
Every Vote Counts: Ensuring Integrity in Large-Scale DRE-based Electronic Voting

Feng Hao
School of Computing Science

Newcastle University, UK
feng.hao@ncl.ac.uk

Matthew Nicolas Kreeger
Thales Information Technology Security

Cambridge, UK
matthew.kreeger@thales-esecurity.com

Abstract—This paper presents a new and complete cryp-
tographic e-voting system, called Direct Recording Electronic
with Integrity (DRE-i). The DRE is a widely deployed voting
system that commonly uses touch-screen technology to directly
record votes. However, a lack of tallying integrity has been
considered the most contentious problem with the DRE system.
In this work, we take a broad interpretation of the DRE: which
includes not only touch-screen machines, as deployed at polling
stations, but also remote voting systems conducted over the
Internet or mobile phones. In all cases, the system records votes
directly. The DRE-i protocol is generic for both on-site and
remote voting; it provides a drop-in mathematical solution to
ensure tallying integrity even if the DRE machine is completely
corrupted. Besides the tallying integrity, we also describe
procedural means to protect voter’s privacy in a complete
system. As compared with the currently well-known Helios e-
voting system, our work represents a significant improvement
in two main aspects. First, it permits a thin client: a web-based
implementation of DRE-i does not require any Java plug-in
to be installed or Javascript to be enabled. Second, it is self-
tallying: as we adopt a novel technique to encrypt votes, anyone
can tally votes by simply multiplying ciphertexts without
needing any private keys or tallying authority involvement.

I. INTRODUCTION

The Direct Recording Electronic (DRE) voting system
commonly adopts touch-screen technology to record the
voter’s choice directly. The system can provide several
benefits in terms of usability, accessibility and efficiency
[10]. Voters, including the disabled and the elderly, generally
consider a touch screen interface easy-to-use [8] and the
electronic display can be conveniently customized to various
language options. In addition, DREs can effectively limit
voters to select only a specified number of candidates, hence
preventing both over- and under-voting [10].

The procedural complexity of a DRE is low. Firstly,
the voter authenticates himself at the polling station and
obtains a token (typically, a PIN slip or smart card) [2].
The voter enters a private booth, presents the token to the
DRE machine, and starts the voting process. Figure 1 shows
an example1 of the selection choices on the touch screen.
The voter follows two basic steps to cast a vote: 1) select a
candidate; 2) confirm or cancel. If the voter opts to “confirm”
the intended vote, the vote is recorded. Otherwise, no vote

1This is the simplest example and for illustration only. The real system
can be more complex, but the basic procedure is roughly the same.

is recorded, and the screen will again prompt the voter to
select the desired candidate.

The perceived benefits of DRE had created a wave of
adoption in many countries. For example, the use of DRE
technology has expanded rapidly in the United States since
the 2000 election – from 12% in that election to 29% in
2004, to 38% in 2006 (but it quickly dropped to 32% in 2008
for reasons we will explain) [36]. This was largely attributed
to the Help America Vote Act (HAVA) of 2002, which
requires at least one voting machine in each precinct to fully
accommodate disabled voters, and DREs are arguably the
only system that meets this requirement. DRE technology
is also widely used outside the USA. For example, India
moved to fully DRE voting in the 2004 election and Brazil
started its first fully DRE election in 2002 [35].

However, potential security vulnerabilities with DREs
were publicized as a result of several studies. The analysis of
the Diebold voting system carried out by Kohno et. al. was
one of the first, and highly influential [2]. The researchers
had access to the source code of the system, which was
available on the Internet. They discovered serious system
flaws and software vulnerabilities. Other studies revealed
similar results [11]. The alarming level of security defects
found casted wide-spread doubt on the integrity of the
tallying result. In response to the research findings in [2],
[11], many people called on the government to abandon
DREs completely and to discard e-voting in general. Several
states in the US consequently reverted to old-fashioned
voting machines, resulting in the quick decline of DRE usage
from 38% in 2006 to 32% in 2008 [36].

E-voting is a new technology, and as with any new
technology, it takes time for it to develop and improve.
Rushing to embrace e-voting is just as harmful as rushing to
reject it. In this study, we first need to distinguish protocol
errors from implementation errors. Many of the reported
problems, such as buffer overflow, SQL injection etc, are
related to the latter. However, from a system point of view,
we should be more concerned with the former, because
protocol errors are more fundamental and harder to fix.

In the proceeding example (see Figure 1), it contains
a fatal protocol error (although similar systems have been
widely deployed). After the voter casts a vote, there is no
way for the voter, or others, to verify whether the vote has
been correctly counted in the final tally. The voter has to

Figure 1. A touch screen based single-candidate DRE voting system

completely trust the DRE machine. This is unacceptable
from a security point of view for the simple reason that a
totally trustworthy third party does not, and will not, exist.
A practical countermeasure adopted by many countries is
through government certification. But this fails to resolve the
protocol error. Whilst the certification may be necessary, it
is not sufficient in building up public confidence and trust.
Previous studies have shown that even certified machines
still contain an abundance of software defects and system
vulnerabilities [2], [11].

In the paper, we attempt to provide a drop-in mathematical
solution to ensure tallying integrity in a DRE system, with-
out altering the voter’s intuitive voting experience. While
the solution primarily focuses on tallying integrity, we also
present procedural means to protect the voter’s privacy in a
complete system. Our objective is not to propose an “ulti-
mate solution” for use in all elections. But rather, we aim
to explore, through cryptographic means, how far we can
achieve in electronic voting in terms of security, performance
and simplicity. We believe it is crucial to understand the
exact merits and limits of e-voting before deciding where it
is applicable.

II. PAST WORK

In this section, we review past work related to electronic
voting. There are many paper-based voting protocols, such
as Prêt à Voter [7], Scantegrity [6], ThreeBallot [5] etc.
These protocols have different security properties and trade-
offs when compared with e-voting systems. It is, however,
beyond the scope of this paper to evaluate these protocols.

There are two categories of e-voting: decentralized and
centralized [12]. In the former case, the election is run by
voters themselves without involving any trusted third parties.
A decentralized e-voting protocol can provide the theoretical
best protection of the voter’s privacy: the voter does not have
to trust anyone but himself [12]. However, such protocols
are limited in terms of scalability and are only suitable
for small-scale elections [12], [19], [20]. This contrasts
with centralized e-voting, where centralized administration
ensures a greater level of robustness and is considered more
suitable for large-scale elections [8], [24].

DRE is one example of centralized e-voting. As with any
centralized system, the DRE machine becomes an attractive
target of attack and a single point of failure. If the ma-
chine crashes in the middle of election, it may cause great
disruptions to the election. On the other hand, due to the
centralized nature, it is considerably easier to focus resource
on protecting the machine from system failures.

Apart from system robustness, a key issue with a DRE
system is whether the software is trustworthy. Government
certification of the DRE is one perceived method to instill
trust [2], however, numerous studies have shown that it is
imprudent to rely on certification for establishing trust [2],
[11].

To build a trustworthy DRE system, there are two general
approaches: through trusted computing [3], [4], [10] or
mathematics [8], [18]. The first approach attempts to boot-
strap trust from the integrity of a small piece of hardware
and software, called Trusted Computing Base (TCB) [3].
However, the existence of the TCB is sometimes called into
question [24]. For example, Scytl is a commercial TCB-
based solution [30]. It is an external device that can be
attached to the DRE machine, permitting voters to verify
votes in real-time. Essentially, this solution shifts trusting
the DRE to trusting Scytl – voters must completely trust the
software of the Scytl device (and trust it does not collude
with the DRE) [24].

The second approach is more promising. Rivest once
suggested a famous design principle for e-voting systems:
that is “software independence” [31]. This principle states
that it does not really matter how the software is written
inside the system, by verifying the output of the software,
the voter can get assurance that the software is tallying
votes correctly. Essentially, this approach shifts from trusting
software to trusting mathematics – and mathematics is
publicly verifiable. The “software independence” is also the
guiding principle in our work.

There have been many cryptographic voting protocols
proposed in the past, for example [8], [25], [26], [32], [33].
In general, they all involve tallying authorities (also called
trustees) and employ mix-nets or threshold decryption. For
example, in the VoteBox voting system, all the votes are
encrypted by a tallying public key using ElGamal encryption
[8]. The private key is shared among a number of authorities
using a secret sharing scheme. The homomorphic property
of the ElGamal encryption facilitates adding votes in the
ciphertext form. The final tally is revealed when a quorum
of authorities are reached to reconstruct the decryption key.
In a different approach, Chaum proposes to let each trustee
possess his own public key, which in turn is used to encrypt
the votes [25]. The encrypted votes are run through a series
of mix-nets for shuffling and re-encryption before they are
finally decrypted. Neff has a similar mix-net based protocol
[26].

The latest development in this line of research is the web

implementation of the Helios e-voting system [32], [33].
The Helios system is built on pre-existing cryptographic
techniques and web development tools. The system design is
similar to past works [8], [25], [26] – it depends on tallying
authorities, and employs mix-nets in Version 1.0 [32] and
threshold decryption in Version 2.0 [33]. To some extent, the
Helios system reflects the state of the latest cryptographic
voting research.

The primary goal of the Helios design is to provide
cryptographic assurance on tallying integrity, as stated in the
Helios paper [32]: “Trust no one for integrity, trust Helios
for privacy.” Although Helios adopts Java to encrypt the vote
in a client browser, as demonstrated in [39], the encryption
provides no assurance on vote secrecy, since the browser
may be compromised.

The practical significance of the Helios system is that
it has been used in some real-world elections. In 2009,
the Université catholique de Louvain (UCL) adopted a cus-
tomized version of Helios (v2.0) to elect its president [33].
Subsequently, the International Association for Cryptologic
Research (IACR) chose Helios 2.0 to run a trial election in
2010 [34]. Both elections were reported a success [33], [34].

The elections demonstrated two advantages of e-voting:
precision and convenience. It is interesting to note that in the
UCL election, the leader came short of winning the election
in the first round by only 2 votes out of a total of about 4000
[33]. The audit of the tally led to a quick acceptance without
any recount or dispute. This level of precision is remarkable
when compared to the often tedious and error-prone manual
counting. In another election, the IACR members were asked
whether to switch to electronic voting or keep the current
paper-based system. The vast majority of members voted
for switching to electronic voting (344 vs 32) [34]. Many
members found the e-voting system convenient to use, when
compared to the IACR’s traditional voting system, based on
double envelopes sent via postal mail.

However, practical deployments have also revealed some
(inherent) drawbacks of the Helios system. These drawbacks
are also generally applicable to other cryptographic voting
protocols. Although Helios is customized to be web-based,
the lessons are relevant to touch-screen based implementa-
tions too.

First, the use of a Java plug-in was commonly seen as a
major drawback. Helios requires a trustworthy client execu-
tion environment. In particular, it requires the user to install
a Java plug-in in the browser (Helios uses LiveConnect
to invoke the Java Virtual Machine from Javascript). As
explained in [34], installing the Java plug-in implies trusting
Sun (the provider of Java, now part of Oracle), and the code
produced by Sun. As a result, many people are unwilling to
install Java plug-ins; some do not even enable Javascript.

Second, there is the issue of client performance. Helios
requires expensive cryptographic computation in the client
browser. In the UCL election, it is reported that it took

on average 3-4 seconds to encrypt a vote [33]. During a
public usability study of the Helios system, conducted at the
University of Waterloo, encryption seemed to take longer –
half of the participants (20 in total) received at least one
script timeout message because encryption took too long
[37]. Voters using old, or slow, computers may not be able
to participate in the voting.

Third, the downloaded code presents another issue. In
Helios, the client browser executes downloaded code from
the server. Some IACR members were concerned with this,
as one member indicates: “Once I started the voting system,
I had no clue whether the applet running in my browser
was actually the Helios voting application or some other
application trying to mimic the Helios voting system” [34].
Malicious code can not only easily compromise vote secrecy,
but also cause other harm to befall a user’s computer [39].

Fourth, as acknowledged in the Helios paper [33], the
management of tallying authorities proved to be a real
challenge in practice. In the UCL election, the tallying
authorities were selected from students and administrative
staff etc. Many did not have a computer science background
(so they were not from the same or related CS labs). In
theory, the tallying authorities are responsible for keeping
the private keys secret, and more importantly, keeping the
keys available during the election (losing keys would cause
DoS attacks to the whole election). This is beyond the
comfort zone of ordinary people who are not computer
experts and know little about cryptography. In reality, an
election commission was organized with several computer
experts. The election commission assisted in almost all the
tasks – from buying new laptops, removing hard disk drives,
disabling wireless network cards, to booting up from Linux
CDs, running key generation code, storing the generated
keys on USB sticks, and executing decryption code after
voting. As noted in [33], this required the tallying authorities
to “place significant trust in the election commission” to
protect the private keys. Still, this was considered not good
enough. The risk of having some USB sticks accidentally
damaged by the tallying authorities was deemed high, so,
in addition, UCL used a notary public to centrally maintain
the backups of the all the private keys [33].

Motivated by the above practical issues, we chose a
completely different approach to construct a cryptographic
voting protocol. Our design strategy is to pre-compute
almost all the cryptographic operations before an election,
in such a structured way that the election will be self-
tallying. The pre-computation provides two advantages: 1)
it allows a thin client as the client does not need to do
any computation at all2, hence addressing the first three
issues; 2) it permits self-tallying, so anyone can tally votes
without needing tallying authorities, hence addressing the

2This is consistent with the recommendation in the IACR report [34] of
moving client encryption to the server, but our solution involves a thorough
and systematic change in the overall design.

fourth issue.
Our protocol is based on an innovative cancellation for-

mula (details will be explained in Section III-B2), which
was first presented by Hao and Zieliński in 2006 to solve
the anonymous veto problem [14] and later applied by
Hao, Ryan and Zieliński to solve the decentralized e-
voting problem [12]. Our contributions in this paper are
twofold. Applying the cancellation formula to centralized e-
voting to assure tallying integrity is the primary contribution.
Although the formula itself is not new (see [12], [14]),
the use of it in centralized e-voting is new. The result is
essentially a new voting protocol. Our secondary contribu-
tion is to effectively combine the cancellation formula [14],
homomorphic encryption [12] and Benaloh’s voter-initiated
audit framework [27] into an overall efficient voting system.
In the following section, we will explain in detail how the
system works.

III. THE DRE-I PROTOCOL

In this section, we describe a cryptographic e-voting
protocol called DRE-i, where i stands for integrity. For
simplicity of discussion, we will mainly explain the protocol
in the context of touch-screen based on-site voting, and later
show its application in remote e-voting.

A. Integrity requirements

To ensure integrity, a voting protocol should fulfill the
following requirements.

1) Ballot well-formedness: The ballot must have the
correct format to represent exactly one vote.

2) Recorded as cast: The recorded vote must be the
same as the one the voter intended to cast.

3) Tallied as recorded: The tally must be the same as
the sum of the recorded votes.

These requirements are intuitive. The first requirement
limits a single ballot to have only one vote. For example,
in the single-candidate election, the ballot should contribute
either 0 or 1 to the tally, nothing more than that. The
Zero Knowledge Proof (ZKP) is a well-established technique
to ensure ballot well-formedness [17], [18]. The second
requirement states the machine must record the correct input
from the voter. A widely adopted solution, which is also
used in our protocol, is via Benaloh’s voter-initiated auditing
[27]. The third one is a crucial requirement [26]. Satisfying
this requirement without involving tallying authorities is the
main contribution of this paper. Additional requirements
such as coercion resistance can be found in [6], [8], [9].
We will explain in Section IV that our protocol also fulfills
those requirements.

B. Three Stages of Voting

The DRE-i protocol consists of three stages: ballot gen-
eration, ballot casting and ballot tallying. The following
sections explain each stage in detail.

1) Ballot generation: Let G denote a finite cyclic group
of prime order q in which the Decision Diffie-Hellman
(DDH) problem is intractable [16]. Let g be a generator
in G. The parameters (G, g) are publicly agreed before the
election starts.

Let us first consider the single-candidate case. The system
generates n ballots where n is significantly larger (say 10
times more) than the total number of the eligible voters. The
extra ballots are used for auditing purposes.

For each ballot, the system computes a random public
key gxi , where xi ∈R [1, q − 1]. When this is done for all
the ballots, the system computes gyi =

∏
j<i g

xj/
∏
j>i g

xj

for every ballot. Here, we call gyi a restructured public
key, because it is constructed by multiplying all the random
public keys before i and dividing all the public keys after i.
Given that xi is random, yi 6= 0 holds with an exceedingly
overwhelming probability. (If yi = 0, it would be publicly
obvious that the machine is misbehaving.) In the following
theorem, we assume the machine selects xi properly at
random and keep the values secret. In Section IV, we will
discuss the implications if the machine deviates from this
assumption.

Theorem 1. Under the Decision Diffie-Hellman assumption,
provided yi 6= 0, the term gxiyi is indistinguishable from a
random non-identity element in the group G.

Proof: By the protocol definition, xi ∈R [1, q − 1] and
yi =

∑
j<i xj −

∑
j>i xj . The yi is random over Zq and is

unrelated to xi. Since, yi 6= 0, we have yi ∈R [1, q − 1]. To
obtain a contradiction, we assume there is a polynomial-
time algorithm (an oracle) to distinguish gxi·yi from a
random non-identity element in the group G. Without loss
of generality, we only discuss the case that i = 1.

Given ga, gb, gab where a, b ∈R [1, q − 1], the DDH as-
sumption states that gab is indistinguishable from a random
non-identity element in G (see [16]). We now show how the
assumed oracle can break this assumption. First, we do an
efficient transformation as shown in Table I. Basically, we let
gx1 = ga and gx2 = g−b−

∑
i>2 xi where xi ∈R [1, q−1] for

i > 2. We do not need to know the values of x1 and x2. Fol-
lowing the definition of yi, we obtain y1 = −

∑
i>1 xi = b.

Thus, gx1y1 = gab (the value was given). For i = 2, we can
compute gx2y2 = g(−b−

∑
i>2 xi)(a−

∑
i>2 xi). Similarly, we

can easily compute gx3x4 until gxnyn . As shown in Table I,
the resultant new table is indistinguishable from the old one.
Since the assumed oracle can efficiently distinguish gx1x2

from random, it thus can efficiently distinguish gab from
random. This however contradicts the assumption that the
DDH problem is intractable. The same argument applies if
any gxiyi (i 6= 1) is distinguishable from random.

The “Yes”/“No” value in each ballot is encoded in the
form of as Ci = gxiyi · gvi where vi = 0 for “No” and
1 for “Yes”. Theorem 1 shows that the no-vote, gxiyi , is

gx gy gxy gx gy gxy

gx1 gy1 gx1y1 ga gb gab

gx2 gy2 gx2y2 g−b−
∑

i>2 xi ga−
∑

i>2 xi g(−b−
∑

i>2 xi)(a−
∑

i>2 xi)

gx3 gy3 gx3y3 ⇒ gx3 ga−b−
∑

i>2 xi−
∑

i>3 xi gx3(a−b−
∑

i>2 xi−
∑

i>3 xi)

.

gxn gyn gxnyn gxn ga−b−xn gxn(a−b−xn)

Table I
TABLE TRANSFORMATION. THE VALUES OF a, b ARE RANDOM OVER [1, q − 1]. IN EITHER TABLE, THE xi VALUES ARE RANDOMLY CHOSEN FROM

[1, q− 1]. CLEARLY, IN THE LEFT TABLE, THE EXPONENTS OF gx ARE ALL RANDOM; IN THE RIGHT TABLE, THE EXPONENTS OF gx ARE ALL RANDOM
TOO. THE TWO TABLES ARE INDISTINGUISHABLE.

indistinguishable from random. Clearly, the yes-vote, gxiyi ·
g, is indistinguishable from random too. However, if both
no-vote and yes-vote are published, the correlation between
the two will make it trivially obvious which is “No” and
which is “Yes”.

In addition, the system needs to compute a 1-out-of-2 ZKP
for each yes/no value. This is to ensure that the value of the
vote is indeed in the correct form of Ci = gxiyi · gvi where
vi ∈ {0, 1}. In other words, the value vi can only be one
of the two: 0 and 1. We adopt the standard 1-out-of-n ZKP
technique (also known as the CDS technique) presented in
[17]. Here, we use n = 2.

Given an ElGamal encryption (x, y) = (gxi , hxim), the
CDS technique demonstrates that m is either m0 or m1

without revealing which3. This is achieved by proving the
following OR statement:

logg x = logh(y/m0) ∨ logg x = logh(y/m1)

Figure 2 shows a 3-move interactive protocol using the
CDS technique, with m0 = g0, m1 = g1 and h = gyi .
Applying the Fiat-Shamir’s heuristics makes the protocol
non-interactive [17], by letting c = H(i, x, y, a1, b1, a2, b2)
where H is a publicly secure hash function. In summary, the
1-out-of-2 ZKP for Ci contains: (w, a1, b1, a2, b2, d1,d2,).
Additional information on the 1-out-of-n Knowledge Proof
can be found in [17], [18].

As shown in Table II, we define the cryptograms for the
yes/no votes as follows. The cryptogram of the no-vote con-
tains gxiyi and a 1-out-of-2 ZKP. Similarly, the cryptogram
of the yes-vote comprises gxiyi ·g and a corresponding 1-out-
of-2 ZKP. At the end of the ballot generation, the random
public keys are published on the bulletin board, while the
cryptograms are kept secret by the machine. At this stage,
the xi secret values become technically redundant and will
not be needed for the rest of the protocol execution4.

3In our case, the public key h equals gyi and is dynamically constructed
by combining other public keys. We use the symbol h for simplicity. The
context should make the meaning clear.

4From the protocol’s perspective, the xi values are no longer needed.
However, in practice, there may be reasons to retain these values in the
DRE during the course of election, as they form the most compact backup
data. Note that leaking xi is effectively equivalent to revealing the pre-
computed cryptograms – in either case, the leakage will present itself to
the public as clear evidence of the machine’s misbehavior.

2) Ballot casting: While the ballot generation was per-
formed before the election in a controlled environment
(where party representatives can observe), ballot casting
occurs at the polling stations on the election day. The
environment at the field deployment of the DRE becomes
more adverse. However, note that all the random values
used in the computation of the cryptograms have been
chosen before election and the random public keys have
been published on the public bulletin board (see Table II).
This greatly limits any room of maneuver by a DRE once
it is deployed in the field. The ballot casting basically in-
volves very simple operations to print out the pre-computed
cryptograms depending on the voter’s choice, as we explain
below.

As before, we assume the eligible voter has been properly
authenticated before entering the private voting booth and
that the machine does not know the real identity of the
voter. The voter presents the authentication token to the DRE
machine and sees the same “select and confirm” interface
on the touch screen (Figure 3). The ballot no i may be
incremental or randomly assigned – there is no significant
difference from the protocol’s perspective. To cast the ballot,
the voter follows the same two steps.

In step one, the voter selects a choice on the screen.
Meanwhile, the machine prints the following commitment
data on the paper: the ballot no i, the cryptogram of the
selected choice (i.e., gxiyi · gvi where vi = 0 or 1 for
“No”/“Yes” choice correspondingly, and a 1-out-of-2 Zero
Knowledge Proof to prove that vi is indeed one of the
two values {0, 1}). The commitment transcript is digitally
signed by the machine to prove the authenticity. The same
content, including the digital signature, will be available on
the bulletin board for public verification.

In step two, the voter either confirms or cancels the
selection. If he chooses to confirm, the system will print a
“finish” message on the paper. However, if the voter chooses
to cancel, the DRE machine will print the selected choice,
and reveal the other cryptogram onto the paper. The touch
screen will return to the “select candidate” step. A voter is
entitled to cast as many dummy votes as he wishes5, but
is allowed to cast only one valid vote. As in the previous

5Obviously, this is bounded by n and, in practice, a reasonable limit
would be enforced.

Voter Verifier
v = 1 v = 0

w, r1, d1 ∈R Zq w, r2, d2 ∈R Zq
x ← gxj

y ← hxj · g
a1 ← gr1xd1

b1 ← hr1yd1

a2 ← gw

x ← gxj

y ← hxj

a1 ← gw

b1 ← hw

a2 ← gr2xd2

b2 ← hw b2 ← hr2(y/g)d2 x, y, a1, b1,a2, b2−−−−−−−−−−−→
d2 ← c− d1 d1 ← c− d2 c←−−−−−−−−−− c ∈R Zq
r2 ← w − xjd2 r1 ← w − xjd1 d1, d2, r1, r2−−−−−−−−−−−→ c ?

=d1 + d2

a1
?
=g

r1xd1

b1
?
=h

r1yd1

a2
?
=g

r2xd2

b2
?
=h

r2(y/g)d2

Figure 2. Proof of Validity: the ballot (x, y) is either (gxj , hxj · g) or (gxj , hxj) where h = gyj .

Ballot Random Restructured Cryptogram Cryptogram
No public key public key of no-vote of yes-vote
1 gx1 gy1 gx1·y1 , 1-of-2 ZKP gx1·y1 · g, 1-of-2 ZKP
2 gx2 gy2 gx2·y2 , 1-of-2 ZKP gx2·y2 · g, 1-of-2 ZKP
.
n gxn gyn gxn·yn , 1-of-2 ZKP gxn·yn · g, 1-of-2 ZKP

Table II
BALLOT GENERATION. THE TABLE, EXCEPT THE LAST TWO COLUMNS, IS PUBLISHED ON A PUBLIC BULLETIN BOARD BEFORE THE ELECTION STARTS.

Figure 3. A DRE with integrity (DRE-i) voting system . A confirmed
ballot is termed a “valid” vote while a canceled one is referred to as a
“dummy” vote.

step, the commitment transcript is digitally signed; the same
content will also be available on the bulletin board.

The cancel option serves for auditing. Note that the 1-
out-of-2 ZKP ensures that the formats of “No”/”Yes” votes
are in the form of gxiyi · gvi , vi ∈ {0, 1}, but it does not
guarantee the correct assignment of “0”/“1” to “No”/“Yes”.
The voter-initiated auditing addresses this (the same auditing
idea was first proposed by Benaloh [27]). Auditing can be
performed by any voter during any stage of the election.
When all the voters have cast their votes, the system will

reveal the remaining ballots as “dummy” and publish them
on the public bulletin board (displayed as if canceled by the
voters).

The paper receipt for ballot i contains the printed data
from both steps. The voter is free to take home the receipt
and verify it against the public bulletin board that his
vote has been indeed included. The receipt does not reveal
whom the voter has voted for, therefore preventing potential
coercion and voter-buying.

3) Ballot tallying: Tallying the ballots is a case of mul-
tiplying the published cryptogram Vi (for dummy votes,
only the no-value) all together (See Table III). Thus, we
have

∏
i Vi =

∏
i g
xiyigvi =

∏
i g
vi = g

∑
i vi . The key

to the tallying process is the fact that
∑
xiyi = 0, which

we refer to as the “cancelation formula” (see Proposition
1. The formula appeared earlier in [12], [14].). The term∑
i vi is the total number of the “yes” votes. Since it is

a relatively small number, it is feasible to compute it by
exhaustive search. However, this exhaustive search is not
entirely necessary. Since the machine records the ballots
directly, it can announce the count of “yes” votes, β, right
after the election. Everyone can verify whether gβ and
g
∑

i vi are equal. This takes only one exponentiation. Also,
everyone can count the number of dummy votes from the
bulletin board, which we denote as λ. Thus, the tally of “no”
votes is α = n− β − λ.

No Random Restructured Published Votes ZKPs
i pub key gxi pub key gyi Vi

1 gx1 gy1 Valid: gx1·y1 a 1-of-2 ZKP
2 gx2 gy2 Valid: gx2·y2 · g a 1-of-2 ZKP
3 gx3 gy3 Dummy: gx3·y3 , gx3·y3 · g two 1-of-2 ZKPs
.

n gxn gyn Dummy: gxn·yn , gxn·yn · g two 1-of-2 ZKPs

Table III
BALLOT TALLYING. THIS ENTIRE TABLE IS PUBLISHED ON THE PUBLIC BULLETIN BOARD. A VOTE CAN BE EITHER VALID OR DUMMY. BALLOT NO. 1

SHOWS AN EXAMPLE OF A VALID “NO” VOTE, AND NO. 2 SHOWS AN EXAMPLE OF A VALID “YES” VOTE. TALLYING IS TO MULTIPLY ALL THE Vi

VALUES (ONLY INCLUDING THE “NO” VOTES FOR THE DUMMY CASE).

As we will further explain in Section IV-E, the tallying
process must admit all the cast votes, including the dummy
ones. Partial tallying will not lead to any meaningful result
– in other words, “every vote must count”.

Proposition 1 (Cancellation forumla). For the xi and yi as
defined in the protocol,

∑
i xiyi = 0.

Proof: By definition yi =
∑
j<i xj −

∑
j>i xj , hence∑

i

xiyi =
∑
i

∑
j<i

xixj −
∑
i

∑
j>i

xixj

=
∑∑
j<i

xixj −
∑∑
i<j

xixj

=
∑∑
j<i

xixj −
∑∑
j<i

xjxi

= 0.

C. Extension to multiple candidates

There are several ways to extend a single-candidate elec-
tion to multiple candidates [12]. A preferred method is
attributed to Cramer et al. [18]: suppose that we have n
votes, choose m so that m is the smallest integer such that
2m > n. Now the vote for candidate 1 is encoded as 20,
for candidate 2 as 2m, for candidate 3 is 22m, and so on.
In other words, redefine the encoding value vi within the
cryptogram definition Ci = gxiyi · gvi as:

vi =

20 if vote for candidate 1
2m if vote for candidate 2
· · · · · ·
2(k−1)m if vote for candidate k

Tabulation is much as before:
∏
i g
xiyigvi = g

∑
i vi .

The votes are summed and the super-increasing nature of
the encoding ensures that the total can unambiguously be
resolved into the totals for the candidates. Hence,

∑
i vi =

20 · c1 + 2m · c2 + . . . + 2(k−1)m · ck, where c1 to ck are
the counts of votes for the k candidates correspondingly.
As before, the machine will announce the counts of votes
right after the election. Anyone can verify the counts against
g
∑

i vi , which takes a single exponentiation.

D. Voter privacy

First, we should acknowledge that when it comes to voter
privacy, there is an inherent limitation with the DRE. A
voter’s privacy is constrained by the necessary human inter-
action with the machine, which records the votes directly. A
corrupted touch screen terminal can easily learn the secret
choice, just as a corrupted web browser can easily disclose
the secret vote in the Helios system (see [39]).

Still, it is important to protect voter privacy. Our solution
is to depend on procedural means to keep voters anonymous.
For example, as we stated earlier, the voting officials shall
ensure: 1) the voting booth is private; 2) the DRE machine
does not know the voter’s real identity; and 3) the published
ballots do not show any linkage to the voters. These mea-
sures serve to decouple the voter’s real identity from each
cast ballot, and hence to preserve the voter’s privacy.

E. Remote e-voting

We now take a broad interpretation of the DRE voting sys-
tem: which not only includes on-site touch-screen machines,
but also remote voting systems conducted via the Internet
or mobile phones. In all cases, the system records the votes
directly, although the security environments are different.

The DRE-i protocol is generically applicable to both on-
site and remote e-voting scenarios. The protocol remains
basically the same although the implementations are quite
different. For example, in web-based Internet voting, the
DRE machine may commit data by sending a signed email
(as opposed to printing on paper). Similarly, if a mobile
phone is used to vote, a signed Short Message Service (SMS)
may be sent.

However, we need to stress that on-site and remote voting
applications have distinct voting environments, each with
an impact on security. Most notably, in a remote setting,
we will lose effective procedural and physical protections
that are available in an on-site election. Consequently, it
becomes much harder to keep voters anonymous. In the
UCL election, the voters were anonymized and only the
aliases were published [33]. However, this only provides a
weak layer of protection; a corrupted server might be able
to match the aliases to real names. In an electronic world,
where transmitted messages leave traces in the network log

files, maintaining real anonymity is a challenging research
program in itself.

The loss of physical and procedural protections also opens
up a number of new attacks – for example, a voter may be
cajoled in disclosing their vote via a “bogus” website; the
actual vote may be conducted under the duress of a coercer;
voting credentials may become an item of profitable trade
et cetera. Also, any independent observation of “counting
valid voters” at the polling station will not be possible.
Nevertheless, remote e-voting may still prove useful in
some specifically identified scenarios, where the concerns
on coercion and voter privacy are low – for example in the
UCL [33] and IACR elections [34].

IV. DRE-I ANALYSIS

Electronic voting is a complex problem. It requires more
than just technical considerations as it crosses the disciplines
of politics, human psychology, security economics and so-
ciology et cetera [1]. Within this paper we only focused
on solving a technical problem: tallying integrity. However,
it is unlikely that any single technical protocol alone can
guarantee a secure election. Correct implementation of the
protocol is crucial. Also, there are realistic threats that our
protocol alone cannot address.

In the following sections, we perform a comprehensive
analysis of the proposed DRE-i protocol: explaining the
technical properties of the protocol, discussing protocol
implementations, highlighting practical threats concerning
deployment as well as suggesting possible mitigation strate-
gies.

A. Technical Properties of the Protocol

The DRE-i protocol fulfils the three integrity requirements
as described in Section III-A. The use of the CDS technique
(i.e., the 1-out-of-n zero knowledge proof) ensures the
correct format of the ballot [17], thus fulfilling the first
requirement. The second requirement is satisfied by the
auditing function as described in [27]. Any voter can be
an auditor by simply pressing the “cancel” button. The third
requirement is fulfilled by the use of an innovative “cancel-
lation forumla” [14] together with homomorphic encryption
[12]. This permits anyone to easily verify the tally, based on
the encrypted data displayed on the public bulletin board,
without relying on any tallying authority.

In addition, the protocol protects the secrecy of the valid
votes. The published value for a valid vote, gxiyi · gvi for
vi = 0 or 1, is indistinguishable from random (see Theorem
1) and the associated 1-out-of-2 ZKP reveals nothing more
than the statement: the vi is either 0 or 1 [17]. If the vote
is dummy, both cryptograms will be revealed. A dummy
vote requires no secrecy since it does not add to the tally.
As with any DRE system, the machine naturally learns the
value of each vote (i.e., “Yes” or “No” for a single-candidate
election). Our protocol cannot prevent a corrupted machine

leaking the secret values. However, there are non-technical
measures to further protect the voter’s privacy – for example,
through procedural means to assure voters that voting is
anonymous.

The paper receipt in our protocol is coercion free. As we
detailed earlier, if the voter chooses to confirm the vote, the
receipt does not leak any information about whom he had
voted for. This prevents potential coercion and vote-buying.
If, however, the voter opts to cancel the vote, the receipt will
reveal the selected choice, but the vote has been declared
dummy. A dummy vote is useless to the coercer.

B. Estimating the Computation Cost

We begin by examining ballot generation. This stage
involves computationally intensive operations. For a typical
scenario, let us assume n = 105 (which is 10 thousand voters
at a polling station times a safety factor of 10 for auditing).
Also, we assume a typical cyclic group setting where p is
1024-bit and q is 160-bit.

As shown in Table II, we need to compute gyi for
each ballot. At first glance, this is very expensive, taking
approximately n = 105 multiplications to compute gy1 .
However, note that gy2 = gy1 · gx2 · gx1 . More generally,
gyi = gyi−1 · gxi · gxi−1 for i > 1. Thus, computing gyi , for
i = 2, 3, . . . , n, incurs negligible cost.

For each ballot i, exponentiation is the predominant cost
factor. It takes one exponentiation to compute gxi , one
to compute gxiyi and four to compute the 1-out-2 ZKP
for each no/yes vote, totalling ten exponentiations. Each
exponentiation takes approximately 5 milliseconds on a
2.33-GHz MacBook laptop [13]. Therefore, pre-computing
all ballots on a single laptop takes 0.005×10×n = 5×103

seconds = 1.4 hours. (We have not factored in the use of
any form of optimization technique e.g. caching.)

In the ballot casting stage, the computational cost incurred
by the DRE machine is very small – the machine merely
needs to print out the pre-computed cryptogram according
to the voter’s choice. The main delay is most likely caused
by printing.

The ballot tallying involves multiplying n group elements
to obtain g

∑
vi . One exponentiation requires an average of

1.5 × log2 q = 240 multiplications. The multiplication will
take approximately n/240×0.005 = 2.08 seconds. Verifying
the tally against the count accounted for by the DRE requires
one additional exponentiation: that is, another 0.005 seconds.

In addition, before an election, anyone can verify that
the published random public keys gxi lie within the prime-
order group, are randomly distributed and that the values
of gyi are correctly computed. To verify the ZKP for the
published vote Vi, it is necessary to first validate the order
of Vi. This requires an exponentiation (for both the valid and
dummy cases); it takes a further four exponentiations (using
the simultaneous computation technique [38] to compute a1,
a2, b1, b2) to verify the 1-out-of-2 ZKP as shown in Figure 2.

In total, it takes roughly 0.025 seconds to verify a ZKP on
a laptop.

In summary, for the example of 100,000 votes, ballot
generation will take about 1.4 hours on a laptop. During
ballot casting, the computational cost only involves a digital
signing; the main delay will be the time it takes to print the
receipt. Finally, in takes approximately 2 seconds to verify
the tallying. The verification of the published ZKPs will be a
distributed effort, which takes 2,500 seconds in total. These
estimates suggest the feasibility of our system.

C. National versus Regional Level

For the simplicity of illustration, we have so far used the
same DRE in both ballot generation and ballot casting. This
is, however, not the most cost-effective way to implement
the system. In practice, we could employ a number of
fast servers, in a controlled environment, to generate all
cryptograms and then distribute to the DREs. Since the
computational load on the DREs during the ballot casting is
very low, it is possible to build those DREs using low-cost
hardware. These are, however, implementation details.

Another implementation option concerns whether to po-
sition the DRE-i protocol at the national or regional level.
In terms of the former, a central DRE system generates the
ballots for the entire population and then distributes portions
of the ballots to the DRE machines at each region (i.e.,
precinct). The tallying will be over the entire population,
hence not revealing any partial tallying information at the
regional level. In the latter, each region manages its own
DRE system and performs independent tallying. The re-
gional tallied results are then summed to form the total tally
of the nation. The second approach is more manageable, and
is in accord with widely adopted existing practice [29].

D. Subliminal Channels

A subliminal channel is concerned with information leak-
age about a cast ballot to a third-party. Karlof, Sastry
and Wagner describe possible subliminal channel attacks
against cryptographic e-voting protocols such as Neff’s and
Chaum’s [9]. The threat of subliminal channels also applies
to the Helios voting system [39]. The DRE-i protocol is no
exception, as we explain below.

During the ballot generation, we have assumed that the
DRE machine generates the xi values randomly and secretly.
However, a corrupted machine may deviate from this as-
sumption. It may choose the xi values from a low-entropy
source, so the value gxiyi will no longer be indistinguishable
from random. In this case, the public keys gxi will not
be randomly distributed and, therefore, subject to detection.
Hence, more likely, the corrupted machine will choose xi
at random, but leak the values to the coercer. This is an
inherent threat with any DRE-based voting system due to the
machine directly recording the vote and learning the voter’s
secret choice. After the election, all the xi values together

with the unused cryptograms should be permanently deleted.
In any event, if any of these values becomes known to the
public, this will present itself as clear evidence about the
machine’s misbehavior.

E. Denial of Service

The electronic data published by the DRE machine must
be precise. If a single bit of the vote gets flipped, it will
break the well-formedness of the vote, thus bringing it to
public attention. Also, all votes must be included within
the tallying process. If a single vote goes missing, rather
than going unnoticed, the tallying process at the particular
precinct will fail – essentially, a publicly evident Denial
of Service attack. This may appear, at first glance, as a
weakness. On the contrary, this is a strength of the protocol,
ensuring every vote is counted. This effectively demands that
DRE vendors must follow stringent engineering practice to
ensure hardware and software robustness (which is generally
required in most security-critical systems [1], e.g., payment
solutions in the banking industry).

F. More Powerful Coercion

We previously highlighted that the DRE-i receipt is coer-
cion free. However, there may be more powerful coercion
scenarios: e.g., threatening voters not to vote at all, forcing
voters to film everything they do in the private booth, or
colluding with the DRE machine to discover the voters’
secret votes et cetera [9]. It is beyond our protocol to
address these threats. If such powerful coercion becomes
wide spread, the value of the election itself may be called
into question.

G. Voter Enrollment and Authentication

Voter enrollment and authentication are two important
pre-conditions for our protocol. The former helps to deter-
mine the volume of ballots to generate. The latter is crucial
to ensure one-man-one-vote. The election staff at the polling
station must keep a reliable record of how many voters have
voted on the election day. This number can then be compared
with the total count of valid votes published on the public
bulletin board. It is possible, that once inside the booth,
the voter fails to cast a vote, or only casts dummy votes.
This would be evident by the paper receipt or the returned
authentication token.

H. Social engineering attacks

Typically, threats have centered on how to identify a
misbehaving DRE machine, however, we also need to con-
sider the case where the DRE is honest, but the voter is
misbehaving. We call this a “social engineering attack”, as
the attack is not technical in nature, but can sometimes be
very effective if countermeasures are lacking. We highlight
a few attacks below. Note that they are also applicable to
other e-voting protocols in general [25], [26], [32], [33].

As an example, suppose the voter selects “yes” in the
first step, and then chooses to cancel. The machine dutifully
prints a receipt to reveal the “yes” selection and declares the
vote as dummy. The voter may now report to an election
staff that he actually selected “no”. We assume the purpose
of this attack is to discredit the machine.

In such a situation, is the voter misbehaving or the
machine? For the election staff, it is not easy to tell the
difference. If the voter raises the dispute, one practical
resolution is to invite several independent observers to
supervise the voting. The independent observers do not need
to learn the voter’s secret. For example, the voter casts
several dummy votes under independent observation until
being happy that the machine is acting in accordance with
his wishes.

In another example, the voter might dispute that he
chose “cancel”, but the screen displays “your vote has been
confirmed”. Again, there is no easy way to tell who is lying.
One resolution may be to have several voting officials jointly
agree to mark the ballot as “disputed” and allow the voter to
cast another vote. When the election finishes, the “disputed”
ballots, together with the unused ballots, will be revealed
by the DRE and declared “dummy”. (Essentially, this is the
same as allowing re-voting as in the UCL election [33].)
The key to resolution is to ensure that the handling of the
“disputed” votes is transparent to the public. In any event,
the total number of the valid votes published on the public
bulletin board shall match the number of the voters who
actually cast their votes on the election day.

I. Receipt Verification

The generated paper receipt provides the voter the ability
to verify whether his vote has been correctly included in the
final tally. The receipt itself does not reveal any information
about whom the voter has voted for. Still, it is important for
voters to verify the receipts, so that DRE fraud, if any, can
be detected.

However, in general, we should assume that many voters
will not endeavour to verify the receipts by themselves.
This is a general problem for many cryptographic e-voting
protocols [25], [26], [33], and not specific to our protocol.
It is therefore crucial for the election officials to establish
incentive schemes, that encourage verification of receipts,
and to provide voters with all the necessary facilities and
assistance to do so (say near the exit of the polling station).

In fact, we have designed the protocol in such a way
that the voter does not have to understand cryptography in
order to verify the receipt. During the voting, if he opts to
“cancel” the vote, he only needs to verify that the revealed
candidate name on the receipt is the same as he chose in
the first step (see Figure 3); if not, he should immediately
raise a dispute. After voting, he merely needs to verify that
– possibly with the assistance of election officials near the
exit – the receipt is indeed published on the bulletin board.

He does not need to verify the receipt by himself. As long
as the same content is available on the public bulletin board,
anyone with the knowledge and skill can write a program
to verify the receipts in a batch.

In practice, there may be dedicated auditors from different
election parties. They can choose to audit the machine,
by casting dummy votes, at any time during the election.
They may even have the expertise to verify the receipts by
themselves. However, we should note that dedicated auditors
cannot replace the general public in auditing. For ordinary
voters, the ability to audit the system is important to build
up public trust in the election.

V. CONCLUSION

In this paper, we first reviewed the practical deployments
of DREs, which had seen a rush of adoption in 2000
followed by a wave of rejection in 2006. This shows that
DRE technology is still relatively young. We then studied
the Helios e-voting system, which presents a particularly
interesting case to examine the conflicts between theory
and practice. Some of the theoretical assumptions – such
as crypto-aware users, a trustworthy client execution envi-
ronment and trustworthy tallying authorities – have been
commonly made in the past literature but were challenged
in practical applications.

Motivated to address the practical issues, we proposed
the DRE-i protocol. The protocol is based on an innova-
tive cancellation formula, combined with a pre-computation
strategy; it adds strong assurance of tallying integrity to the
DRE system, without altering the voter’s intuitive voting
experience; the auditing is voter-initiated and has been
seamlessly integrated into the natural voting process; the
protocol is generically applicable to both on-site and remote
e-voting; the election is self-tallying, so the public can tally
the votes without relying on trusted computing or tallying
authorities; though the protocol primarily focuses on the
tallying integrity, we also described procedural means to
preserve the voter’s privacy.

The integrity of an election underlies the integrity of
democracy. With the DRE-i protocol, “every vote counts”
is no longer a mere slogan.

ACKNOWLEDGEMENT

This paper is built upon the previous published works au-
thored in collaboration with Dr. Piotr Zieliński and Prof. Pe-
ter Ryan. They also made contributions into this paper. We
also like to thank Ross Anderson, Joseph Bonneau and other
members of the security group at the Computer Laboratory,
University of Cambridge, for many useful comments.

REFERENCES

[1] R.J. Anderson, Security Engineering : A Guide to Building
Dependable Distributed Systems, Second Edition, New York,
Wiley 2008.

[2] T. Kohno, A. Stubblefield, A.D. Rubin, and D.S. Wallach,
“Analysis of an Electronic Voting System,” Proceedings of
the 25th IEEE Symposium on Security and Privacy, May,
2004.

[3] R. W. Gardner, S. Garera, A.D. Rubin, “Designing for Audit:
A Voting Machine with a Tiny TCB,” Proceedings of the 14th
Financial Cryptography and Date Security, January, 2010.

[4] S. Garera and A.D. Rubin, “An Independent Audit Framework
for Software Dependent Voting Systems,” Proceedings of the
14th ACM Conference on Computer and Communications
Security, October 2007.

[5] R.L. Rivest, W.D. Smith, “Three Voting Protocols: ThreeBal-
lot, VAV, and Twin,” Proceedings of the USENIX Workshop
on Accurate Electronic Voting Technology, 2007.

[6] D. Chaum, R. Carback, J. Clark, A. Essex, S. Popoveniuc,
R. Rivest, P. Ryan, E. Shen, A. Sherman, “Scantegrity II:
End-to-End Verifiability for Optical Scan Election Systems
Using Invisible Ink Confirmation Codes,” Proceedings of the
USENIX/ACCURATE Electronic Voting Workshop, 2008.

[7] D. Chaum, P.Y. Ryan, and S.A. Schneider, “A Practi-
cal, Voterverifiable, Election Scheme,” ESORICS’05, LNCS
3679, pp. 118-139, 2005.

[8] D.R. Sandler, K. Derr, and D.S. Wallach, “VoteBox: A
Tamper-Evident, Verifiable Electronic Voting System,” Pro-
ceedings of the 17th USENIX Security Symposium, July
2008.

[9] C. Karlof, N. Sastry, D. Wagner, “Cryptographic Voting
Protocols: A Systems Perspective,” Proceedings of the 14th
USENIX Security Symposium, pp. 33-50, August, 2005.

[10] R.A. Fink, A.T. Sherman, R. Carback, “TPM Meets DRE:
Reducing the Trust Base for Electronic Voting Using Trusted
Platform Modules,” IEEE Transactions on Information Foren-
sics and Security, No. 4. Issue. 4, pp. 628-637, 2009.

[11] A.J. Feldman, J.A. Halderman, E.W. Felten, “Security Anal-
ysis of the Diebold AccuVote-TS Voting Machine,” Proceed-
ings of the USENIX Workshop on Accurate Electronic Voting
Technology, 2007.

[12] F. Hao, P. Ryan, P. Zieliński, “Anonymous Voting by 2-Round
Public Discussion”, IET Information Security, in press, 2010.

[13] F. Hao, P. Y. A. Ryan, “Password Authenticated Key Ex-
change by Juggling,” Proceedings of the 16th International
Workshop on Security Protocols, Cambridge, UK, April 2008.

[14] F. Hao, P. Zieliński, “A 2-Round Anonymous Veto Protocol,”
Proceedings of the 14th International Workshop on Security
Protocols, Cambridge, UK, 2006.

[15] F. Hao, P. Zieliński, “The Power of Anonymous Veto in
Public Discussion,” Sprigner Transactions on Computational
Sciences IV, pp. 41-52, 2009

[16] D. Stinson, Cryptography: Theory and Practice, Third Edi-
tion, Chapman & Hall/CRC, 2006.

[17] R. Cramer, I. Damgård, B. Schoenmakers, “Proofs of Par-
tial Knowledge and Simplified Design of Witness Hiding
Protocols,” Proceedings of the 14th Annual International
Cryptology Conference on Advances in Cryptology, LNCS,
vol. 839, pp. 174-187, 1994.

[18] R. Cramer, M. Franklin, B. Schoenmakers and Moti Yung,
“Multi-Authority Secret-Ballot Elections with Linear Work,”
EUROCRYPT ’96, LNCS, vol. 1070, pp. 72-83, 1996.

[19] A. Kiayias, M. Yung, “Self-tallying elections and perfect
ballot secrecy,” Public Key Cryptography ’02, LNCS, vol.
2274, pp. 141-158, 2002.

[20] J. Groth, “Efficient maximal privacy in boardroom votisng
and anonymous broadcast,” Financial Cryptography ’04,
LNCS, vol. 3110, pp. 90-104, 2004.

[21] D. Chaum, “The Dining Cryptographers Problem: Uncon-
ditional Sender and Recipient Untraceability,” Journal of
Cryptology, vol. 1, no. 1, pp. 65-67, 1988.

[22] D. Chaum, “Untraceable Electronic Email, Return Addresses,
and Digital Pseudonyms,” Communications of the ACM, Vol.
24, No. 2, pp. 84–88, 1981.

[23] A.M. Keller, D. Mertz, J.L. Hall, A. Urken, “Privacy issues
in an electronic voting machine,” Proceedings of the 2004
ACM workshop on Privacy in the electronic society, pp. 33-
34, 2004.

[24] A.T. Sherman, A. Gangopadhyay, S.H. Holden, G. Kara-
batis, A.G. Koru, C.M. Law, D.F. Norris, J. Pinkston, A.
Sears, and D. Zhang, “An Examination of Vote Verification
Technologies: Findings and Experiences from the Maryland
Study,” Proceedings of the USENIX/Accurate Electronic Vot-
ing Technology Workshop, 2006.

[25] D. Chaum, “Secret-Ballot Receipts: True Voter-Verifiable
Elections,” IEEE Security and Privacy, vol. 2, no. 1, pp. 38-
47, Jan. 2004.

[26] C.A. Neff, “A Verifiable Secret Shuffle and Its Application
to E-Voting,”Proceedings of the 8th ACM conference on
Computer and Communications Security, pp. 116-125, 2001.

[27] J. Benaloh, “Ballot Casting Assurance via Voter-Initiated Poll
Station Auditing,” Proceedings of the USENIX Workshop on
Accurate Electronic Voting Technology, 2007.

[28] R. Mercuri, “Electronic Vote Tabulation Checks & Balances,”
Ph.D thesis, University of Pennsylvania, 2000.

[29] G.C. Edwards III, “The 2000 U.S. Presidential Election,”
Taiwan Journal of Democracy, Vol. 2, N. 1, pp. 37-50, 2006.

[30] The commerical Syctl voting solution website: http://www.
scytl.com

[31] R.L. Rivest and J.P. Wack, “On the notion of Software
Independence in Voting Systems,” 2006. Available at http:
//vote.nist.gov/SI-in-voting.pdf

[32] B. Adida, “Helios: web-based open-audit voting,” Proceed-
ings of the 17th conference on Security symposium, pp. 335-
348, 2008.

[33] B. Adida, O. de Marneffe, O. Pereira, and J.J. Quisquater,
Proceedings of the Electronic Voting Technology Workshop
/ Workshop on Trustworthy Elections, 2009.

[34] S. Haber, J. Benaloh, S. Halevi, “The Helios e-Voting Demo
for the IACR,” June, 2010. Available at http://www.iacr.org/
elections/eVoting/heliosDemo.pdf

[35] J. Blanc, “Challenging the Norms and Standards of Election
Administration: Electronic Voting,” Chapter of International
Foundation For Electoral Systems (IFES) report, pp. 11-19,
2007

[36] “Help America Vote Act at 6", USA Today, October 29,
2008. http://www.usatoday.com/news/politics/election2008/
2008-10-28-votingequipment_N.htm#table.

[37] J.L. Weber, U. Hengartner, “Usability Study of the Open
Audit Voting System Helios,” 2009. Available at www.
jannaweber.com/wp-content/uploads/2009/09/858Helios.pdf

[38] A.J. Menezes, P.C. van Oorschot and S.A. Vanstone, Hand-
book of applied cryptography, CRC Press, 1996.

[39] S. Estehghari, Y. Desmedt “Exploiting the Client Vul-
nerabilities in Internet E-voting Systems: Hacking Helios
2.0 as an Example,” Proceedings of Electronic Voting
Technology Workshop/Workshop on Trustworthy Elections
(EV/WOTE’10), 2010.

