob and
running with Πf with abort in a hybrid model with access to Fe

o�ine
,F2

ot and Fca, there exists a probabilistic

polynomial-time simulator S corrupting Bob and running in the ideal model with access to an ideal functionality
computing Ff , such that for every a, b, z ∈ {0, 1}∗ holds:{

idealf,S(z)(a, b, n)
}
n∈N

=
{
hybrid

Foffline,Fca,Fot

Πf ,A(z) (a, b, n)
}
n∈N

Proof Let A be a malicious static adversary with Alice and Bob running the protocol in Algorithm 2. We construct
an ideal model simulator S which has access to Bob and to the trusted party computing Ff , and can simulate the
view of the execution of the protocol. Assume that Bob is corrupted by a hybrid model adversary A. In Algorithm 10
we construct a simulator S given a black-box access to A. The security is based on the fact that the 1-2 oblivious
transfer functionality F2

ot is secure and as a result Bob learns only a single set of random strings, corresponding
to its input. The view of A is identical to its view in a (Fe

o�ine
,F2
ot,Fca)-hybrid execution of protocol Πf with

a honest Alice. In addition, the joint distribution of A and Alice's output in a hybrid execution of the protocol is
identical to that of S and Alice's output in an ideal execution.

A.2 Security Analysis of Protocol ΠF
f (Section 4.2)

Proof We analyse ΠF
f in a (FResolve,Fca,Fe)-hybrid model, and show that the execution of ΠF

f is computationally
indistinguishable from computation of f in the ideal model with ∆-delayed fairness. We prove the Claim 2 in
Propositions 6 and 7 respectively.

Proposition 6 (Security Against Malicious Alice) For every non-uniform polynomial time adversary A cor-
rupting Alice and running Πg with abort in a hybrid model with access to FResolve, Fca and Fe, there exists a
non-uniform polynomial time simulator S corrupting Alice and running in the ideal model with access to an ideal
functionality F

∆-delayed-fairness, such that for every a, b, z ∈ {0, 1}∗ holds:{
idealf,S(z)(a, b, n)

}
n∈N

=
{
hybrid

FResolve,Fca,Fe

Πf ,A(z) (a, b, n)
}
n∈N

Proof We construct an ideal model simulator which has access to Alice and to the universally trusted party, and
can simulate the view of the execution of the protocol. Assume that Alice is corrupted by a hybrid model adversary
A. In Algorithm 11 we construct a simulator S given a black-box access to A.

15

S(b, IDB, 1
n)

IDB′
OfflineParty←− A(b, IDB, 1

n)
if IDB′ = ⊥ ∨ IDB′ 6= IDB then

send ⊥ to the trusted party computing Ff as Bob's input
send ⊥ to A as its input from Fe

o�ine
output whatever A outputs and halt

else

simulate functionality Fe
o�ine

for A:

1. choose a key pair (vk, sk)← G(1n)
3. when A sends (retrieve, Fe

o�ine
) to Fca, respond with (retrieve Fe

o�ine
, vk):

4. construct a circuit C computing f ′A
5. construct C from C, by replacing each input wire of Bob with a xor-gate consisting of s input wires of Bob
6. garble the resulting circuit C and obtain C, consisting of:

a. Random strings corresponding to all possible input bits of Alice: K̄A = ((K0
A[0],K1

A[0]), ..., (K0
A[n],K1

A[n]))
b. Random strings corresponding to all possible input bits of Bob: K̄B = ((K0

B [0],K1
B [0]), ..., (K0

B [n],K1
B [n]))

c. Garbled boolean tables T̄G for each garbled gate G of the circuit C
Output decryption tables T̄D mapping output strings to bits

7. sign the random input strings K̄B of Bob: σ̄ = SskT
(K̄B), where σ̄ = ((σ0

0 , σ
1
0), ..., (σ0

n, σ
1
n))

8. send T̄G, T̄D to A as its output from Fe
o�ine

for i← 1 to |b| do
run F2

ot((K
0
B [i], σ0

i), (K1
B [i], σ1

i), bi), providing (K0
B [i], σ0

i), (K1
B [i], σ1

i) and A provides bi

A receives (Kbi
B [i], σ

bi
i)

output whatever A outputs and halt

end

Algorithm 10: Simulator S, simulating the view of Bob.

S generates (dk, ek)← K(1n) and selects a random key KS ∈ {0, 1}n
S invokes A with input a, IDA, n
When A sends (retrieve,resolve) for Fca, S responds with (retrieve,resolve,ek)
S obtains A's inputs (a′,KA, ek

′) for the trusted party F∆-delayed-fairness
if a′ 6= a ∨ ek′ 6= ek then

send ⊥ to F∆-delayed-fairness
send ⊥ to A
output whatever A outputs and halt

else

S sends a to the trusted party computing F∆-delayed-fairness, and receives back yA

S chooses a random string sB ∈ {0, 1}n, computes EKA
(yA, EKS

(sB)), and hands the encrypted result to A
if after 2∆C no response arrives from A then

send unfair to trusted party.

else

A sends cB
if cB == EKS

(sB) then
send fair to trusted party

S outputs whatever A outputs.

Algorithm 11: The simulator S running in ideal model with trusted party computing F∆-delayed-fairness, and simulating the

view of Alice.

The view of A in a simulation with S is identical to its view in an (FResolve,Fca,Fe)-hybrid execution of Πf

with a honest Bob. The joint distribution of A's view and Bob's output in a hybrid execution is identical to the
joint distribution of S and Bob's output in an ideal model.

Proposition 7 (Security Against Malicious Bob) For every non-uniform polynomial time adversary A cor-
rupting Alice and running Πg with abort in a hybrid model with access to Fe

o�ine
and Fca, there exists a non-uniform

polynomial time simulator S corrupting Alice and running in the ideal model with access to an ideal functionality
F

∆-delayed-fairness, such that for every a, b, z ∈ {0, 1}∗ holds:{
idealf,S(z)(a, b, n)

}
n∈N

=
{
hybrid

FResolve,Fca,Fe

Πf ,A(z) (a, b, n)
}
n∈N

Proof We construct an ideal model simulator which has access to Bob and to the universally trusted party, and

16

can simulate the view of the execution of the protocol. Assume that Bob is corrupted by a hybrid model adversary
A. In Algorithm 12 we construct a simulator S given a black-box access to A.

S generates (dk, ek)← K(1n) and selects a random key KS ∈ {0, 1}n
S invokes A with input b, IDB, n
When A sends (retrieve,resolve) for Fca, S responds with (retrieve,resolve,ek)
S obtains A's inputs (b′,KB , ek

′) for the trusted party F∆-delayed-fairness
if b′ 6= b ∨ ek′ 6= ek then

send ⊥ to F∆-delayed-fairness
send ⊥ to A
output whatever A outputs and halt

else

S sends b to the trusted party computing F∆-delayed-fairness, and receives yB
encrypts yB with KB

S chooses a random string sA ∈ {0, 1}n, computes cA = EKS
(sA, EKB

(yB)), and c = NEek(cA, cB) and hands the
encrypted result cA||c to A
When A sends c′A, S checks if c′A = EKS

(sA, EKB
(yB)) then

decrypts and sends EKB
(yB) to A

else

send ⊥ to trusted party

S outputs whatever A outputs.

Algorithm 12: The simulator S running in ideal model with trusted party computing F∆-delayed-fairness, and simulating the

view of Bob.

The view of A in a simulation with S is identical to its view in an (FResolve,Fca,Fe)-hybrid execution of Πf

with a honest Alice. The joint distribution of A's view and Alice's output in a hybrid execution is identical to the
joint distribution of S and Alice's output in an ideal model.

A.3 Security Analysis of Protocol ΠG
(v,g) (Section 5.2)

Proof We analyse ΠG
(v,g) in a (Fe

o�ine
,Fca,Ftea)-hybrid model, and show that the execution of ΠG

(v,g) is compu-

tationally indistinguishable to computation of (v, g) in the ideal model with Guaranteed Output Delivery. We prove
Claim 3 in Propositions 8 and 9 respectively.

Proposition 8 (Security Against Malicious Alice) For every non-uniform polynomial time adversary A cor-
rupting Alice and running ΠG

(v,g) in a hybrid model with access to Fe

o�ine
, Fca and Ftea, there exists a non-uniform

polynomial time simulator S corrupting Alice and running in the ideal model with access to an ideal functionality
Fv,g

commited-computation
, such that for every a, b, z ∈ {0, 1}∗ holds:

{
idealf,S(z)(a, b, n)

}
n∈N

=
{
hybrid

Foffline,Fca,Ftea,Fv,g

commited-computation
Πf ,A(z) (a, b, n)

}
n∈N

Proof We construct an ideal model simulator which has access to Alice and to the universally trusted party, and
can simulate the view of the execution of the protocol. Assume that Alice is corrupted by a hybrid model adversary
A. In Algorithm 13 we construct a simulator S given a black-box access to A.

The view of A in a simulation with S is identical to its view in an (Fe

o�ine
,Fca,Ftea)-hybrid execution of ΠG

(v,g)

with a honest Bob. The joint distribution of A's view and Bob's output in a hybrid execution is identical to the
joint distribution of S and Bob's output in an ideal model.

Proposition 9 (Security Against Malicious Bob) For every non-uniform polynomial time adversary A cor-
rupting Bob and running ΠG

(v,g) in a hybrid model with access to Fe

o�ine
, Fca, and Ftea there exists a non-uniform

polynomial time simulator S corrupting Bob and running in the ideal model with access to an ideal functionality
Fv,g

commited-computation
, such that for every a, b, z ∈ {0, 1}∗ holds:

{
idealf,S(z)(a, b, n)

}
n∈N

=
{
hybrid

Foffline,Fca,Ftea,Fv,g

commited-computation
Πf ,A(z) (a, b, n)

}
n∈N

17

S generates (dk, ek)← K(1n) and selects a random key KS ∈ {0, 1}n
S invokes A with input a1, a2, IDA, n
When A sends (retrieve, TEA) for Fca, S responds with (retrieve, TEA, ek)
S obtains A's inputs (a′1,KA, ek

′) for the trusted party Fv,g

commited-computation
if a′1 6= a1 ∨ ek′ 6= ek then

send ⊥ to Fv,g

commited-computation
send ⊥ to A
output whatever A outputs and halt

else

S sends a1 to the trusted party computing Fv,g

commited-computation
, and receives back y1

A

if y1
A == ⊥ send ⊥ to A and halt

Otherwise S chooses a random string sB ∈ {0, 1}n, computes (NEek(EKA
(sB))||EKA

(y1
A)), and hands the result to A.

Upon input a′2 from A: if a′2 6= a2 then

send ⊥ to Fv,g

commited-computation
send ⊥ to A
output whatever A outputs and halt

else

simulate Fe
o�ine

for A according to steps in Algorithm 9

Send a2 to Fv,g

commited-computation
Upon input y2

A from Fv,g

commited-computation
, send EKA

(y2
A) to A

S outputs whatever A outputs.

Algorithm 13: The simulator S running in ideal model with trusted party computing Fv,g

commited-computation
, and simulating

the view of Alice.

S generates (dk, ek)← K(1n) and selects a random key KS ∈ {0, 1}n
S invokes A with input b1, b2, IDB, n
When A sends (retrieve, TEA) for Fca, S responds with (retrieve, TEA, ek)
S obtains A's inputs (b′1,KB , ek

′) for the trusted party Fv,g

commited-computation
if b′1 6= b1 ∨ ek′ 6= ek then

send ⊥ to Fv,g

commited-computation
send ⊥ to A
output whatever A outputs and halt

else

S sends b1 to the trusted party computing Fv,g

commited-computation
, and receives back y1

B

if y1
B == ⊥ send ⊥ to A and halt

Otherwise S chooses a random string s1A, s
2
A ∈ {0, 1}

n, computes (NEek(EKB
(s1A))||EKB

(y1
B)), and hands the result to A.

Upon input b′2 from A: if b′2 6= b2 then
send ⊥ to Fv,g

commited-computation
send ⊥ to A
output whatever A outputs and halt

else

simulate Fe
o�ine

for A according to steps in Algorithm 10

Send b2 to Fv,g

commited-computation
Upon input y2

B from Fv,g

commited-computation
, send EKA

(s2A)||σA||y2
B to A

When A sends EKA
(s2A)||σA, check that the authentication is valid and that s2A is correct

if not, send ⊥ to Fv,g

commited-computation

S outputs whatever A outputs.

Algorithm 14: The simulator S running in ideal model with trusted party computing Fv,g

commited-computation
, and simulating

the view of Bob.

Proof We construct an ideal model simulator which has access to Bob and to the universally trusted party, and
can simulate the view of the execution of the protocol. Assume that Bob is corrupted by a hybrid model adversary
A. In Algorithm 14 we construct a simulator S given a black-box access to A.

The view of A in a simulation with S is identical to its view in an (Fe

o�ine
,Fca,Ftea)-hybrid execution of ΠG

(v,g)

with a honest Alice. The joint distribution of A's view and Alice's output in a hybrid execution is identical to the
joint distribution of S and Alice's output in an ideal model.

18

	Introduction
	Related Work

	Preliminaries and Overview
	Secure Two-Party Computation in Malicious Setting
	Offline Functionality Feoffline
	Secure Two-Party Protocol Against Malicious Adversaries
	Efficiency Analysis and Comparison

	Fair Two-Party Protocol Against Malicious Adversaries
	-delayed fairness
	Fair Two-Party (FResolve,Fca)-Hybrid Protocol Ff
	Efficiency Analysis and Comparison

	Committed Two-Party Computation
	Committed Two-Party Computation Functionality Fv,gcommited-computation
	Two-Party (Feoffline,Fca,Ftea)-Hybrid Protocol G(v,g)

	Security Proofs
	Security Analysis of Protocol Ee (Section 3.2)
	Security Analysis of Protocol Ff (Section 4.2)
	Security Analysis of Protocol G(v,g) (Section 5.2)

