
Optimal Authentication of Operations on Dynamic Sets∗

Charalampos Papamanthou

Brown University
Providence RI

Roberto Tamassia

Brown University
Providence RI

Nikos Triandopoulos†

RSA Laboratories
Cambridge MA

August 23, 2010

Abstract

We study the problem of authenticating outsourced set operations performed by an untrusted server
over a dynamic collection of sets that are owned by a trusted source. We present efficient methods for
authenticating fundamental set operations, such asunionandintersectionso that the client can verify the
correctness of the received answer. Based on a novel extension of the security properties ofbilinear-map
accumulators, our authentication scheme is the first to achieveoptimality in several critical performance
measures: (1)the verification overhead at the client is optimal, that is, the client can verify an answer in
time proportional to the size of the query parameters and answer; (2)the update overhead at the source is
constant; (3) the bandwidth consumption is optimal, namely constant between the source and the server
and operation-sensitive between the client and the server (i.e., proportional only to the size of the query
parameters and the answer); and (4)the storage usage is optimal, namely constant at the client and linear
at the source and the server. Updates and queries are also efficient at the server. In contrast, existing
schemes entail high bandwidth and verification costs or highstorage usage since they recompute the
query over authentic data or precompute answers to all possible queries. We also show applications of our
techniques to the authentication ofkeyword searcheson outsourced document collections (e.g., inverted-
index queries) and of queries in outsourceddatabases(e.g., equi-join queries). Since set intersection
is heavily used in these applications, we obtain new authentication schemes that compare favorably to
existing approaches.

∗Work supported in part by the U.S. National Science Foundation, the Center for Geometric Computing and the Kanellakis
Fellowship at Brown University and by the Center for Reliable InformationSystems and Cyber Security at Boston University.

†Research performed while the author was at Boston University.

1

1 Introduction
Cloud services are fast becoming a vital part of today’s computing reality.To mitigate equipment, mainte-
nance and storage costs, numerous Internet-based applications are built by utilizing storage and computation
resources that are offered and managed by third-party service providers (e.g., Amazon S3, EC2 and Sim-
pleDB Web services). Also, millions of on-line users manage their personaldata through remote cloud
storage (e.g., Gmail, Google docs). As end-user applications consume information that comes from un-
known machines, verifying the integrity of outsourced computations performed over remotely stored data is
a crucial security property for (the viability and reliable development of) cloud computing [19].

Indeed, in such third-party data management settings, where remotely stored data resides outside the
administrative control of its owner and where computations are performed by remote untrusted machines,
the ability to check the integrity of the data and the correctness of the computations performed on this data is
highly desirable, or otherwise a faulty or malicious server can tamper with the data or falsify the computation
results. In addition to strong integrity guarantees, such a correctness-verification process should operate in a
way that is very practical for the clients, or otherwise the benefits of computation outsourcing are dismissed.
Ideally, computations should be verified without having to locally rerun them or having to utilize too much
extra cloud storage.

The problem of efficiently checking the integrity of outsourced data is beststudied in the model of
authenticated data structures[28, 37], which has been developed over the last decade and is also closely
related to memory checking [6]. This model considers three participating entities: a data owner, called
source, outsources a data structure to multiple untrusted sites, calledservers, to which, due to scalability
reasons,clientsissue queries. A server augments the answer to a client’s query on the datastructure with a
cryptographic proof which is to be used by the client to verify the validity of the answer, based only on the
trust the client has to the source. This trust is usually conveyed through asignature on time-stampeddigest
of the data structure, that is, a collision resistant succinct representationof the data structure (e.g., the root
hash of a Merkle tree).

Starting from the fundamental problem ofset-membership authentication(e.g., [15, 16, 28]), the ef-
ficient authentication of many classes of search queries has been studied, includingrange search[18, 25],
orthogonal range search[3, 18],graph and geometric search[18], andsearch in XML documents[8]. These
solutions can be proved secure based on the existence of collision-resistant hash functions.

In this paper and motivated from applications related tokeyword searchanddatabase queries, we study
the authentication of fundamental queries on generalsetsand consider the following problem. Assume that
a collection ofm setsS1, S2, . . . , Sm is outsourced at an untrusted server. We wish to authenticate queries
on the sets, such asintersection, unionanddifference. For example, givent indicesi1, i2, . . . , it between
1 andm, we wish to verify the correctness of the returned intersectionSi1 ∩ Si2 ∩ . . . ∩ Sit . However, we
wish to avoid the following two straightforward but highly inefficient solutions.

First, one could just provide the client with integrity proofs for the contents of the setsSi1 , Si2 , . . . , Sit

using well-known set-membership authentication schemes (e.g., Merkle trees [26]) and then let the client
run the intersection algorithm locally. In this case, running the intersection algorithm oncorrect (verified)
data would also trivially verify the correctness of the answer. Clearly, byfirst verifying all the elements of
the sets participating in the intersection, this solution results in high communication and verification costs.
For instance, in the extreme case where all stored sets have an empty intersection, the entire set collection
must be verified in order to verify a constant-size answer! This is not desirable as it is against computation
outsourcing.

Second, one could store one short proof (e.g., a signature by the source) for the answer of each possible
intersection query. This would allow for optimal verification overhead at theclient at the cost of increased
storage and update overheads at the source and the server. For instance, the insertion of a singleton set in
the collection would practically incur the re-computation of all proofs related tothe union queries! This is

2

also not desirable, as it is against storage outsourcing.
In this work, we instead aim at designing set-operation authentication schemes thatminimize the authen-

tication overhead for the three involved parties. Inspired by the property ofsuper-efficient verificationthat
has been studied in certifying algorithms [21, 36] and certification data structures [17, 38], we wish to verify
an answer in time asymptotically less than the time spent to produce the answer. Inaddition, we would like
to obtain optimal verification times for set-operation queries; namely, to construct an authentication scheme
that verifies answers of sizek in O(k) time—clearly an optimal process, since one needs to read the answer
in order to verify it. Moreover, we would like to achieve optimal bandwidth usage, meaning that the au-
thentication protocolasymptotically introduces no extra communication cost. That is, after a new update (of
constant size) on the set collection is performed by the source, we want the source-server communication
cost to remain constant. More importantly, we wish that the authentication of a set operation issued by the
client is operation-sensitive, meaning that it is achievedby using a proof of size that depends only on the
(description and outcome of the) operationand not on the size of the sets involved. More formally, if a
set-operation query involvest sets (e.g., intersection oft sets) and produces an answer of sizeδ, we would
like to proof to be proportional tot+ δ. This corresponds to optimal bandwidth usage as the query and an-
swer alone requireO(t+ δ) communication. We note that whether the above two optimality properties are
achievable for set operations was posed as an open problem in [12]. We close this problem in the affirmative.

Bandwidth-optimal and operation-sensitive authentication of data structurequeries is very important
from both theoretical and practical perspectives. Not increasing the asymptotic complexity of the answer,
and at the same time providing authentication, implies optimal verification, the best one could hope for.
Implementing such optimal solutions is important also in practice. For instance, email searches is a com-
mon task of a user’s daily email activity. The search is performed by means of an inverted index data
structure[35], that is a collection of sets each consisting of emails that include a specificterm. The authen-
tication of a search without an operation-sensitive verification could involve the communication of all the
emails that contain one of the keywords of the search (even if the result is much smaller), which would make
search authentication fairly impractical.

We note here that the results presented in this work are asymptotic, where thesecurity paramater is
considered to be a constant, i.e., the main problem dimensions are the sizes of the data structures,n andm
(see Table 1).

1.1 Related work

The great majority of authenticated data structures involve the use of cryptographic hashing to hierarchically
compute over the outsourced data one or more secure digests. Hash-based authentication schemes have been
designed for various query types, including set-membership (e.g., [6, 16, 25, 28]) and search queries (e.g., [3,
18]). Moreover, authenticated data structures that are based on othercryptographic primitives, in particular
cryptographic accumulators, to achieve better complexity trade-offs havebeen proposed (e.g., [15, 32]).
Most of these schemes incur verification costs that are proportional to thetime spent to produce the query
answer.

Bandwidth-optimal and operation-sensitive authentication of range-search queries appears in [17], where,
through a combination of hashing and accumulators, an answer of sizet can be verified inO(t) time using
a proof of sizeO(log t), as opposed toO(logn + t) corresponding costs that the use of a hash tree would
provide. Super-efficient authentication of two-dimensional grid searching appears in [3], where verification
proofs have constant size. Finally,shortest path queriesare authenticated in [24] (not in anoperation-
sensitiveway).

Concerning set operations and database queries, Devanbuet al. [12] propose the problem of authenticat-
ing set operations and join queries on databases, providing solutions thatare not operation-sensitive. They
identify the importance of coming up with an operation-sensitive authentication scheme and they pose it as

3

an open problem. Possibly the work closest in context with ours is the work by Morselli et al. [27], where
the problem of authenticating the intersection, union and difference of setsis studied. Although the size
of their proofs is reduced in practice by representing sets with compressed Bloom filters and then perform-
ing operations on Bloom filters, still the asymptotic complexity of their solutions isO(n), wheren is the
size of the sets participating in the set operation. Same linear asymptotic bounds—with an emphasis on
efficient practical implementation, though—are achieved by Yanget al. [39]. A different approach is taken
by Pang and Tan [31] where, in order to achieve operation-sensitivity,expensive pre-processing and expo-
nential space are required (i.e., answers to all possible queries are signed). Palazzi, Pizzonia and Pucacco
[30] present a practical method for authenticating general database selection queries on a single table by
executing in parallel multiple selection queries referring to a single attribute andterminating all but the first
received response.

Finally, related to our work is the systematic study of non-membership proofs for accumulators, firstly
introduced for the RSA accumulator in [22] and later for the bilinear-map accumulator in [4, 11].

1.2 Relation to outsourced verifiable computation

Our work is related to the very recent work onoutsourced verifiable computation[2, 9, 14]. This line of work
studies the verification of general functionalities. Therefore, the problem that we study can be solved using
such solutions (which, by definition, achieveanswer-sensitive verification, the main property we shoot for
in this paper but for a specific functionality). However, there are important differences between the general
approach of verifiable computation and the approach we take in this paper,which we list below.

1. Our contribution refers to a specific functionality (i.e., set intersection ofdynamic sets) and does not
generalize to other functionalities.

2. We do not considerprivacyof computation at all here, but we only address the problem of correctness
(verifiability) of computation;

3. Our work can be applied in a (two-party) scenario wherepublic verifiabilityis desired since there is no
secret keys involved, which cannot be achieved in the general solutions since some secret information
at the verifier’s side is used as a means of verifying computation;

4. Finally, our work supportsefficient updatesof the evaluated set intersection circuit, which cannot be
achieved in generic solutions, as the definition of the evaluated functionality goes into the definition
of the system (at the initialization step) and is part of the public key.

Thus, our results are specialized in the verifiability of set operations. As such, they achieve much better
levels of efficiency and practicality compared with the ones achieved by the generic constructions.

1.3 Contributions

Our results are summarized as follows:

• We give the first authentication scheme that authenticates sets operationsintersection, unionanddif-
ferenceoptimally, where the size of the proof and the verification time are proportionalto the size of
the query and the answer. This closes an open problem posed in [12].

• We achieve bandwidth optimality and operation sensitivity by extending in a novel way the properties
of accumulators, which also allows for efficient updates. Our scheme is proved secure under the (by
now well-established)q-strong Diffie-Hellman assumption [7].

• We give applications of our scheme to the authentication of keyword-search queries (e.g., email
search) and database queries (e.g., equi-join).

A cost analysis of our scheme shows the expected practical efficiency as well, comparing favorably with
existing works, such as [27] and [39]. A detailed comparison of our work with existing schemes appears in

4

Table 1.

Table 1: Comparison of asymptotic complexity measures in existing work and in this paper for the authen-
tication of an intersection query ont sets, where1 < t ≤ m. Here,m is the total number of sets,N is
the sum of the sizes of thet sets participating in the intersection,M is the sum of the sizes of all the sets
in the data structure,0 < ǫ < 1, δ is thesizeof the returned intersection,L is the size of the smallest set
participating in the intersection andH is the size of the largest set participating in the intersection. Without
using exponential space due to answer precomputation (as done in [31]), though at the expense of an extra
log2N log logN factor for querying (indicated for simplicity aslog3N in the table) our solution provides
optimal proofs and optimal verification time, considerably improving in this way thelinear upper bounds
appearing in [12, 27, 39]. In the second part of the table we present asymptotic results for the case thatt = 2
and all the set sizes areΘ(n). In all cases, the client space isO(1) and the source space isO(m+M).

work query proof verification server source server update
time size time update time upd time space info

[12, 39] (δt+ L) logH (δt+ L) logH (δt+ L) logH logH logH m+M 1
+ logm + logm + logm + logm + logm

[27] N + t N + δ N + t m+M m+M m+M N
[31] t δ t+ δ 2m 2m 2m +M 2m

this t+N · log3N t+ δ t+ δ mǫ + logH logH m+M 1

[12, 39] n log n n log n n log n log n log n m+M 1
+ logm + logm + logm + logm + logm

[27] n n n m+M m+M m+M n
[31] 1 δ δ m2 m2 m2 +M m2

this n · log3 n δ δ mǫ + log n log n m+M 1

2 Preliminaries
In this section, we present some necessary notions that will be useful for describing our constructions.

Definition 2.1 (Negligible function) Let f : N → R. We say thatf(k) is neg(k) iff for any nonzero
polynomialp(k) there exitsN such that for allk > N it is f(k) < 1/p(k).

2.1 Bilinear pairings

Let G1, G2 be two cyclic multiplicative groups of prime orderp, generated byg1 andg2 and for which
there exists an isomorphismψ : G2 → G1 such thatψ(g2) = g1. Let alsoGM be a cyclic multiplicative
group with the same orderp ande : G1 × G2 → GM be a bilinear pairing with the following properties:
(1) Bilinearity: e(P a, Qb) = e(P,Q)ab for all P ∈ G1, Q ∈ G2 anda, b ∈ Zp; (2) Non-degeneracy:
e(g1, g2) 6= 1; (3) Computability: There is an efficient algorithm to computee(P,Q) for all P ∈ G1 and
Q ∈ G2. In our setting we haveG1 = G2 = G andg1 = g2 = g. A bilinear pairing instance generatoris a
probabilistic polynomial time algorithm that takes as input the security parameter1k and outputs a uniformly
random tuple(p,G,GM , e, g) of bilinear pairings parameters.

2.2 The bilinear-map accumulator

The bilinear-map accumulator [29] is an efficient way to provide short proofs of membership for elements
that belong to a set and is extensively used in our construction. It accumulates elements inZ∗

p (where
p is a prime) and the accumulated value is an element inG, such that there exists a bilinear map from

5

G × G → GM . Given a set ofn elementsX = {x1, x2, . . . , xn} the accumulation value ofX is defined
asacc(X) = g(x1+s)(x2+s)...(xn+s), whereg is a generator of groupG of prime orderp ands ∈ Z∗

p is a
randomly chosen value that constitutes the trapdoor in the scheme. The proof of membership for an element
y that belongs to setX will be the witnessWy = g

Q

x∈X :x 6=y(x+s). Accordingly, a verifier can test set
membership fory by checking that the relatione(Wy, g

y+s) = e(acc(X), g) holds. We can generalize the
above result for providing a proof that setY is asubsetof setX . Naturally the witness for this case will be

WY = g
Q

x∈X :x/∈Y (x+s) , (1)

and the verification is performed by checking the validity of the relatione(WY , g
Q

y∈Y (y+s)) = e(acc(X), g).
We note that all the operations in the exponent of elements ofG are performed modulop, since this is the
order of the groupG. The security of the bilinear-map accumulator is based on theq-strong Diffie-Hellman
assumption which can be stated as follows and was introduced in [7]:

Definition 2.2 (q-strong Diffie-Hellman assumption) Let G be a cyclic (multiplicative) group of orderp.
Given the elementsg, gs, gs2

, . . . , gsq
of G for somes chosen at random fromZ∗

p, then a computationally

bounded adversaryAdv can findx ∈ Zp and output(x, g1/(s+x)) with probabilityneg(k).

We note here that we do not require the existence of a bilinear-map for the groupG in Definition 2.2,
i.e., the only requirement is that the group iscyclicof orderp.

2.3 Proving subsets

We now extend the main security claim for the bilinear-map accumulator for computing fake witnesses for
subsetsof elements. We note that this is a generalization of the proof in [29], that wasdone for a single
element (see proof in the Appendix):

Lemma 2.1 Let k be the security parameter,(p,G,GM , e, g) be a uniformly randomly generated tuple of
bilinear pairings parameters ands be chosen at random fromZ∗

p. A computationally bounded adversary

Adv is given a set of elementsX and the elementsg, gs, gs2
, . . . , gsq

of G, whereq ≥ |X |. ThenAdv can
find a setY andWY such thatY * X ande(WY , g

Q

y∈Y (y+s)) = e(acc(X), g) with probabilityneg(k).

2.4 Authenticated data structures

In this paper, we develop solutions for checking the validity of set operations in the authenticated data
structures computational model [25, 37], which involves three parties: A trustedsourcethat owns, updates
and outsources his data structureDi, along with a signed, timestamped, collision resistant digest of it,di,
to the untrustedserversthat respond to queries sent by theclients. Theserversshould be able to provide
with proofs to the queries and theclientsshould be able to verify these proofs based on their trust to the
source, by basically using the correct and signed digestdi. Complexities relevant to the source are thesource
update time(time taken for the source to compute the updated digest),source spaceandupdate information
(size of information sent to the servers per update, i.e., the signed digest).Relevant to the servers areserver
update time(time taken by the server per update),server space, query time(time taken by the server to
compute a proof for a query) andproof size. Finally, relevant to the client areverification timeandclient
spacewith obvious meaning. The client verification is performed using an algorithm{accept, reject} ←
verify(q,Π(q), α(q), di), whereq is a query on data structureDi andΠ(q) is a proof provided by the server
for answerα(q). Note thatdi, the digest ofDi, is an input as well.

Let now{reject, accept} = check(q, α(q), Di) be a deterministic algorithm that, given a queryq on data
structureDi and an answerα(q) checks to see if this is the correct answer to queryq. We can now present
the formal security definition, which states that it should be difficult (except with negligible probability) for
a computationally bounded adversary to produce verifying proofs for incorrect answers, even after he brings

6

the data structure to a state of his liking. We present the security definition thatapplies to any authenticated
data structure and captures the points raised before:

Definition 2.3 (Security) Supposek is the security parameter andAdv is a computationally bounded ad-
versary that is given the public key of the sourcepk. Our data structureD0 is in the initial state with digest
d0 and is stored by the source. The adversaryAdv is given access toD0 andd0. For i = 0, . . . , h = poly(k)
either the source or the adversaryAdv issue an updateupdi in the data structureDi and therefore the
source computesDi+1 anddi+1. The outputsDi+1 anddi+1 are sent to the adversaryAdv. At the end of
this game of polynomially-many rounds, the adversaryAdv enters the attack stage where he chooses a query
q and computes an answerα(q) and a verification proofΠ(q). We say that the authenticated data structure
is secure if

Pr









{q,Π(q), α(q)} ← Adv(1k, pk);
accept← verify(q,Π(q), α(q), dh);
reject = check(q, α(q), Dh);
digest(Dh) = dh.









≤ neg(k).

3 Main construction
In this section, we present our main construction for efficient set-operation authentication. The underly-
ing data structure, which we callsets collection and describe in detail in the following paragraph, is a
generalization of theinverted index[5].

3.1 Sets collection

The sets collectiondata structure stores elements from a universeS. It consists ofm sets, denoted with
S1, S2, . . . , Sm, each containing elements fromS. Without loss of generality we assume that our universe
S is the set of nonnegative integers less than ak-bit primep, i.e.,S = Zp, wherek is the security parameter.
Every setSi does not contain duplicate elements, however an elementx can appear in more than one set.

Each set is represented by a balanced tree: the elements are stored at theinternal nodes sorted according
to the inorder traversal and consecutive nodes in the traversal are linked. Thus, the space usage of the sets
collection isO(m+M), whereM is the sum of the sizes of the sets.

In order to get some intuition, we can view the sets collection as aninverted index. The items are
documents and each termwi in the dictionary corresponds to a setSi, which contains the documents where
termwi appears. In this example,m is the number of terms being indexed, which is typically in the hundreds
of thousands, whileM is the number of documents being indexed, which is in the billions. However, for the
sake of generality, we will keep referring toitems, instead of documents, and tosets, instead of terms.

3.2 Operations and complexity

The operations supported by the sets collection data structure consist ofupdatesandqueries. An update is
either aninsertionof an item into a set or adeletionof an item from a set. An update on a set of sizen takes
O(logn) time. For simplicity, we assume that the numberm of sets does not change.

A query is one of the following standard set operations:

Intersection: Given indicesi1, i2, . . . , it, return set
I = Si1 ∩ Si2 ∩ . . . ∩ Sit .

Union: Given indicesi1, i2, . . . , it, return set
U = Si1 ∪ Si2 ∪ . . . ∪ Sit .

Difference: Given indicesi andj, return the set
D = Si − Sj .

7

Subset query: Given indicesi andj, returntrue if Si ⊆ Sj andfalse otherwise.

We denote withδ the size of the answer to a query operation. For an intersection, union, and difference,δ is
equal to the size ofI, U, andD, respectively. For a subset query,δ isO(1). Using a generalized merge, each
query operation can be executed in timeO(N), whereN is the sum of the sizes of the sets involved in the
operation.

In order to verify the integrity of the answers to queries given by the server, we add an authentication data
structure on top of the sets collection structure. Our goal is to have no additional asymptotic overhead in
the communication between client and server. I.e., for a query witht parameters and answer sizeδ, we want
the proof size to have optimal sizeO(t+δ). Also, we want to have efficient storage at the source, server and
client and efficient running time for the query, update, and verification algorithms executed by these parties.
Before we present our main construction, we overview two inefficient solutions for intersection queries to
gain some intuition about the difficulty of the problem.

3.3 Two inefficient solutions

In the first solution, the source precomputes, signs and sends to the server the answers to all the possible
intersection queries. The number of all possible intersection queries is

(

m
1

)

+
(

m
2

)

+ . . . +
(

m
m

)

= 2m and
thereforeO(2m) space is needed at the server to store the precomputed answers. When the client issues an
intersection query, the server returns the precomputed answer and the source’s signature on it. The client,
knowing the public key of the source can verify the validity of the answer. Thus, optimal communication
is achieved at the expense of exponential space at the server. An update takes also timeΩ(2m), since the
source has to re-signall the precomputed answers, so that replay attacks are avoided. By using aMerke tree,
we can transmit only one signature but we still need to recompute all the answers. Note that if intersection
queries are limited to two sets, the space at the server becomesO(m2)—still inefficient.

The second solution involves maintaining Merkle trees on top of all the sets. Inthis way, the client can
perform a query operation locally after verifying the validity of all the elements in the relevant sets of the
query. This approach incurs high communication and verification costs, since a large number of elements
have to be communicated in the worst case, even if the query answer is small. Variations of this technique
have been used in relevant works such as [12, 27, 39].

Understanding the limitations of the above solutions, we have developed an authenticated data structure
for efficient andoperation-sensitiveauthentication of set operations. Since we are in the authenticated data
structures model (see Section 2), we need to refer to three separate parties, i.e., thesource(trusted), the
server(untrusted) and theclient.

3.4 The source

Let k be the security parameter. In our construction, the source picks a randomly generated tuple of bi-
linear pairings parameters(p,G,GM , e, g) and also a random elements from Z∗

p. The values is kept

secret and constitutes the trapdoor of our scheme. The source next computesgs, gs2
, . . . , gsq

, whereq =
maxi=1,...,m |Si| (i.e., q is the maximum number of elements in a set). The authenticated data structure at
the source is built as follows:

• For each setSi, the source computes the accumulation value ofSi i.e., acc(Si) = g
Q

x∈Si
(s+x) (see

Section 2);

• The source builds anaccumulation tree[32, 33] on top of the pairs(1, acc(S1)), . . . , (m, acc(Sm)).
We denote withd be the digest of the accumulation tree;

• Let (sk, pk) be the source’s private-public key pair. The source signs digestd and sends to the server
signaturesig(d, t), wheret is the current timestamp. The source also computes and sends to the server
the pairs(i, gsi

) and their signaturessig(i, gsi
) (i = 1, . . . , q).

8

Note that the digestd is a “secure” succinct description of the sets collection structure. Namely,the
accumulation tree protects the integrity of the valuesacc(Si) and the accumulation valueacc(Si) protects
the integrity of the items contained in setSi, for i = 1, . . . ,m.

We recall that for any0 < ǫ < 1, an accumulation tree overm items is an authenticated dictionary with
O(1) query and communication complexity andO(mǫ) update complexity. In comparison, a Merkle tree or
authenticated skip list onm items hasO(logm) query, update and communication complexity.

We now describe how the source performs an update. Suppose the update issued by the source is the
insertion of an itemz ∈ Zp in setSk. Then the source can setacc(Sk) = acc(Sk)

(s+z) (if z was deleted,
the source would setacc(Sk) = acc(Sk)

(s+z)−1
). This operation updates the accumulation value of the

set wherez is inserted and takesO(1) time. We note here that we take advantage of the fact that the
source knowss, which allows to compute the updated accumulated value very efficiently. Next,the updated
accumulation value is sent to the server, which results in a savings of anO(n log2 n) computation at the
server.

Moreover, the source needs to update the digest of the accumulation treed, since the value of one of its
leaves, i.e., the valueacc(Sk), has changed. This can be done with methods described in [32, 33] inO(1)
time (note that theO(mǫ) update time in [32, 33] applies only for the server). After the update has been
completed and the new digestd′ has been computed, the source signsd′, by using a fresh timestampt′ and
sendssig(d′, t′) to the server.

Finally, if the update causes the sizeq of the largest set to increase, the source setsq = q + 1 and
computes and sends to the server the pair(q, gsq

) and the signaturessig(q, gsq
).

Lemma 3.1 The source keepsO(m + M) space, wherem is the number of sets andM is the sum of the
sizes of the sets. Also, the source update time isO(logn), wheren is the size of the set where the update
is performed. Moreover, the update authentication information has sizeO(1) and can be computed by the
source inO(1) time.

3.5 The server

The server is the untrusted party that answers queries on behalf of the source and provides proofs of va-
lidity of the answers. In addition to a copy of the sets collection structure, the server stores the following
authentication structure:

• Pairs(i, gsi
) and their signaturessig(i, gsi

) for all i = 1, . . . , q;

• The accumulation values of the setsacc(Si) for i = 1, . . . ,m;

• The accumulation tree on top of the pairs(i, acc(Si)) for i = 1, . . . ,m;

• The signature of thelatestdigest of the accumulation treesig(d, t).

Suppose the source issues an update, e.g., the insertion ofz ∈ Zp in setSk of sizen. First, the server
updates inO(logn) time the sets collection structure. Next, after receiving the updated valueacc(Sk) from
the source, the server updates the accumulation tree using techniques from [32, 33] in timeO(mǫ), for some
0 < ǫ < 1. Therefore, we have:

Lemma 3.2 The server keepsO(m + M) space, wherem is the number of sets andM is the sum of the
sizes of the sets. Also, the server update time isO(mǫ + log n), wheren is the size of the set where the
update is performed.

4 Queries and verification
In this section we present the main contribution of this work and show how the server can provide compact
proofs for the answers to queries. The proofs have optimal sizeO(t + δ), wheret is the size of the query

9

parameters (e.g.,t = 2 for an intersection of two sets) andδ is the answer size (e.g,δ = 1 if the intersection
consists of one element).

4.1 Intersection Query

The parameters of an intersection query aret indices, namely the indicesi1, i2, . . . , it, with 1 ≤ t ≤ m. To
simplify the notation, we assume without loss of generality that these indices are1, 2, . . . , t. The answer to
this query is the set

I = S1 ∩ S2 ∩ . . . ∩ St = {y1, y2, . . . , yδ}.
We denote withni the size of setSi (i = 1, 2, . . . , t) and we defineN =

∑t
i=1 ni. I.e.,N is the total size

of the sets involved in the intersection andδ is the size of the intersection.
We express the correctness of the answerI to the intersection query by means of the following two

conditions:

• Subset condition:
I ⊆ S1 ∧ I ⊆ S2 ∧ . . . ∧ I ⊆ St , (2)

• Completeness condition:

(S1 − I) ∩ (S2 − I) ∩ . . . ∩ (St − I) = Ø . (3)

Note the verification of the completeness condition is necessary since we want to make sure thatI contains
all the common elements. We now show how the server can provide compact proofs for these two conditions
(Equations 2 and 3).

Before we proceed, we give the following result, derived from the standard polynomial interpolation
based on FFT [10]:

Lemma 4.1 Let (s + x1)(s + x2) . . . (s + xn) = ans
n + an−1s

n−1 + . . . + a1s + a0 be ann-degree
polynomial. The coefficientsan, an−1, . . . , a0 can be computed inO(n log2 n) time, givenx1, x2, . . . , xn.

For setSj , we define the following polynomial:

Pj(s) =
∏

x∈Sj , x/∈I

(x+ s) . (4)

Note that polynomialPj(s) has degree at mostnj + 1. An important observation is as follows:

Fact 4.1 SetI is the intersection of setsS1, S2, . . . , St if and only if the polynomialsP1(s), P2(s), . . . , Pt(s)
have no common factors.

We now have the following lemma (proof in the Appendix):

Lemma 4.2 SetI is the intersection of setsS1, S2, . . . , St if and only if there exist polynomialsq1(s), q2(s),
. . . , qt(s) such thatq1(s)P1(s) + q2(s)P2(s) + . . .+ qt(s)Pt(s) = 1. Moreover, polynomialsq1(s), q2(s),
. . . , qt(s) can be computed inO(t+N log2N log logN) time.

Subset condition. For each setSj , 1 ≤ j ≤ t, the server computes thesubset witnessesWI,j (the second
subscript refers to the set for which the witness is computed), as definedin Equation 1 (Section 2):

WI,j = gPj(s) = g
Q

x∈Sj, x/∈I
(x+s)

. (5)

WitnessWI,j will serve as a proof thatI is a subset of setSj . By using Lemma 4.1, each such witness can be
computed in timeO(nj log2 nj). Thus, the time for computing all thet subset witnesses isO(t+N log2N).

10

Completeness condition. Supposeq1(s), q2(s), . . . , qt(s) are the polynomials computed in Lemma 4.2
that satisfy

q1(s)P1(s) + q2(s)P2(s) + . . .+ qt(s)Pt(s) = 1 . (6)

The server computes the following values:

• ElementsFI,j = gqj(s) (j = 1, . . . , t), calledbody witnesses, which, by Lemma 4.2, can be computed
in timeO(t+N log2N log logN);

• Coefficientsbδ, bδ−1, . . . , b0 of the polynomial(s+y1)(s+y2) . . . (s+yδ), i.e., the polynomial whose
roots are the elements of the intersection. By Lemma 4.1, theseδ+ 1 coefficients can be computed in
O(δ log2 δ) time.

Proof components. The proof for the answerI to the intersection query consists the following compo-
nents:

• Signed timestamped digest of the accumulation tree;

• Pairs(1, gs), . . . , (δ, gsδ
) along with their signatures

sig(1, gs), . . . , sig(δ, gsδ
), which are stored by the server;

• Coefficientsbδ, bδ−1, . . . , b0 of the polynomial
(s + y1)(s + y2) . . . (s + yδ) associated with the intersectionI = {y1, y2, . . . , yδ}, which can be
computed inO(δ log2 δ) time;

• Accumulation valuesacc(S1), acc(S2), . . . , acc(St) associated with the setsS1, S2, . . . , St, along
with their respective accumulation tree proofsproof(acc(Sj)) for j = 1, . . . , t. Each accumula-
tion value is stored by the server. Its proof has constant size and can becomputed in constant time by
the server;

• Subset witnessesWI,j , defined in Equation 5, forj = 1, . . . , t, which can be computed inO(t +
N log2N) time;

• Body witnessesFI,j = gqj(s), whereqj(s) satisfies Equation 6, forj = 1, . . . , t, which can be com-
puted in timeO(t+N log2N log logN).

Verification. The verification algorithm executed by the client consists of several steps. First, the client
uses the accumulation tree proofproof(acc(Sj)), along with the fresh digestd, to verify the integrity of
acc(Sj), for j = 1, . . . , t. This step takesO(t) time. For details on the verification method for the accumu-
lation tree, refer to [33]. Now the client is assured about the integrity of theaccumulation value of each set
in the query. The client next proceeds to checking thesubset conditionand thecompleteness condition. We
use the following lemma (proof in the Appendix):

Lemma 4.3 Let
∏δ

i=1(s + yi) =
∑δ

i=0 bis
i. Define an experiment where the adversary picksX =

{x1, x2, . . . , xδ′} 6= {y1, y2, . . . , yδ} and outputsX and the valuesbδ, bδ−1, . . . , b0. Subsequently a random
κ ∈ Zp is picked. Then the probabilityPr[

∑δ
i=0 biκ

i =
∏δ′

i=1(κ+ xi)] isO(poly(k)/2k).

By running the experiment of Lemma 4.3, the client checks that the coefficients bδ, bδ−1, . . . , b0 of
the reported intersection are correct. This step takesO(δ) time sincegκ, gκ2

, . . . , gκδ
can be computed

in O(δ) time. Note that the experiment of Lemma 4.3 avoids the explicit computation by the client of
g(s+y1)(s+y2),...,(s+yδ), which would require computing the coefficients from scratch and therefore would
takeO(δ log2 δ) time (see Lemma 4.1).

After verifying the coefficients and the signatures on the values(j, gsj
), (j = 1, . . . , δ), the client

computes inO(δ) timeg(s+y1)(s+y2)...(s+yδ) and performs the following tests:

• The client verifies relation

e(g(s+y1)(s+y2)...(s+yδ),WI,j) = e(acc(Sj), g),

11

for all j = 1, . . . , t. This test checks thesubset condition.

• The client verifies the relation
t

∏

j=1

e(WI,j ,FI,j) = e(g, g) . (7)

Each of the above tests takesO(t) time.
If all the subset and body witnesses have been computed correctly, thenEquation 7 is verified, due to

Equation 6 and by the bilinear mape(., .) properties:

t
∏

j=1

e(WI,j ,FI,j) = e(g, g)
Pt

j=1 qj(s)Pj(s) = e(g, g) .

If any of the above steps fails, the client rejects the answer.

Security and performance. The core security argument of our construction is given below (proof inthe
Appendix).

Theorem 4.4 (Security for intersection) Let I be theclaimedintersection computed by the server for sets
that have indices1, 2 . . . , t. The server computes accumulation valuesacc(Sj), accumulation tree proofs
proof(acc(Sj)), subset witnessesWI,j and body witnessesFI,j for j = 1, . . . , t. If the verification algorithm
succeeds andI is not the intersection of setsS1, S2, . . . , St, then the server can break theq-strong Diffie-
Hellman assumption (see Definition 2.2).

The following lemma summarizes the performance of intersection queries.

Lemma 4.5 The server executes an intersection query fort sets in timeO(t+N log2N log logN), where
N is the sum of the sizes of the input sets to the query andδ is the size of the set reported as answer. Also,
the proof has sizeO(t+ δ) and the verification time at the client isO(t+ δ).

4.2 Other Queries

Union query. Suppose that the parameters of a union query are (without loss of generality) indices
1, 2, . . . , t. The answer is the setU = S1 ∪ S2 ∪ . . . ∪ St. Let U = {y1, y2, . . . , yδ}. The proof includes
valuesproof(acc(Sj)), for j = 1, . . . , t (similarly with the intersection case) and the following items: (1)
For eachyi, i = 1, . . . , δ, the server provides a witnessWyi that proves thatyi belongs to setSk, represented
by acc(Sk), for somek = 1, . . . , t. Theseδ witnesses can be constructed inO(δ + N log2N) time (see
Lemma 4.1); (2) For eachj = 1, . . . , t the server provides asubsetwitnessWSj for each setSj that proves
that Sj is a subset of the reported unionU.1 These witnesses have sizeO(t) and can be constructed in
O(tδ log2 δ) time.

The verification proceeds as follows. The client checks that the reported union does not contain any
duplicates. Next, it verifies the integrity ofacc(Sj), for j = 1, . . . , t, which can be done inO(t) time, and
that all the elementsyi (i = 1, . . . , δ) of the reported union belong to some setSk, for k = 1, . . . , t. This
step can be done inO(δ) time. The final step of the verification checks that all the sets of the query are
subsetsof the union. The client constructs the expressionacc(U) = g(s+y1)(s+y2)...(s+yδ) in O(δ) time (see
Lemma 4.3) and checks that the following relation holds for allj = 1, . . . , t:

e(acc(Sj),WSj) = e(acc(U), g) . (8)

If the verification algorithm succeeds, then the reported unionU is correct, otherwise theq-strong Diffie-
Hellman is violated (proof in the Appendix).

1
WSj = g

Q

x∈U−Sj
(s+x)

.

12

Theorem 4.6 (Security for union) LetU be theclaimedunion of sets that have indices1, 2 . . . , t, computed
by the server. The server computes accumulation valuesacc(Sj), accumulation tree proofsproof(acc(Sj)),
witnessesWj for all j ∈ U and subset witnessesWSj for j = 1, . . . , t. If the verification algorithm
succeeds andU is not the union of setsS1, S2, . . . , St, then the server can break theq-strong Diffie-Hellman
assumption (see Definition 2.2).

Lemma 4.7 The server executes a union query fort sets in timeO(t+ δ+N log2N) whereδ is the size of
the union andN is sum of the sizes of the sets involved in the union. Also, the proof has sizeO(t + δ) and
the verification time at the client isO(t+ δ).

We note that with our technique, no duplicate elements are processed at the client’s side (which do not
contribute to the computation of the union anyways) and the client avoids running the union algorithm
locally.

Subset query. Suppose the client asks query “IsSi ⊆ Sj?” LetN = |Si|+ |Sj |. The proof for a positive
answer is easy to construct inO(N) time as described in Section 2. The size of the proof isO(1) (two group
elements) and the verification can be achieved inO(1) time (one bilinear-map application).

For the proof of a negative answer, suppose there is an elementy such asSi = y∪Si2, wherey /∈ Sj and
y ∈ Si. It suffices for the server to provide amembershipproof for y ∈ Si (constructed inO(n) time) and
a non-membershipproof for y /∈ Sj (constructed inO(N log2N) time by running the extended Euclidean
algorithm for two polynomials, where the divisor is of degree one). Thus,we have the following result.

Lemma 4.8 The server executes a subset query inO(N log2N) time. Also, the proof has sizeO(1) and the
verification time at the client isO(1).

Difference query. The difference query is defined by two indicesi andj and the answer is setD = Si−Sj .
The server constructs setA so thatSi = D ∪ A andD ∩ Sj = Ø, and then authenticates these union and
intersection operations.

4.3 Summary

We can now present the main result of our work.

Theorem 4.9 Consider a collection ofm setsS1, . . . , Sm and letM =
∑m

i=1 |Si|. For a query operation,
let t be the number of involved sets,N be the sum of the sizes of the involved sets, andδ be the answer
size. There exists an authenticated sets collection data structure with the following properties: (1) it is
secure according to Definition 2.3 and based on theq-strong Diffie-Hellman assumption; (2) the client
usesO(1) space and the source and server useO(m +M) space; (3) the source update time isO(logn),
the update authentication information has sizeO(1) and the server update time isO(mǫ + log n), for a
given constant0 < ǫ < 1, wheren is the size of the set of the update; (4) for an intersection query, the
proof size isO(t + δ), the verification time isO(t + δ) and the query time isO(t + N log2N log logN);
(5) for a union query, the proof size isO(t + δ), the verification time isO(t + δ) and the query time is
O(t + δ + N log2N); (6) for a subset query, the proof size isO(1), the verification time isO(1), and the
query time isO(N log2N). (7) for a difference query, the proof size isO(δ), the verification time isO(δ),
and the query timeO(N log2N log logN).

5 Applications
In this section we describe some applications of our efficient authenticated sets collection data structure.

13

5.1 Keyword-search

First of all, we notice that our scheme could be easily used to authenticatekeyword-search queriesimple-
mented by theinverted indexdata structure [5]: Each term in the dictionary corresponds to a set in oursets
collection data structure which contains as elements all the documents that include this term. A usual text
query for termsm1 andm2 returns those documents that are included in both the sets that are represented
bym1 andm2, i.e., their intersection. By using our scheme, we can easily authenticate any such keyword-
search query with costs that are proportional to the size of the answer ofthe query and not proportional to the
amount of data that the algorithm reads in order to process the query. Moreover, the derivedauthenticated
inverted indexcan be efficiently updated as well. We continue now with an extension of the authenticated
inverted index, thetimestamped keyword-search.

5.2 Timestamped keyword-search

Apart from applications in web search engines, the inverted index is usedin other applications that employ
keyword-search as well, such asemail-search. In email-search, a dictionary is again maintained, the terms
of which are mapped into sets of email messages that contain the specific term. Therefore when we are
searching our inbox for emails containing termsm1 andm2, an inverted index query is executed. However,
it is always desirable in email search to be able to introduce a “second” dimension in searching. For example,
a query could be “give me the emails that contain termsm1 andm2 and which were received between time
t1 andt2”, wheret1 < t2. We call this procedure timestamped keyword-search.

One solution for the authentication of timestamped keyword-search would be toembed a timestamp in
the documents (e.g., each email message) and have the client do the filtering locally, after he has verified—
using our scheme—the intersection of the sets that correspond to termsm1 andm2. However, this is not
operation-sensitiveat all: The intersection can be a lot bigger than the set resulted after the application of
the local filtering, making this straightforward solution inefficient.

We now describe an algorithmic construction to solve this problem. Lett1, t2, . . . , tr be the discrete
timestamps that we are interested in (ti can be viewed as a certain day of the month). We define a new sets
collection data structure as follows: Imaginet1, t2, . . . , tr are the leaves of a binary tree. We build asegment
tree[34] on top of these timestamps as follows: Each leaf storing timestampti contains the documents (e.g.,
email messages) that were received at timeti. Moreover, the internal nodes of the binary tree contain the
documents that correspond to the union (note that this union does not haveany common elements) of the
documents contained in the children’s nodes, recursively defining in this way sets of documents for all
the nodes of the tree. Therefore we end up with a new sets collection data structure that is built on top
of these2r − 1 sets (one set per internal tree node of the tree), namely the setsT1, T2, . . . , T2r−1. The
timestamped keyword-search is therefore authenticated by two sets collectiondata structures, one built on
the text terms, namely the setsS1, S2, . . . , Sm, and one built on top of the sets of the timestamps, namely
the setsT1, T2, . . . , T2r−1. Define now the extension of two timestampsext(t1, t2) to be theset of setsTi

that “cover” the intreval[t1, t2], i.e., namely the set that contains sets the union of which equals the set of
all timestamps in[t1, t2]. One can easily see that for every1 ≤ t1 ≤ t2 ≤ r, ext(t1, t2) is well-defined, and,
moreover, that|ext(t1, t2)| = O(log r).

Suppose now we want to verify the documents that contain termsm1 andm2 and which were received
betweent1 andt2. All we have to do is to verify the intersection of the following sets: (a) the union of sets
in ext(t1, t2), (b) S1 (set that refers to termm1) and, (c)S2 (set that refers to termm2). Let T1, T2, . . . , Tℓ

be the disjoint sets that are contained inext(t1, t2), whereℓ = O(log r). The answer to the query is the set
(S1∩S2)∩(T1∪T2∪. . .∪Tℓ) which can be written as(S1∩S2∩T1)∪(S1∩S2∩T2)∪. . .∪(S1∩S2∩Tℓ). Since
Ti are disjoint, each term of the union contributes at least one new term to the answer, and therefore we can
authenticate this query in a nearlyoperation-sensitiveway by authenticatinglog r intersections separately
(note there is an extraO(log r) multiplicative factor in the complexities of Theorem 5.1). Therefore we have

14

the following result:

Theorem 5.1 Consider a collection ofm term setsSi for i = 1, . . . ,m, 2r−1 timestamp setsT1, . . . , T2r−1

and letM =
∑m

i=1 |Si|. For a query operation in a time interval[t1, t2], let t be the number of involved
sets,N be the sum of the sizes of the involved sets, andδ be the answer size. There exists an authenticated
timestamped keyword-search data structure with the following properties: (1) it is secure according to
Definition 2.3 and based on theq-strong Diffie-Hellman assumption; (2) the client usesO(1) space and the
source and server useO(m+M+r) space; (3) the source update time isO(logn), the update authentication
information has sizeO(1) and the server update time isO((m+ r)ǫ + log n), for a given constant0 < ǫ <
1, wheren is the size of the set of the update; (4) for an intersection query in[t1, t2], the proof size is
O(t log r+ δ), the verification time isO(t log r+ δ) and the query time isO(t+N log r log2N log logN).

Note that in the above theorem we do not have a result concerning the authentication of union with times-
tamps. This is due to the following: Using the same notation as we did for the intersection, the answer to
the union query, would be the set(S1 ∪ S2)∩ (T1 ∪ T2 ∪ . . .∪ Tℓ). The nature of the answer does not allow
for any further algebraic processing and therefore in order to authenticate the whole expression, one needs
to authenticate the two unions separately. This leads to a solution that is not operation-sensitive, therefore
the operation-sensitive authentication of this type of queries cannot be achieved with our method—at least
in a way similar to the techniques we have used so far—. The same applies for the difference queries.

5.3 Equi-join queries

Finally, we show how our technique can be used in efficient authentication of database queries, such as
equi-join. Let R1(α, r11, . . . , r1w), . . . , Rm(α, rm1, . . . , rmw) bem relational tables, that have up ton
tuples each, and which share a common attributeα. We now want to compute the equi-join query on the
common attributeα on any subset oft of them. This is basically an intersection that can be authenticated by
building our scheme on top of the attributesα, for all relationsR1, R2, . . . , Rm.

To handle duplicate values for the attributeα, we build our authentication scheme on top of distinctα
values for all the relationsRi, i = 1, . . . ,m andS we keep a separate structure that mapsα to all the related
records, for all relationsRi, i = 1, . . . ,m. This authenticated structure can be a bilinear-map accumulated
value that adds (i.e., the respective witness) only contant overhead perrelation (1024 bits in practice) to the
proof size, for each element that appears in the equi-join answer. We note that the authentication of these
type of queries have also been studied in [39] (see Section 6). Therefore we have the following theorem:

Theorem 5.2 Consider a collection ofm relational tablesRi for i = 1, . . . ,m and letM =
∑m

i=1 |Ri|. For
an equi-join query, lett be the number of involved relational tables,N be the sum of the sizes of the involved
relational tables, andδ be the answer size. There exists an authenticated data structure for equi-join queries
with the following properties: (1) it is secure according to Definition 2.3 and based on theq-strong Diffie-
Hellman assumption; (2) the client usesO(1) space and the source and server useO(m+M) space; (3) the
source update time isO(logn), the update authentication information has sizeO(1) and the server update
time isO(mǫ + log n), for a given constant0 < ǫ < 1, wheren is the size of the set of the update; (4)
for an equi-join query, the proof size isO(t + δ), the verification time isO(t + δ) and the query time is
O(t+N log2N log logN).

5.4 Systems deployment

Here we describe how our method for timestamped keyword-search can bedeployed in a real system to
provide efficient integrity checking mechanisms. Our method can be used to provide secure searches in
our email inbox, e.g.,Gmail searches. The presented algorithms and authenticated data structures can be
implemented as an extra “plug-in” service in the browser that loads every time our Gmail inbox is open.

15

This service runs at an untrusted server (which we callauthentication server) following the same model that
was used in the authentication of Amazon S3 data objects [20].

Suppose now we do a search in our inbox for the emails containing the word “New York” and that
were received between March 7th and April 5th. Normally, and without using any authentication service,
this query would be sent only to theGmail server and return some email messages, by running an inverted
index query. The results however would not provide any guarantee ofcorrectness. However, with the use of
our systems, the query is also sent to theauthentication serverthat stores our authenticated data structures
(accumulation tree and segment tree) and runs the presented algorithms. The authentication server will
assemble a proof of size proportional to theanswerof our query and send this proof to the client, along with
the actual answer. By verifying this proof, the client will be able to verify that the emails that he is receiving
as a result of his search are the corect ones, i.e., (a) no email has beenommitted from the answer, (b) no
email has been wrongly included in the answer and (c) their content has not been tampered with. Notice
that main novelty of our system lies in the fact that all this process can be achieved efficiently, in a way that
communication and verification costs are not more than the size of the answer toour query.

6 Analysis
In this section we analyze the costs needed by our solution and compare with experimental results from
other works. For bilinear maps and generic-group operations in the bilinear-map accumulator, we used the
PBC library [1], a library for pairing-based cryptography, interfaced with C.

6.1 System setup

We choose our system parameters as follows. First of all, type A pairings are used, as described in [23].
These pairings are constructed on the curvey2 = x3 + x over the base fieldFq, whereq is a prime number.
The multiplicative cyclic groupG we are using is a subgroup of points inE(Fq), namely a subset of those
points ofFq that belong to the elliptic curveE. Therefore this pairing is symmetric. The order ofE(Fq) is
q + 1 and the order of the groupG is some prime factorp of q + 1. The group of the output of the bilinear
mapGM is a subgroup ofFq2 .

In order to instantiate type A pairings in the PBC library, we have to choose thesize of the primesq
andp. The main constraint in choosing the bit-sizes ofq andp is that we want to make sure that discrete
logarithm is difficult inG (that has orderp) and inFq2 . Typical values are 160 bits forp and 512 bits forq.
We use the typical value for the size ofq, i.e., 512 bits. Note that with this choice of parameters the size of
the elements inG (which have the form(x, y), i.e., points on the elliptic curve) is 1024 bits. Finally, let’s
assume that the accumulation tree that is built on top of the set digests, has two levels, i.e.,ǫ = 0.5 which
makes the update time in Lemma 3.2O(

√
m) and that we are using RSA signatures to sign the digest that

are 1024 bits long.

6.2 Communication cost

Here we analyze the communication cost that our scheme has for an intersection of two sets. Let’s assume
that the size of the reported intersection isδ. Then as we saw in Section 4, the proof (apart from the answer
itself), consists of the following values: (a) Two subset witnesses, two body witnesses, two accumulation
values (each one of the accumulation values comes with two group elements thatserve as a proof for it).
Therefore the size of all these elements, which are all elements of groupG, is not dependent on the size of
the intersection and is equal to2 × (1024 + 1024 + 1024 + 4 × 1024)/8 = 14336/8 = 1792 bytes; (b)
The valuesgsi ∈ G (along with signatures on them) andbi ∈ Zp (the coefficients of the intersection), for
i = 1, . . . , δ. These have sizeδ(2× 1024+160)/8 = 276δ bytes; (c) Finally, the digest of the structure and

16

a signature on it are sent, which add another2048/8 = 256 bytes. Therefore the total communication cost
is a linear function ofδ, i.e., the function2048 + 276δ (in bytes).

We now compare the communication cost of our scheme with the analysis made in [27]. In Table 2
we compare with the results presented in Table IV of [27] where various set sizesn1 andn2 are used and
the size of the intersectionδ is always0.01n2. Note that in most cases (especially for big sets sizes), our
communication cost is a lot less than the one reported in [27]. More importantly, itis not dependent on the
size of the sets participating in the intersection. In cases that our cost is worse, it is due to the big constants
enforced by the use of bilinear pairings and accumulators.

Table 2: Comparison of a 2-intersection authentication overhead (proof size) of the scheme presented in [27]
with our scheme. Heren1 andn2 are the sets sizes that are intersected andδ is the size of the intersection.

n1 n2 δ KB [27] KB (this work)

1000 1000 10 3.34 4.69
1000 100 1 1.68 2.26
1000 10 0 1.01 2.02
1000 1 0 0.46 2.02

10000 10000 100 26.88 28.95
10000 1000 10 12.15 4.69
10000 100 1 6.86 2.26
10000 10 0 3.08 2.26

100000 100000 1000 263.25 271.53
100000 10000 100 116.13 28.95
100000 1000 10 63.18 4.69
100000 100 1 26.69 2.26

Table 3: Comparison of an equi-join authentication overhead (proof size) of the scheme presented in [27]
with our scheme. Tuple size is in bytes.

tuple size 32 64 128 256 512

MB [39] 15 18.33 30 43.33 66.66
MB (this work) 16.67 17.62 19.51 23.29 30.86

Finally, we compare our solution, in terms of communication cost, with the cost required for authen-
ticating equi-joins with the most efficient algorithm presented in [39], i.e., algorithm AIM (see Table 3).
In Figure 17 of [39] two relationsR andS are equi-joined and the size of the verification object (VO) is
displayed, for multiple tuple sizes (a tuple is a row in the relations)tup = 32, 64, 128, 256, 512 bytes. For
this experiment, the size of the answer is31 × 103 tuples and therefore if we use our scheme the cost is
2048+276δ+ δtup+2δ× 128 bytes, forδ = 31× 103 (see Section 5). Note that, especially for large tuple
sizes, there are considerable savings with our scheme.

6.3 Verification cost

Let exp, mult, add be the times needed to perform an exponentiation, a multiplication and an addition
respectively, all modulop. Let alsoEXP, MULT, ADD be the respective times in groupG andEXP,
MULT , ADD be the respective times in the target group of the bilinear mapGM . Finally let MAP be
the time needed to perform the operatione(., .) andsig be the time to verify a 1024-bit RSA signature. We

17

benchmarked all these operations using the PBC library [1] (versionpbc− 0.5.7), on a 64-bit, 2.8GHz Intel
based, dual-core, dual-processor machine with 4GB main memory, runningDebian Linux, and derived the
following times, i.e.,MAP = 5ms,MULT = 0.005ms,exp = 0.02, add = 0.002ms,mult = 0.002ms
andsig = 2.7ms.

We analyze now the verification cost of a 2-intersection, required by ourscheme. LetSi andSj be the
sets of the intersection. The client, as soon as he receives the proof hasto perform the following tasks: (a)
First the client verifiesacc(Si) andacc(Sj), which requires two bilinear-map computations for each value,
therefore takes time4MAP, and one signature verification of the final digest, taking timesig; (b) Then he
has to run the experiment of Lemma 4.3. The time needed for this part isδ(2mult + 2add + exp + sig) (the
signature cost comes from the fact that the client has to verify signatureson gsi

for i = 1, . . . , δ); (c) Then
he checks thesubset conditionwhich takes time4MAP; (d) Finally he checks thecompleteness condition
that takes times2MAP +MULT . Therefore we see that the total cost for verification of a 2-intersectionof
sizeδ is

10MAP + (δ + 1)sig + δ(2mult + 2add + exp) +MULT ,
which is a linear function inδ, namely the function52.7 + 2.728δ (in ms).

18

References
[1] PBC: The pairing-based cryptography library.http://crypto.stanford.edu/pbc/.

[2] B. Applebaum, Y. Ishai, and E. Kushilevitz. From secrecy to soundness: Efficient verification via
secure computation. InICALP (1), pages 152–163, 2010.

[3] M. J. Atallah, Y. Cho, and A. Kundu. Efficient data authentication in anenvironment of untrusted
third-party distributors. InProceedings of International Conference on Data Engineering (ICDE),
2008.

[4] M. H. Au, P. P. Tsang, W. Susilo, and Y. Mu. Dynamic universal accumulators for DDH groups and
their application to attribute-based anonymous credential systems. InProc. Cryptographers’ Track at
the RSA Conference (CT-RSA), pages 295–308. Springer, 2009.

[5] R. Baeza-Yates and B. Ribeiro-Neto.Modern Information Retrieval. Addison-Wesley Publishing
Company, Reading, Mass., 1999.

[6] M. Blum, W. S. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the correctness of memories.
Algorithmica, 12(2/3):225–244, 1994.

[7] D. Boneh and X. Boyen. Short signatures without random oraclesand the SDH assumption in bilinear
groups.J. Cryptology, 21(2):149–177, 2008.

[8] B. Carminati, E. Ferrari, and E. Bertino. Securing XML data in third-party distribution systems. In
Proc. ACM Int. Conf. on Information and Knowledge Management, CIKM, pages 99–106, 2005.

[9] K.-M. Chung, Y. Kalai, and S. Vadhan. Improved delegation of computation using fully homomorphic
encryption, 2010.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.Introduction to Algorithms. MIT Press,
Cambridge, MA, 2nd edition, 2001.

[11] I. Damg̊ard and N. Triandopoulos. Supporting non-membership proofs with bilinear-map accumula-
tors. Cryptology ePrint Archive, Report 2008/538, 2008.http://eprint.iacr.org/.

[12] P. Devanbu, M. Gertz, C. Martel, and S. G. Stubblebine. Authentic third-party data publication. In
Fourteenth IFIP 11.3 Conference on Database Security, 2000.

[13] J. V. Z. Gathen and J. Gerhard.Modern Computer Algebra. Cambridge University Press, New York,
NY, USA, 2003.

[14] R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Outsourcing computation
to untrusted workers. InCRYPTO, 2010.

[15] M. T. Goodrich, R. Tamassia, and J. Hasic. An efficient dynamic and distributed cryptographic accu-
mulator. InProc. of Information Security Conference (ISC), volume 2433 ofLNCS, pages 372–388.
Springer-Verlag, 2002.

[16] M. T. Goodrich, R. Tamassia, and A. Schwerin. Implementation of an authenticated dictionary with
skip lists and commutative hashing. InProc. DARPA Information Survivability Conference and Expo-
sition II (DISCEX II), pages 68–82, 2001.

19

[17] M. T. Goodrich, R. Tamassia, and N. Triandopoulos. Super-efficient verification of dynamic outsourced
databases. InProc. RSA Conference, Cryptographers’ Track (CT-RSA), volume 4964 ofLNCS, pages
407–424. Springer, 2008.

[18] M. T. Goodrich, R. Tamassia, and N. Triandopoulos. Efficient authenticated data structures for graph
connectivity and geometric search problems.Algorithmica, 2009. To appear.

[19] B. Hayes. Cloud computing.Commun. ACM, 51(7):9–11, 2008.

[20] A. Heitzmann, B. Palazzi, C. Papamanthou, and R. Tamassia. Efficient integrity checking of untrusted
network storage. InProc. ACM CCS Int. Workshop on Storage Security and Survivability (STOR-
AGESS), pages 43–54, 2008.

[21] D. Kratsch, R. M. McConnell, K. Mehlhorn, and J. P. Spinrad. Certifying algorithms for recognizing
interval graphs and permutation graphs. InProc. Symp. on Discrete Algorithms, pages 158–167. SIAM,
2003.

[22] J. Li, N. Li, and R. Xue. Universal accumulators with efficient nonmembership proofs. InACNS, pages
253–269, 2007.

[23] B. Lynn. On the implementation of pairing-based cryptosystems. PhD thesis, Stanford University,
November 2008.

[24] K. M. Man Lung Yiu, Yimin Lin. Efficient verification of shortest path search via authenticated hints.
In ICDE, page to appear, 2010.

[25] C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong, and S. G. Stubblebine. A general model for
authenticated data structures.Algorithmica, 39(1):21–41, 2004.

[26] R. C. Merkle. A certified digital signature. In G. Brassard, editor,Proc. CRYPTO ’89, volume 435 of
LNCS, pages 218–238. Springer-Verlag, 1989.

[27] R. Morselli, S. Bhattacharjee, J. Katz, and P. J. Keleher. Trust-preserving set operations. InINFOCOM,
2004.

[28] M. Naor and K. Nissim. Certificate revocation and certificate update. In Proc. 7th USENIX Security
Symposium, pages 217–228, Berkeley, 1998.

[29] L. Nguyen. Accumulators from bilinear pairings and applications. InProc. CT-RSA, LNCS 3376, pp.
275-292, Springer., 2005.

[30] B. Palazzi, M. Pizzonia, and S. Pucacco. Query racing: Fast completeness certification of query
results. InProc. Working Conf. on Data and Applications Security and Privacy (DBSEC), volume
6166 ofLNCS, pages 177–192. Springer, 2010.

[31] H. Pang and K.-L. Tan. Authenticating query results in edge computing. In Proc. of the 20th Int.
Conference on Data Engineering, pages 560–571, 2004.

[32] C. Papamanthou, R. Tamassia, and N. Triandopoulos. Authenticatedhash tables. InProc. ACM
Conference on Computer and Communications Security (CCS), pages 437–448. ACM, October 2008.

[33] C. Papamanthou, R. Tamassia, and N. Triandopoulos. Cryptographic accumulators for authenticated
hash tables. Cryptology ePrint Archive, Report 2009/625, 2009.http://eprint.iacr.org/.

20

[34] F. P. Preparata and M. I. Shamos.Computational Geometry: An Introduction. Springer-Verlag, New
York, NY, 1985.

[35] P. Raghavan. Information retrieval algorithms: A survey. InProc. 18th ACM-SIAM Sympos. Discrete
Algorithms, pages 11–18, Jan. 1997.

[36] G. F. Sullivan, G. M. Masson, and D. Wilson. Certification trails for data structures. In21st Int. Symp.
on Fault-Tolerant Computing (FTCS-21), pages 240–247, Montreal, Canada, 1991.

[37] R. Tamassia. Authenticated data structures. InProc. European Symp. on Algorithms, volume 2832 of
LNCS, pages 2–5. Springer-Verlag, 2003.

[38] R. Tamassia and N. Triandopoulos. Certification and authentication ofdata structures. InProc. Alberto
Mendelzon Workshop on Foundations of Data Management, 2010.

[39] Y. Yang, D. Papadias, S. Papadopoulos, and P. Kalnis. Authenticated join processing in outsourced
databases. InSIGMOD Conference, pages 5–18, 2009.

21

Appendix
Proof of Lemma 2.1. SupposeAdv finds such a setY and such aWY = {y1, y2, . . . , yℓ}. Let X =
{x1, x2, . . . , xn} andyj /∈ X for some1 ≤ j ≤ ℓ. That means that

e(WY , g)
Q

y∈Y (y+s) = e(g, g)(x1+s)(x2+s)...(xn+s) .

Note that(yj + s) does not divide(x1 + s)(x2 + s) . . . (xn + s). Therefore there exist polynomialQ(s) of
degreen− 1 and constantλ, such that(x1 + s)(x2 + s) . . . (xn + s) = Q(s)(yj + s) + λ. Thus we have

e(WY , g)
(yj+s)

Q

1≤i6=j≤ℓ(yi+s) = e(g, g)Q(s)(yj+s)+λ ⇒

e(g, g)
1

yj+s =
[

e(WY , g)
Q

1≤i6=j≤ℓ(yi+s)e(g, g)−Q(s)
]λ−1

.

This means that the adversary can break theq-strong Diffie-Hellmann assumption for the target groupGM .

Proof of Lemma 4.2. (⇒) This direction follows by the fact that we can use the extended Euclidean
algorithm and find polynomialsq1(s), . . . , qt(s) such that

q1(s)P1(s) + . . .+ qt(s)Pt(s) = GCD(P1(s), P2(s), . . . , Pt(s)).

By Fact 4.1,GCD(P1(s), P2(s), . . . , Pt(s)) = 1. That completes the proof of the direct. (⇐) For the inverse,
suppose there exist polynomialsq1(s), q2(s), . . . , qt(s) that satisfy the following relationq1(s)P1(s) +
q2(s)P2(s) + . . . + qt(s)Pt(s) = 1 and I is not the intersection. That means that that the polynomials
P1(s), P2(s), . . . , Pt(s) share at least one common factor, e.g.,(s + r). Therefore there exists some poly-
nomialA(s) such that(s + r)A(s) = 1, i.e., the polynomials(s + r)A(s) and 1 areequal, which is a
contradiction (note that we want the polynomials to be equal for everys ∈ Zp).

In order to compute these coefficients, we use the extended Euclidean algorithm recursively, based on the
fact that the greatest common divisorGCD(P1(s), . . . , Pt(s)) equalsGCD(P1(s),GCD(P2(s), . . . , Pt(s))).
To compute the greatest common divisor of twoO(n)-degree polynomials, we can use the algorithm de-
scribed in [13] that runs in time equal toO(n log2 n log logn). Since we are using this algorithmt times, the
time complexity isO(tn log2 n log logn). Morever, by the property thatx log x+y log y ≤ (x+y) log(x+
y) and since the size of the sets participating in the intersection isN this equalsO(t+N log2N log logN),
since we also have to read thet polynomials. This algorithm also outputs the required coefficients. If we
arrange our data (i.e.,t polynomials) on a binary tree, after all the coefficients of the internal nodes have
been computed, the final coefficients for all elements at the leaves can be computed inO(t) multiplications
(we can avoid theO(t log t) cost) ofO(ni) degree polynomials, whereni are the degrees of the polynomials
of the leaves. Therefore the result holds. .

Proof of Lemma 4.3. Since it isX = {x1, x2, . . . , xδ′} 6= {y1, y2, . . . , yδ} the polynomialsbδκδ +
bδ−1κ

δ−1 + . . . + b0 and(κ + x1)(κ + x2) . . . (κ + xδ′) are not equal for everyκ ∈ Zp. Therefore the
probability in question equals the probability ofκ being a root of the polynomialbδκδ + bδ−1κ

δ−1 + . . .+
b0− (κ+x1)(κ+x2) . . . (κ+xn). This polynomial has degreemax{δ, δ′}. Sinceδ, δ′ = O(n) = poly(k),
this polynomial haspoly(k) roots. Thus the probability ispoly(k)/2k = negl(k).

Proof of Theorem 4.4. Suppose all the verification tests have succeeded. That means that before the
verification of the last test (Equation 7) the valuesWI,j are indeed thesubset witnessesfor the setI (unless
theq-strong Diffie-Hellman assumption has been broken—see Lemma 2.1 for the subset condition and [33]
for the verification of the accumulation values—), i.e.,

WI,j = g
Q

x∈Sj :x/∈I
(x+s)

= gPj(s) , (9)

22

for all j = 1, . . . , t. Suppose now setI is not thecompleteintersection and Equation 7 has been satisfied.
This means that the polynomialsP1(s), P2(s), . . . , Pt(s) have at least one common factor, say(s + r).
Therefore it holdsPj(s) = (s+ r)Qj(s) for some polynomialsQj(s)—computable in polynomial time—,
for all j = 1, . . . , t. Therefore, since Equation 7 is satisfied

e(g, g) =
t

∏

j=1

e (WI,j ,FI,j) =
t

∏

j=1

e
(

gPj(s),FI,j

)

=
t

∏

j=1

e
(

g(s+r)Qj(s),FI,j

)

=
t

∏

j=1

e
(

gQj(s),FI,j

)(s+r)

=





t
∏

j=1

e
(

gQj(s),FI,j

)





(s+r)

⇔ e(g, g)
1

s+r =
t

∏

j=1

e
(

gQj(s),FI,j

)

.

This means that the server can break theq-strong Diffie-Hellmann assumption in polynomial time for the
target groupGM of the bilinear-map. That completes the proof.

Proof of Theorem 4.6. Suppose all the verification tests have succeeded. That means that before the
verification of the last test (Equation 8) all the valuesyi ∈ U belong to someSi (unless theq-strong
Diffie-Hellman assumption has been broken). Therefore the reported union cannot contain extra elements.
However, the reported union can contain less elements. Suppose not all the elements are reported inU and
thereforeU is not the correct union. Then there should be anSj that contains anr such thatr /∈ U. Therefore
we can findP (s),Q(s) andα such that (and since Equation 8 verifies)

e(acc(Sj),WSj) = e(acc(U), g)⇔
e(g,WSj)

(s+r)P (s) = e(g, g)(s+r)Q(s)+α ⇔
e(g,WSj)

(s+r)P (s) = e(g, g)(s+r)Q(s)e(g, g)α ⇔
e(g, g)

1
s+r = e(g,WSj)

P (s)/αe(g, g)−Q(s)/α .

Therefore the server can break theq-strong Diffie-Hellmann assumption in polynomial time for the target
groupGM of the bilinear-map. That completes the proof.

23

