
Homomorphic Signatures over Binary Fields:
Secure Network Coding with Small Coefficients

DAN BONEH∗

Stanford University, USA
dabo@cs.stanford.edu

DAVID MANDELL FREEMAN†

Stanford University, USA
dfreeman@cs.stanford.edu

August 20, 2010

Abstract

We propose a new signature scheme that can be used to authenticate data and prevent pollution attacks
in networks that use network coding. At its core, our system is a homomorphic signature scheme that
authenticates vector subspaces of a given ambient space. Our system has several novel properties not
found in previous proposals:

• It is the first such scheme that authenticates vectors defined over binary fields; previous proposals
could only authenticate vectors with large or growing coefficients.

• It is the first such scheme based on the problem of finding short vectors in integer lattices, and thus
enjoys the worst-case security guarantees common to lattice-based cryptosystems.

Security of our scheme (in the random oracle model) is based on a new hard problem on lattices, called
k-SIS, that reduces to standard average-case and worst-case lattice problems.

Our construction gives an example of a cryptographic primitive — homomorphic signatures over
F2 — that can be built using lattice methods, but cannot currently be built using bilinear maps or other
traditional algebraic methods based on factoring or discrete-log type problems.

Keywords. Lattice-based cryptography, homomorphic signatures, network coding.

∗Supported by NSF.
†Supported by an NSF Mathematical Sciences Postdoctoral Research Fellowship.

1 Introduction

Network coding [3, 16] is a routing method that replaces the traditional “store and forward” paradigm in
networks by more intelligent routing that allows intermediate nodes to transform the data in transit. Linear
network coding [18] refers to a method in which every network node receives a set of data vectors from its
peers and sends out a random linear combination of these vectors. The final recipient receives random linear
combinations of the originally transmitted vectors and can recover the original data from any set of received
vectors that form a full rank matrix. Linear network coding offers robustness and adaptability and has many
practical applications in networking [10] and in distributed storage systems such as BitTorrent [13].

Pollution Attacks. If some nodes are malicious and forward vectors not produced using the network coding
protocol, then only some of the recipient’s vectors are proper linear combinations of the original message
vectors. In such a scenario, the recipient has no way of telling which of the received vectors are corrupt and
should be ignored during decoding.

Detailed discussion of pollution attacks can be found in [6, 22, 14]. Here we note only that pollution
attacks cannot be mitigated by standard signatures or MACs. Clearly, signing the network coded vectors is of
no use since recipients do not have the original message vectors and therefore cannot verify the signature.
Similarly, signing the entire message prior to transmission does not work. To see why, observe that decoding
produces the correct transmitted message only when all vectors being decoded are linear combinations of
the original message vectors. A recipient who obtains many vectors where, say, only half are proper linear
combinations and the other half are corrupt would need to decode exponentially many subsets until he found
a decoded message that is consistent with the signature. We thus see that new integrity mechanisms are
needed to mitigate pollution attacks.

Previous Solutions. Several approaches have been proposed to thwart pollution attacks. Of these, some
solutions are information theoretic while others are cryptographic. We refer to [6] for a survey of defenses.
Here we restrict our attention to cryptographic solutions.

Several authors [8, 17, 22, 6, 11] have devised digital signature schemes for signing a linear subspace V ;
in the network coding application V is the subspace spanned by the message vectors. Suppose the message
vectors have coordinates in a finite field Fp, and let V be the linear space spanned by the k message vectors
v1, . . . ,vk ∈ Fnp transmitted by the sender. These signature schemes produce a signature σ on V such that σ
verifies for every v ∈ V , but it is difficult to construct a vector y 6∈ V such that σ verifies for y. Recipients
can thus use the signature σ to reject all received vectors that are not in the subspace V , mitigating the
pollution problem.

While the digital signature constructions in [8, 17, 22, 6] are elegant, they require the network coding
coefficients to live in a field Fp where p is the order of a group in which the discrete logarithm problem is
infeasible (e.g. p ≈ 2160). Transmitting each coefficient thus requires 20 bytes, and hence these coefficients
add 20k bytes to every packet. In addition, multiplications are over the field Fp and thus computing linear
combinations of packets is slow. In linear network coding (without integrity) one can use p = 2, in which
case the coefficients add only k bits to every packet and linear algebra over Fp is very fast. Thus a new
construction is needed if one wishes to maintain integrity while minimizing the overhead from transmitting
coefficients and optimizing processing speed of packets.

The current construction that comes closest to achieving this goal is that of Gennaro et al. [11], which
gives a signature scheme for signing a linear subspace where the coefficients are initially binary, but grow
over time as more combinations take place in the network.

1

Our contribution. We construct the first secure network coding signature scheme that authenticates vectors
with coordinates in F2. Our scheme is homomorphic: each data vector carries its own signature, and signatures
can be “linearly combined” simultaneously with data vectors (cf. [15, 6]).

Our construction is based on the problem of finding short vectors in integer lattices. Specifically, security
is based on a new hard problem on lattices, which we call the k-Small Integer Solutions (k-SIS) problem. We
show that k-SIS reduces to the standard Small Integer Solution (SIS) problem, which is known to be as hard
as standard worst-case lattice problems [20]. We hope that by articulating the k-SIS problem and reducing it
to standard lattice problems, we have provided a new tool for lattice-based cryptography that can be used in
other cryptographic constructions.

Our construction gives a nice example of a cryptographic primitive — homomorphic signatures over
F2 — that can be built using lattice methods, but cannot currently be built using bilinear maps or other
traditional algebraic methods based on factoring or discrete-log type problems. Furthermore, since there are
no known quantum algorithms for solving hard lattice problems, our construction may remain secure even in
the presence of a quantum computer.

Our scheme can be extended to authenticate vectors with coefficients in other small fields, including both
prime fields and extension fields such as F2d ; a natural field choice is F256 [1].

Overview of the construction. Our construction builds on the signature scheme of Gentry et al. [12], in
which signatures are short vectors σ in lattices defined modulo some large integer q. The key idea in our
construction is to use short vectors σ in lattices defined modulo 2q, which allows us to encode different
information modulo 2 and modulo q: σ mod 2 encodes information about the vector being signed, while
σ mod q encodes a solution to a hard problem, ensuring that an adversary cannot forge the signature.

The fact that σ is a short integer vector ensures that the two parts cannot be attacked independently.
Specifically, applying the Chinese remainder theorem to two vectors σ2 and σq that are correct mod 2 and mod
q, respectively, does not produce a short integer vector. This property appears to be unique to lattice-based
cryptography: if we attempted a similar construction in discrete log groups of order 2q, we would easily be
able to attack the order 2 and order q parts independently.

Concretely, our construction works as follows. Let q be an odd prime. To sign a vector subspace
V = span(v1, . . . ,vk) of Fn2 , we define a matrix AV ∈ Zm×n2q and then sign each basis vector vi. The
signature on vi ∈ Fn2 is a low-norm vector σi ∈ Zm such that

AV · σi = q · vi mod 2q

A signature σ ∈ Zm on a vector y ∈ Fn2 is valid if σ has small norm and AV · σ = q · y mod 2q.
Producing such a signature requires knowing a short basis for the matrix AV ; to obtain such a basis we

combine the trapdoor generation algorithm of Alwen and Peikert [5] with the basis delegation mechanism of
Cash et al. [7].

The homomorphic property of our scheme is now immediate: if we are given arbitrary vector-signature
pairs (uj , σj) ∈ Fn2×Zm for j = 1, . . . , `, we can create a signature on u = u1+· · ·+u` ∈ Fn2 by computing
σ = σ1 + · · ·+ σ` ∈ Zm. Since the σj are all valid signatures on the uj , we see that AV · σ = q · u mod 2q
and σ has low norm (if ` is sufficiently small), so σ is a valid signature on u.

To prove security in the model of [6], we need to show that given signatures on basis vectors of V , it is
impossible to generate a signature on a vector outside of V . To do so we define the k-SIS problem, which,
roughly speaking, is as follows:

Given a matrix A ∈ Zn×mq and k short vectors e1, . . . , ek ∈ Zm satisfying A · ei = 0 mod q, find a

2

short vector e ∈ Zm satisfying A · e = 0 mod q, such that e is not in Q-span({e1, . . . , ek}).

When k = 0 this problem is the standard SIS problem.
In Section 5 we show that an adversary that breaks the network coding scheme (defined mod 2q) in the

random oracle model can be used to solve the k-SIS problem (defined mod q). In Section 4 we show that the
k-SIS problem is as hard as the SIS problem. Our reduction degrades exponentially in k, which forces us
to use a constant-size k if we want our network coding scheme to be provably secure based on worst-case
lattice problems. It is a beautiful open problem to give either a tighter reduction to SIS or a direct reduction
to worst-case lattice problems.

While our signature scheme provides integrity for network coding using coefficients in F2 that always
remain in F2, the signatures grow in norm (though not in dimension) as they are combined through hops
in the network. As a result, as more combinations are needed, the modulus q must grow. Fortunately, the
dependence is well behaved: to support L combinations one need only increase the length of q by roughly
logL bits (i.e., increase q by a factor of L).

Of greater concern is the fact that a signature on a vector v ∈ Fn2 is a vector σ ∈ Zm with m > n lg q;
thus signatures in our system are larger than the data packets they are verifying. While this renders the
scheme impractical for real-world use, it is nonetheless a surprise that homomorphic signatures over F2 are
possible at all.

Outline. Section 2 provides a description of network coding and gives a formal definition and security
model (adapted from [6]) for network coding signatures. In Section 3 we review facts about lattices that we
will use in our construction and security proof. Section 4 describes the k-SIS problem and gives our reduction
of k-SIS to SIS. We present our scheme and prove its security in Section 5. Finally, in Section 6 we consider
parameter selection, describe extensions of our scheme to vector spaces over more general fields, and pose
some open problems.

Notation. For any integer q ≥ 2, we let Zq denote the ring of integers modulo q. When q is prime, Zq
is a field and is sometimes denoted Fq. We let Zn×mq denote the set of n ×m matrices with entries in Zq.
We denote matrices by capital boldface letters and vectors by lowercase boldface letters. We say a function
f(n) is negligible if it is O(n−c) for all c > 0, and we use negl(n) to denote a negligible function of n. The
function lg x is the base 2 logarithm of x.

2 Network Coding

To transmit a message using linear network coding [18] the sender first breaks the message into a sequence
of k vectors v̂1, . . . , v̂k in an n-dimensional linear space Fnp , where n, k and p are fixed ahead of time.
Using p = 2 is sufficient so that the entire transmitted message is n × k bits. The sender transmits these
message vectors to its neighboring nodes in the network. As the vectors traverse the network, moving from
one node to the next on their way to the destination, the nodes randomly combine the vectors with each
other. More precisely, each node in the network creates a random Fp-linear combination of the vectors it
receives and transmits the resulting vector to its adjacent nodes. Intended recipients thus receive random
linear combinations of the original message vectors. Recipients can recover the original message from any
set of k random linear combinations that form a full rank matrix.

For this approach to work, every vector ŷ in the network must carry with it the coefficients α1, . . . , αk ∈
Fp that produce ŷ as a linear combination of the original message vectors. To do so, prior to transmission,

3

the source node augments every message vector v̂i with k additional components. The resulting vectors
v1, . . . ,vk, called augmented vectors, are given by:

vi = (—v̂i—,

m︷ ︸︸ ︷
0, . . . , 0, 1︸ ︷︷ ︸

i

, 0, . . . , 0) ∈ Fn+k
p (2.1)

i.e., each original vector v̂i is appended with the vector of length k containing a single ‘1’ in the ith position.
(A subspace basis v1, . . . ,vk created in this manner is said to be properly augmented.) These augmented
vectors are then sent by the source as packets in the network. Observe that if y ∈ Fn+k

p is a linear combination
of v1, . . . ,vm ∈ Fn+k

p then the linear combination coefficients are contained in the last k coordinates of y.
To prevent pollution attacks, the source assigns a file identifier id to the k message vectors v1, . . . ,vk ∈

Fn+k
p and then signs its vector to obtain k signatures σ1, . . . , σk. It then sends (vi, σi) for i = 1, . . . , k to

its peers. Each peer creates a random linear combination of the received data vectors and uses a Combine
algorithm to generate a signature on the combined data vector from the signatures on the given data vectors.
Algorithm Verify is used to verify a signature on a given data vector y. More precisely, a network coding
signature scheme is defined as follows.

Definition 2.1 ([6]). A homomorphic network coding signature scheme is a tuple of probabilistic, polynomial-
time algorithms (Setup,Sign,Combine,Verify) with the following functionality:

• Setup(n, params). On input a security parameter n (in unary) and additional public parameters params
that include the dimension N of the ambient space and the dimension k of subspaces to be signed, this
algorithm outputs a prime p, a public key pk, and a secret key sk.

• Sign(sk, id,v). On input a secret key sk, a file identifier id ∈ {0, 1}n, and a vector v ∈ FNp , this
algorithm outputs a signature σ.

• Combine(pk, id, {(αi, σi)}`i=1). On input a public key pk, a file identifier id, and a set of tuples
{(αi, σi)}`i=1 with αi ∈ Fp, this algorithm outputs a signature σ. (If each σi is a valid signature on the
vector vi, then σ should be a signature on

∑`
i=1 αivi.)

• Verify(pk, id,y, σ). On input a public key pk, an identifier id ∈ {0, 1}n, a vector y ∈ FNp , and a
signature σ, this algorithm outputs either 0 (reject) or 1 (accept).

We require that for each (p, pk, sk) output by Setup(n, params), the following hold:

1. For all id and all y ∈ FNp , if σ ← Sign(sk, id,y) then Verify(pk, id,y, σ) = 1.

2. For all id ∈ {0, 1}n and all sets of triples {(αi, σi,vi)}`i=1, if it holds that Verify(pk, id,vi, σi) = 1
for all i, then

Verify
(
pk, id,

∑
i αivi, Combine

(
pk, id, {(αi, σi)}`i=1

))
= 1.

In our lattice-based network coding signature scheme, we cannot combine arbitrarily many valid signatures
and still guarantee successful verification. We capture this property by saying that the scheme is L-limited if
correctness property (2) holds for all ` ≤ L whenever σi are output by the Sign algorithm.

4

Security. The security model for network coding signatures allows an adversary to make adaptive signature
queries on files of his choosing, with the signer randomly choosing the identifier id for each file queried.
The winning condition captures the fact that there are two distinct types of forgeries: a vector-signature pair
(y∗, σ∗) that verifies for some file not queried to the signer (a type 1 forgery), or a pair (y∗, σ∗) that verifies
for some file that was queried to the signer, but for which y∗ is not a linear combination of the vectors queried
(a type 2 forgery).

Definition 2.2 ([6]). A homomorphic network coding signature scheme S = (Setup,Sign,Combine,Verify)
is secure if the advantage of any probabilistic, polynomial-time adversary A in the following security game is
negligible in the security parameter n:

Setup: The challenger runs Setup(n, params) to obtain (p, pk, sk), and gives p and pk to A.

Queries: Proceeding adaptively, A specifies a sequence of vector subspaces Vi ⊂ FNp , represented as a
sequence of properly augmented basis vectors vi1, . . . ,vim. For each i, the challenger chooses idi uniformly
from {0, 1}n and gives to A the identifier idi and the j signatures σij ← Sign(sk, idi,vij) for j = 1, . . . ,m.

Output: A outputs id∗ ∈ {0, 1}n, a non-zero vector y∗ ∈ FNp , and a signature σ∗.

The adversary wins if Verify(pk, id∗,y∗, σ∗) = 1, and either (1) id∗ 6= idi for all i (a type 1 forgery), or (2)
id∗ = idi for some i but y∗ 6∈ Vi (a type 2 forgery). The advantage NC-Adv[A,S] of A is defined to be the
probability that A wins the security game.

3 Lattices, Gaussian Sampling, and Hardness Assumptions

An m-dimensional lattice Λ is a full-rank discrete subgroup of Rm. We will be interested in integer lattices Λ,
i.e., those whose points have coordinates in Zm. The lattices we consider consist of vectors either generated
by or orthogonal to a certain “arity check” matrix modulo some integer q. More precisely, for any integer
q ≥ 2 and any A ∈ Zn×mq , we define

Λ⊥q (A) :=
{
e ∈ Zm : A · e = 0 mod q

}
Λu
q (A) :=

{
e ∈ Zm : A · e = u mod q

}
Λq(A) :=

{
e ∈ Zm : ∃ s ∈ Znq with At · s = e mod q

}
.

The lattice Λu
q (A) is a coset of Λ⊥q (A); namely, Λu

q (A) = Λ⊥q (A) + t for any t such that A · t = u mod q.

Length of a basis. Let S be an ordered set of linearly independent (column) vectors S = {s1, . . . , sk} in
Rm. We use the following standard notation:

• ‖S‖ denotes the length (using the `2 norm) of the longest vector in S, i.e. ‖S‖ := maxi‖si‖ for
1 ≤ i ≤ k.

• S̃ := {s̃1, . . . , s̃k} ⊂ Rm denotes the Gram-Schmidt orthogonalization of the vectors s1, . . . , sk taken
in that order. We refer to ‖S̃‖ as the Gram-Schmidt norm of S.

5

Generating a short basis. The public key for our signature scheme will be a random matrix A, and the
secret key will be a basis S for Λ⊥(A) with low Gram-Schmidt norm. We can generate A and S using an
algorithm of Alwen and Peikert [5], which improves on an algorithm of Ajtai [4].

Theorem 3.1 ([5, Theorem 3.2], with δ = 1/3). Let q be an integer1 and m := d6n lg qe. There is a
probabilistic polynomial-time algorithm TrapGen(q, n) that outputs a pair (A ∈ Zn×mq , S ∈ Zm×m) such
that A is statistically close to a uniform matrix in Zn×mq and S is a basis for Λ⊥q A such that ‖S̃‖ ≤ 30

√
n lg q

with all but negligible probability in n.

The definition of “statistically close” and other properties of statistical distance that we will need appear
in Appendix A. By Lemma A.2, we may assume without loss of generality that the matrix A generated by
TrapGen has rank n.

Delegating a basis. In our signature scheme, the lattice used to sign a file will need to be derived from
two sources: the public key, which is a matrix A generated using TrapGen, and the file identifier id, which
is random. To combine the two, we hash the file identifier to a second matrix and derive a short basis for
A‖H(id). To derive this new basis we use the basis delegation mechanism of Cash et al.’s identity based
encryption scheme [7].

Theorem 3.2 ([7, Lemma 3.2]). Let S ∈ Zm×m be an arbitrary basis of Λ⊥(A) for a rank n matrix
A ∈ Zn×mq , and let A′ ∈ Zn×m

′
q be arbitrary. There is a deterministic polynomial-time algorithm

ExtBasis(S,B := A‖A′) that outputs a basis T of Λ⊥(B) ⊂ Z(m+m′)×(m+m′) such that ‖T̃‖ = ‖S̃‖.

Discrete Gaussians. Let L be a subset of Zm. For any vector c ∈ Rm and any positive parameter σ ∈ R>0,
let:

ρσ,c(x) := exp
(
−π‖x− c‖2/σ2

)
be a Gaussian function on Rm with center c and parameter σ,

ρσ,c(L) :=
∑

x∈L ρσ,c(x) be the discrete integral of ρσ,c over L, and

DL,σ,c be the discrete Gaussian distribution over L with center c and parameter σ. In particular, for all
y ∈ L, we have

DL,σ,c(y) =
ρσ,c(y)

ρσ,c(L)
.

For notational convenience, ρσ,0 and DL,σ,0 are abbreviated as ρσ and DL,σ, respectively.

Sampling from a discrete Gaussian. Gentry et al. [12] construct algorithms for sampling from discrete
Gaussians.

Theorem 3.3.

(a) [12, Theorem 4.1] There is a probabilistic polynomial-time algorithm SampleGaussian that, given
a basis T of an n-dimensional lattice Λ, a parameter σ ≥ ‖T̃‖ · ω(

√
log n), and a center c ∈ Rn,

outputs a sample from a distribution that is statistically close to DΛ,σ,c.

1The result in the published version of [5] is stated and proved for odd q, with a note that this restriction can be lifted. The result
in the full version has no restriction on q.

6

(b) [12, Theorem 5.9] There is a probabilistic polynomial-time algorithm SamplePre that, given a matrix
A ∈ Zn×mq , a basis T of Λ⊥q (A), a parameter σ ≥ ‖T̃‖ · ω(

√
log n), and a vector u ∈ Zn, outputs a

sample from a distribution that is statistically close to DΛu
q (A),σ.

Recall that if Λu
q (A) is not empty then Λu

q (A) = t + Λ⊥q (A) for any t ∈ Λu
q (A). Algorithm

SamplePre(A,T,u, σ) simply calls SampleGaussian(T, σ, t) and subtracts t from the result. For Gaussians
centered at the origin, we use SampleGaussian(T, σ) to denote SampleGaussian(T, σ,0). We use the nota-
tion SampleGaussian(Zm, σ) to denote sampling from the lattice Zm with a basis consisting of the m unit
vectors.

The smoothing parameter. For an n-dimensional lattice Λ and positive real ε > 0, the smoothing parame-
ter ηε(Λ) of Λ is defined to be the smallest positive s such that ρ1/s(Λ

∗ \ {0}) ≤ ε [20]. The key property of
the smoothing parameter is that if σ > ηε(Λ), then every coset of Λ has roughly equal mass. More precisely,
for any such σ, if ε ∈ (0, 1) and c ∈ Rn, then we have [12, Lemma 2.7]

1−ε
1+ε · ρσ(Λ) ≤ ρσ,c(Λ) ≤ ρσ(Λ). (3.1)

For almost all matrices A ∈ Zn×mq , there is a negligible ε such that the smoothing parameter ηε(Λ⊥q (A)) is
less than ω(

√
logm):

Lemma 3.4 ([12, Lemma 5.3]). Let q be a prime and n,m integers such that m > 2n lg q. Let f be some
ω(
√

logm) function. Then there is a negligible function ε(m) such that for all but at most a q−n fraction of
A in Zn×mq we have ηε(m)(Λ

⊥
q (A)) < f(m).

The following lemma gives a bound on the length of vectors sampled from a Gaussian. The result follows
from [20, Lemma 4.4], using [12, Lemma 3.1] to bound the smoothing parameter.

Lemma 3.5 ([20, Lemma 4.4]). Let q ≥ 2 and let A be a matrix in Zn×mq with m > n. Let T be a basis for
Λ⊥q (A) and σ ≥ ‖T̃‖ · ω(

√
logm). Then for c ∈ Rm and u ∈ Znq , we have

Pr
[
‖x− c‖ >

√
mσ : x

R← DΛ,σ,c

]
≤ negl(n)

Hardness assumption. The security of our signature scheme is based on the problem of finding short
vectors in Λ⊥q (A) for random A. This is known as the Small Integer Solution (SIS) problem, and is defined
as follows.

Definition 3.6. An instance of the SISq,m,β problem is a matrix A ∈ Zn×mq . A solution to the problem is a
nonzero vector v ∈ Zm such that ‖v‖ ≤ β and A · v = 0 mod q (i.e., v ∈ Λ⊥q (A)).

IfA is an algorithm that takes as input a uniformly random matrix A ∈ Zn×mq , we define SIS-Adv[B, (q,m, β)]
to be the probability that A outputs a solution to a uniformly random SISq,m,β problem instance A.

Micciancio and Regev [20] and Gentry et al. [12] show that the (average case) SIS problem is hard
assuming worst-case hardness of certain standard lattice problems, such as the shortest independent vector
problem SIVP and the shortest vector problem GapSVP.

7

4 New Tools

The security of most lattice-based signature schemes depends on the adversary’s inability to find a short vector
in Λ⊥q (A) for some public matrix A. However, for homomorphic signatures this criterion is insufficient.
Roughly speaking, an adversary in a homomorphic signature scheme will be given several short vectors
e1, . . . , ek ∈ Λ⊥q (A) and must produce a short vector in Λ⊥q (A) that is not in the span of the ei. This is a
“one-more” variant of the standard SIS problem, analogous to the “one-more discrete logarithm” problem in
group-based cryptography (see e.g., [21]). We now formally define the problem.

Definition 4.1. For any integer k ≥ 0, an instance of the k-SISq,m,β,σ problem is a uniformly random matrix
A ∈ Zn×mq and a set of k vectors e1, . . . , ek ∈ Λ⊥q (A) drawn from the distribution DΛ⊥q (A),σ. A solution to
the problem is a nonzero vector v ∈ Zm such that

1. ‖v‖ ≤ β,

2. A · v = 0 mod q (i.e., v ∈ Λ⊥q (A)), and

3. v 6∈ Q-span({e1, . . . , ek}).

If A is an algorithm that takes as input a matrix A ∈ Zn×mq and vectors ei ∈ Zm for i = 1, . . . , k, we
define k-SIS-Adv[B, (q,m, β, σ)] to be the probability that A outputs a solution to a k-SISq,m,β,σ problem
instance (A, e1, . . . , ek) drawn at random from the appropriate distribution.

When k = 0 the k-SIS problem is identical to the SIS problem. The main result of this section is to show
that an adversary A that solves the k-SIS problem in dimension m can be used to solve the SIS problem in
dimension m− k. More precisely, we have the following:

Theorem 4.2. Let q be a prime, and let m, β, σ, and k, be polynomial functions of a security parameter n.
Suppose that m ≥ 2n lg q, m/k > n, σ > ω(

√
logm), t > ω(

√
log n), and q > σ · ω(

√
logm).

Let β′ = β · (k3/2 + 1)k!(tσ)k. Let A be a polynomial-time adversary for the k-SISq,m,β,σ problem.
Then there exists a polynomial-time algorithm B that solves SISq,m−k,β′ , such that

SIS-Adv[B, (q,m− k, β′)] ≥ k-SIS-Adv[A, (q,m, β, σ)]− ε,

where ε is a negligible function of n.

Since the SIS problem is only assumed to be hard for parameters β ∈ poly(n), the fact that the above
reduction degrades exponentially in k means that k must be chosen to be small enough so that β′ is still
polynomial in n. In our application the parameter σ is ω(

√
n), which means that k must be chosen to be

O(1). In this case, if we take t = O(log σ) and β′ = β ·O(σk logk σ), then Theorem 4.2 shows that if the
SISq,m−k,β′ problem is hard, then the k-SISq,m,β,σ problem is also hard.

The idea of the proof of Theorem 4.2 is as follows: given an SIS challenge A′ ∈ Zn×(m−k)
q , we can

choose k random vectors ei from a Gaussian distribution over Zm and append k columns to A′ to create a
matrix A ∈ Zn×mq such that the ei are in Λ⊥q (A). If the adversary A outputs a short vector e∗ ∈ Λ⊥q (A) that
is Q-linearly independent of the {ei}, then we can compute a short vector v ∈ Λ⊥q (A) with zeroes in the last
k entries. Reading off the first m− k entries of v gives us a short vector in Λ⊥q (A′).

To turn this idea into a formal proof, we need to show that the tuple (A, e1, . . . , ek) generated in this
manner is indistinguishable from a tuple (A, e1, . . . , ek) selected from the distribution of k-SIS challenge
instances. To show this, we define two distributions on Zn×mq × Zm×k.

8

For positive integers m > n > k, a prime q, and a real σ > 2, define DIST0(n,m, k, q, σ) as:

1. For i = 1, . . . , k, sample independent ei
R← DZm,σ.

2. Choose a random A ∈ Zn×mq subject to the condition A · ei = 0 mod q for all i.
3. Output (A, e1, . . . , ek).

Define DIST1(n,m, k, q, σ) as:

1. Sample a random matrix A
R← Zn×mq .

2. For i = 1, . . . , k sample independent ei
R← DΛ⊥q (A),σ.

3. Output (A, e1, . . . , ek).

To prove Theorem 4.2, we will use the fact that for appropriate choices of parameters, the distributions
DIST0 and DIST1 are statistically close.

Theorem 4.3. Supposem ≥ 2n lg q,m > 2k, and σ > ω(
√

logm). Then the distributions DIST0(n,m, k, q, σ)
and DIST1(n,m, k, q, σ) are statistically close.

We will need several preparatory lemmas.

Lemma 4.4. Suppose m ≥ 2n lg q and σ > ω(
√

logm). Then for all but a negligible fraction of A ∈ Zn×mq ,
we have

ρσ(Zm) = qn · ρσ(Λ⊥q (A)) · (1− negl(n)).

Proof. By Lemma 3.4, there is a negligible ε(n) such that σ > ηε(Λ
⊥
q (A)) for all but a q−n fraction of

A ∈ Zn×mq . By (3.1), for all such A and all c ∈ Rn, we have ρσ,c(Λ⊥q (A)) = ρσ(Λ⊥q (A))(1− negl(n)). If
we choose a set of coset representatives c for Zm/Λ⊥q (A), then we have

ρσ(Zm) =
∑

c∈Zm/Λ⊥q (A)

ρσ,c(Λ⊥q (A)) = [Zm : Λ⊥q (A)] · ρσ(Λ⊥q (A))(1− negl(n)).

If rank(A) = n, then [Zm : Λ⊥q (A)] = qn and the result follows. Since m > 2n, the fraction of matrices
A ∈ Zn×mq with rank(A) < n is negligible (cf. Lemma A.2).

Lemma 4.5. Suppose m ≥ 2n lg q, m > 2k, σ > ω(
√

logm), and q > σ · ω(
√

logm) with q prime. Let
A ∈ Zn×mq be a matrix satisfying the conclusion of Lemma 4.4. Let ei, . . . , ek be vectors sampled from
DΛ⊥q (A),σ. Then with overwhelming probability, the set {ei} has Zq-rank k.

Proof. For i = 1, . . . ,m let Ei ∈ Zi×mq be the matrix whose rows are the vectors ej mod q for j = 1, . . . , i.
Then the probability that e1, . . . , ek are not Zq-linearly independent is at most

k−1∑
i=0

Pr[ei+1 ∈ Λq(Ei)] ≤
1

ρσ(Λ⊥q (A))

k−1∑
i=0

ρσ(Λq(Ei)). (4.1)

By [2, Lemma 31], we have ρσ(Λq(Ei)) ≤ ρσ(Zi)/(1 − ε), where ε = 2m · exp(−(π/4)(q/σ)2). Using
this result and Lemma 4.4, we see that the quantity (4.1) is bounded above by

qn

ρσ(Zm)(1− ε)

k−1∑
i=0

ρσ(Zi). (4.2)

9

By [2, Lemma 21] and the assumption σ > ω(
√

logm), there is a constant δ > 0 such that for all i, we have
σi ≤ ρσ(Zi) ≤ σi(1 + δ). Thus the quantity (4.2) is bounded above by

qn(1 + δ)

σm(1− ε)

(
σk − 1

σ − 1

)
≤ δ′ · qn

σm−k
,

for some constant δ′. Since m ≥ 2n lg q and k < m/2, this last quantity is less than δ′ · q−n whenever σ > 4.

Proof of Theorem 4.3. We compute the statistical distance directly. First we note that if the vectors {ei}
chosen in DIST0 have Zq-rank `, then there are qn(m−`) possible choices for A, with each choice equally
likely. We thus see that

Pr
[
X = (A, e1, . . . , ek) : X

R← DIST0

]
=

(
1

q

)n(m−`) k∏
i=1

ρσ(ei)

ρσ(Zm)
.

On the other hand, a sample from DIST1 is nm independent uniform samples from Zq and k independent
samples from DΛ⊥q (A),σ, and thus

Pr
[
X = (A, e1, . . . , ek) : X

R← DIST1

]
=

(
1

q

)nm k∏
i=1

ρσ(ei)

ρσ(Λ⊥q (A))
.

Let S ⊂ Zn×mq be the set of matrices for which the conclusion of Lemma 4.4 holds, and for any
A ∈ Zn×mq let TA ⊂ Λ⊥q (A)k be those sets of vectors {ei} with Zq-rank k. We first calculate the distance
between DIST0 and DIST1 when restricted to those tuples for which A ∈ S and {ei} ∈ TA:

∆0 :=
1

2

∑
A∈S

∑
{ei}∈TA

∣∣∣∣∣
(

1

q

)n(m−k) k∏
i=1

ρσ(ei)

ρσ(Zm)
−
(

1

q

)nm k∏
i=1

ρσ(ei)

ρσ(Λ⊥q (A))

∣∣∣∣∣.
Then by Lemma 4.4, we have

∆0 =
1

2

∑
A∈S

qnk

qnm
· negl(n) ·

∑
{ei}∈TA

k∏
i=1

ρσ(ei)

ρσ(Zm)
. (4.3)

If we relax the restriction on the rank of the {ei}, then the total sum does not decrease, and the numerator
of the last sum now includes all terms of the form

∏k
i=1 ρσ(ei) with {ei} ∈ Λ⊥q (A)k. Since the expression

(
∑

e∈Λ⊥q (A) ρσ(e))k contains all of these terms and more, we have

∆0 ≤
∑
A∈S

qnk

qnm
· negl(n) ·

 ∑
e∈Λ⊥q (A)

ρσ(e)

ρσ(Zm)

k

=
∑
A∈S

qnk

qnm
· negl(n) ·

(
ρσ(Λ⊥q (A))

ρσ(Zm)

)k

By Lemma 4.4 and since |S| ≤ qnm, we conclude that ∆0 ≤ negl(n).
Next, we claim that

Pr[A ∈ S and {ei} ∈ TA : (A, e1, . . . , ek)← DIST1] ≥ 1− negl(n). (4.4)

10

Given this claim, the theorem now follows from statement (2) of Lemma A.1, choosing the set A of the
Lemma to be tuples with A ∈ S and {ei} ∈ TA and using the fact that ∆0 ≤ negl(n).

To show (4.4), it suffices to show that both Pr[A 6∈ S] and Pr[A ∈ S and {ei} 6∈ TA] are both negligible
for tuples chosen from DIST1. The first quantity is negligible because all matrices A are equally likely to be
chosen, and by Lemma 4.4 a negligible fraction of all matrices are not in S. The second quantity is negligible
by Lemma 4.5.

We can now prove our main theorem.

Proof of Theorem 4.2. Let A be an algorithm that takes as input a matrix A ∈ Zn×mq and k vectors
e1, . . . , ek ∈ Zm and outputs a vector e ∈ Zm. We construct an algorithm B that takes as input a matrix
B ∈ Zn×(m−k)

q and outputs a vector w ∈ Zm−kq .
Algorithm B begins by sampling k vectors ei at random from a Gaussian over Zm. It then samples a

random matrix A such that A · ei = 0 mod q for all i. By Theorem 4.3, the tuple (A, e1, . . . , ek) created
in this manner is statistically indistinguishable from a k-SIS challenge. Algorithm B can thus use the k-SIS
solver A to find a short vector e ∈ Λ⊥q (A) and do Gaussian elimination over Z to find a vector in Λ⊥q (A)
whose last k entries are zero.

On a technical level, algorithm B works as follows:

1. Set ei ← SampleGaussian(Zm, σ) for i = 1, . . . , n.

2. Let E be the m× k matrix whose columns are the vectors ei. If E has Zq-rank less than k, then abort
(the simulation has failed). If the simulation does not fail, then without loss of generality2 assume that
the last k rows of E are linearly independent mod q.

3. Write E = F
G

, where F ∈ Z(m−k)×k, and G ∈ Zk×k has determinant prime to q.

4. Set U← (−B) · F ·G−1 ∈ Zn×kq .

5. Set A← B‖U.

6. Run A on inputs A, e1, . . . , ek, and let e ∈ Zm be the output.

7. Write e = f‖g with f ∈ Zm−k and g ∈ Zk.

8. Set x← det(G) ·G−1 · g ∈ Zk.

9. Compute w← F · x− det(G) · f ∈ Zm−k, and output w.

We begin by observing that the selection of the ei in Step (1) can be viewed as choosing m vectors from
SampleGaussian(Zk, σ). If we partition these m vectors into bm/kc sets of k vectors (plus some extras),
then by [2, Theorem 30] the probability that any one of these sets has Zq-rank less than k is bounded above
by some constant δ < 1. Thus the probability that the matrix E has rank less than k is bounded above by
δbm/kc, which is negligible in n since m/k ≥ n. Thus the probability that B aborts in Step (2) is negligible.

Since E has rank k with overwhelming probability, the distribution (A, e1, . . . , ek) produced by the
simulator is statistically close to DIST0(n,m, k, q, σ). By Theorem 4.3, this distribution is statistically close
to that of (A, e1, . . . , ek) in a k-SIS challenge. Thus even a computationally unbounded adversary cannot
tell if it is interacting with a real k-SIS challenge or with our simulation, except with negligible probability.

To conclude the proof, it suffices to show that w is a solution to the SIS problem for B; namely, that (a)
w is nonzero, (b) B ·w = 0 mod q, and (c) ‖w‖ ≤ β′.

2More precisely, we apply a permutation π to the rows of E to obtain a matrix E′ whose last k rows have Zq-rank k, and we
apply π−1 to the columns of the matrix A produced in Step (5).

11

To show (a), first observe that w = 0 if and only if F ·G−1 · g = f in Qm−k. Let y = G−1 · g ∈ Qk. If
w = 0, then f = F · y and g = G · y, and therefore E · y = e. Thus e is a Q-linear combination of the
vectors e1, . . . , ek, contradicting the fact that e is a solution the k-SIS challenge.

To show (b), observe that since e = f‖g is a solution to the k-SIS challenge, we have A·e = B·f+U·g =
0 mod q. The construction of U then implies that B · f = B · F ·G−1 · g mod q. It follows that

B ·w = det(G)(B · F ·G−1 · g −B · f) = 0 mod q.

Finally, we bound the length of w. By a standard tail inequality [12, Lemma 4.2], the absolute value
of each entry of E is less than tσ with overwhelming probability. Furthermore, since ‖e‖ ≤ β we know
that each entry of e has absolute value bounded by β. Since G · x = det(G) · g, Cramer’s rule [9, Ch. 11,
Theorem 26] implies that the ith entry of x is the determinant of the matrix constructed by replacing the ith
column of G with the vector g. There are k! terms in this determinant, each of which consists of a product
of k − 1 entries from G and one entry from g. Thus with overwhelming probability, each entry of x is
bounded in absolute value by β · k!(tσ)k−1. It follows that each entry of F · x is bounded by β · k · k!(tσ)k,
and thus ‖F · x‖ ≤ β · k3/2 · k!(tσ)k. Since |det(G)| ≤ k!(tσ)k with overwhelming probability, we have
‖det(G) · f‖ ≤ β · k!(tσ)k. We conclude that ‖w‖ ≤ β · (k3/2 + 1)k!(tσ)k with overwhelming probability.

Our network coding scheme will rely on properties of the signature vectors mod 2. We will need the
following result, which shows that for appropriate choices of parameters, a sample from DΛ⊥q (A),σ looks
uniformly random mod 2.

Proposition 4.6. Let q be odd, let m > 2n lg q, and let σ > ω(
√

logm). Suppose (A, e1, . . . , ek) ∈
Zn×mq × Zm×k is a tuple selected from the distribution of k-SISq,m,β,σ challenge instances (for any β).
Then the distribution of (A, e1 mod 2, . . . , ek mod 2) ∈ Zn×mq × Zm×k2 is statistically close to the uniform
distribution on Zn×mq × Zm×k2 .

Proof. For any A ∈ Zn×mq , let Λ′(A) := Λ⊥q (A) ∩ (2Z)m. We first claim that Λ′(A) = 2Λ⊥q (A). To see
this, observe that Λ′(A) is contained in both Λ⊥q (A) and (2Z)m, and 2Λ⊥q (A) is contained in Λ′(A). Let
` = rank(A); then det(Λ⊥q (A)) = q`. Since q is odd, it follows that q` | det(Λ′(A)), 2m | det(Λ′(A)),
and det(Λ′(A)) | 2mq`. We conclude that det(Λ′(A)) = 2mq`, and the claim follows.

Since Λ′(A) = 2Λ⊥q (A), we have ηε(Λ′(A)) = 2ηε(Λ
⊥
q (A)). By Lemma 3.4, there is a negligible

ε(n) such that for all but at most a q−n fraction of A ∈ Zn×mq we have σ > ηε(Λ
⊥
q (A)). By [12, Corol-

lary 2.8], for all such A the distribution of the ei is statistically close to uniform over Λ⊥q (A)/Λ′(A) =

Λ⊥q (A)/2Λ⊥q (A) ∼= Zm2 , and the proposition follows for all A satisfying the bound ηε(Λ⊥q (A)) < σ. Since
all matrices A are equally likely and all but a q−n fraction satisfy this bound, the proposition follows.

5 A Network Coding Signature Scheme over F2

We now describe our network coding signature scheme. Our construction is inspired by the signature scheme
of Gentry et al. [12]. In this scheme, signatures are short vectors in Λu

q (A), where u is the hash of the
message to be signed. The key idea in our construction of homomorphic signatures is to work simultaneously
modulo 2 and modulo q. Specifically, a signature on a vector v ∈ Fn2 is a short vector e ∈ Zm such that e is
in both Λ⊥q (A) and Λv

2 (A). The mod 2 part ties the signature to the message, while the mod q part ensures
that the signature cannot be forged. By the Chinese remainder theorem, such a vector e is in the lattice Λq·v2q .

12

In order to be able to sign multiple files, the matrix A must be different for every message, yet still have
a trapdoor that allows us to generate signatures using the SamplePre algorithm. To achieve this, we divide
A into two parts. The left half is a public matrix generated by the TrapGen algorithm, while the right half
depends on the identifier of the file being signed. Given the secret basis output by TrapGen, we can use the
ExtBasis algorithm to compute a short basis for Λ⊥2q(A).

Setup(n, params). Given a security parameter n and parameters params = (N, k, L,m, q, σ), where N = n
is the dimension of vectors to be signed, k < n is the dimension of subspaces to be signed, L ≥ 1 is a
parameter relating to the complexity of the network, m(n,L) > n is an integer, q(n,L) is an odd prime, and
σ(n,L) is a real number, do the following:

1. Run TrapGen(n,m, 2q) to generate a matrix A ∈ Zn×m2q and a basis T of Λ⊥2q(A) such that ‖T̃‖ ≤
30
√
n lg 2q.

2. Let H : {0, 1}∗ → Zn×m2q be a hash function, viewed as a random oracle.

3. Output the prime p = 2, the public key pk← (A, H), and the private key sk← (A, H,T).

Sign(sk, id,v). Given secret key sk = (A, H,T), identifier id ∈ {0, 1}n, and a vector v ∈ Fn2 , do:

1. Set B← A‖H(id) ∈ Zn×2m
2q .

2. Set S← ExtBasis(T,B) to be a basis for Λ⊥2q(B) with ‖S̃‖ = ‖T̃‖.
3. Output e← SamplePre(B,S, σ, q · v).

Combine(pk, id, {(αi, ei)}`i=1). Given a public key pk, an identifier id, and {(αi, ei)}`i=1 with αi ∈ F2 =

{0, 1}, output e←
∑`

i=1 αiei ∈ Z2m.

Verify(pk, id,y, e). Given a public key pk = (A, H), an identifier id, a signature e ∈ Z2m, and a vector
y ∈ Fn2 , do the following:

1. Set B← A‖H(id) ∈ Zn×2m
2q .

2. If (a) ‖e‖ ≤ L · σ
√
m and (b) B · e = q · y mod 2q, output 1. Otherwise output 0.

Proposition 5.1. Suppose σ ≥ 30
√
n lg 2q · ω(

√
log n). Then the scheme described above is an L-limited

homomorphic network coding signature scheme.

Proof. We must show that the correctness conditions of Definition 2.1 hold, with (2) holding for all ` ≤ L.
By Theorem 3.3 (b), the vector e output by the Sign algorithm satisfies B · e = q · v mod 2q and is drawn
from a distribution statistically close to DΛqv

2q (B),σ. By Lemma 3.5, we have ‖e‖ ≤ σ
√
m with overwhelming

probability. It follows that if e is output by Sign(sk, id,v), then Verify(pk, id,v, e) = 1.
Since the network coding coefficientsαi are in {0, 1}, the length of the vector e output by Combine(pk, id, {(αi, ei)}`i=1)

when given signatures ei output by Sign is at most `σ
√
m, so this vector passes verification test (a) whenever

` ≤ L. As for verification test (b), suppose we have vectors vi such that Verify(pk, id,vi, ei) = 1 for all i.
Since q is odd, this implies that B · ei = 0 mod q and vi mod 2 for all i. It follows that B · e = 0 mod q
and

∑
αivi mod 2, and therefore B · e = q ·

∑
αivi mod 2q.

13

5.1 Security

We now prove security of our homomorphic network coding signature scheme, in the random oracle model.
Given an adversary that breaks the signature scheme over Z2q, we construct an adversary that simulates the
signature scheme and solves the k-SIS problem over Zq. By Theorem 4.2, this adversary can in turn be used
to solve the SIS problem over Zq.

Our simulation begins by guessing which of the adversary’s signature and hash queries will correspond to
the file identifier id∗ associated with the adversary’s forgery and outputting a public key A derived from the
k-SIS challenge matrix. For queries not associated with id∗, the simulator “swaps the roles” of the public key
and hash function as follows: we use TrapGen to program the random oracle with a matrix H(id) for which
we know a short basis, and we use ExtBasis to compute a short basis for A‖H(id). We can then we compute
the signatures as in the real system.

For the query id∗, we construct H(id∗) so that the k-SIS challenge vectors are valid signatures for the
vectors queried by the adversary. We construct the mod q part of H(id∗) using the fact that valid signatures
are elements of Λ⊥q (A‖H(id∗)), and we construct the mod 2 part of H(id∗) using the fact that the k-SIS
challenge vectors are statistically close to random mod 2.

With this setup, a forged signature is exactly a solution to the k-SIS problem mod q. We now give the
details.

Theorem 5.2. LetN be the network coding signature scheme described above. Suppose thatm = d6n lg 2qe
and σ = 30

√
n lg 2q log n. Let β = L · σ ·

√
m. ThenN is secure in the random oracle model assuming that

k-SISq,2m,β is infeasible.
In particular, let A be a polynomial-time adversary as in Definition 2.2. Then there exists a polynomial-

time algorithm B that solves k-SISq,2m,β,σ, such that

k-SIS-Adv[B, (q, 2m,β, σ)] ≥ 1

Qs +Qh + 1
·NC-Adv[A,N]− Qs(Qs +Qh)

2n
− 2k−2m − ε,

where Qs and Qh are the number of signature and hash queries made byA, respectively, and ε is a negligible
function of the security parameter n.

Proof. Let A be an adversary as in Definition 2.2 that makes at most Qs signature queries and at most Qh
hash queries. We construct an algorithm B that takes as input a random matrix B ∈ Zn×2m

q and k vectors
e∗1, . . . , e

∗
k ← DΛ⊥q (B),σ, and outputs a short vector e∗ ∈ Z2m that is Q-linearly independent of the e∗i .

Algorithm B simulates the hash function H and the Setup and Sign algorithms of N as follows:

Setup. B does the following:

1. Choose random A2
R← Fn×m2 .

2. Let Aq be the left m columns of B.

3. Use the Chinese remainder theorem to compute A ∈ Zn×m2q such that A = A2 mod 2 and A =
Aq mod q.

4. Choose random J
R← {1, . . . , Qs +Qh + 1}.

5. Output the public key A.

Hash query. When A requests the value of H(id), algorithm B does the following:

14

1. If id has already been queried, return H(id).

2. If id is the J th hash query, do the following:

(a) Let E be the 2m × k matrix whose columns are the vectors e∗i . If the last m rows of E have
F2-rank less than k, then abort. (The simulation has failed.)

(b) If id was chosen by the simulator to answer a signature query, do the following:
i. Let v1, . . . ,vk be the vectors queried by the adversary, and let V be the n× k matrix whose

columns are the vectors vi.
ii. Choose a random matrix U2 ← Fn×m2 such that (A2‖U2) ·E = V mod 2.3

Otherwise, choose a uniformly random matrix U2
R← Fn×m2 .

(c) Let Uq be the right m columns of B.
(d) Use the Chinese remainder theorem to compute Uid ∈ Zn×m2q such that Uid = Uq mod q and

Uid = U2 mod 2.
(e) Return H(id)← Uid.

3. Otherwise, do the following:

(a) Run TrapGen(n,m, 2q) to generate a matrix Uid ∈ Zn×m2q and a short basis Tid of Λ⊥2q(Uid).
(b) Return H(id)← Uid and store Tid.

Sign. When A requests a signature on a file V represented by k vectors v1, . . . ,vk ∈ Fn2 , algorithm B does
the following:

1. Choose a random id
R← {0, 1}n. If id has already been queried to the hash oracle, then abort. (The

simulation has failed.)

2. Simulate a query to H(id). If this query is the J th distinct hash query, let {ei} be the k-SIS challenge
vectors {e∗i }. Otherwise,

(a) Set B← A‖H(id).

(b) Set S← ExtBasis(Tid,B) to be a basis for Λ⊥2q(B) with ‖S̃‖ = ‖T̃id‖.
(c) For i = 1, . . . , n, set ei ← SamplePre(B,S, σ, qvi) ∈ Z2m.

3. Output e1, . . . , ek.

Output. Eventually A outputs a signature e∗, an identifier id∗, and a non-zero vector y∗ ∈ Fn2 . Algorithm B
outputs e∗.

We first analyze the situations where the simulator can abort without outputting an answer and show that
the probability that this happens is negligible, assuming Qs and Qh are polynomial in n.

• Step (2a) of hashing. By Proposition 4.6, the entries of E are statistically close to uniformly random
mod 2. Since the probability that a random matrix in Fk×k2 is not invertible is 1/2, the probability that
the last m rows of E have F2-rank less than k is bounded above by 1/2m−n (cf. Lemma A.2).

3E.g., by choosing m− k columns of U2 at random and solving for the remaining ones. The fact that the last m rows of E have
F2-rank k guarantees that for an appropriate choice of columns, a solution exists and is unique.

15

• Step (1) of signing. In this case, the simulator aborts if the identifier chosen for the signature query is
the same as an identifier previously queried to the hash oracle. This happens with probability at most
Qs(Qh +Qs)/2

n.

We next observe that if the simulator does not abort, the distribution of the simulator’s outputs are
(statistically) indistinguishable from the distribution of the outputs in the real signature scheme, under the
assumption that H is a random oracle.

• The public key. The matrix A in the simulation is uniformly random in Zn×m2q . By Theorem 3.1, the
matrix A in the real system is statistically close to uniform.

• The output of H (on most queries). If id is not the J th hash query, then by Theorem 3.1, the
matrices Uid output by all other hash queries are statistically close to uniform. We defer the remaining
case.

• The output of Sign (on most queries). If id is not the J th hash query, then Theorem 3.3 (b) shows
that the ei in both the real construction and the simulation come from a distribution that is statistically
close to DΛqvi

2q (B),σ. We have shown above that the matrices B = A‖H(id) in the real scheme and
simulation come from statistically close distributions. It follows that the output distributions of the
signatures are statistically close.

• The output of H and Sign when id is the Jth hash query. By Proposition 4.6, the entries of the
vectors e∗i are statistically close to uniform mod 2. It follows that U2 is statistically close to uniform
mod 2 given the adversary’s view, and therefore H(id) is uniformly random in Zn×m2q .

As for the signature, observe that the vectors e∗i come from the distributionDΛ⊥q (A‖Uid),σ and A‖Uid is
constructed so that ei ∈ Λ⊥2 (A‖Uid). Since Λ⊥2q(A‖Uid) = Λ⊥q (A‖Uid) ∩ Λ⊥2 (A‖Uid), the vectors
e∗i come from the distribution DΛ⊥2q(A‖Uid),σ, which by Theorem 3.3 (b) is statistically close to the
distribution of signatures output by the real system.

Now the probability that the simulator “guesses right”; i.e., that that id∗ is the J th query to the hash
function, is 1/(Qs + Qh + 1). If the simulator guesses right, then e∗ is a valid signature for the nonzero
vector y∗ belonging to the file with identifier id∗. In particular, this implies that e∗ is nonzero and ‖e∗‖ < β.
Furthermore, our construction implies that (A‖Uid∗) · e∗ = q · y∗ mod 2q, and therefore e∗ is a nonzero
vector in Λ⊥q (A‖Uid∗) = Λ⊥q (B).

It remains to show that e∗ is not a Q-linear combination of the vectors e∗i . Suppose the contrary; then
e∗ =

∑k
i=1 cie

∗
i for some ci ∈ Q. We claim that with overwhelming probability, the ci all have odd

denominator when written in lowest terms. To see this, let d be the least common denominator of the ci.
If some ci has even denominator, then when we clear denominators we obtain an equation de∗ =

∑
c′ie
∗
i

where d is even and at least one of the c′i ∈ Z is odd. Reducing mod 2, we see that this implies that the
e∗i are Z2-linearly dependent. However, by Proposition 4.6 the e∗i are statistically close to uniform in Zm2 ,
and therefore the probability that the e∗i are Z2-linearly dependent is at most 1/2m−k, which is negligible
(cf. Lemma A.2). This contradicts the hypothesis that some ci has even denominator with non-negligible
probability; in particular, the values {ci mod 2} are well-defined with overwhelming probability.

Now suppose that id∗ was not produced by the simulator during a signature query (type 1 forgery). Since
the vectors ei are statistically close to uniform mod 2, their F2-span is a random subspace of Fm2 of dimension
at most k. Because the adversary has no information about the vectors e∗i , the probability that e∗ is in the
F2-span of the e∗i is at most 1/2m−k. By our claim above, if e∗ =

∑
cie
∗
i with ci ∈ Q, then this equation

holds mod 2 with overwhelming probability, in which case e∗ is in the F2-span of the e∗i , a contradiction.

16

On the other hand, suppose that id∗ was produced by the simulator during a signature query (type 2
forgery). Then since (A‖Uid∗) · e∗i = vi mod 2, we have y∗ =

∑
civi mod 2. Thus y∗ is not a valid

forgery, and we have again obtained a contradiction.

Corollary 5.3. Let N be the network coding signature scheme described above. Suppose that m =
d6n lg 2qe, σ = 30

√
n lg 2q log n, and m/k > n. Let β = L · σ ·

√
m, let t > ω(

√
log n), and let

β′ = β · (k3/2 + 1)k!(tσ)k. Then N is secure in the random oracle model assuming that SIS(q, 2m− k, β′)
is infeasible.

In particular, if k = O(1) and t = log n, then we may take β′ = O(L · (n lg 2q)k/2+1(log n)2k+1).

Since the SIS problem is only assumed to be hard for β′ ∈ poly(n), our choice of σ forces k to be O(1)
to ensure security based on SIS.

Since the distribution of signatures at each layer of the network is different, it may be possible to determine
which initial message vectors went into making a given network coded vector. This feature, while noteworthy,
does not affect the security of the system.

6 Further Directions

Parameter Selection. We now consider how large the parameter q needs to be in order to guarantee security
of our network coding system. We use the result of Gentry, et al. [12, Section 9] which gives a reduction of
SISq,m,β to standard worst-case lattice problems. The reduction requires that m and β be polynomial in n
and that

q ≥ β
√
n · ω(

√
log n). (6.1)

By Corollary 5.3, if k is constant and t = log n, then there is some constant c (depending on k) such that our
network coding scheme is secure whenever

q

(lg 2q)k/2+1
> c(k) · L · n(k+3)/2(log n)2k+2.

Even if the constant c and the network complexity parameter L were equal to 1, for reasonable values of n
and k the modulus q must be very large: at least 2170 for n = 1000 and k = 10.

There is, however, a bright spot in this analysis. Since q depends roughly linearly on L, networks with
many nodes do not require a much larger q than networks with few nodes. Indeed, setting L to 1000 in the
above example increases the size of q by only 10 bits.

The requirement that q be large is due entirely to the fact that the reduction from k-SIS to SIS is
exponential in k. If a better reduction could be found and/or k-SIS could be reduced directly to worst-case
lattice problems in a way that gave a bound on q similar to (6.1), then q/ lg q would grow like L · n3/2 log2 n,
and we could use values of q in the range of 240.

Extending the System. While we have described a signature scheme that authenticates vectors with
coordinates in F2, the same construction works for any field Fp where p is a small prime. We simply set
m = d6n lg pqe and σ = 30

√
n lg pq log n, and sign a vector v ∈ Fnp using the lattice Λq·vpq (A). If p is

odd and we identify Fp with {−(p− 1)/2, . . . , (p− 1)/2}, then the output of Combine on ` vectors can be
up to `(p − 1) times as long as the largest input vector. An argument as in Proposition 5.1 shows that the
resulting system is L/(p− 1)-limited. We must therefore increase L accordingly to allow for as many linear
combinations as in the system over F2.

17

More interestingly, our system can also be used to verify network coding vectors with coordinates in
non-prime fields. Suppose for concreteness that our vectors live in (F2d)n. If we fix a basis for F2d over F2,
then when computing signatures we may view the vectors as elements of (F2)nd and compute signatures in
exactly the same manner as above. The difference comes when computing linear combinations: multiplying
by an element α ∈ F2d corresponds to acting by a matrix Mα ∈ Fd×d2 . To compute this action on the
signature vector e ∈ Zm, we lift Mα to an integer matrix with entries in {0, 1} and have it act on each group
of d coordinates of e. We see that this action increases the norm of e by a factor of at most d, so combining `
vectors gives an output that is up to `d times as long as the largest input vector. By the same argument as
above, the system over F2d is L/d-limited.

Open Problems. As described above, one important open problem inspired by our construction is to find a
tight reduction of k-SIS to worst-case lattice problems, either by improving on the reduction to SIS given by
Theorem 4.2 or by a direct argument. An improved reduction would support the use of the k-SIS problem in
developing cryptosystems for other applications.

Another problem is to improve the efficiency of our system, which at the moment produces signatures
that are too long for real-world applications. One direction to explore is instantiating the construction using
ideal lattices (see e.g. [19]), which could reduce the size of the public key and possibly that of the signatures
as well.

References

[1] S. Agrawal and D. Boneh. “Homomorphic MACs: MAC-based integrity for network coding.” In
Proceedings of ACNS ’09, Springer LNCS 5536 (2009), 292–305.

[2] S. Agrawal, D. Boneh, and X. Boyen. “Lattice basis delegation in fixed dimension and shorter-ciphertext
hierarchical IBE.” In Advances in Cryptology — CRYPTO 2010, Springer LNCS 6223 (2010), 98–115.

[3] R. Ahlswede, N. Cai, S. Li, and R. Yeung. “Network information flow.” IEEE Transactions on
Information Theory 46 (2000), 1204–1216.

[4] M. Ajtai. “Generating hard instances of the short basis problem.” In ICALP, ed. J. Wiedermann, P. van
Emde Boas, and M. Nielsen, Springer LNCS 1644 (1999), 1–9.

[5] J. Alwen and C. Peikert. “Generating shorter bases for hard random lattices.” In STACS (2009), 75–86.
Full version available at http://www.cc.gatech.edu/˜cpeikert/pubs/shorter.pdf.

[6] D. Boneh, D. Freeman, J. Katz, and B. Waters. “Signing a linear subspace: Signature schemes for
network coding.” In Public-Key Cryptography — PKC ’09, LNCS 5443. Springer (2009), 68–87.

[7] D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert. “Bonsai trees, or, how to delegate a lattice basis.” In
Advances in Cryptology — EUROCRYPT 2010, Springer LNCS 6110 (2010), 523–552.

[8] D. Charles, K. Jain, and K. Lauter. “Signatures for network coding.” International Journal of Information
and Coding Theory 1 (2009), 3–14.

[9] D. Dummit and R. Foote. Abstract Algebra. 2nd edition. Prentice-Hall, Upper Saddle River, NJ (1999).

18

http://www.cc.gatech.edu/~cpeikert/pubs/shorter.pdf

[10] C. Fragouli, J.-Y. Le Boudec, and J. Widmer. “Network coding: an instant primer.” SIGCOMM Comput.
Commun. Rev. 36 (2006), 63–68.

[11] R. Gennaro, J. Katz, H. Krawczyk, and T. Rabin. “Secure network coding over the integers.” In Public
Key Cryptography — PKC ’10, Springer LNCS 6056 (2010), 142–160.

[12] C. Gentry, C. Peikert, and V. Vaikuntanathan. “Trapdoors for hard lattices and new cryptographic
constructions.” In STOC, ed. R. E. Ladner and C. Dwork. ACM (2008), 197–206.

[13] C. Gkantsidis and P. Rodriguez. “Network coding for large scale content distribution.” In IEEE
INFOCOM (2005).

[14] K. Han, T. Ho, R. Koetter, M. Médard, and F. Zhao. “On network coding for security.” In Military
Communications Conference (Milcom) (2007).

[15] R. Johnson, D. Molnar, D. Song, and D. Wagner. “Homomorphic signature schemes.” In Topics in
Cryptology — CT-RSA 2002, Springer LNCS 2271 (2002), 244–262.

[16] R. Koetter and M. Médard. “An algebraic approach to network coding.” IEEE/ACM Transactions on
Networking (2003), 782–795.

[17] M. Krohn, M. Freedman, and D. Mazieres. “On-the-fly verification of rateless erasure codes for efficient
content distribution.” In Proc. of IEEE Symposium on Security and Privacy (2004), 226–240.

[18] S.-Y. R. Li, R. W. Yeung, and N. Cai. “Linear network coding.” IEEE Trans. Info. Theory 49 (2003),
371–381.

[19] V. Lyubashevsky and D. Micciancio. “Generalized compact knapsacks are collision resistant.” In
Proceedings of ICALP ’06, Springer LNCS 4052 (2006), 144–155.

[20] D. Micciancio and O. Regev. “Worst-case to average-case reductions based on Gaussian measures.” In
FOCS ’04: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science.
IEEE Computer Society, Washington, DC, USA (2004), 372–381.

[21] P. Paillier and D. Vergnaud. “Discrete-log-based signatures may not be equivalent to discrete log.” In
Advances in Cryptology — ASIACRYPT ’05, Springer LNCS 3788 (2005), 1–20.

[22] F. Zhao, T. Kalker, M. Médard, and K. Han. “Signatures for content distribution with network coding.”
In Proc. Intl. Symp. Info. Theory (ISIT) (2007).

A Probability

Statistical distance. Let X and Y be two random variables taking values in some countable set Ω. Define
the statistical distance, denoted ∆(X;Y), to be

∆(X;Y) :=
1

2

∑
s∈Ω

∣∣Pr[X = s]− Pr[Y = s]
∣∣

If X(n) and Y (n) are ensembles of random variables, we say X and Y are statistically close if ∆(X;Y) is
a negligible function of n.

19

Lemma A.1. Let X,Y be random variables taking values in a finite set Ω. Let A ⊆ Ω, let XA be a random
variable taking values in A defined by

Pr[XA = s] := Pr[X = s]/Pr[X ∈ A] for all s ∈ A,

and let YA be defined similarly. Then:

1. If Pr[X ∈ A] ≥ 1− ε, then ∆(X;XA) ≤ ε.

2. If Pr[X ∈ A] ≥ 1− ε and ∆(XA;YA) ≤ ε, then ∆(X,Y) ≤ 4ε.

Proof. The first statement is Property (5) of [2, Lemma 12]. For the second statement, we have

Pr[Y ∈ A] =
∑
s∈A

Pr[Y = s]

=
∑
s∈A

Pr[X = s] + Pr[Y = s]− Pr[X = s]

≥
∑
s∈A

Pr[X = s]−
∣∣∣Pr[Y = s]− Pr[X = s]

∣∣∣
= Pr[X ∈ A]−∆(XA;YA)

≥ 1− 2ε.

It now follows from the first statement that ∆(Y ;YA) ≤ 2ε, and therefore

∆(X;Y) ≤ ∆(X;XA) + ∆(XA;YA) + ∆(YA;Y) ≤ 4ε.

Random matrices over finite fields.

Lemma A.2. Let m,n, q be integers with m > n and q prime. Then the probability that a uniformly random
matrix A

R← Fn×mq has Fq-rank less than n is at most 1/qm−n.

Proof. We view A as a set of n independent vectors vi
R← Fmq . The probability that A has less than full rank

is bounded above by

n−1∑
i=0

Pr[vi+1 ∈ span(v1, . . . ,vi)] =
n−1∑
i=0

1

qm−i
<

1

qm−n
.

20

	Introduction
	Network Coding
	Lattices, Gaussian Sampling, and Hardness Assumptions
	New Tools
	A Network Coding Signature Scheme over F2
	Security

	Further Directions
	Probability

