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Abstract

In the model of Perfectly Secure Message Transmission Schemes (PSMTs),
there are n channels between a sender and a receiver, and they share no
key. An infinitely powerful adversary A can corrupt (observe and forge)
the messages sent through some subset of n channels. For non-threshold
adversaries called Q2, Kumar et al. showed a many round PSMT [8].

In this paper, we show round efficient PSMTs against Q2-adevrsaries.
We first give a 3-round PSMT which runs in polynomial time in the size
of the underlying linear secret sharing scheme. We next present a 2-round
PSMT which is inefficient in general. (However, it is efficient for some
special case.)
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1 Introduction

The model of Perfectly Secure Message Transmission schemes (PSMT) was in-
troduced by Dolev et al. [4]. In this model, there are n channels between a
sender and a receiver, and they share no key. The sender wishes to send a
secret s to the receiver while an infinitely powerful adversary A can corrupt
(observe and forge) the messages sent through some subset of n channels. A
PSMT is a scheme which satisfies perfect privacy and perfect reliablity. Perfect
privacy means that A learns no information on s. Perfect reliability means that
the receiver can output ŝ = s correctly.

A threshold adversary can corrupt t out of n channels. Dolev et al. showed
that there exists a 1-round PSMT if and only if n ≥ 3t+ 1 [4], and there exists
a 2-round PSMT if and only if n ≥ 2t+ 1 [4]. For n ≥ 3t+ 1, they also showed
an efficient 1-round PSMT [4].
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For n = 2t + 1, on the other hand, Srinathan et al. showed that n is a
lower bound on the transmission rate of 2-round PSMT [12]. After the works of
[11, 1], Kurosawa and Suzuki [9] gave a polynomial-time 2-round PSMT with
the transmission rate O(n).

On the other hand, a non-threshold adversary A is characterized by an
adversary structure Γ which is the family of subsets of n channels that A can
corrupt. Γ is said to be Q2 if

(Bi ∪Bj) ̸= {1, · · · , n}

for any Bi, Bj ∈ Γ, and Q3 if

(Bh ∪Bi ∪Bj) ̸= {1, · · · , n}

for any Bh, Bi, Bj ∈ Γ [6]. We say that an adversary A is Q2 if the Γ is Q2,
and A is Q3 if the Γ is Q3. We also define the maximal adversary structure Γ+

as follows.
Γ+ = {B | B ∈ Γ and B′ ̸∈ Γ for any B′ ⊃ B}.

Desmedt et al. showed that a 1-round PSMT exists if and only if an ad-
versary A is Q3 [5]. However, their scheme was inefficient. Kurosawa showed
an efficient 1-round PSMT which runs in polynomial time in the size of the
underlying linear secret sharing scheme [10].

Kumar et al. showed a many round PSMT against Q2-adversaries [8].
In this paper, we show round-efficient PSMTs against Q2-adversaries. We

first give a 3-round PSMT which runs in polynomial time in the size of the
underlying linear secret sharing scheme. We next present a 2-round PSMT
which is inefficient in general. (However, it is efficient if |Γ+| is small.) Our first
scheme is based on the verifiable secret sharing scheme of [2, 3], and our second
scheme is based on the secret sharing scheme of [7].

We also show how to achieve a reliable broadcast functionality efficiently in
this model.

threshold adversary non-threshold adversary
1-round n ≥ 3t+ 1 [4] Q3 [5, 10]
2-round n ≥ 2t+ 1 [4, 9] Q2 but not poly (this paper)
3-round Q2 and poly (this paper)

Table 1: Round complexity of PSMT

For B ∈ {1, · · · , n}, Bc denotes the complement of B. That is, Bc =
{1, · · · , n} \B.
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Kumar et al. [8] Our scheme (poly) Our scheme (not poly)
# of rounds many 3 2

Table 2: PSMT against Q2-adevrsaries

2 Preliminaries

2.1 Secret Sharing Scheme

In a secret sharing scheme, the dealer distributes a secret s to n participants
P = {P1, · · · , Pn} in such a way that some subsets of the participants can
reconstruct s while the other subsets of the participants have no information on
s. A subset of the participants who can reconstruct s is called an access set.
The family of access sets is called an access structure.

Definition 2.1 An access structure Σ is monotone if A ∈ Σ and A′ ⊇ A, then
A′ ∈ Σ.

2.2 Linear Secret Sharing Scheme (LSSS)

A secret sharing scheme for any monotone access structure Σ can be realized by
a linear secret sharing scheme (LSSS) (see [7]). Let M be an ℓ× e matrix over a
finite field F and ψ : {1, · · · , ℓ} → {1, · · · , n} be a labeling function, where ℓ ≥ e
and ℓ ≥ n.

Distribution algorithm:

1. To share a secret s ∈ F, the dealer first chooses a random vector ρ⃗ ∈ Fe−1

and computes a vector

v⃗ =M ×
(
s
ρ⃗

)
, (1)

where v⃗ = (v1, · · · , vℓ)T .

2. Let
LSSS(s, ρ⃗) = (share1, · · · , sharen), (2)

where sharei = {vj | ψ(j) = i}. The dealer gives sharei to Pi as a share
for i = 1, · · · , n.

Reconstruction algorithm: A subset of participants A can reconstruct the
secret s if and only if (1, 0, · · · , 0) is in the linear span of

MA = {m⃗j | ψ(j) ∈ A},

where m⃗j denots the jth row of M .

3



Definition 2.2 We say that the above (M,ψ) is a monotone span program
which realizes Σ.

The size of the LSSS is defined as ℓ which is the total number of field elements
that are distributed by the dealer.

3 How to Broadcast

Suppose that there are n channels between a sender S and a receiver R, and
there exists a Q2 adversary A who is characterzed by an adversary structure
Γ. Here we assume that Σ = Γc is monotone. This means that if B ∈ Γ and
B′ ⊆ B, then B′ ∈ Γ.

In this section, we show how to achieve a reliable broadcast functionality
efficiently in this model. We say that S broadcasts x if she sends x through all
n channels. Since A corrupts some subset of channels, R receives xi through
channel i for i = 1, · · · , n, where xi = x or xi ̸= x.

It is known that if A corrupts t out of n = 2t + 1 channels, then R can
recover x by simply taking the majority vote. Hence a naive approach of R
would be as follows. Let Γ+ = {B1, B2, · · · , BL}.

For i = 1, · · · , L, do;
if xj = x0 for some x0 for all j ∈ Bc

i ,
then output x0 and stop.

However, this algorithm is very inefficient because L is large in general. For
exampl, if A corrupts t out of n = 2t + 1 channels, then L =

(
2t+1

t

)
which is

exponential.

3.1 Proposed Algorithm of Receiver

Now our algorithm of R is as follows.

For i = 1, · · · , n, do;
Let Ci = {j | xj ̸= xi}.
If Ci ∈ Γ,
then output xi and stop.

This algorithm is very efficient and runs in O(n2T ), where T denotes the time
to check if Ci ∈ Γ. (See Fig.1.)
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Figure 1: Example of Broadcast, where C1 = {4, 5}

3.2 Correctness

The correctness of our algorithm is given by the following lemmas.

Lemma 3.1 R outputs some xi.

(Proof.) It is enough to show that Ci ∈ Γ for some i. Suppose that A corrupts
B ∈ Γ. Then for each i ̸∈ B,

Ci = B ∈ Γ.

This means that the Lemma holds.
Q.E.D.

Lemma 3.2 If B ∈ Γ, then Bc ̸∈ Γ. (That is, Bc ∈ Σ.)

(Proof.) Suppose that B ∈ Γ. On the other hand, B ∪ Bc = {1, · · · , n}.
Therefore Bc ̸∈ Γ because Γ is Q2.

Q.E.D.

Lemma 3.3 If R outputs xi, then xi = x.

(Proof.) Suppose that A corrupts some B ∈ Γ. Suppose that R outputs xi
such that xi ̸= x. Then i ∈ B clearly because xi ̸= x.

On the other hand, we have xj = x for all j ∈ Bc. Hence if j ∈ Bc, then
xj = x ̸= xi. This means that

Ci = {j | xj ̸= xi} ⊇ Bc,

Therefore we have Ci ̸∈ Γ from Lemma 3.2. However this contradicts to our
algorithm of R.

Q.E.D.
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4 Efficient 3-Round PSMT against Q2-Adversary

In this section, we show a polynomial-time 3-round PSMT against Q2-adversary
structures Γ. Let (M,ψ) be a monotone span program which realizes the access
structure Σ = Γc. For simplicity, we assume that ℓ = n and ψ(i) = i for
i = 1, · · · , n. Hence

M =

 m⃗1

...
m⃗n


is an n×e matrix over a finite field F. In what follows, (m⃗, v⃗T ) denotes the inner
product of two vectors m⃗ and v⃗, where T denotes transpose.

4.1 Protocol

The 1st Round: For a secret s ∈ F, the sender S chooses an e× e symmetric
matrix E = {eij} such that e1,1 = s randomly. S then computes v⃗1

...
v⃗n

 =M · E (3)

and sends v⃗i through channel i for each i.

Note that (M · E) ·MT is a symmetric matrix because E is a symmetric
matrix. Hence

(v⃗i, m⃗
T
j ) = (v⃗j , m⃗

T
i ). (4)

The 2nd Round: Suppose that receiver R received v⃗′i through channel i for
i = 1, · · · , n. R broadcasts all (i, j) such that

(v⃗′i, m⃗
T
j ) ̸= (v⃗′j , m⃗

T
i ).

The 3rd Round: For each (i, j) that R broadcast, S broadcasts bij = bji such
that

bij = (v⃗i, m⃗
T
j ) = (v⃗j , m⃗

T
i ) = bji.

We say that channel i is bad if (v⃗′i, m⃗
T
j ) ̸= bij for some j ̸= i. Otherwise we

say that channel i is good. Let BAD be the set of all bad channels, and GOOD
be the set of all good channels.

Wlog, let GOOD = {1, · · · , t}. Then R reconstructs s by applying the re-
construction algorithm of the LSSS to v′1,1, · · · , v′t,1, where v⃗′i = (v′i,1, · · · , v′i,e).
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Figure 2: The 1st round of Our 3-Round PSMT

4.2 Security Proofs

Theorem 4.1 The above protocol satisfies perfect privacy.

(Proof.) An adversary A can corrupt some subset of channels B ∈ Γ. Note
that B is a non-access set of the LSSS. Hence in the 1st round, A learns no
information on s. (Note that only the first element of v⃗i is related to s.)

IfR broadcasts (i, j) in the 2nd round, thenA corrupted channel i or channel
j. Hence A already knows the value of

bij = (v⃗i, m⃗
T
j ) = (v⃗j , m⃗

T
i ).

Hence A gains no information in the 3rd round even if S broadcasts bij . Thus
A learns no information on s.

Q.E.D.
Suppose that an adversary A corrupts B ∈ Γ.

Lemma 4.1 Bc is an access set of the LSSS.

(Proof.) From Lemma 3.2.
Q.E.D.

Lemma 4.2 Bc ⊆ GOOD. Hence GOOD is also an access set of the LSSS.

(Proof.) If channel i is bad, then it is clear that i ∈ B. This means that
BAD ⊆ B. Therefore

GOOD = BADc ⊃ Bc.

Hence GOOD is an access set of the LSSS from Lemma 4.1.
Q.E.D.
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Lemma 4.3 For any pair of good channels i and j, it holds that

(v⃗′i, m⃗
T
j ) = (v⃗′j , m⃗

T
i ).

(Proof.) Suppose that there exist a pair of good channels i and j such that the
above equation does not hold. Then R broadcasts the (i, j), and S broadcasts
bij = bji. This means that bij ̸= (v⃗′i, m⃗

T
j ) or bji ̸= (v⃗′j , m⃗

T
i ). Hence channel i is

bad or channel j is bad. This is a contradiction.
Q.E.D.

Lemma 4.4 Without loss of generality, assume that GOOD = {1, · · · , t}. Then
there exists a vector x⃗ = (s′, ρ⃗′) such that

(v′1,1, · · · , v′t,1)T =M0 · x⃗T ,

where

M0 =

 m⃗1

...
m⃗t

 .

That is, (v′1,1, · · · , v′t,1) is a share vector of the LSSS with M0.

(Proof.) From Lemma 4.3, there exists aij such that

(m⃗i, v⃗
′T
j ) = (v⃗′i, m⃗

T
j ) = aij

for any (i, j) such that i ∈ GOOD and j ∈ GOOD. Let U0 = {ai,j} be a t × t
symmetric matrix. Then U0 can be written as

U0 =M0 · V0 = V T
0 ·MT

0 ,

where V0 = [v⃗′T1 , · · · , v⃗′Tt ].
On the other hand, GOOD is an access set from Lemma 4.2. Therefore there

exists a vector α⃗0 such that α⃗0 ·M0 = (1, 0, · · · , 0). Hence

α⃗0 · U0 = α⃗0 ·M0 · V0 = (1, 0, · · · , 0) · V0 = (v′1,1, · · · , v′t,1)

Now

α⃗0 · U0 = α⃗0 · V T
0 ·MT

0 = x⃗ ·MT
0

where x⃗ = α⃗0 · V T
0 . Therefore,

(v′1,1, · · · , v′t,1) = x⃗ ·MT
0 .

Q.E.D.

Theorem 4.2 The above protocol satisfies perfect reliability.
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(Proof.) The receiver R received v⃗′i = (v′i,1, · · · , v′i,e) through channel i for
i = 1, · · · , n. Suppose that an adversary A corrupts B ∈ Γ. Wlog, let Bc =
{1, · · · , k}. Then it is clear that v⃗′i = v⃗i for i = 1, · · · k. Hence the original
secret s is obtained if we apply the reconstruction algorithm of the LSSS to
(v′1,1, · · · , v′k,1) from Lemma 4.1.

On the other hand, Bc ⊆ GOOD from Lemma 4.3. Hence, wlog, let GOOD =
{1, · · · , t}, where t ≥ k. Suppose that s′ is obtained by applying the reconstruc-
tion algorithm of the LSSS to (v′1,1, · · · , v′t,1). Then it must be that s′ = s
because Bc ⊆ GOOD. Hence R can compute s correctly.

Q.E.D.

4.3 Efficiency

In the 1st round, the sender sends ℓ · e field elements. (Remember that M is an
ℓ × e matrix.) In the 2nd round, the receiver sends O(ℓ2n) elements of Zℓ. In
the 3rd round, the sender sends O(ℓ2n) field elements.

It is easy to see that the sender and the receiver run in polynomial time in
the size of the LSSS (which is ℓ).

5 2-Round PSMT against Q2-Adversary

In this section, we show a 2-round PSMT for Q2-adversaries. It is ineffi-
cient in general. However, it is efficient if L = |Γ+| is small, where Γ+ =
{B1, B2, · · · , BL} is the maximal adversary structure (such that Γ is Q2).

5.1 Protocol

Let s ∈ F be a secret of the sender S. Let OK be ∅.

The 1st Round: For i = 1, · · · , L, R chooses ri ∈ F randomly, and sends ri
through all channels belonging to Bc

i . (In other words, R broadcasts ri
over Bc

i .)

The 2nd Round: 1. For i = 1, · · · , L, S adds i to OK if she received some
identical r′i through all channels belonging to Bc

i .

2. S computes c = s+
∑

i∈OK r
′
i.

3. S broadcasts c and OK.

Finally R computes ŝ such that

ŝ = c−
∑
i∈OK

ri.
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Figure 3: The 1st round of the proposed 2-Round PSMT, where B1 = {1, 2}

5.2 Security Proofs

Theorem 5.1 The above protocol satisfies perfect privacy.

(Proof.) Suppose that an adversaryA corrupted Bj ∈ Γ. ThenA does not know
rj because R sent rj through all channels belonging to Bc

j . Further S receives
rj correctly through all channels belonging to Bc

j . Hence j ∈ OK. Therefore S
learns no information on s from c because rj works as the one-time pad.

Q.E.D.

Theorem 5.2 The above protocol satisfies perfect reliability.

(Proof.) We show that r′i = ri if i ∈ OK. Suppose that an adversaryA corrupted
Bj ∈ Γ. Then there exists some channel k such that k ∈ Bc

i \ Bj because Γ is
Q2. This means that S receives ri correctly through the channel k.

Hence if i ∈ OK, then it must be that S received ri correctly through all
channels belonging to Bc

i . Therefore r′i = ri if i ∈ OK. It implies that R
computes s correctly.

Q.E.D.

5.3 Efficiency

In the 1st round, the receiver sends O(nL) field elements. In the 2nd round, the
sender sends O(n) field elements and O(nL) elements of ZL.
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