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Abstract—We show efficient, practical (server-aided) secure
two-party computation protocols ensuring privacy, correctness
and fairness in the presence of malicious (Byzantine) faults. Our
requirements from the server are modest: to ensure privacy
and correctness, we only assume offline set-up prior to protocol
execution; and to also ensure fairness, we further assume a
trusted-decryption service, providing decryption service using
known public key. The fairness-ensuring protocol is optimistic,
i.e., the decryption service is invoked only in case of faults. Both
assumptions are feasible in practice and formally presented in
the hybrid model. The resulting protocols may be sufficiently
efficient, to allow deployment, in particular for financial appli-
cations.

Index Terms—Two-party computation, fair optimistic proto-
cols, server-aided computation.

I. INTRODUCTION

Secure computation, beginning with the seminal papers of
Yao [1] and Goldreich et al. [2], investigates how to securely
compute functionalities over inputs of two (or multiple) par-
ties. Security implies correctness, i.e., both parties receive the
correct function of the inputs, and privacy, i.e., even corrupt
participant cannot learn more (e.g., learn secret input of the
other party) than his output. Secure computation can trivially
be done by a fully trusted third party, which receives the inputs,
and then computes and announces the results. The goal of
secure computation protocols is to achieve the same impact
without a trusted party, i.e., using a protocol between the
parties.

Secure computation received a lot of attention during the
last two decades, with numerous works, including several
implementations, e.g., [3], and few real-world applications
[4]. However, it is widely recognised, that (standard) secure
computation mechanisms have very high computational costs,
which are prohibitive for most applications; moreover, this is
unlikely to change in the forseeable future.

Another challenge with (standard) secure computation is
fairness, especially when focusing on two-party computations
(or, in general, without honest majority). Cleve [5] showed
that complete fairness cannot be achieved for general two-
party computation. Fairness can be acheived for some non-
trivial computations, e.g., see [6], however, it seems prudent
to assume that fairness is not possible for most practical secure
computation problems.

Like several other works, e.g., [7], our goal is to apply
the theory of secure computation to the design of prac-
tical systems, in particular, for financial applications. This
requires protocols that ensure secure and fair computations,
with reasonable efficiency against potentially malicious, and
possibly colluding, participants. Formally, we use a hybrid
model, where we assume very restricted ideal functionalities;
in practice, these ideal functionalities can be implemented by
simple, highly-feasible services.

Such practical implementation requires modest computa-
tional resources and very limited trust; security is assured
as long as the service does not collude with one of the
parties. The use of these ideal functionalities (or, in practice,
weakly-trusted services), allows us to address the two main
challenges: efficiency and fairness. We next briefly discuss
these challenges.

Efficiency. Secure computation protocols suffer from a
significant overhead, especially when considering arbitrary
(byzantine) faults, as required in practice. The basic secure
function evaluation technique for two-party computation, [1],
ensures security, privacy and integrity only against passive,
semi-honest, adversaries that follow the steps of the protocol.
This protection however does not suffice for real life systems,
where malicious participants may arbitrarily deviate from the
prescribed steps of the protocol, e.g., in an attempt to gain an
unfair advantage. The basic protocol of [1] was extended by
Goldreich et al. [2] to ensure security against malicious adver-
saries, e.g., those that may try to alter the agreed computation.
Several later works improved efficiency, e.g., [8], [9], [10].
However, these protocols are still so computationally intensive,
that they are impractical for many real life applications, and
specifically for most financial applications. Indeed, there is
little hope of sufficient improvements in the efficiency of
secure computation protocols, to allow their use for such tasks
in the forseenable future.

Fairness. Protocols for financial applications, e.g., for cur-
rency exchange, must also ensure fairness to the transaction
performed by the parties, i.e., either both parties receive the
result of the computation, e.g., a signed check, or no one
does. Indeed, in the malicious model, an adversary can always
abort after receiving its output and before the honest party
receives output. As early as 1986, Cleve [5] showed that
fairness cannot be achieved for general computation without



an honest majority. Hence, to ensure fairness and efficiency
against malicious faults, as required for practical (financial)
applications, some extra assumptions are necessary. Indeed,
for fairness, most works assume that the protocol involves an
additional party (‘trusted third party’).

In this work, we present two simple models for secure
two party computation: the preprocessing oracle model, which
allows efficient constructions of protocols secure against mali-
cious faults, and the decryption oracle model, which produces
fair and efficient protocols. Both oracles are simple, generic
and oblivious to the computation, including the inputs of the
parties to the protocol and outputs from the protocol. This
is similar to the use of other set-up assumptions such as
common reference string (CRS) model1, random oracle model
or registration authority, e.g., see [11], [12].

Namely, these simple models capture weak assumptions
which appear necessary for fair and efficient secure two-party
computation protocols; we present and analyse such protocols.
The ideal functionalities capturing the models can be realised,
e.g., by weakly-trusted additional parties. Further research is
required to determine whether these models are indeed the
minimal necessary, or whether the same goals (efficiency,
fairness) be achieved in even weaker models; furthermore, the
models we present may be useful for other tasks.

Following many previous fair protocols, our fair protocol
is optimistic; specifically, the parties involve the ideal func-
tionality FDecryption only in case of a misbehaviour by the
peer or in case of faults. In this sense, our work is related to
many existing works on optimistic fair exchange and similar
tasks, e.g., see [13], [14], except that these works support
only specific, relatively simple interactions, e.g., certified mail,
contract signing, and do not hide the values exchanged from
the trusted third party. In contrast, our protocol supports
arbitrary computations, and does not expose the inputs (or
respective outputs) of the parties to the ideal functionality that
ensures fairness.

Cachin and Camenisch, [15], presented optimistic fair se-
cure computation protocol, with constant number of interac-
tions. However, their protocol is not practical since it requires
running a zero knowledge protocol for every gate of the
circuit; furthermore, they assume a highly specialised and
powerful third party. In contrast, our protocols assume only
a very simple, minimal ideal functionality FDecryption, and
furthermore are much more efficient; see Section V-A for
efficiency comparison.

CONTRIBUTIONS. This work has both practical and theo-
retical contributions:
• Efficient, practical protocols for (fair) two party com-

putation, with set-up assumptions formulating the new
models which we introduce in this work. The models are
implementable using a weakly-trusted ‘third party’. Our
protocols are secure against malicious (byzantine) faults,
but with efficiency comparable to that of the existing
protocols that are secure only against honest-but-curious

1In fact preprocessing model is a generalisation of CRS.

participants.

• Introduction of two new models, the preprocessing model
allowing trusted preprocessing phase for greater effi-
ciency, and the decryption model which provides basic
generic facility allowing resolution of conflicts (e.g., for
fairness).

CRYPTOGRAPHIC TOOLS. Our constructions use several
tools, i.e., standard cryptographic mechanisms: (1) authen-
ticated symmetric-key encryption scheme (K, E ,D) to en-
sure confidentiality and integrity of the inputs and outputs
of the participants, [16]. When applying EKP

(x) we per-
form an authenticated encryption of input x using the key
KP of party P . (2) Non-malleable public-key encryption
scheme (NG,NE ,ND) to ensure confidentiality and non-
malleability; (3) Signature scheme (G,S,V), [17], where we
use ⊥ to denote authentication failure; (4) Two-party (1-2)
oblivious transfer which we denote by the ideal functionality
F2

ot, [12].
ORGANISATION. In Section II we introduce the prepro-

cessing model allowing offline set-up assumption for greater
efficiency; we subsequently use this model in Section III.
Then in Section IV we introduce the assisted-decryption
functionality that upon requests validates and decrypts the
input ciphertext. We later use this functionality in Section V
in the construction of a fair two-party protocol, where we
use the assisted-decryption functionality to restore fairness in
case of failures or misbehaviour by one of the participants. In
Section VI we present sample financial applications based on
our protocols. Finally, in Section VII, we conclude and present
future research directions.

II. PREPROCESSING MODEL

In this section we introduce the preprocessing model allow-
ing efficient protocols for secure computation in the malicious
setting. The model assumes that two (or multiple2) parties in
the protocol have an access to an ideal functionality (oracle),
during the preprocessing phase, which upon invocation pro-
vides them with output strings (one for each party) which they
later use to carry out the protocol between them. The oracle
is only used during the preprocessing phase, to generate the
respective output strings to the parties, and the oracle is not
involved in the computation itself. The preprocessing oracle
functionality is one of our basic set-up assumptions and it is
captured with the ideal functionality Fpre, in Algorithm 1. In
the next section we show how the strings, generated by the ora-
cle, ensure privacy and correctness to the computation during
the protocol execution, while allowing efficiency equivalent
to that of the semi-honest setting. Since the preprocessing
oracle does not obtain the secret inputs of the parties (which
may not even be available during the preprocessing phase) it
does not learn anything about the inputs of the parties from
the computation that it performs.

2In this work we focus on the two-party computation; the preprocessing
model can be extended to multi-party computation.



Functionality Fpre

Input: Prg1 from party P1 and Prg2 from party P2, input length n
Computation Phase

r
R← {0, 1}n

if Prg1 6= Prg2 then
output ⊥

Evaluate Prg1 on r and obtain (p1||p2)← Prg1(r)

end
Output: send p1 to P1 and p2 to P2

Algorithm 1: The functionality Fpre for executing a ‘preprocessing’ circuit,
which description it receives as input from the parties. The functionality checks if the
circuits supplied by both parties are equivalent, in which case it evaluates the circuit
on a random string r, and obtains p1||p2 where p1 is the output of P1 and p2 is
the output of P2, and sends the outputs to the respective parties. Otherwise, if the
circuits are not the same it returns ⊥.

The preprocessing oracle receives a function that it should
compute. This allows for a general definition, one that allows
the parties to define the computation that they wish the oracle
to perform. Our preprocessing model is a generalisation of
the Common Reference String (CRS) model, [11], [12]. In the
CRS model the parties are given a common public reference
string that was ideally chosen from a given distribution. Note
that, similarly to CSR, the computation that the preprocessing
oracle performs is not a function of the private inputs of
the parties, and neither does it observe the output from the
protocol. Furthermore, the parties are not required to identify
themselves before participating in the protocol.

For generality, we will assume that the preprocessing oracle
computes a universal function which receives in an input
description of a function (or rather a description of a circuit
Prg implementing a function that the parties agreed upon)
from the parties and evaluates that function on a random
string. We capture the preprocessing model with the ideal
functionality Fpre: Fpre receives a description of a circuit,
P1 and P2, (computing an agreed upon function) from both
participants, executes that circuit on a random string r, obtains
two outputs p1, p2 and returns each output to the corresponding
party. The Fpre ideal functionality is not involved during the
computation performed by the parties.

III. TWO-PARTY PROTOCOL WITH PREPROCESSING

In this section we consider functionalities with
output only at Bob (the circuit evaluator). Let
e : {0, 1}n × {0, 1}n → {0, 1}n be a two-party functionality,
and let a, b be the inputs of Alice and Bob respectively. We
construct a two-party protocol, in Algorithm 4, for evaluation
of inputs of Alice and Bob on a known function e using the
preprocessing oracle presented in Algorithm 1.

During the preprocessing phase, Alice and Bob send a
description of a circuit, which they agreed on, to the third
party, and receive an output. The output is an encoding of
a garbled circuit, see description in Section III-B, which
is then used by Alice and Bob to evaluate the function
e : {0, 1}n × {0, 1}n → {0, 1}n on their respective inputs.

When Alice and Bob have the inputs they run the two-
party computation protocol, whereby Alice transfers the strings

representing her input to Bob and runs an F2
ot functionality

(capturing the oblivious transfer protocol, [12]) for strings
representing Bob’s input bits; Bob evaluates the circuit on
both inputs, concluding the protocol. After evaluating the
functionality e on a and b, Bob obtains e(a, b), while Alice
learns nothing at all.

The preprocessing phase ensures that the circuit was cor-
rectly constructed and prevents cheating by either party.

In Section III-B present a description of the circuit that Alice
and Bob send to the preprocessing functionality, which allows
for garbled circuit pre-generation, and in Section III-C we
construct the two-party protocol in the preprocessing model.

A. Definition: Two-Party Computation with Output at Bob

In our definitions below (and constructions of the protocols
throughout this work) we assume that Alice is the originator
of the computation and Bob is the evaluator.

Execution in the Ideal Model: In the ideal model, there
is a universally trusted third party, that is parametrised by
e : {0, 1}n × {0, 1}n → {0, 1}n, the function which Alice
and Bob wish to evaluate on their inputs. The parties are
Alice and Bob and the adversary A that has corrupted one
of them. The parties Alice and Bob send their inputs to the
trusted party, who performs the computation and returns the
output to Bob. We assume that one of the two parties, either
Alice or Bob, can be corrupted by the adversary A. The

Private Inputs : Alice and Bob send a and b (respectively) to
the trusted party

Public Inputs : n
Computation Phase

if a = ⊥ ∨ b = ⊥ then
send ⊥ to Bob

send e(a, b) to Bob
end
Output: The honest party outputs whatever it received from

the trusted party, the corrupted party does not output
anything, and the adversary S outputs an arbitrary
function of its view.

Algorithm 2: The ideal functionality Fe for computing e, runs
with Alice and Bob, and an adversary S, and provides an output
at only one party (Bob).

pair of outputs of the honest party and an adversary S in an
ideal execution where the trusted party computes e is denoted
IDEALe,S(z)(a, b, n), where n is the security parameter, a and
b are inputs of Alice and Bob respectively, and z is an auxiliary
input of the adversary S.

Execution in the Real Model: In the real model a two party
protocol Πe is executed between Alice and Bob without a
trusted party. The adversary A controls one of the parties,
obtains the inputs of the corrupted party, and sends messages
on behalf of that party. The honest party follows the protocol
Πe and returns the output specified by Πe. The adversary
outputs an arbitrary function of its view. The pair of outputs



of the honest party and an adversary A in the real protocol
execution is denoted REALΠe,A(z)(a,b,n).

Definition 3.1 (Two-Party Protocol with Output at One party):
Let Πe be a protocol and let e be a polynomial two-party
functionality. Protocol Πe is said to securely compute e if for
every probabilistic polynomial-time adversarial algorithm A
in the real model running with Πe, there exists a probabilistic
polynomial-time simulator S in the ideal model, such that for
every a, b, z ∈ {0, 1}n, holds

{
REALΠe,A(z)(a, b, n)

}
n∈N

=
{

IDEALe,S(z)(a, b, n)
}
n∈N

B. Garbled Circuit Pre-Generation

To allow for evaluation of arbitrary functions we define Prge
to be a circuit that generates a garbled circuit computing a
common function which the parties agreed on. The circuit Prge
is parametrised by a function e : {0, 1}n × {0, 1}n → {0, 1}n
(which is encoded as a circuit C). Thus the output that the pre-
processing functionality produces is a garbled circuit, which
will be used by the parties during the protocol execution. In
Algorithm 3 we present the circuit Prge; the circuit generates
a signature key pair (skpre, vkpre), then constructs and gables
a circuit, and signs the circuit with the freshly generated
signature key skpre. We use part of the string r (which is
selected at random by Fpre) for garbled circuit generation, and
another part for keys generation and signatures. The public
verification key is registered with the Freg

3 (the registration
authority) and thus Alice and Bob can later retrieve it to verify
signatures.

The circuit Prge, in Algorithm 3, is encoded as a circuit
C that computes function e. The circuit C consists of gates;
in the first level each gate has two input wires, one for input
bit of Alice and another for input bit of Bob. Fpre generates a
garbled circuit C from C as follows: it first modifies the circuit
C to a circuit C where each input wire of Bob is replaced with
a XOR-gate with s input wires; Bob later uses this redundancy,
to thwart the attempts by a malicious Alice to expose his secret
inputs, by providing Bob with incorrect random strings for his
input values (during the oblivious transfer protocol); see [8] for
details. Next, random strings, corresponding to each input bit
of Alice and Bob, are generated, and the gates of the circuit are
replaced with garbled gates, i.e., boolean tables incorporating
the outputs from a gate for all possible combinations of inputs
of Alice and Bob.

Eventually, Fpre sends the random input strings (corre-
sponding to all possible inputs) to Alice, and the garbled gates
and output decryption tables to Bob. Note that according to
the model in Algorithm 1, part of the output should be sent to
Alice and another part to Bob. However, in this case the output
of Bob is ⊥ (i.e., no private output) and the entire output (the
signed garbled circuit) from Fpre can be sent to Alice, and
Alice in turn will forward to Bob the signed garbled tables
and output decryption tables. For efficiency (and simplicity)

3The registration authority maintains a database of signed public keys, and
allows anyone to retrieve a key by providing the identity of the owner of the
key.

we let Fpre send the gabled tables and output decryption tables
directly to Bob (this is only a simplifying assumption since
these tables constitute an output that is not secret, i.e., known
to both Alice and Bob).

C. Two-Party Protocol Construction
In Algorithm 4 we construct a two-party protocol by apply-

ing the Fpre functionality during the preprocessing phase. The
resulting two-party protocol illustrates one of the applications
of the preprocessing model. We also use this mechanism in
the subsequent section as a building block in our fair two-
party computation protocol. The procedure that generates the
garbled circuit using a third party4 during the preprocessing
phase can be of independent interest to enhance efficiency
(see Section III-C2 for efficiency comparison of techniques
employed in malicious model) of two-party protocols in mali-
cious setting. Assuming preprocessing phase allows a simpler
and much more efficient protocol (cf. to [26], [27], [8], [20]).

Registration Phase
generate signature key-pair: (vkpre, skpre)← G(1s)
register the verification key: (register, preprocessing, vkpre) to Freg

end
Computation Phase

1. Let C be a circuit that computes e
2. Construct C from C, by replacing each input wire of Bob with a
XOR-gate of s new input wires of Bob
3. Garble the resulting circuit C. The garbled circuit consists of:

a. Random strings corresponding to all possible input bits of Alice:
KA = ((K0

A[1],K1
A[1]), ..., (K0

A[n],K1
A[n]))

b. Random strings corresponding to all possible input bits of Bob:
KB = ((K0

B [1],K1
B [1]), ..., (K0

B [sn],K1
B [sn]))

c. Garbled boolean tables TG for each garbled gate G of the circuit
d. Output decryption tables TD mapping output strings to bits

4. Sign the random input strings KA of Alice:
σA = ((σ0

A[1], σ1
A[1]), ..., (σ0

A[n], σ1
A[n])) where

∀i, j : σj
A[i] = Sskpre (Kj

A[i], i)

5. Sign the random input strings KB of Bob:
σB = ((σ0

B [1], σ1
B [1]), ..., (σ0

B [sn], σ1
B [sn])) where

∀i, j : σj
B [i] = Sskpre (Kj

B [i], i, j)

end
Output: (KA, σA), (KB , σB) to Alice and (TG, TD) to Bob.

Algorithm 3: The circuit Prge generates a garbled circuit C, based on a circuit
C computing e that both parties agreed upon.

1) Security Analysis: We analyse Πe in a hybrid model
where there is a trusted party computing Fpre, F2

ot and Freg.
The simulator S interacts with the ideal functionality Fe
and uses the adversary A in a black-box manner, simulating
for A the real protocol execution and emulating the ideal
functionalities Fpre, F2

ot and Freg.
Claim 3.2: Let e : {0, 1}n × {0, 1}n → {0, 1}n be a

polynomial time two-party functionality. Assume that the
signature scheme (G,S,V) is existentially unforgeable under
a chosen-message attack. Then protocol ΠE

e securely realises
a two-party functionality with output at Bob only (according
to Definition 3.1), in the presence of malicious adversaries in
the (Fpre,F2

ot,Freg)-hybrid model.

4Especially when the third party is unavoidable, e.g., to achieve fairness in
general computation, the third party can also be used to run the preprocessing
phase.



Input: security parameter s, number of bits n
Output: yB = e(a, b)

Offline Generation Phase
Alice and Bob send IDA, IDB (respectively) to Fpre
Alice receives (KA, σA), (KB , σB) (see Algorithm 3)
Bob receives TG, TD

end
Computation Phase

Alice receives a = [ai]
n
i=1

Bob receives b = [bi]
n
i=1

Input Encoding
encodeInput([bi]

n
i=1) {

b′ = ∅
for i← 1 to n do

Let bi1, ..., b
i
s ∈R {0, 1} s.t. bi = bi1 ⊕ ...⊕ b

i
s

b′ ← (b′||bi1, ..., b
i
s)

return b′ }
//in n iterations b′ = [b′i]

n·s
i=1 = (b11, ..., b

1
s, ..., b

n
1 , ..., b

n
s )

end
Alice: sends to Bob: ((Ka[1]

A [1], σ
a[1]
A [1]), ..., (Ka[n]

A [n], σ
a[n]
A [n]))

Bob:
send (retrieve, preprocessing) to Freg and obtain vkpre
if
∃(Ka[i]

A [i], σ
a[i]
A [i]), s.t., Vvkpre (Ka[i]

A [i], i, σ
a[i]
A [i]) = false

then
output ⊥ and halt

for i← 1 to n · s do
run with Alice F2

ot((K
0
B [i], σ0

B [i]), (K1
B [i], σ1

B [i]), b′i)
//run oblivious transfer, Alice provides
(K0

B [i], σ0
B [i]), (K1

B [i], σ1
B [i]) and Bob b′i

receive (Kb′[i]
B [i], σ

b′[i]
B [i])

if Vvkpre (Kb′[i]
B [i], σ

b′[i]
B [i]) == false then

output ⊥ and halt

(yB = (yB [1], ..., yB [n]))←
C((Ka[1]

A [1], ...,Ka[n]
A [n]), (Kb′[1]

B [1], ...,Kb′[sn]
B [sn])) (see

below)
end

end
Circuit Evaluation
C((Ka[1]

A [1], ...,Ka[n]
A [n]), (Kb′[1]

B [1], ...,Kb′[sn]
B [sn])) {

(Ky[1]
Y [1], ...,Ky[n]

Y [n])←
TG((Ka[1]

A [1], ...,Ka[n]
A [n]), (Kb′[1]

B [1], ...,Kb′[sn]
B [sn]))

return ω ← TD(Ky[1]
Y [1], ...,Ky[n]

Y [n]) }
end
//C(a, b) = TG(TD(Ka

A,K
b
B))

Algorithm 4: Secure Two Party Protocol ΠE
e in the (Fpre,F2

ot,Freg)-hybrid
model, for computing e(a, b) = yB , where e : {0, 1}n × {0, 1}n → {0, 1}n.

Proof: We analyse ΠE
e in a (Fpre,F2

ot,Freg)-hybrid model,
and show that the execution of ΠE

e is computationally indistin-
guishable from computation of e in the ideal model. We prove
the Claim 3.2 in Propositions 3.3 and 3.4 for cases where the
adversary controlls Alice or Bob, respectively.

Proposition 3.3 (Security Against Malicious Alice): For
every polynomial time adversary A corrupting Alice and
running with Πf with abort in a hybrid model with access to
Fpre, F2

ot and Freg, there exists a probabilistic polynomial-
time simulator S corrupting Alice and running in the ideal
model with access to an ideal functionality Fe, such that for
every a, b, z ∈ {0, 1}∗ holds:

{
IDEALf,S(z)(a, b, n)

}
n∈N

=
{

HYBRID
Foffline,Fca,Fot

Πf ,A(z)
(a, b, n)

}
n∈N

Proof: Let A be a malicious static adversary with Alice
and Bob running the protocol in Algorithm 4. We construct
an ideal model simulator S which has access to Alice and
to the trusted party computing Fe, and can simulate the
view of the execution of the protocol. Assume that Alice is
corrupted by a hybrid model adversary A. In Algorithm 5 we
construct a simulator S given a black-box access to A. The
view of A in a simulation with S is identical to its view in
an (Fpre,Freg,F2

ot)-hybrid execution of Πe with a honest Bob.
The joint distribution of A’s view and Bob’s output in a hybrid
execution is identical to the joint distribution of S and Bob’s
output in an ideal model. In addition, there is a negligible
probability for the adversary to forge the signature, thus the
output distribution of the simulator and the honest party in the
ideal model is identical to that of the adversary and the honest
party in the real protocol execution.

S(a, IDA, 1
n)

IDA′
OfflineParty←− A(a, IDA, 1

n)
if IDA′ = ⊥ ∨ IDA′ 6= IDA then

send ⊥ to the trusted party computing Fe as Alice’s input
send ⊥ to A as its input from Fpre
output whatever A outputs and halt

else
simulate functionality Fpre for A:

1. choose a key pair (vk, sk)← G(1n)
2. construct a circuit C computing f ′A
3. construct C from C, by replacing each input wire of Bob with a
XOR-gate consisting of s input wires of Bob
4. garble the resulting circuit C and obtain C, consisting of:

a. Random strings corresponding to all possible input bits of
Alice: K̄A = ((K0

A[0],K1
A[0]), ..., (K0

A[n],K1
A[n]))

b. Random strings corresponding to all possible input bits of
Bob: K̄B = ((K0

B [0],K1
B [0]), ..., (K0

B [n],K1
B [n]))

c. Garbled boolean tables T̄G for each garbled gate G of the
circuit C

Output decryption tables T̄D mapping output strings to bits
5. sign the random input strings K̄B of Bob: σ̄ = SskT

(K̄B),
where σ̄ = ((σ0

0 , σ
1
0), ..., (σ0

n, σ
1
n))

6. send K̄A, (K̄B , σ̄) to A as its output from Fpre
A sends K̄′A, intended for Bob and ( ¯K′B , σ̄′) for ideal
functionality F2

ot
if ((K̄′A 6= K̄A) ∨ (( ¯K′B , σ̄′) 6= (K̄B , σ̄))) then

send input ⊥ to the trusted party computing Fe as Alice’s input
send ⊥ to A as its input from F2

ot
output whatever A outputs and halt

A outputs its view and halts, S outputs the same and halts
end

Algorithm 5: Simulator S, simulating the view of Alice.

Proposition 3.4 (Security Against Malicious Bob): For ev-
ery polynomial time adversary A corrupting Bob and running
with Πf with abort in a hybrid model with access to Fpre,F2

ot
and Freg, there exists a probabilistic polynomial-time simu-
lator S corrupting Bob and running in the ideal model with
access to an ideal functionality computing Fe, such that for
every a, b, z ∈ {0, 1}∗ holds:

{
IDEALf,S(z)(a, b, n)

}
n∈N

=
{

HYBRID
Foffline,Fca,Fot

Πf ,A(z)
(a, b, n)

}
n∈N

Proof: Let A be a malicious static adversary with Alice
and Bob running the protocol in Algorithm 4. We construct



an ideal model simulator S which has access to Bob and to
the trusted party computing Fe, and can simulate the view of
the execution of the protocol. Assume that Bob is corrupted
by a hybrid model adversary A. In Algorithm 6 we construct
a simulator S given a black-box access to A. The security is

S(b, IDB, 1
n)

IDB′
OfflineParty←− A(b, IDB, 1

n)
if IDB′ = ⊥ ∨ IDB′ 6= IDB then

send ⊥ to the trusted party computing Fe as Bob’s input
send ⊥ to A as its input from Fpre
output whatever A outputs and halt

else
simulate functionality Fpre for A:

1. choose a key pair (vk, sk)← G(1n)
3. when A sends (retrieve, Fpre) to Freg, respond with (retrieve
Fpre, vk):
4. construct a circuit C computing f ′A
5. construct C from C, by replacing each input wire of Bob with a
XOR-gate consisting of s input wires of Bob
6. garble the resulting circuit C and obtain C, consisting of:

a. Random strings corresponding to all possible input bits of
Alice: K̄A = ((K0

A[0],K1
A[0]), ..., (K0

A[n],K1
A[n]))

b. Random strings corresponding to all possible input bits of
Bob: K̄B = ((K0

B [0],K1
B [0]), ..., (K0

B [n],K1
B [n]))

c. Garbled boolean tables T̄G for each garbled gate G of the
circuit C

Output decryption tables T̄D mapping output strings to bits
7. sign the random input strings K̄B of Bob: σ̄ = SskT

(K̄B),
where σ̄ = ((σ0

0 , σ
1
0), ..., (σ0

n, σ
1
n))

8. send T̄G, T̄D to A as its output from Fpre
for i← 1 to |b| do

run F2
ot((K

0
B [i], σ0

i ), (K1
B [i], σ1

i ), bi), providing
(K0

B [i], σ0
i ), (K1

B [i], σ1
i ) and A provides bi

A receives (Kbi
B [i], σ

bi
i )

output whatever A outputs and halt

end

Algorithm 6: Simulator S, simulating the view of Bob.

based on the fact that the 1-2 oblivious transfer functionality
F2

ot is secure and as a result Bob learns only a single set of
random strings, corresponding to its input. The view of A
is identical to its view in a (Fpre,F2

ot,Freg)-hybrid execution
of protocol Πf with a honest Alice. In addition, the joint
distribution of A and Alice’s output in a hybrid execution of
the protocol is identical to that of S and Alice’s output in an
ideal execution.

2) Efficiency Analysis: Secure function evaluation based on
garbled circuits, [1], allows to perform a two-party computa-
tion in a secure manner, i.e., ensuring privacy, correctness and
inputs independence (see [21]). The computation is constant-
round but ensures security only against semi-honest adver-
saries. When considering malicious adversaries, which is the
typical model in practice, additional security concerns arise,
that are not addressed by the basic secure function evaluation
protocol, [1], [21].

Any two-party protocol can be transformed into a secure
protocol in the malicious setting, e.g.,[2], but the resulting
protocol is not constant round. Subsequently, constant round
protocols were presented, e.g., see [17], [23], [15], [25], [22],
[2]. However, these protocols are based on zero knowledge
proofs, which renders them inefficient for practical purposes.
Also protocols that do not employ zero knowledge were

constructed, e.g., [24], however their round complexity is
linear in the depth of the circuit.

In [26] the authors apply the cut-and-choose approach to
Yao’s protocol, which reduces the probability of evaluating an
incorrect circuit, and the efficiency is correlated to the cheating
probability; specifically, their protocol has a communication
overhead of O(s|C| + sn2) (where n is the number of input
bits to the circuit C and s is the statistical security parameter).
Then [27] improved the communication complexity of [26]
to O(s|C|) using expanders. However as [8] observed, the
protocol in [26] is susceptible to ‘input corruption’ attack; [8]
also present a protocol with roughly the same communication
complexity as [26], of O(s|C|+s2n) (this protocol was imple-
mented in [28]). Another improvement to two-party computa-
tion in malicious setting was made by [9] using homomorphic
encryption; they present a protocol in the common reference
string (CRS) model, that has a constant number of rounds, and
has an O(|C|) public-key operations (cf. O(s|C| + s2n) in
[8]), and computational complexity of O(|C|) (as opposed to
O(n) in [8]). Subsequently, the work of [20], also followed the
cut-and choose approach in a different manner and improved
the complexity to O( s|C|

log(|C|) ). Efficiency improvements were
also designed for multi-party computation, [29], by optimising
AES encryption; their ideas can be applied when implementing
the encrypion in our protocols. A new multi-party protocol to
securely evaluate reactive arithmetic circuits, offering security
against an active adversary in the universally composable
security framework, was proposed by [30]; the protocol is
based on a design of an efficient ‘cut-and-choose’ technique.
Techniques reducing the size of garbled tables, thus improving
computation and communication complexity, were proposed in
[31]; the design of the gates rely on a ‘free-XOR’ technique.
[32] present a framework for secure function evaluation using
‘privately programmable blocks’.

Our protocol, in Algorithm 4, is computationally efficient
as it uses public key operations only for signing (by Prge)
and verifying (by Bob) the strings supplied by Alice to
Bob, and for oblivious transfer (for every input bit of Bob).
The communication and computational overhead is O(|C|)
(roughly as that of the original Yao’s protocol, see [1], [21]).
Our protocol is efficient in that it has only a constant number of
rounds and uses only one oblivious transfer operation per each
input bit. This is in contrast to the complexity of [8], which
due to the cut-and-choose incur a multiplicative increase by
a factor of s (the statistical security parameter) and results in
communication complexity of O(s|C|+ s2n).

IV. ASSISTED-DECRYPTION MODEL

The decryption model provides the parties in the two-
party protocol with an access to the decryption oracle that
upon invocation with a ciphertext, validates and decrypts the
ciphertext, and returns the result to Alice and Bob. This
model requires minimal trust (and computation) and allows
for modular constructions that guarantee fairness.

The decryption model is captured with the FDecryption func-
tionality, Algorithm 8. In contrast to Fpre (Algorithm 1),



even if FDecryption is corrupt, the implication is on fairness
only, but not on privacy or correctness. We use FDecryption
ideal functionality in the fair protocol which we present in
Section V. However, we believe that the FDecryption could be
useful for other tasks too, and not only to ensure fairness. For
instance, this functionality can be implemented using simple,
secure (stateless) hardware, or via a set of servers (using
distributed/proactive decryption), [33].

V. FAIR TWO-PARTY PROTOCOL WITH
ASSISTED-DECRYPTION

The standard definition of two-party computation [17] al-
lows Alice and Bob to securely evaluate a function over
their private inputs; however, a corrupted party can abort the
protocol execution prematurely after it receives its output,
while preventing the honest party from receiving output. In
many scenarios both parties should receive output, which
requires an additional property of fairness. Specifically, Alice
receives her output if and only if Bob receives his, or no
party receives the output. Fairness is especially important for
financially oriented tasks, e.g., exchange of signed checks, or
currency exchange.

In Algorithm 7 we present the ideal functionality
Ff∆-delayed-fairness, that captures the notion of ∆-delayed fair-
ness which we believe to be a suitable model in many realistic
and practical scenarios. We assume synchronous communi-
cation model with bounded delay ∆C , i.e., the messages
are never lost and are delivered within the assumed delay
bound. In ∆-delayed fairness (which generalises the stan-
dard definition with abort, [17]), either both parties receive
the output or neither does, and a corrupt party can delay
the output of the honest party by at most a factor of ∆.
Our definition of ∆-delayed fairness implies the standard
definition of security with abort. Specifically, any protocol that
securely computes a functionality with ∆-delayed fairness,
also securely computes the functionality of fairness with abort.
In our definition Alice receives her output first (the case where
Bob receives output first is symmetric), and should send to Bob
his output. If Alice responds with fair the ideal functionality
sends the output to Bob. If Alice responds with unfair or does
not respond, the functionality waits the remaining time for the
maximal delay of ∆, e.g., ∆ = 4∆C , and sends the output to
Bob. In Algorithm 10 we construct a protocol ΠF

f that realises
the Ff∆-delayed-fairness functionality presented in Algorithm 7;
the protocol ΠF

f uses as a building block a secure (with abort)
two-party protocol in the malicious setting, e.g., the one we
presented in Section III. Concretely, protocol ΠF

f computes
functionality f(a, b) = (fA(a, b), fB(a, b)), providing output
at both Alice and Bob while ensuring ∆-delayed fairness,
i.e., either neither party receives output or both participants
do, such that honest party’s output will be delayed by at
most a factor of ∆. The protocol in Algorithm 10 uses a
weakly trusted (oblivious) third party, captured by the ideal
functionality FDecryption in Algorithm 8, involved only for
resolution in case one of the parties misbehaves. The fair
protocol, in Algorithm 10, uses as a building block the Fpre

Input: a from Alice, b from Bob, n
Computation Phase

if a == ⊥ ∨ b == ⊥ then
send ⊥ to Alice and to Bob, and halt

else
send yA = fA(a, b) to Alice
sleep(‘wait for response’, ∆)
onReceive(fair)

stopTimer(‘wait for response’)
send(yB = fB(a, b)) to Bob

onWakeup(‘wait for response’)
send(yB = fB(a, b)) to Bob

end

Algorithm 7: The ideal functionality Ff
∆-delayed-fairness for computing a

function f(a, b) = (fA(a, b), fB(a, b)) in ∆-delayed fairness model, running
with Alice and Bob, and an adversary S.

ideal functionality. Specifically, the preprocessing functional-
ity, Fpre, ensures correctness and privacy, and the optimistic
ideal functionality FDecryption, involved during the evaluation
phase in case of malicious behaviour, ensures fairness of the
computation. The third parties do not learn anything about the
inputs or the result of the computation.

To construct ΠF
f we use, as a module, the ideal two-party

computation functionality with output at Bob, as implemented
by the protocol ΠE

e in the (Fpre,F2
ot,Freg)-hybrid model,

in Section III (Algorithm 4). The decryption functionality
FDecryption, generates a key pair (dkR, ekR) ← NG(1n) (see
Algorithm 8), and this key ekR is part of the function e. The
functionality Fpre generates a garbled circuit that computes e
such that part of the output is encrypted with the key ekR. We
take the function e for ΠE

e (that provides output at Bob only)
to be the function computing the following:

e((a,KA), (b,KB)) = NEekR(cA||cB)||(EKA
(fA(a, b), cB))

(1)
where cA = EKA

(fA(a, b)) and cB = EKB
(fB(a, b)). When

the protocol in Algorithm 10 is initiated, Alice and Bob
retrieve the public encryption key ekR of FDecryption which
defines the function that they agreed to compute. At the
execution, Alice has input a and Bob has input b; they both
generate secret keys, KA and KB respectively, for symmetric
authenticated encryption (K, E ,D), that will protect their cor-
responding outputs; then they run a protocol ΠE

e and provide
their inputs, (a||KA) and (b||KB) respectively. The protocol
ΠE
e evaluates the function over the inputs and generates output

at Bob. The output consists of two parts: one encrypted with
Alice’s key and another encrypted with the key ekR of the
FDecryption (containing both the output of Bob and of Alice).
The output part of the FDecryption is encrypted with a non-
malleable encryption scheme (NG,NE ,ND) and is used in
case of malicious behaviour, for resolution (non-malleability
is required to ensure that the output cannot be maliciously
altered in a meaningful way). If Alice does not respond, Bob
contacts the FDecryption with the part of the output encrypted
with the key ekR. The FDecryption validates, decrypts and sends
to Alice her output, and to Bob his (restoring fairness). Upon
receipt of an output from Bob, Alice validates and decrypts



her part of the output and Bob’s output encrypted with his
secret key. Alice then sends this part to Bob, who validates
and decrypts the result, which concludes the protocol.

Functionality FDecryption

generate encryption key-pair: (dkR, ekR)← NG(1n)
register the encryption key: (register, decryption, ekR) to Freg
Computation Phase

receive c
set yA = ⊥, yB = ⊥
if NDdkR

(c) 6= ⊥ then
(yA, yB)← NDdkR

(c)

end
Output: send yA to Alice

send yB to Bob

Algorithm 8: The ideal decryption functionality FDecryption

Claim 5.1: Let f : {0, 1}m × {0, 1}m → {0, 1}m ×
{0, 1}m be a polynomial two-party functionality, let (K, E ,D)
be a secure symmetric authenticated encryption scheme,
and let (NG,NE ,ND) be a secure non-malleable en-
cryption scheme. Then, the protocol ΠF

f securely realises
Ff∆-delayed-fairness in the presence of malicious static adversaries
in the (FDecryption,Freg,Fe)-hybrid model, with ∆ = 4∆C ,
where ∆C is the typical channel delay.

Proof: We analyse ΠF
f in a (FDecryption,Freg,Fe)-hybrid

model, and show that the execution of ΠF
f is computationally

indistinguishable from computation of f in the ideal model
with ∆-delayed fairness. We prove the Claim 5.1 in Propo-
sitions 5.2 and 5.3 respectively.

Proposition 5.2 (Security Against Malicious Alice): For
every non-uniform polynomial time adversary A corrupting
Alice and running Πg with abort in a hybrid model with
access to FDecryption, Freg and Fe, there exists a non-uniform
polynomial time simulator S corrupting Alice and running
in the ideal model with access to an ideal functionality
Ff∆-delayed-fairness, such that for every a, b, z ∈ {0, 1}∗ holds:

{
IDEALf,S(z)(a, b, n)

}
n∈N

=
{

HYBRID
FResolve,Fca,Fe

Πf ,A(z)
(a, b, n)

}
n∈N

Proof: We construct an ideal model simulator which has
access to Alice and to the universally trusted party, and can
simulate the view of the execution of the protocol. Assume
that Alice is corrupted by a hybrid model adversary A. In
Algorithm 9 we construct a simulator S given a black-box
access to A.

The view of A in a simulation with S is identical to its
view in an (FDecryption,Freg,Fe)-hybrid execution of Πf with
a honest Bob. The joint distribution of A’s view and Bob’s
output in a hybrid execution is identical to the joint distribution
of S and Bob’s output in an ideal model.

Proposition 5.3 (Security Against Malicious Bob): For ev-
ery non-uniform polynomial time adversary A corrupting
Alice and running Πg with abort in a hybrid model with
access to Fpre and Freg, there exists a non-uniform polynomial
time simulator S corrupting Alice and running in the ideal

S generates (dk, ek)← K(1n) and selects a random key KS ∈ {0, 1}n
S invokes A with input a, IDA, n
When A sends (retrieve,resolve) for Freg, S responds with
(retrieve,resolve,ek)
S obtains A’s inputs (a′, KA, ek

′) for the trusted party Ff
∆-delayed-fairness

if a′ 6= a ∨ ek′ 6= ek then
send ⊥ to Ff

∆-delayed-fairness
send ⊥ to A
output whatever A outputs and halt

else
S sends a to the trusted party computing Ff

∆-delayed-fairness, and receives
back yA
S chooses a random string sB ∈ {0, 1}n, computes
EKA

(yA, EKS
(sB)), and hands the encrypted result to A

if after 2∆C no response arrives from A then
send unfair to trusted party.

else
A sends cB
if cB == EKS

(sB) then
send fair to trusted party

S outputs whatever A outputs.

Algorithm 9: The simulator S running in ideal model with trusted party
computing Ff

∆-delayed-fairness, and simulating the view of Alice.

model with access to an ideal functionality Ff∆-delayed-fairness,
such that for every a, b, z ∈ {0, 1}∗ holds:

{
IDEALf,S(z)(a, b, n)

}
n∈N

=
{

HYBRID
FResolve,Fca,Fe

Πf ,A(z)
(a, b, n)

}
n∈N

The proof is omitted due to space restrictions, and appears in
the full version of this paper.

A. Efficiency Analysis

In [15], the authors designed an efficient optimistic fair
protocol using proofs of knowledge. The number of rounds in
their protocol is constant, and does not depend on the security
parameter. Yet their protocol incurs a significant efficiency
degradation, since the zero-knowledge proofs are required for
every gate of the circuit, resulting in O(s|C|) communication
and computational complexity. Furthermore, the protocol of
[15] seems to be susceptible to ‘inputs corruption’ attack,
whereby Alice corrupts one of the inputs to oblivious transfer
protocol, and based on the behaviour of Bob learns the
corresponding value of his input bit. In our protocol, when the
parties are honest and follow the steps of the protocol (which
is the typical case), the computation complexity is roughly
as that of the Yao’s original protocol (see Section III-C2 for
discussion). When one of the parties misbehaves, the protocol
requires an additional round, to send the encrypted result to
the FDecryption and to receive a decrypted response back.

VI. APPLICATIONS

In this work we investigated applications of secure computa-
tion, and constructed efficient and secure two-party protocols,
based on assumptions of weakly-trusted, simple and efficient
services (or, formally, on corresponding ideal functionalities).

We believe that these protocols could be particularly useful
for financial applications, which typically involve third parties
(that often cannot be avoided, and are often trusted much



Input: security parameters n, s, maximal communication delay ∆C , a = [ai]
n
i=1 from Alice, b = [bi]

n
i=1 from Bob

Output: y = (yA, yB)

Alice and Bob send (retrieve, decryption) to Freg and obtain ekR (each)
Computation Phase

Alice and Bob do:
generate secret keys KA and KB respectively
run a protocol ΠE (in Algorithm 4 realising Fe) computing e (e is constructed from f as in Equation 1) with key ekR of FDecryption, on inputs (a||KA, b||KB)

Alice provides (a||KA) and Bob provides (b||KB)

Bob:
onReceive(yB )
if(yB == EKA

(fA(a, b), cB)||NEekR
(cA, cB)) then

send(EKA
(fA(a, b), cB)) to Alice

sleep(‘time to Alice’, 2∆C )
else output ⊥ and halt
onReceive(cB )

if (cB == valid) then
stopTimer(‘time to Alice’)
recover and output yB = fB(a, b)

onWakeup(‘time to Alice’)
send NEekR

(cA, cB) to FDecryption
onReceive(cB )

stopTimer(‘time to FDecryption’)
recover and output yB = fB(a, b)

end

Alice:
onReceive(c)

if (c == valid) then
recover and output yA = fA(a, b)
if (c == EKA

(fA(a, b), cB)) then
send(cB ) to Bob

end

end

Algorithm 10: Secure Two Party Protocol ΠF
f that realises Ff

∆-delayed-fairness with ∆ = 4∆C , in the (FDecryption,Freg,Fe)-hybrid model for computing f(a, b) =

(fA(a), fB(b)), where f : {0, 1}m × {0, 1}m → {0, 1}m × {0, 1}m; and eekR
((a,KA), (b,KB)) = NEekR

(cA||cB)||(EKA
(fA(a, b), cB)), cA =

EKA
(fA(a, b)) and cB = EKB

(fB(a, b)).

more than needed by our protocols). We suggest to use
these ‘already present’ third parties, to produce efficient and
practical systems. We next illustrate such application:

A. Stocks Trade

Consider the following sample application for stocks trade,
utilising the protocols presented in this work. Alice wishes to
sell IBM stocks and Bob wants to buy them. Alice contacts
a third party (which they both trust to some extent) e.g., a
broker, to obtain a program for this specific transaction. Both
Alice and Bob provide some secret policy, as their respective
inputs, and possibly their secret signature keys (which are
essential since the algorithm produces signed orders); then
the algorithm, constructed by the third party, will produce
corresponding signed orders if there is a match between the
policies, or ⊥ if there is no match. Concretely, the protocol
satisfies the following requirements: (1) it does not expose the
policies (nor the secret inputs, e.g., secret keys); (2) it ensures
correctness of computation (since the program, implementing
the algorithm, was supplied and signed by a third party); (3)
ensures fairness (if, say, Alice aborts after receiving her signed
order, Bob can contact the resolver, e.g., a broker, or a clearing
house, to recover his order).

B. Currency Exchange

Alice and Bob wish to sign an agreement for currency
exchange, e.g., to exchange AC for $, and Alice contacts a third
party, which they both trust, e.g., a broker, to obtain a program
implementing the agreement. The agreement receives the XAC
of Alice, and Y$ of Bob, and outputs two signed checks, for
Alice and Bob respectively. Since the program (implementing

the agreement) was supplied and signed by a third party, Alice
and Bob are assured that it is correct. Also fairness is assured,
since if Alice decides to cheat and aborts after receiving her
check, Bob can contact a resolver, that will recover and send
the checks to both parties.

VII. CONCLUSION

Two-party computation received a lot of attention during
the last two decades, with numerous works, and although
it was shown to be practical (see [3]), there are no real
life applications or systems utilising it. In this work we
present financially oriented protocols, facilitating two-party
computation as a basic building block, which can fit well in
the field of secure ecommerce. Such financial applications are
often required to ensure fairness to the transactions performed
by the parties, as well as guaranteed compensation, in case
of failures. Other critical properties of financial protocols is
ensuring privacy to the inputs of the participants, correctness
of the transaction, and efficiency.

We provide new notions of security aimed at addressing
the requirements of the potential applications of secure ecom-
merce, and present protocols based on these definitions (i.e.,
of fairness and guaranteed output delivery). Our protocols
assume weakly trusted (oblivious) third parties, e.g., involved
only in case of misbehaviour or failures, that cannot observe
neither the inputs of the parties to the transaction, nor the
compensation granted in case of failures. Hiding the inputs
and outputs from the third parties is critical to financial
applications. Our protocols can employ only one third party
to provide all the required security guarantees. However, we
suggest to distribute the tasks between different third parties,



e.g., the offline preprocessing functionality and the function-
ality involved for resolution, which we believe to be more
applicable to real life scenarios. We stress that the success of
electronic financial applications may depend on the ability to
construct protocols that provide rigorous security guarantees
that are necessary and that are sufficiently efficient. We believe
that applying two-party computation to produce practical,
efficient and secure protocols, is an important challenge of the
research on two-party computation. Specifically, we suggest
carrying this research forward and encourage improving over
the efficiency of our protocols, and further reducing the trust
assumption in third parties. In addition, providing efficient real
life implementations for specific tasks is a significant goal that
would utilise the potential of the Internet to allow arbitrary
parties to perform commerce, with automated, trustworthy
dispute-resolution and compensation mechanisms.
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