
Acceleration of Differential Fault Analysis of the

Advanced Encryption Standard using Single Fault

Subidh Ali1 and Debdeep Mukhopadhyay1

Department of Computer Sc. and Engg, IIT Kharagpur, West Bengal, India.
{subidh,debdeep}@cse.iitkgp.ernet.in

Abstract. In this paper we present a speed up of the existing fault attack [2] on the
Advanced Encryption Standard (AES) using single faulty cipher. The paper suggests
a parallelization technique to reduce the complexity of the attack from 232 to 230.

Keywords: Differential Fault Analysis, Fault Attack, Advanced Encryption Stan-
dard.

1 Introduction

In [1] the author reduced AES key space to 232 by injecting a single byte fault at the eighth
round input. This work pointed out that the fault attack against AES can be performed
with a single byte fault. This idea was made more realistic in the work of [2] which proposed
a method to reduce the AES key space to a mere 28 values using a single instance of a byte
fault.

This paper revisits the work done in [2] and further reduce the complexity of the attack.
The attack proposed in [2] uses a two phase attack algorithm: the first phase, which is an
adoption of [1], reduces the AES key space to an expected value of 232 using a single instance
of a byte fault induced at the input of the eighth round. In the second phase, these reduced
key space is further filtered by taking into account the relation between the tenth and ninth
round keys of AES as per the key schedule of AES. The final remaining key space is 28

values. In this work, we show that the second step of the above attack can be parallelized,
exploiting a property in the equations involved in the relations between the fault values and
the ninth and tenth round keys of AES. This parallelization helps in working with a smaller
key space of around 230 in place of 232, as performed in [2].

Notation

In this paper, multiplications are considered to be polynomial multiplications over F28 mod-
ulo the irreducible polynomial x8 +x4 +x3 +x+1. It should be clear from the context when
a mathematical expression contains integer multiplication.

2 Existing Fault Analysis

In this section we describe the most recent fault attack developed in this class [2]. The
attack reduces the key space of AES to 28 using an algorithm of time complexity 232. The
algorithm uses a two phase method and is based on the assumption that a random byte
fault is injected at the input of the eighth round of AES. The elegance of the attack lies in
the fact that it needs only one faulty ciphertext to retrieve the key.

C3 C4

f f ′ f ′

2f ′

f ′

3f ′

f ′

F3

F4

F2

F3

F4

8
th Round Input 8

th Round Byte Sub 8
th Round Mix Column

9
th Round Byte Sub

F2

C2 C1 C1 C1
C2 C2 C2

C3 C3 C3
C4 C4

C4

F1

8
th Round Shift Row

9
th Round Mix Column 9

th Round Shift Row

F1 F4

2F4

F3

3F3

2F3

F3

3F2

F2

C1

F4 F12F1

2F2

3F4F1

3F1

F2

Fig. 1: Propagation of byte fault induced at the input of eighth round

2.1 First Phase of the Attack

Figure 1 shows the propagation of single byte fault induced at the input of the eighth round
of AES.

At the ninth round output, these faults are propagated to rest of the twelve bytes. Let us
consider CT and CT ′ be the fault free and faulty output ciphertext where CT is represented
by,

K10 =

0

B

B

@

k0 k4 k8 k12

k1 k5 k9 k13

k2 k6 k10 k14

k3 k7 k11 k15

1

C

C

A

K9 =

0

B

B

@

k′

0 k′

4 k′

8 k′

12

k′

1 k′

5 k′

9 k′

13

k′

2 k′

6 k′

10 k′

14

k′

3 k′

7 k′

11 k′

15

1

C

C

A

All the elements of CT , CT ′ and K10 are in F28 .

If we use the inter-relation between the faulty bytes of column c1 at the end of the ninth round
MixColumn as in Figure 1, we will have following four equations:

2F1 = S
−1(x0 ⊕ k0) ⊕ S

−1(x′

0 ⊕ k0)

F1 = S
−1(x13 ⊕ k13) ⊕ S

−1(x′

13 ⊕ k13)

F1 = S
−1(x10 ⊕ k10) ⊕ S

−1(x′

10 ⊕ k10)

3F1 = S
−1(x7 ⊕ k7) ⊕ S

−1(x′

7 ⊕ k7)

(1)

This system equations yield 28 expected values of key quartet {k0, k13, k10, k7}. Similarly solving
the other three system of equations generated from columns c2, c3, and c4 will give other three key
quartet values. Therefore the entire AES key space reduces to an expected value of (28)4 = 232.

In the second phase of the attack these 232 possible keys are further filtered out using the inter-
relations of the fault values after the eighth round MixColumn, which are not used in the above
equations.

2.2 Second Phase of the Attack

In order to further reduce the key hypotheses the relationship between the ninth round key and the
tenth round key is used.

The AES key schedule is invertible. Therefore ninth round key K9 can be expressed in terms of
elements of tenth round key K10. The value of K9 can be expressed as

0

B

B

@

k0 ⊕ S(k13 ⊕ k9) ⊕ h10 k4 ⊕ k0 k8 ⊕ k4 k12 ⊕ k8

k1 ⊕ S(k14 ⊕ k10) k5 ⊕ k1 k9 ⊕ k5 k13 ⊕ k9

k2 ⊕ S(k15 ⊕ k11) k6 ⊕ k2 k10 ⊕ k6 k14 ⊕ k10

k3 ⊕ S(k12 ⊕ k8) k7 ⊕ k3 k11 ⊕ k7 k15 ⊕ k11

1

C

C

A

.

From Figure 1, we can observe that the fault values in the first column of the state matrix at the
output of the eighth round MixColumn is (2f ′, f ′, f ′, 3f ′), where f ′ is a non-zero arbitrary value in
F28 . Using the InverseMixColumn operation and using the inter-relations between the fault values,
we can define the following equation:

2 f
′ ==S

−1(14 (S−1(x0 ⊕ k0) ⊕ k0 ⊕ S(k13 ⊕ k9) ⊕ h10)⊕ 11(S−1(x13 ⊕ k13) ⊕ k1 ⊕ S(k14 ⊕ k10))⊕

13 (S−1(x10 ⊕ k10) ⊕ k2 ⊕ S(k15 ⊕ k11))⊕ 9 (S−1(x7 ⊕ k7) ⊕ k3 ⊕ S(k12 ⊕ k8)))⊕

S
−1(14 (S−1(x′

0 ⊕ k0) ⊕ k0 ⊕ S(k13 ⊕ k9) ⊕ h10)⊕ 11(S−1(x′

13 ⊕ k13) ⊕ k1 ⊕ S(k14 ⊕ k10))⊕

13 (S−1(x′

10 ⊕ k10) ⊕ k2 ⊕ S(k15 ⊕ k11))⊕ 9 (S−1(x′

7 ⊕ k7) ⊕ k3 ⊕ S(k12 ⊕ k8)))
(2)

Similarly, we can define the following equations:

f
′ =S

−1(9 (S−1(x12 ⊕ k12) ⊕ (k12 ⊕ k8)) ⊕ 14 (S−1(x9 ⊕ k9) ⊕ (k13 ⊕ k9)))⊕ 11 (S−1(x6 ⊕ k6)⊕

(k14 ⊕ k10))⊕ 13(S−1(x3 ⊕ k3) ⊕ (k15 ⊕ k11))) ⊕ S
−1(9 (S−1(x′

12 ⊕ k12) ⊕ (k12 ⊕ k8))⊕

14 (S−1(x′

9 ⊕ k9) ⊕ (k13 ⊕ k9)))⊕ 11 (S−1(x′

6 ⊕ k6) ⊕ (k14 ⊕ k10))⊕ 13 (S−1(x′

3 ⊕ k3) ⊕ (k15 ⊕ k11)))
(3)

f
′ =S

−1(13 (S−1(x8 ⊕ k8) ⊕ (k8 ⊕ k4)) ⊕ 9 (S−1(x5 ⊕ k5) ⊕ (k9 ⊕ k5))) ⊕ 14 (S−1(x2 ⊕ k2)

⊕ (k10 ⊕ k6))⊕ 11 (S−1(x15 ⊕ k15) ⊕ (k11 ⊕ k7))) ⊕ S
−1(13 (S−1(x′

8 ⊕ k8) ⊕ (k8 ⊕ k4))⊕

9 (S−1(x′

5 ⊕ k5) ⊕ (k9 ⊕ k5)))⊕ 14 (S−1(x′

2 ⊕ k2) ⊕ (k10 ⊕ k6))⊕ 11 (S−1(x′

15 ⊕ k15) ⊕ (k11 ⊕ k7)))
(4)

3 f
′ =S

−1(11 (S−1(x4 ⊕ k4) ⊕ (k4 ⊕ k10)) ⊕ 13 (S−1(x1 ⊕ k1) ⊕ (k5 ⊕ k1)))⊕ 9 (S−1(x14 ⊕ k14)⊕

(k6 ⊕ k2))⊕ 14 (S−1(x11 ⊕ k11) ⊕ (k7 ⊕ k3))) ⊕ S
−1(11 (S−1(x′

4 ⊕ k4) ⊕ (k4 ⊕ k10))⊕

13 (S−1(x′

1 ⊕ k1) ⊕ (k5 ⊕ k1))) ⊕ 9 (S−1(x′

14 ⊕ k14) ⊕ (k6 ⊕ k2))⊕ 14 (S−1(x′

11 ⊕ k11) ⊕ (k7 ⊕ k3)))
(5)

The second stage of the attack is coupled with the first stage. All of the key hypotheses generated
by the first stage are tested using the above equations. If it the key value satisfies the above
equations, we store the key, else it can be discarded. This avoids storing the entire 232 possible AES
keys which are produced by the first step of the attack, and an attacker would expect to reduce 28

key hypotheses. But the complexity remain 232

In the next section we present our parallelization technique to reduce the complexity of the
attack to 230 from 232.

3 Parallelization of the Second Phase of the Attack

The above second phase of the analysis is based on four equations: (2), (3), (4), and (5). All the 232

possible key hypotheses are tested by these four equations. The key hypotheses which are satisfied
by all four equation are considered and rest are discarded.

However if we consider the above four equations in pairs we observe that each possible pair does
not contain all the 16 bytes of the AES key. For example, the pair of equations (3) and (4) contains
14 key bytes excluding k0 and k1. This fact can be utilized to reduce the time complexity of the
attack. We use this observation to split the lists of key which are exported in the first phase of the
attack and subsequently filtered in the second phase.

In the first phase of the attack we have four quartets {k0, k13, k10, k7}, { k12, k9, k6, k3 },
{k8, k5, k2, k15} and {k4, k1, k14, k11} . Let us assume one value of the first quartet is (a1, b1, c1, d1).
As per the property of the S-Box there will be another value of k1 which satisfies the system of
equation (1) with rest of the key byte values remaining same. Let us assume the second value of k1

is a2, then the four-tuple (a2, b1, c1, d1) also satisfies the system of equation (1).

Test 1

Test 2 Test 2 Test 2 Test 2

h1

h1

h2

h2g2

g2

g1

g1f1

f1

f2

f2e4

e3

e2

e1

L1 L3
L2 L4

d1

d1

d2

d2c2

c2

c1

c1b1

b1

b2

b2a4

a3

a2

a1

k0 k0 k1 k1

k7 k4 k14 k11 k12 k9 k6
k3 k8 k5 k2 k15

k10k13

k7 k4 k14 k11 k12 k9 k6
k3 k8 k5 k2 k15

k10k13

k4k7k10k13
k3k6k9k12

k15k8 k5
k2

28

2
8

27

2
8

t1

t1

t2

t2s2

s2

s1

s1r1

r1

r2

r2q4

q3

q2

q1p1

p1

p2

p2o2

o2

o1

o1n1

n1

n2

n2

L5

m1

m2

m3

m4

L6

a2

a4

e2

e3
e4

e1a1

a3

b1

b2

c1

c2

d1

d2
h2

h1g1

g2f2

f1

k1k0k0
k11k14k1

Fig. 2: Model for data-flow parallelization in the second phase

Using this idea, we can divide the list for the quartet {k0, k13, k10, k7} into two sublists, L1, L2.
As depicted in Figure 2 The list L1 contains the pair values for the key byte k0 (note that the key
byte k0 has always an even number of possible choices). The list L2 contains the distinct values for
the remaining part of the quartet, {k13, k10, k7}. Thus the expected size of the lists L1 and L2 is 27

each, compared to the previous list size of 28 when{k0, k13, k10, k7} were stored together.

Similarly, we store the possible values of quartet {k4, k1, k14, k11} in two lists, L3 and L4. Here
L3 stores the pair values for the key byte k5, while the list L4 contains the distinct values for the
key bytes {k4, k14, k11}. Here also the expected size of the lists are 27. The other two quartets {
k12, k9, k6, k3 }, {k8, k5, k2, k15} are stored in list L5 and L6. Both the lists have expected size of 28.

Next we select the key bytes from the six lists, L1, L2, L3, L4, L5, L6 to solve the equations of
the second phase of the attack such that the time complexity is reduced.

Because of the observations regarding the pair of equations (2) and (5); and (3) and (4), the
second phase can be divided into two parts. In part one we test the keys generated from the first
phase of the attack by the pair of equations (3) and (4). In Figure 2 this is denoted as Test1. As
the two equations for Test1 does not required key bytes k0 and k1 we only consider all possible
keys generated from lists L2, L4, L5, L6. There are 230 such possible keys. In the second part we,
combine each of the 14 byte keys satisfying Test1 with one of the four possible values arising out of

the four combination of the pair of values for k0 in L1 and k1 in L3. These keys are further tested
in parallel by the equations (2) and (5). In Figure 2 we refer to this test as Test2.

The size of the lists L2 and L4 is 27; and the size of lists L5 and L6 is 28. Therefore the number
of possible keys generated from this four lists is 27 × 27 × 28 × 28 = 230. These 230 keys are fed as
input to Test1 which is expected to reduce the key hypotheses by 28. Therefore each instance of

Test2 will receive input of (2
30

28) = 222 expected key hypotheses. The chance of each key satisfying
Test2 is 2−16 which implies each instance of Test2 will result in 26 key hypotheses.

The above attack procedure is summarized in Algorithm 1.

Algorithm 1: Parallelized Fault Attack on AES

Input: 128 bit faulty and fault free ciphertexts C and C′

Output: 28 possible key hypotheses

Step 1: Produce four lists storing {k0, k13, k10, k7}, { k12, k9, k6, k3 }, {k8, k5, k2, k15} and
{k4, k1, k14, k11}

Step 2: Store the key bytes in six lists L1 to L6 (as mentioned before).

Step 3: Each of the possible 14 byte keys generated by combining list L2, L4, L5, and L6, is
tested by the equations (3) and (4) (Test1).

Step 4: Each of the 14 byte keys satisfying Test1 is combined with four possible k0, k1 pair
values taken from four columns of the lists L1 and L3.

Step 5: Run in parallel the four instances of Test2 (check equations (2) and (5)) each with
one of the four 16 byte keys of Step 4 as a input.

It may be easily observed that the time required is because of step 3, which is equal to 230.

4 Conclusion

The work in this paper improves the previous time complexity of the attacks [2] from 232 to 230

using a parallelization technique thereby making the attack four times faster on an average.

References

1. Debdeep Mukhopadhyay. An improved fault based attack of the advanced encryption standard.
In Bart Preneel, editor, AFRICACRYPT, volume 5580 of Lecture Notes in Computer Science,
pages 421–434. Springer, 2009.

2. Michael Tunstall and Debdeep Mukhopadhyay. Differential fault analysis of the advanced en-
cryption standard using a single fault. Cryptology ePrint Archive, Report 2009/575, 2009.
http://eprint.iacr.org/.

