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Abstract

We study the problem of authenticating outsourced set tipasaperformed by an untrusted server
over a dynamic collection of sets that are owned by a trustedce. We present efficient methods for
authenticating fundamental set operations, suemamandintersectiorso that the client can verify the
correctness of the received answer. Based on a novel esttenfdihe security properties bflinear-map
accumulatorsour authentication scheme is the first to achiepmalityin several critical performance
measures: (1the verification overhead at the client is optimtiat is, the client can verify an answer in
time proportional to the size of the query parameters and@ng2)the update overhead at the source is
constant (3) the bandwidth consumption is optimabmely constant between the source and the server
and operation-sensitive between the client and the seareergroportional only to the size of the query
parameters and the answer); andtf®) storage usage is optimalamely constant at the client and linear
at the source and the server. Updates and queries are atsergffit the server. In contrast, existing
schemes entail high bandwidth and verification costs or bighage usage since they recompute the
query over authentic data or precompute answers to allldesgileries. We also show applications of our
techniques to the authenticationkafyword searchesn outsourced document collections (e.g., inverted-
index queries) and of queries in outsourcEtabasege.g., equi-join queries). Since set intersection
is heavily used in these applications, we obtain new auitegtiin schemes that compare favorably to
existing approaches.

*Work supported in part by the U.S. National Science Foundation, theeCtr Geometric Computing and the Kanellakis
Fellowship at Brown University and by the Center for Reliable Informa8gstems and Cyber Security at Boston University.
TResearch performed while the author was at Boston University.



1 Introduction

Cloud services are fast becoming a vital part of today’s computing redbtynitigate equipment, mainte-
nance and storage costs, numerous Internet-based applicationgtdo Wiilizing storage and computation
resources that are offered and managed by third-party servica&prs\e.g., Amazon S3, EC2 and Sim-
pleDB Web services). Also, millions of on-line users manage their perstatal through remote cloud
storage (e.g., Gmail, Google docs). As end-user applications consunmation that comes from un-
known machines, verifying the integrity of outsourced computations paddrover remotely stored data is
a crucial security property for (the viability and reliable development lof)a computing [19].

Indeed, in such third-party data management settings, where remotelgl dteeresides outside the
administrative control of its owner and where computations are performeenbote untrusted machines,
the ability to check the integrity of the data and the correctness of the compstpédiormed on this data is
highly desirable, or otherwise a faulty or malicious server can tamper wittatiaeod falsify the computation
results. In addition to strong integrity guarantees, such a correcteesisation process should operate in a
way that is very practical for the clients, or otherwise the benefits of ctatipn outsourcing are dismissed.
Ideally, computations should be verified without having to locally rerun thehawing to utilize too much
extra cloud storage.

The problem of efficiently checking the integrity of outsourced data is destied in the model of
authenticated data structurd8, 37], which has been developed over the last decade and is atsbyclo
related to memory checking [6]. This model considers three participating entdiglata owner, called
source outsources a data structure to multiple untrusted sites, cadlaekrs to which, due to scalability
reasonsclientsissue queries. A server augments the answer to a client’s query on tretirdatare with a
cryptographic proof which is to be used by the client to verify the validity efahswer, based only on the
trust the client has to the source. This trust is usually conveyed throsigimature on time-stampetigest
of the data structure, that is, a collision resistant succinct representditiba data structure (e.g., the root
hash of a Merkle tree).

Starting from the fundamental problem sét-membership authenticatide.g., [15, 16, 28]), the ef-
ficient authentication of many classes of search queries has been sindiedingrange searci18, 25],
orthogonal range searc|8, 18], graph and geometric sear¢h8], andsearch in XML documeni8]. These
solutions can be proved secure based on the existence of collisiotanésiash functions.

In this paper and motivated from applications relatelgpword searclanddatabase querigsve study
the authentication of fundamental queries on gersetdand consider the following problem. Assume that
a collection ofm setsSy, .Ss, . . ., .S, is outsourced at an untrusted server. We wish to authenticate queries
on the sets, such astersection unionanddifference For example, given indicesiy, is, . .., i; between
1 andm, we wish to verify the correctness of the returned intersectipm S;, N ... N S;,. However, we
wish to avoid the following two straightforward but highly inefficient solutions

First, one could just provide the client with integrity proofs for the contehth®setsS;, , Si,, . .., S,
using well-known set-membership authentication schemes (e.g., Merkle 2&¢sund then let the client
run the intersection algorithm locally. In this case, running the intersectiamitiljn oncorrect (verified)
data would also trivially verify the correctness of the answer. Clearlyirbiyverifying all the elements of
the sets participating in the intersection, this solution results in high communicatiovegfication costs.
For instance, in the extreme case where all stored sets have an emptyctitarsbe entire set collection
must be verified in order to verify a constant-size answer! This is natadds as it is against computation
outsourcing.

Second, one could store one short proof (e.g., a signature by theeydorthe answer of each possible
intersection query. This would allow for optimal verification overhead attiemt at the cost of increased
storage and update overheads at the source and the server. Focensi@ insertion of a singleton set in
the collection would practically incur the re-computation of all proofs relatdti¢aunion queries! This is



also not desirable, as it is against storage outsourcing.

In this work, we instead aim at designing set-operation authentication sslikeat@inimize the authen-
tication overhead for the three involved partidaspired by the property cfuper-efficient verificatiothat
has been studied in certifying algorithms [21, 36] and certification datastas17, 38], we wish to verify
an answer in time asymptotically less than the time spent to produce the ansaditian, we would like
to obtain optimal verification times for set-operation queries; namely, to catstniauthentication scheme
that verifies answers of sizein O(k) time—clearly an optimal process, since one needs to read the answer
in order to verify it. Moreover, we would like to achieve optimal bandwidthgesaneaning that the au-
thentication protocahsymptotically introduces no extra communication cosiat is, after a new update (of
constant size) on the set collection is performed by the source, we wanrbthice-server communication
cost to remain constant. More importantly, we wish that the authentication ¢ofoperation issued by the
client is operation-sensitivemeaning that it is achieveay using a proof of size that depends only on the
(description and outcome of the) operatiand not on the size of the sets involved. More formally, if a
set-operation query involvessets (e.g., intersection ofsets) and produces an answer of sizeve would
like to proof to be proportional to+ . This corresponds to optimal bandwidth usage as the query and an-
swer alone requir€®(t 4+ §) communication. We note that whether the above two optimality properties are
achievable for set operations was posed as an open problem in [&2]0¥¢é this problem in the affirmative.

Bandwidth-optimal and operation-sensitive authentication of data strugtumees is very important
from both theoretical and practical perspectives. Not increasingsym@otic complexity of the answer,
and at the same time providing authentication, implies optimal verification, the bestauld hope for.
Implementing such optimal solutions is important also in practice. For instancd,ssaeches is a com-
mon task of a user’'s daily email activity. The search is performed by mefaas ioverted index data
structure[35], that is a collection of sets each consisting of emails that include a specific The authen-
tication of a search without an operation-sensitive verification could ieviile communication of all the
emails that contain one of the keywords of the search (even if the resultts smaller), which would make
search authentication fairly impractical.

We note here that the results presented in this work are asymptotic, whesedinéty paramater is
considered to be a constant, i.e., the main problem dimensions are the sizeslatalstructures, andm
(see Table 1).

1.1 Related work

The great majority of authenticated data structures involve the use of grgptiic hashing to hierarchically
compute over the outsourced data one or more secure digests. Haslabt®entication schemes have been
designed for various query types, including set-membership (e.g.,,[85188]) and search queries (e.qg., [3,
18]). Moreover, authenticated data structures that are based orcogpegraphic primitives, in particular
cryptographic accumulators, to achieve better complexity trade-offs e proposed (e.g., [15, 32]).
Most of these schemes incur verification costs that are proportional torteespent to produce the query
answer.

Bandwidth-optimal and operation-sensitive authentication of rangefsqaeries appears in [17], where,
through a combination of hashing and accumulators, an answer of ssebe verified irO(¢) time using
a proof of sizeO(log t), as opposed t®(logn + t) corresponding costs that the use of a hash tree would
provide. Super-efficient authentication of two-dimensional grid séagcppears in [3], where verification
proofs have constant size. Finalghortest path querieare authenticated in [24] (not in aperation-
sensitivevay).

Concerning set operations and database queries, Deeaab{l2] propose the problem of authenticat-
ing set operations and join queries on databases, providing solutiores¢hadt operation-sensitive. They
identify the importance of coming up with an operation-sensitive authenticatfeanse and they pose it as



an open problem. Possibly the work closest in context with ours is the wolkdoselli et al.[27], where
the problem of authenticating the intersection, union and difference ofssetadied. Although the size
of their proofs is reduced in practice by representing sets with compr&sem filters and then perform-
ing operations on Bloom filters, still the asymptotic complexity of their solution®(is), wheren is the
size of the sets participating in the set operation. Same linear asymptotic bewittisan emphasis on
efficient practical implementation, though—are achieved by Yetra]. [39]. A different approach is taken
by Pang and Tan [31] where, in order to achieve operation-sensi@xpgnsive pre-processing and expo-
nential space are required (i.e., answers to all possible queries aeglsidtalazzi, Pizzonia and Pucacco
[30] present a practical method for authenticating general databkstice queries on a single table by
executing in parallel multiple selection queries referring to a single attributéeamihating all but the first
received response.

Finally, related to our work is the systematic study of non-membership prootctumulators, firstly
introduced for the RSA accumulator in [22] and later for the bilinear-mapraatator in [4, 11].

1.2 Relation to outsourced verifiable computation

Our work is related to the very recent work oatsourced verifiable computati¢®, 9, 14]. This line of work
studies the verification of general functionalities. Therefore, the pnokiat we study can be solved using
such solutions (which, by definition, achiesaswer-sensitive verificatiopthe main property we shoot for
in this paper but for a specific functionality). However, there are impod#ierences between the general
approach of verifiable computation and the approach we take in this pageh we list below.

1. Our contribution refers to a specific functionality (i.e., set intersectiaynamic sets) and does not
generalize to other functionalities.

2. We do not consideasrivacyof computation at all here, but we only address the problem of correstne
(verifiability) of computation;

3. Ourwork can be applied in a (two-party) scenario wiperelic verifiabilityis desired since there is no
secret keys involved, which cannot be achieved in the general sd@wince some secret information
at the verifier’'s side is used as a means of verifying computation;

4. Finally, our work supportsfficient updatesf the evaluated set intersection circuit, which cannot be
achieved in generic solutions, as the definition of the evaluated functionakty igto the definition
of the system (at the initialization step) and is part of the public key.
Thus, our results are specialized in the verifiability of set operations.ugls, shey achieve much better
levels of efficiency and practicality compared with the ones achieved byeiierig constructions.

1.3 Contributions

Our results are summarized as follows:

e We give the first authentication scheme that authenticates sets openat&asction unionanddif-
ferenceoptimally, where the size of the proof and the verification time are proporttorthke size of
the query and the answer. This closes an open problem posed in [12].

¢ We achieve bandwidth optimality and operation sensitivity by extending in d mayethe properties
of accumulatorswhich also allows for efficient updates. Our scheme is proved seaaier the (by
now well-established)-strong Diffie-Hellman assumption [7].
e We give applications of our scheme to the authentication of keyword{sepreries (e.g., emalil
search) and database queries (e.g., equi-join).
A cost analysis of our scheme shows the expected practical efficismesely comparing favorably with
existing works, such as [27] and [39]. A detailed comparison of oukwth existing schemes appears in
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Table 1.

Table 1: Comparison of asymptotic complexity measures in existing work and in this papief authen-
tication of an intersection query ansets, wherd < ¢t < m. Here,m is the total number of setsy is

the sum of the sizes of thiesets participating in the intersectiolf is the sum of the sizes of all the sets
in the data structurd) < ¢ < 1, § is thesizeof the returned intersectiod, is the size of the smallest set
participating in the intersection arfd is the size of the largest set participating in the intersection. Without
using exponential space due to answer precomputation (as done intf@Ligh at the expense of an extra
log? N loglog N factor for querying (indicated for simplicity dsg® NV in the table) our solution provides
optimal proofs and optimal verification time, considerably improving in this waylittear upper bounds

appearing in [12, 27, 39]. In the second part of the table we presgniotic results for the case that 2
and all the set sizes af®(n). In all cases, the client space(q1) and the source space(§m + M).

work query proof verification server source server | update
time size time update time | upd time | space info
[12,39] || (6t + L)logH | (6t + L)log H | (6t + L)log H log H log H m+ M 1
+logm +logm +logm +logm +logm
[27] N+t N+46 N+t m+ M m+M | m+ M N
[31] t ) t+6 am 2m 2m+ M 2m
this t+ N -log® N t+9 t+4 me +log H log H m+ M 1
[12, 39] nlogn nlogn nlogn logn logn m—+ M 1
+logm +logm +logm +logm +logm
[27] n n n m+ M m+M | m+M n
[31] 1 ) ) m? m? m2+M | m?
this n-log®n 0 1) m¢ + logn logn m+ M 1

2 Preliminaries

In this section, we present some necessary notions that will be usefiégoribing our constructions.

Definition 2.1 (Negligible function) Let f : N — R. We say thatf(k) is neg(k) iff for any nonzero
polynomialp(k) there exitsV such that for allk > N itis f(k) < 1/p(k).

2.1 Bilinear pairings

Let G1, G2 be two cyclic multiplicative groups of prime order generated by;; and g and for which
there exists an isomorphisth : G, — G such that)(g2) = g1. Let alsoG,; be a cyclic multiplicative
group with the same orderande : G; x Go — G, be a bilinear pairing with the following properties:
(1) Bilinearity: e(P?, Q% = e(P,Q)® forall P € Gy, Q € G2 anda,b € Z,; (2) Non-degeneracy:
e(g1,92) # 1; (3) Computability: There is an efficient algorithm to comput®, @) for all P € G; and
Q@ € Ga. In our setting we hav&; = Gy = G andg; = g2 = g. A bilinear pairing instance generatas a
probabilistic polynomial time algorithm that takes as input the security paranfeaad outputs a uniformly
random tupl&p, G, Gy, e, g) of bilinear pairings parameters.

2.2 The bilinear-map accumulator

The bilinear-map accumulator [29] is an efficient way to provide shomfgrof membership for elements
that belong to a set and is extensively used in our construction. It adatesielements iZ; (where
p is a prime) and the accumulated value is an elemerdt,irsuch that there exists a bilinear map from
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G x G — Gyy. Given a set ofr elements¥ = {x,x9,...,x,} the accumulation value ot is defined
asacc(X) = glorts)@zts)(ents) whereg is a generator of grouf of prime orderp ands € Z7 is a
randomly chosen value that constitutes the trapdoor in the scheme. Tliefpmembership for an element
y that belongs to set’ will be the witnessw, = gnxex:#y(“s). Accordingly, a verifier can test set
membership foy by checking that the relation\W,, gY**) = e(acc(X), g) holds. We can generalize the
above result for providing a proof that sitis asubsebf setX. Naturally the witness for this case will be

and the verification is performed by checking the validity of the relat{o,, gnyey(y+5)) = e(acc(X), g).
We note that all the operations in the exponent of element afe performed modulp, since this is the
order of the groufs. The security of the bilinear-map accumulator is based on-tteong Diffie-Hellman
assumption which can be stated as follows and was introduced in [7]:

Definition 2.2 (¢-strong Diffie-Hellman assumption) Let G be a cyclic (multiplicative) group of order.
Given the elementsg, ¢°, ng, ..., g% of G for somes chosen at random froii,;, then a computationally
bounded adversaridv can findz € Z, and output(z, g*/(***)) with probability neg(k).

We note here that we do not require the existence of a bilinear-map fordhe @ in Definition 2.2,
i.e., the only requirement is that the grougiglic of orderp.

2.3 Proving subsets

We now extend the main security claim for the bilinear-map accumulator for comgfake witnesses for
subsetf elements. We note that this is a generalization of the proof in [29], thadaas for a single
element (see proof in the Appendix):

Lemma 2.1 Let k be the security parametegip, G, Gy, e, g) be a uniformly randomly generated tuple of
bilinear pairings parameters and be chosen at random froffi;. A computationally bounded adversary

Adv is given a set of elemenfg and the elementg, ¢°, 952, ...,g*" of G, whereq > |X|. ThenAdv can
find a sefy andWy, such thaty ¢ X ande(Wy, gHyeyts)y = e(acc(X), g) with probabilityneg (k).

2.4 Authenticated data structures

In this paper, we develop solutions for checking the validity of set opersiio the authenticated data
structures computational model [25, 37], which involves three partiesugtedsourcethat owns, updates
and outsources his data structupg along with a signed, timestamped, collision resistant digest df,it,
to the untrustederversthat respond to queries sent by ttieents Theserversshould be able to provide
with proofs to the queries and tloientsshould be able to verify these proofs based on their trust to the
source, by basically using the correct and signed dige€2omplexities relevant to the source aresbearce
update timgtime taken for the source to compute the updated digestiyce spacandupdate information
(size of information sent to the servers per update, i.e., the signed digestyant to the servers aserver
update time(time taken by the server per updategrver spacequery time(time taken by the server to
compute a proof for a query) ammtoof size Finally, relevant to the client angerification timeandclient
spacewith obvious meaning. The client verification is performed using an algorftheoept, reject} «—
verify(q,I1(q), a(q), d;), whereq is a query on data structui®; andll(q) is a proof provided by the server
for answera(q). Note thatd;, the digest ofD;, is an input as well.

Let now{reject, accept} = check(q, a(q), D;) be a deterministic algorithm that, given a queign data
structureD; and an answaet(q) checks to see if this is the correct answer to querwe can now present
the formal security definition, which states that it should be difficult (eegih negligible probability) for
a computationally bounded adversary to produce verifying proofs fmriact answers, even after he brings
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the data structure to a state of his liking. We present the security definitioaghk¢s to any authenticated
data structure and captures the points raised before:

Definition 2.3 (Security) Supposé: is the security parameter andldv is a computationally bounded ad-
versary that is given the public key of the soup&e Our data structureDy is in the initial state with digest
dp and is stored by the source. The adversady is given access t®, anddy. Fori = 0,...,h = poly(k)
either the source or the adversaAdv issue an updatepd, in the data structureD; and therefore the
source compute®,; 1 andd;, 1. The outputsd,., andd; 1 are sent to the adversadv. At the end of
this game of polynomially-many rounds, the advergady enters the attack stage where he chooses a query
g and computes an answefq) and a verification proofI(q). We say that the authenticated data structure
is secure if
{4,11(q), a(q)} « Adv(1¥, pk);
accept « verify(q, 1(q), a(q), dp);
reject = check(q, a(q), Dp);
digest(Dy,) = dp.

< neg(k).

3 Main construction

In this section, we present our main construction for efficient set-tiparauthentication. The underly-
ing data structure, which we cadets collection and describe in detail in the following paragraph, is a
generalization of théverted indeX5].

3.1 Sets collection

The sets collectiondata structure stores elements from a univetsdt consists ofm sets, denoted with
S1,52,...,Sn, each containing elements frafh Without loss of generality we assume that our universe
S is the set of nonnegative integers less thanbit primep, i.e.,S = Z,, wherek is the security parameter.
Every setS; does not contain duplicate elements, however an elemeanh appear in more than one set.

Each set is represented by a balanced tree: the elements are storddtattiadnodes sorted according
to the inorder traversal and consecutive nodes in the traversal aeellifihus, the space usage of the sets
collection isO(m + M), whereM is the sum of the sizes of the sets.

In order to get some intuition, we can view the sets collection asnagrted index The items are
documents and each tenm in the dictionary corresponds to a $&t which contains the documents where
termw; appears. In this example; is the number of terms being indexed, which is typically in the hundreds
of thousands, whild/ is the number of documents being indexed, which is in the billions. Howewghdo
sake of generality, we will keep referring items instead of documents, andgets instead of terms.

3.2 Operations and complexity

The operations supported by the sets collection data structure consjEiatesandqueries An update is
either aninsertionof an item into a set or deletionof an item from a set. An update on a set of sizakes
O(logn) time. For simplicity, we assume that the numbenof sets does not change.

A query is one of the following standard set operations:

Intersection: Given indices, is, ..., i, return set
=8, NS, N...NS,,.
Union: Given indices, is,..., 14, return set

U:SilUSZ'2U...USit.
Difference: Given indicesi andj, return the set
D=5;—85;.



Subset query: Given indices andj, returntrue if S; C S; andfalse otherwise.

We denote with the size of the answer to a query operation. For an intersection, unibuljfiearencey is
equal to the size df U, andD, respectively. For a subset quetys O(1). Using a generalized merge, each
query operation can be executed in timéN ), whereN is the sum of the sizes of the sets involved in the
operation.

In order to verify the integrity of the answers to queries given by thessgme add an authentication data
structure on top of the sets collection structure. Our goal is to have no additisymptotic overhead in
the communication between client and server. l.e., for a queryivpitinameters and answer sizave want
the proof size to have optimal siz&t + 0). Also, we want to have efficient storage at the source, server and
client and efficient running time for the query, update, and verificatiooriékgns executed by these parties.
Before we present our main construction, we overview two inefficieltisms for intersection queries to
gain some intuition about the difficulty of the problem.

3.3 Two inefficient solutions

In the first solution, the source precomputes, signs and sends to tlee Senanswers to all the possible
intersection queries. The number of all possible intersection quer{@yis- () + ... + () = 2™ and
thereforeO(2™) space is needed at the server to store the precomputed answers. &hkenthissues an
intersection query, the server returns the precomputed answer anolutice’s signature on it. The client,
knowing the public key of the source can verify the validity of the answéus] optimal communication
is achieved at the expense of exponential space at the server. Ateup#les also tim@(2"), since the
source has to re-sigadl the precomputed answers, so that replay attacks are avoided. By Iargatree,
we can transmit only one signature but we still need to recompute all the emdMa@te that if intersection
queries are limited to two sets, the space at the server beddmes)—still inefficient.

The second solution involves maintaining Merkle trees on top of all the setiislvay, the client can
perform a query operation locally after verifying the validity of all the eletaém the relevant sets of the
query. This approach incurs high communication and verification costg sitarge number of elements
have to be communicated in the worst case, even if the query answer is sar@tions of this technique
have been used in relevant works such as [12, 27, 39].

Understanding the limitations of the above solutions, we have developedrentcated data structure
for efficient andoperation-sensitivauthentication of set operations. Since we are in the authenticated data
structures model (see Section 2), we need to refer to three separtiés,pag., thesource(trusted), the
server(untrusted) and thelient

3.4 The source

Let k& be the security parameter. In our construction, the source picks améywdenerated tuple of bi-
linear pairings parameter®, G, Gy, e, g) and also a random elemestfrom Z;. The values is kept
secret and constitutes the trapdoor of our scheme. The source me{XUtEISQS,gSQ, ...,g%", whereq =
max;—1,..m |5 (i.e., ¢ is the maximum number of elements in a set). The authenticated data structure at
the source is built as follows:

e For each sef;, the source computes the accumulation valug;dfe., acc(S;) = gHwESi (s+2) (see
Section 2);

e The source builds aaccumulation tre¢32, 33] on top of the pairél, acc(S1)), ..., (m,acc(Sn)).
We denote withi be the digest of the accumulation tree;

e Let (sk, pk) be the source’s private-public key pair. The source signs dijastl sends to the server
signaturesig(d, t), wheret is the current timestamp. The source also computes and sends to the server
the pairs(i, g°') and their signaturesg (i, ¢*') (i = 1,. .., q).
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Note that the digest is a “secure” succinct description of the sets collection structure. Nariely,
accumulation tree protects the integrity of the valaesS;) and the accumulation valuec(S;) protects
the integrity of the items contained in s&t fori =1,...,m.

We recall that for any) < € < 1, an accumulation tree ovet items is an authenticated dictionary with
O(1) query and communication complexity adidm®) update complexity. In comparison, a Merkle tree or
authenticated skip list om items hasO(log m) query, update and communication complexity.

We now describe how the source performs an update. Suppose the igsieed by the source is the
insertion of an itemx € Z, in setS;. Then the source can s&tc(Sy) = acc(S;,)*+?) (if » was deleted,
the source would setcc(S)) = acc(S;)*+#)™"). This operation updates the accumulation value of the
set wherez is inserted and take®(1) time. We note here that we take advantage of the fact that the
source knows, which allows to compute the updated accumulated value very efficiently. thextpdated
accumulation value is sent to the server, which results in a savings Ofaibg? n) computation at the
server.

Moreover, the source needs to update the digest of the accumulatiah sieee the value of one of its
leaves, i.e., the valugcc(Sy), has changed. This can be done with methods described in [32, 88]Lin
time (note that thed (m°) update time in [32, 33] applies only for the server). After the update has be
completed and the new dige&thas been computed, the source sighdy using a fresh timestanmpand
sendssig(d’, t') to the server.

Finally, if the update causes the sigzef the largest set to increase, the source gets ¢ + 1 and
computes and sends to the server the @aig®’) and the signaturesig(q, g°*).

Lemma 3.1 The source keepS(m + M) space, wheren is the number of sets ant/ is the sum of the
sizes of the sets. Also, the source update tin@(lsgn), wheren is the size of the set where the update
is performed. Moreover, the update authentication information has(3{z¢ and can be computed by the
source inO(1) time.

3.5 The server

The server is the untrusted party that answers queries on behalf aduhsesand provides proofs of va-
lidity of the answers. In addition to a copy of the sets collection structure eitversstores the following
authentication structure:

e Pairs(i, g*') and their signaturesig(i, ¢*' ) foralli = 1,.. ., ¢;
e The accumulation values of the setg(S;) fori =1,...,m;
e The accumulation tree on top of the paffsacc(S;)) fori =1,...,m;

e The signature of thiatestdigest of the accumulation traegg(d, t).

Suppose the source issues an update, e.g., the insertiog &, in setS;, of sizen. First, the server
updates irO(log n) time the sets collection structure. Next, after receiving the updated ¥ad(g;,) from
the source, the server updates the accumulation tree using techniqug32r@3] in timeO (m¢), for some
0 < € < 1. Therefore, we have:

Lemma 3.2 The server keep®@(m + M) space, wheren is the number of sets antl is the sum of the
sizes of the sets. Also, the server update tim@(is.© + logn), wheren is the size of the set where the
update is performed.

4 Queries and verification

In this section we present the main contribution of this work and show howetlverscan provide compact
proofs for the answers to queries. The proofs have optimal3izer §), wheret is the size of the query



parameters (e.gt,= 2 for an intersection of two sets) aids the answer size (e.§,= 1 if the intersection
consists of one element).

4.1 Intersection Query

The parameters of an intersection queryfaralices, namely the indices, is, . .., i, with 1 < ¢ < m. To
simplify the notation, we assume without loss of generality that these indicdsare . , t. The answer to
this query is the set

|:SlﬂSQQ...ﬂSt:{yl,yg,...,y(g}.

We denote withn; the size of seb; (1 = 1,2,...,t) and we defineV = Zﬁzl n;. l.e., N is the total size
of the sets involved in the intersection ahi the size of the intersection.

We express the correctness of the ansiMer the intersection query by means of the following two
conditions:

e Subset conditiaon
ICSIAITCTSHA...AITC S, (2)

e Completeness condition
S1—=hHhnSe—=Hn...0n (S =1 =0. 3

Note the verification of the completeness condition is necessary since vwéonaake sure thdtcontains
all the common elements. We now show how the server can provide compaist faabese two conditions
(Equations 2 and 3).

Before we proceed, we give the following result, derived from thedstech polynomial interpolation
based on FFT [10]:

Lemma 4.1l Let (s + z1)(s + x2)...(s + ) = aps™ + an_18""1 + ... + a1s + ap be ann-degree
polynomial. The coefficients,, a,,_1, . . . , ag can be computed i@ (n log? n) time, givenzy, zo, . . . , T,.

For setS;, we define the following polynomial:

Fi(s)= ] (z+9). (4)
z€S;, z¢l
Note that polynomiaP;(s) has degree at most; + 1. An important observation is as follows:

Fact 4.1 Setl is the intersection of sef$y, Ss, . . ., S; if and only if the polynomial® (s), Px(s), ..., P:(s)
have no common factors.

We now have the following lemma (proof in the Appendix):

Lemma 4.2 Setl is the intersection of sets;, Sy, . .., S; if and only if there exist polynomialg (s), g2(s),
.., q(s) such thatg (s)P1(s) + q2(s)Pa(s) + . .. + q:(s) P:(s) = 1. Moreover, polynomialg; (s), g2(s),
.., q:(s) can be computed i®(t + N log? N loglog N) time.

Subset condition. For each sef;, 1 < j < ¢, the server computes tiseibset witnessed/, ; (the second
subscript refers to the set for which the witness is computed), as défifpliation 1 (Section 2):

W, = Pj(s) _ gnzesj, zg1(T+s) . (5)

WitnessW, ; will serve as a proof thdtis a subset of sef;. By using Lemma 4.1, each such witness can be
computed in time)(n; log® n;). Thus, the time for computing all thesubset witnesses @(t+ N log? N).
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Completeness condition. Supposey; (s), g2(s), . .., q(s) are the polynomials computed in Lemma 4.2
that satisfy

q1(8)P1(s) + q2(s)Pa(s) + ... + qi(s)Pi(s) = 1. (6)
The server computes the following values:
e Elementds ; = g% (j =1,...,t), calledbody witnessesvhich, by Lemma 4.2, can be computed

in time O(t + N log® N loglog N);

e Coefficientds, bs—_1, . . ., b of the polynomials+y1)(s+y2) ... (s+ys), i.e., the polynomial whose
roots are the elements of the intersection. By Lemma 4.1, theskecoefficients can be computed in
O(61og? ) time.

Proof components. The proof for the answerto the intersection query consists the following compo-
nents:

¢ Signed timestamped digest of the accumulation tree;

e Pairs(1, ¢%),..., (9, gs‘s) along with their signatures
sig(1,4%),...,sig(d, gs‘s), which are stored by the server;

e Coefficientshs, bs_1, . . ., by of the polynomial
(s +y1)(s + y2)...(s + ys) associated with the intersection= {y1,y2,...,ys}, which can be
computed inD(§log? §) time;

e Accumulation valuesicc(Sy), acc(S2), .. .,acc(S;) associated with the set$;, Ss, ..., S;, along
with their respective accumulation tree progisof(acc(S;)) for j = 1,...,¢t. Each accumula-
tion value is stored by the server. Its proof has constant size and canmipited in constant time by
the server;

e Subset witnesse® ;, defined in Equation 5, fof = 1,...,¢, which can be computed i@ (¢ +
N log? N) time;
e Body witnesseE, ; = g% (s, whereg;(s) satisfies Equation 6, for = 1, ..., ¢, which can be com-
puted in timeO(t + N log® N loglog N).
Verification. The verification algorithm executed by the client consists of several.skps, the client
uses the accumulation tree prqobof(acc(S;)), along with the fresh digest, to verify the integrity of
acc(S;), forj =1,...,t. This step take®)(¢) time. For details on the verification method for the accumu-
lation tree, refer to [33]. Now the client is assured about the integrity oAtitemulation value of each set
in the query. The client next proceeds to checkingdieset conditiomnd thecompleteness conditiolVe
use the following lemma (proof in the Appendix):

Lemma 4.3 Let Hle(s +yi) = Zf:o b;s'. Define an experiment where the adversary pigks=
{z1,29,..., 25} # {y1,92,...,ys} and outputst and the valuess, bs_1, ..., by. Subsequently a random
k € Z, is picked. Then the probabiliyr[>"2_ bixi = [12_, (k + ;)] is O(poly(k)/2").

By running the experiment of Lemma 4.3, the client checks that the coefdigrbs_1,..., by of
the reported intersection are correct. This step ta&key time SiﬂCGg”,g“Q, e ,g“6 can be computed
in O(J) time. Note that the experiment of Lemma 4.3 avoids the explicit computation by the cfien
gstyn)(sty2)..(s+us) which would require computing the coefficients from scratch and therefould
takeO(6 log? §) time (see Lemma 4.1). _

After verifying the coefficients and the signatures on the valyes* ), (j = 1,...,4), the client
computes ir0(§) time g(s+v1)(s+v2)--(s+vs) and performs the following tests:

e The client verifies relation

e(g(s+y1)(s+y2)...(s+y5)’ W|,j) = e(acc(Sj), g)a
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forall j = 1,...,t. This test checks theubset condition
e The client verifies the relation

t
[T Wi, Fiy) = elg.9). (7
j=1

Each of the above tests tak@st) time.
If all the subset and body witnesses have been computed correctly:therion 7 is verified, due to
Equation 6 and by the bilinear map., .) properties:

t
6(W|,j> F|,j) = e(gv g)szI () = 6(9, g) :
=1

J

If any of the above steps fails, the client rejects the answer.

Security and performance. The core security argument of our construction is given below (protifen
Appendix).

Theorem 4.4 (Security for intersection) Let| be theclaimedintersection computed by the server for sets
that have indiced,2...,t. The server computes accumulation valaes(.S;), accumulation tree proofs
proof (acc(S;)), subset witness&¥, ; and body witnessds ; for j = 1, ..., t. If the verification algorithm
succeeds andis not the intersection of sefs;, .S, ..., S, then the server can break tlgestrong Diffie-
Hellman assumption (see Definition 2.2).

The following lemma summarizes the performance of intersection queries.

Lemma 4.5 The server executes an intersection querytfeets in timeD (¢ + N log? N loglog N), where
N is the sum of the sizes of the input sets to the queryasdhe size of the set reported as answer. Also,
the proof has siz€&(t + 0) and the verification time at the clientd(¢ + ).

4.2 Other Queries

Union query. Suppose that the parameters of a union query are (without loss ofafjgneindices
1,2,...,t. The answeristhe sét = S; U S, U...US;. LetU = {y1,v2,...,ys}. The proof includes
valuesproof(acc(S;)), for j = 1,...,t (similarly with the intersection case) and the following items: (1)
Foreachy, ¢ =1,...,4, the server provides a witnegs,, that proves thag; belongs to sef}, represented
by acc(Sy), for somek = 1,...,t. Thesed witnesses can be constructed@is + N log? N) time (see
Lemma 4.1); (2) For each= 1, ...t the server provides subsewitnessW; for each set5; that proves
that S; is a subset of the reported unidh! These witnesses have sigit) and can be constructed in
O(tdlog? §) time.

The verification proceeds as follows. The client checks that the repartmn does not contain any
duplicates. Next, it verifies the integrity efc(S;), for j = 1,...,t, which can be done i®(¢) time, and
that all the elements; (i = 1,...,9) of the reported union belong to some $gt for k = 1,...,¢. This
step can be done i@(9) time. The final step of the verification checks that all the sets of the query ar
subsetof the union. The client constructs the expressiot(U) = g(s+v1)(stu2)--(s+u5) in O(5) time (see
Lemma 4.3) and checks that the following relation holds fojaf 1, ..., ¢

e(acc(S;), Ws;) = e(acc(U), g) . (8)

If the verification algorithm succeeds, then the reported ukids correct, otherwise the-strong Diffie-
Hellman is violated (proof in the Appendix).

W, = glleev-s ),
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Theorem 4.6 (Security for union) LetU be theclaimedunion of sets that have indicés2. . . , ¢, computed
by the server. The server computes accumulation valegss'; ), accumulation tree proofisroof (acc(.S})),
witnessesV; for all j € U and subset witnesseé¥'s; for j = 1,...,¢. If the verification algorithm
succeeds and is not the union of setS;, .S, . . ., S, then the server can break thestrong Diffie-Hellman
assumption (see Definition 2.2).

Lemma 4.7 The server executes a union queryfeets in timeD(t + § + N log? N) whered is the size of
the union andV is sum of the sizes of the sets involved in the union. Also, the proof ha3(gizes) and
the verification time at the client i9(¢ + 9).

We note that with our technique, no duplicate elements are processed édiettis side (which do not
contribute to the computation of the union anyways) and the client avoidsnigutime union algorithm
locally.

Subset query. Suppose the client asks query s C S;?” Let N = |S;| 4 |S;|. The proof for a positive
answer is easy to construct@( V) time as described in Section 2. The size of the pro6f(is) (two group
elements) and the verification can be achieve@ (i) time (one bilinear-map application).

For the proof of a negative answer, suppose there is an elgnsech asS; = yU.S;», wherey ¢ S; and
y € S;. It suffices for the server to providenaembershigroof fory € S; (constructed irO(n) time) and
anon-membershiproof fory ¢ S; (constructed irO (NN log? N) time by running the extended Euclidean
algorithm for two polynomials, where the divisor is of degree one). Tiveshave the following result.

Lemma 4.8 The server executes a subset quer@{iV log? N) time. Also, the proof has sizg(1) and the
verification time at the client i©(1).

Difference query. The difference query is defined by two indigesnd; and the answer is sBt= S;—9;.
The server constructs sdtso thatS; = DU A andD N S; = O, and then authenticates these union and
intersection operations.

4.3 Summary

We can now present the main result of our work.

Theorem 4.9 Consider a collection ofn setsSy, ..., S, and letA = >~ | |S;|. For a query operation,
let t be the number of involved set¥, be the sum of the sizes of the involved sets, &ahd the answer
size. There exists an authenticated sets collection data structure with the fglpvdperties: (1) it is
secure according to Definition 2.3 and based on ¢h&trong Diffie-Hellman assumption; (2) the client
usesO(1) space and the source and server aden + M) space; (3) the source update time(glog n),
the update authentication information has s2€l) and the server update time 3(m* + logn), for a
given constand < e < 1, wheren is the size of the set of the update; (4) for an intersection query, the
proof size isO(t + §), the verification time i€)(¢ + &) and the query time i®(t + N log? N loglog N);

(5) for a union query, the proof size @(t + ), the verification time i€ (¢ + §) and the query time is
O(t + § + Nlog® N); (6) for a subset query, the proof size@X1), the verification time i€ (1), and the
query time isO(N log? N). (7) for a difference query, the proof size(4), the verification time i€ (4),
and the query timé& (N log? N loglog N).

5 Applications

In this section we describe some applications of our efficient authenticetitedalection data structure.
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5.1 Keyword-search

First of all, we notice that our scheme could be easily used to authenkieaterd-search queridmple-
mented by thénverted indexdata structure [5]: Each term in the dictionary corresponds to a set isetsir
collection data structure which contains as elements all the documents thaeitizisiterm. A usual text
qguery for termsn; andms returns those documents that are included in both the sets that are négdese
by m; andms, i.e., their intersection. By using our scheme, we can easily authenticatei@mjesyword-
search query with costs that are proportional to the size of the ansWer @fiery and not proportional to the
amount of data that the algorithm reads in order to process the quergoMuor the deriveduthenticated
inverted indexcan be efficiently updated as well. We continue now with an extension of therticated
inverted index, théimestamped keyword-search

5.2 Timestamped keyword-search

Apart from applications in web search engines, the inverted index isins#ber applications that employ
keyword-search as well, such esiail-search In email-search, a dictionary is again maintained, the terms
of which are mapped into sets of email messages that contain the specific teerefofe when we are
searching our inbox for emails containing terms andms, an inverted index query is executed. However,
itis always desirable in email search to be able to introduce a “second” diamein searching. For example,

a query could be “give me the emails that contain termsandms and which were received between time
t1 andty”, wheret; < to. We call this procedure timestamped keyword-search.

One solution for the authentication of timestamped keyword-search woulddrelied a timestamp in
the documents (e.g., each email message) and have the client do the filteaihg &ter he has verified—
using our scheme—the intersection of the sets that correspond to#erraadms,. However, this is not
operation-sensitivat all: The intersection can be a lot bigger than the set resulted after theatipp of
the local filtering, making this straightforward solution inefficient.

We now describe an algorithmic construction to solve this problem.tLet, ..., ¢. be the discrete
timestamps that we are interesteddingan be viewed as a certain day of the month). We define a new sets
collection data structure as follows: Imaginet., . .., t, are the leaves of a binary tree. We builseggment
tree[34] on top of these timestamps as follows: Each leaf storing timestaogmtains the documents (e.g.,
email messages) that were received at ttmeMoreover, the internal nodes of the binary tree contain the
documents that correspond to the union (note that this union does noahgw®mmon elements) of the
documents contained in the children’s nodes, recursively defining in #nsssets of documents for all
the nodes of the tree. Therefore we end up with a new sets collection dattusdrthat is built on top
of these2r — 1 sets (one set per internal tree node of the tree), namely thd'séls, ..., 15, 1. The
timestamped keyword-search is therefore authenticated by two sets colléateoatructures, one built on
the text terms, namely the sefs, Ss, . .., S, and one built on top of the sets of the timestamps, hamely
the setsl, Ts, ..., T».—1. Define now the extension of two timestamyss(¢1, t2) to be theset of setd;
that “cover” the intrevalt, to], i.e., namely the set that contains sets the union of which equals the set of
all timestamps inty, t2]. One can easily see that for evarg ¢, <ty < r, ext(t1,t2) is well-defined, and,
moreover, thatext(¢1,t2)| = O(logr).

Suppose now we want to verify the documents that contain tetmandms and which were received
between:; andis. All we have to do is to verify the intersection of the following sets: (a) the mioibsets
in ext(t1,t2), (b) S; (set that refers to termm;) and, (c)S (set that refers to termny). Let Ty, 75, ..., T}
be the disjoint sets that are containedsin(t,,¢2), wherel = O(logr). The answer to the query is the set
(S1NS2)N(T1UTLU. . .UTy) which can be written agS1N.SaNT7)U(S1NS2NTe)U. . .U(S1NS2NTy). Since
T; are disjoint, each term of the union contributes at least one new term tostvemand therefore we can
authenticate this query in a neadperation-sensitivevay by authenticatindgog r intersections separately
(note there is an extr@(log ) multiplicative factor in the complexities of Theorem 5.1). Therefore we have
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the following result:

Theorem 5.1 Consider a collection ofh term setsS; fori = 1,...,m, 2r—1timestamp set$}, ..., 751

and letM = >~ |S;|. For a query operation in a time intervat,, 5], lett be the number of involved
sets,V be the sum of the sizes of the involved sets,éel the answer size. There exists an authenticated
timestamped keyword-search data structure with the following propertigsit s secure according to
Definition 2.3 and based on thestrong Diffie-Hellman assumption; (2) the client ug&d ) space and the
source and server uge(m+ M +r) space; (3) the source update tim&lglog n), the update authentication
information has siz€(1) and the server update timed((m + )¢ + logn), for a given constar < ¢ <

1, wheren is the size of the set of the update; (4) for an intersection quety;irs], the proof size is
O(tlogr +6), the verification time i€) (¢ log  + 6) and the query time i©(t 4+ N log log® N loglog N).

Note that in the above theorem we do not have a result concerning thendagtion of union with times-
tamps. This is due to the following: Using the same notation as we did for the ictiersethe answer to
the union query, would be the s&f; U S2) N (71 UT> U ... UTy). The nature of the answer does not allow
for any further algebraic processing and therefore in order to atithémthe whole expression, one needs
to authenticate the two unions separately. This leads to a solution that is matiopesensitive, therefore
the operation-sensitive authentication of this type of queries cannotiievad with our method—at least
in a way similar to the techniques we have used so far—. The same applies thfféhence queries.

5.3 Equi-join queries

Finally, we show how our technique can be used in efficient authenticatidatabase queriessuch as
equi-join Let Ry(c, 711,y 1)y -+« Rn(Q, Tma, - - ., Tmw) bDe m relational tables, that have up to
tuples each, and which share a common attribut&/e now want to compute the equi-join query on the
common attributer on any subset ofof them. This is basically an intersection that can be authenticated by
building our scheme on top of the attributesfor all relationsR1, Ro, . . ., Ry,.

To handle duplicate values for the attributewe build our authentication scheme on top of distinct
values for all the relation®;, i = 1, ..., m andS we keep a separate structure that maps all the related
records, for all relation®;, i = 1, ..., m. This authenticated structure can be a bilinear-map accumulated
value that adds (i.e., the respective witness) only contant overheaela@on (1024 bits in practice) to the
proof size, for each element that appears in the equi-join answer. Wehad the authentication of these
type of queries have also been studied in [39] (see Section 6). Theseéohave the following theorem:

Theorem 5.2 Consider a collection of: relational tablesR; fori = 1,...,mandletM = """, |R;|. For

an equi-join query, let be the number of involved relational tabléé,be the sum of the sizes of the involved
relational tables, and be the answer size. There exists an authenticated data structure for @ggugries
with the following properties: (1) it is secure according to Definition 2.3 ansidabon thej-strong Diffie-
Hellman assumption; (2) the client us@$1) space and the source and server G&en + M) space; (3) the
source update time i©(log n), the update authentication information has sizgl) and the server update
time isO(m* + logn), for a given constan® < ¢ < 1, wheren is the size of the set of the update; (4)
for an equi-join query, the proof size @(t + 0), the verification time i (¢ + §) and the query time is
O(t + Nlog? N loglog N).

5.4 Systems deployment

Here we describe how our method for timestamped keyword-search caepbmyed in a real system to
provide efficient integrity checking mechanisms. Our method can be usem\tm@ secure searches in
our email inbox, e.g.Gmail searches. The presented algorithms and authenticated data structubes ca
implemented as an extra “plug-in” service in the browser that loads every timérail inbox is open.
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This service runs at an untrusted server (which weahentication servérfollowing the same model that
was used in the authentication of Amazon S3 data objects [20].

Suppose now we do a search in our inbox for the emails containing the Waw York” and that
were received between March 7th and April 5th. Normally, and withouniguany authentication service,
this query would be sent only to ti&mnail server and return some email messages, by running an inverted
index query. The results however would not provide any guaranteergfctness. However, with the use of
our systems, the query is also sent to dlaghentication servethat stores our authenticated data structures
(accumulation tree and segment tree) and runs the presented algorithesuthilentication server will
assemble a proof of size proportional to #meswerof our query and send this proof to the client, along with
the actual answer. By verifying this proof, the client will be able to veritthe emails that he is receiving
as a result of his search are the corect ones, i.e., (a) no email hasrbegtied from the answer, (b) no
email has been wrongly included in the answer and (c) their content hdmean tampered with. Notice
that main novelty of our system lies in the fact that all this process can levadrefficiently, in a way that
communication and verification costs are not more than the size of the ansswardoery.

6 Analysis

In this section we analyze the costs needed by our solution and comparexpétineental results from
other works. For bilinear maps and generic-group operations in the lrimap accumulator, we used the
PBC library [1], a library for pairing-based cryptography, interfhgéth C.

6.1 System setup

We choose our system parameters as follows. First of all, type A pairmegssad, as described in [23].
These pairings are constructed on the cyfve= 3 + x over the base fiellf,, whereg is a prime number.
The multiplicative cyclic grouffs we are using is a subgroup of pointsii{F,), namely a subset of those
points ofF, that belong to the elliptic curv&. Therefore this pairing is symmetric. The orderfofF, ) is

g + 1 and the order of the groug is some prime factap of ¢ + 1. The group of the output of the bilinear
mapGy is a subgroup oF ..

In order to instantiate type A pairings in the PBC library, we have to choossizkeof the primeg
andp. The main constraint in choosing the bit-sizesyaindp is that we want to make sure that discrete
logarithm is difficult inG (that has ordep) and inF 2. Typical values are 160 bits fgrand 512 bits foy;.

We use the typical value for the size gfi.e., 512 bits. Note that with this choice of parameters the size of
the elements iz (which have the forniz, y), i.e., points on the elliptic curve) is 1024 bits. Finally, let’s
assume that the accumulation tree that is built on top of the set digests, haséigoile.,c = 0.5 which
makes the update time in Lemma 3)2,/m) and that we are using RSA signatures to sign the digest that
are 1024 bits long.

6.2 Communication cost

Here we analyze the communication cost that our scheme has for an ititersgdwo sets. Let's assume
that the size of the reported intersection.isThen as we saw in Section 4, the proof (apart from the answer
itself), consists of the following values: (a) Two subset witnesses, twly dtnesses, two accumulation
values (each one of the accumulation values comes with two group elementevetas a proof for it).
Therefore the size of all these elements, which are all elements of @pismnot dependent on the size of
the intersection and is equal 2ox (1024 + 1024 4 1024 + 4 x 1024)/8 = 14336/8 = 1792 bytes; (b)

The valueg® € G (along with signatures on them) ahde Z, (the coefficients of the intersection), for
i=1,...,6. These have siz&2 x 1024 4+ 160)/8 = 2764 bytes; (c) Finally, the digest of the structure and
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a signature on it are sent, which add anot?@i8/8 = 256 bytes. Therefore the total communication cost
is a linear function ob, i.e., the functior048 + 2766 (in bytes).

We now compare the communication cost of our scheme with the analysis madg.inrZrable 2
we compare with the results presented in Table IV of [27] where varidusiz®Esn; andn, are used and
the size of the intersectiohis always0.01n,. Note that in most cases (especially for big sets sizes), our
communication cost is a lot less than the one reported in [27]. More importarifly)ot dependent on the
size of the sets participating in the intersection. In cases that our costse vifois due to the big constants
enforced by the use of bilinear pairings and accumulators.

Table 2: Comparison of a 2-intersection authentication overhead (proof sized sttileme presented in [27]
with our scheme. Here; andns are the sets sizes that are intersectedd@isdhe size of the intersection.

| nm |  mno| 6] KB[27] | KB (this work) |
1000[ 1000| 10| 3.34 4.69
1000| 100 1| 1.68 2.26
1000 10| 0| 101 2.02
1000 1 0| 0.46 2.02
10000 10000| 100| 26.88 28.95
10000| 1000| 10| 12.15 4.69
10000/ 100 1| 6.86 2.26
10000 10| 0| 3.08 2.26
100000 100000| 1000 | 263.25 271.53
100000/ 10000| 100| 116.13 28.95
100000/ 1000| 10| 63.18 4.69
100000/  100| 1| 26.69 2.26

Table 3. Comparison of an equi-join authentication overhead (proof size) of thense presented in [27]
with our scheme. Tuple size is in bytes.

| tuplesize | 32 | 64 | 128 | 256 | 512 |
MB [39] 15 | 18.33| 30 | 43.33| 66.66
MB (this work) | 16.67 | 17.62| 19.51| 23.29| 30.86

Finally, we compare our solution, in terms of communication cost, with the costreegfor authen-
ticating equi-joins with the most efficient algorithm presented in [39], i.e., dlyorAIM (see Table 3).
In Figure 17 of [39] two relationg? and S are equi-joined and the size of the verification object (VO) is
displayed, for multiple tuple sizes (a tuple is a row in the relatiang)= 32, 64, 128, 256, 512 bytes. For
this experiment, the size of the answesisx 10° tuples and therefore if we use our scheme the cost is
2048 + 2766 + Stup + 26 x 128 bytes, ford = 31 x 103 (see Section 5). Note that, especially for large tuple
sizes, there are considerable savings with our scheme.

6.3 Verification cost

Let exp, mult, add be the times needed to perform an exponentiation, a multiplication and an addition
respectively, all modulg. Let alsoEXP, MULT, ADD be the respective times in grodp and EXP,
MULT, ADD be the respective times in the target group of the bilinear tgp Finally let MAP be

the time needed to perform the operatign .) andsig be the time to verify a 1024-bit RSA signature. We

17



benchmarked all these operations using the PBC library [1] (veption- 0.5.7), on a 64-bit, 2.8GHz Intel
based, dual-core, dual-processor machine with 4GB main memory, rubDeinign Linux, and derived the
following times, i.e.,MAP = 5ms, MULT = 0.005ms,exp = 0.02, add = 0.002ms, mult = 0.002ms
andsig = 2.7ms.

We analyze now the verification cost of a 2-intersection, required bgchgme. Let5; andS; be the
sets of the intersection. The client, as soon as he receives the praof persorm the following tasks: (a)
First the client verifieacc(.S;) andacc(S;), which requires two bilinear-map computations for each value,
therefore takes timéMAP, and one signature verification of the final digest, taking taée (b) Then he
has to run the experiment of Lemma 4.3. The time needed for this pe@riault + 2add + exp + sig) (the
signature cost comes from the fact that the client has to verify signatargs fori = 1,...,6); (c) Then
he checks thsubset conditionvhich takes timetMAP; (d) Finally he checks theompleteness condition
that takes time8MAP + MU LT . Therefore we see that the total cost for verification of a 2-interseofion
sized is

10MAP + (§ + 1)sig + d(2mult + 2add + exp) + MULT ,

which is a linear function id, namely the functio32.7 + 2.7284 (in ms).
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Appendix

Proof of Lemma 2.1. SupposeAdv finds such a sey and such aVy = {y1,y2,...,y¢}. Let X =
{z1,22,...,2,} andy; ¢ & for somel < j < (. That means that

€(Wy7g)nyey(y+8) — 6(9, g)(z1+5)($2+5)---(aﬂn+s) '

Note that(y; + s) does not divid€x; + s)(x2 + s) ... (z, + s). Therefore there exist polynomi@l(s) of
degreen — 1 and constank, such thatz; + s)(x2 + s) ... (z, + 5) = Q(s)(y; + s) + A. Thus we have

G(Wy, g)(yj+5)nlgi;&j§£(yi+5) _ e(g, g)Q(S)(y,7+5)+>\ =

1

1 -
e(g,g)t = e(W%g)ngiyéjge(yri-S)e(g’g)—Q(s)] .

This means that the adversary can breakgtis&rong Diffie-Hellmann assumption for the target grdugy .

Proof of Lemma 4.2. (=) This direction follows by the fact that we can use the extended Euclidean
algorithm and find polynomialg; (s), . . ., ¢:(s) such that

41(s)Pi(s) + ...+ qu(s)Pu(s) = GCD(Pi(s), Pa(s), ... Py(s)).

By Fact4.1GCD(P;(s), P»(s), ..., P:(s)) = 1. That completes the proof of the direct=} For the inverse,
suppose there exist polynomias(s), q2(s), - . ., q:(s) that satisfy the following relatiom; (s) P (s) +
q2(s)Pa(s) + ... + q.(s)P(s) = 1 andl is not the intersection. That means that that the polynomials
Pi(s), Py(s),. .., P,(s) share at least one common factor, e(g.+ ). Therefore there exists some poly-
nomial A(s) such that(s + r)A(s) = 1, i.e., the polynomialgs + r)A(s) and 1 areequal which is a
contradiction (note that we want the polynomials to be equal for every.,).

In order to compute these coefficients, we use the extended Euclideaithetgecursively, based on the
fact that the greatest common divie€D (P (s), . .., Pi(s)) equalsGCD (P (s), GCD(Pa(s), ..., Pi(s))).
To compute the greatest common divisor of tf¢n)-degree polynomials, we can use the algorithm de-
scribed in [13] that runs in time equal @(n log? n loglog n). Since we are using this algorithitimes, the
time complexity isO(tn log? nlog log n). Morever, by the property thatlog = +ylogy < (z +y) log(z +
y) and since the size of the sets participating in the intersectidhtiss equals) (¢ + N log® N loglog N),
since we also have to read th@olynomials. This algorithm also outputs the required coefficients. If we
arrange our data (i.et,polynomials) on a binary tree, after all the coefficients of the internal abdse
been computed, the final coefficients for all elements at the leaves camipaited inO(¢) multiplications
(we can avoid thé(t log t) cost) ofO(n;) degree polynomials, wherg are the degrees of the polynomials
of the leaves. Therefore the result holds. .

Proof of Lemma 4.3. Since it isX = {x1,22,...,25} # {y1,%2,...,ys} the polynomialshsx’ +
bs_ 1K1+ ...+ bg and (xk + 21)(k + z2) ... (k + z5) are not equal for every € Z,. Therefore the
probability in question equals the probability obeing a root of the polynomialx® + bs_1x°~1 + ... +
bo — (k+z1)(k+22) ... (k4 zy,). This polynomial has degreaax{d, d'}. Sinced, &’ = O(n) = poly(k),
this polynomial hagoly (k) roots. Thus the probability isoly(k)/2* = negl(k).

Proof of Theorem 4.4. Suppose all the verification tests have succeeded. That means that thefo
verification of the last test (Equation 7) the vali¥s; are indeed theubset witnessder the setl (unless
the¢-strong Diffie-Hellman assumption has been broken—see Lemma 2.1 forlibetsondition and [33]
for the verification of the accumulation values—), i.e.,

Wi = gnmesﬂé'(ﬁs) =gl %)
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forall j = 1,...,t. Suppose now sétis not thecompleteintersection and Equation 7 has been satisfied.
This means that the polynomial3 (s), P2(s), ..., P:(s) have at least one common factor, say+ r).
Therefore it holdsP;(s) = (s + r)Q;(s) for some polynomialg);(s)—computable in polynomial time—,
forall j = 1,...,t. Therefore, since Equation 7 is satisfied

t t
H W|J, F|J H e <ng(S), FI,j)

]:1 =1

t tJ
= [l ( (s47)Q5(s Fu,j) = H e (ng<s>7 F|,j)(s+”
)

7=1 1

(i ))

7j=1
L t
PN e(g’g) s+r — H e (ng(s)7 F|7j> .
7=1

This means that the server can break ¢kstrong Diffie-Hellmann assumption in polynomial time for the
target groufs,; of the bilinear-map. That completes the proof.

Proof of Theorem 4.6. Suppose all the verification tests have succeeded. That means that thefo
verification of the last test (Equation 8) all the valugse U belong to someS; (unless theg-strong
Diffie-Hellman assumption has been broken). Therefore the reporied nannot contain extra elements.
However, the reported union can contain less elements. Suppose net @liéthents are reported hand
thereforel is not the correct union. Then there should besathat contains an such that- ¢ U. Therefore
we can findP(s), Q(s) anda such that (and since Equation 8 verifies)

e(acc(S;), Ws,) = e(acc(U) g)

6(9 )(err (s) e(g’g)(s+r)Q(s)+a PN
e(g )(s—l—r (s) _ e(g’g)(s—I—T)Q(s)e(g’g)a N
(

e(g,9)7 = e(g, Wg,) /e (g, g) =@/

Therefore the server can break thstrong Diffie-Hellmann assumption in polynomial time for the target
groupG s of the bilinear-map. That completes the proof.
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