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SUMMARY: In this paper we propose two KAP(key 

agreement protocols) using multivariate equations. As 

the enciphering functions we select the multivariate 

functions of high degree on non-commutative ring H 

over finite field Fq. Two enciphering functions are 

slightly different from the enciphering function 

previously proposed by the present author. In proposed  

systems we can adopt not only the quaternion ring but 

also the non-associative octonion ring as the basic ring. 

Common keys are generated by using the enciphering 

functions. Proposed systems are immune from the 

Gröbner bases attacks because obtaining parameters of 

the enciphering functions to be secret keys arrives at 

solving the multivariate algebraic equations, that is, one 

of NP complete problems .Our protocols are also thought 

to be immune from the differential attacks because of the 

equations of high degree. 

We can construct our system on the some non-

commutative rings, for example quaternion ring, matrix 

ring or octonion ring. 
. 
key words: key agreement protocol, multivariate 

equations, Gröbner bases, NP complete problems, non-

commutative ring 
 

1. Introduction 

In this paper we propose two KAP(key agreement 

protocols) using multivariate equations which have 

slightly different enciphering functions from the 

enciphering function of previously proposed KAP by the 

present auther[10]. 

 Since Diffie and Hellman proposed the concept of 

KAP and the public key cryptosystem (PKC) in 1976[1], 

various KAP and PKC were proposed.  

  Typical examples of KAP are almost based on the 

discrete logarithm problem over finite fields. Typical 

examples of PKC are classified as follows. 

1)  RSA cryptosystem[2] based on factoring problem ,    

2) ElGamal cryptosystem[3] based on the discrete 

logarithm problem over finite fields , 

3) the elliptic curve cryptosystem[4] based on the 

discrete logarithm problem on the elliptic curve[5],[6],  

4)  multivariate public key cryptosystem (MPKC)[7], 

and so on.  

   It is said that the problem of factoring large integers, 

the problem of solving discrete logarithms and the 

problem of computing elliptic curve discrete logarithms 

are efficiently solved in a polynomial time by the 

quantum computers. 

It is thought that MPKC is immune from the attack of 

quantum computers. But MPKC proposed until now 

almost adopts multivariate quadratic equations because 

of avoiding the explosion of key length. 

In the current paper, we propose two KAP using 

multivariate equations on non-commutative ring H over 

finite fields Fq without the explosion of key length. We 

choose the quaternion[8] ring as the non-commutative 

ring. The security of these systems is based on the 

computational difficulty to solve the multivariate 

algebraic equations of high degree. 

 To break these cryptosystems it is thought that we  

probably need to solve the multivariate algebraic 

equations of high degree that is equal to solving the NP 

complete problem. Then it is thought that our systems 

are immune from the attacks by quantum computers.  

  In the next section, we define multiplication on 

quaternion ring over Fq. 

In section3 we begin with generating the first 

multivariate function of high degree on the quaternion 

ring as the enciphering function. We construct the KAP 

by the first enciphering function. 

In section4 we generate the second multivariate 

function of high degree on the quaternion ring. This 

multivariate function is slightly different from one in 

section 3. We construct second KAP using the second 

enciphering function by the same way in section3. 

In these systems we can adopt not only the quaternion 

ring but also the non-associative octonion ring as the 

basic ring. In the last section, we provide concluding 

remarks.  

 

2. The multiplication on quaternion ring 

Let q be an odd prime. Let H be the quaternion ring 

over the finite field Fq as follows; 

 

H={(a0,a1,a2,a3)| ai∈Fq (i=0,1,2,3)}.             (1) 

 

In case of selecting the quaternion ring or octonion 

ring as the non-commutative ring, the modulus q needs 

to be more than 2 to keep non-commutative. 

Here we define the product AB of A=(a0,a1,a2,a3) and 

B=(b0,b1,b2,b3) on quaternion ring H over Fq  such that  
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where   A,B ∈H . 

 

3. Proposition of the first KAP   

3.1 The first enciphering function F(X1,..,Xd) 

Let m and d be positive integers .  

Let S1 be system parameters such that  

S1=[q,d,m]   .                             (3) 

As secret keys SK1 ,we choose arbitrary parameters  

Aij∈H (i=1,..,m;j=1,..,d),that is, 

SK1=[Aij](i=1,..,m;j=1,..,d).                   (4) 

We define the multivariate function F(X1,..,Xd) of high 

degree as the enciphering function such that  
                                            
 

(5) 
 

We determine the values of m and d later so that the 
number of variables(i.e secret keys) is nearly equal to the 
number of equations . 

Although we adopt the quaternion ring as the basic 

ring H, we can discuss in the same way on the matrix 

ring or the octonion[8] ring. 

3.2  The element expression of F(X1,..,Xd) 

Let (f0,f1,f2,f3) be the element expression of F(X1,..,Xd ) . 

From (5), fj (j=0,..,3) is given as follows;  

 

  F(X1,..,Xd)=(f0,f1,f2,f3),                       (6) 

 

(7) 

 

with the coefficients fje10..ed3 ∊Fq to be published , where  

 

 

 

 

eij ∈{0,1}(i=1,..,d;j=0,..,3) which satisfy ei0+..+ei3 =1 

(i=1,..,d). 

Then the number n of fje10..ed3  is  

 

 n=4( 4
d
)=4

d+1
.                             (8) 

  

Let { fje10..ed3 } be the set that includes all fje10..ed3 . 

3.3 Construction of the first KAP 

Let's describe the procedure that user U and user V 

obtain the common keys by using F(X1,..,Xd) and 

T(X1,..,Xd) as follows. 

1) The set of system parameters S1=[q,d,m] is published 

by the system center which is trusted third party(TTP).  

                      

2) User U chooses randomly parameters Aij ∈ H 

(i=1,..,m;j=1,..,d). 

   The secret key of user U is  

 

SK1=[Aij] (i=1,..,m;j=1,..,d). 

                 

3) User U generates F(X1,..,Xd)  such that 

 

                                          (9) 

 

4)  User U calculates the set of coefficients {fje10..ed3 } 

from (9) which consists of n parameters in Fq . 

5) Let PK1 be the public key of user U such that 

 

    PK1={ fje10..ed3 }.                      (10) 

 

Beforehand user U publishes PK1 which consists of n 

parameters in Fq. 

6) User V chooses randomly parameters Bij ∈H 

(i=1,..,m;j=1,..,d). 

7)  User V generates T(X1,..,Xd) such that 

                                          

(11) 

 

8) Let (t0,t1,t2,t3) be the element expression of T(X1,..,Xd). 

From (11) user V calculates the set of coefficients 

{tje10..ed3} which consists of n parameters in Fq . 

 tj (j=0,..,3) is given such that  

   

T (X1,..,Xd )=(t0,t1,t2,t3),                      (12) 

where 

 

(13) 

 

 

with the coefficients tje10..ed3 ∊Fq , where  

eij ∈{0,1} which satisfy  

 

ei0+..+ei3 =1. (i=1,..,d). 

 

Then the number n’ of tje10..ed3  is n’=4( 4
d
)=4

d+1
.   

 Let { tje10..ed3 } be the set that includes all tje10..ed3 . 

9) User V sends { tje10..ed3 } to user U . 

10) User V calculates common keys Kv0 and Kv1 as 

follows. 

Let Kv0 be  

 

Kv0=(Kv00,Kv01,Kv02,Kv03) 

 

 

 

                                        (14) 
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Then Kv0j(j=0,1,2,3) are obtained from (7) such that 

 

 

 

 

(15) 

 

where 

 

(vij0,vij1,vij2,vij3)=Bij,(i=1,..,m;j=1,..,d), 

 

eij∈{0,1}(i=1,..,d;j=0,..,3) which satisfy 

 

 ei0+…+ei3=1 (i=1,..,d). 

 

Next let Kv1 be  

 

Kv1=(Kv10,Kv11,Kv12,Kv13) 

 

                                         (16) 

 

                                         

 

 

(17) 

 

Then Kv1j(j=0,1,2,3) are obtained from (7) and (16) 

such that 

 

 

(18) 

 

 

with the coefficients f ’ je10..ed3 ∊Fq, 

where 

 

(vij0,vij1,vij2,vij3)=Bij,(i=1,..,m;j=1,..,d). 

 

eij∈{0,1}(i=1,..,d;j=0,..,3) which satisfy 

 

 ei0+…+ei3=1 (i=1,..,d). 

 

11)  User U calculates common keys Ku0 and Ku1 as 

follows. 

Let Ku0 be  

Ku0=(Ku00,Ku01,Ku02,Ku03) 

 

                                        (19) 

 

                                        

 

 

 (20) 

 

 

Ku0j(j=0,1,2,3) are obtained from (13) and (19) such 

that 

 

 

(21) 

 

 

with the coefficients t’je10..ed3 ∊Fq, 

where 

(uij0,uij1,uij2,uij3)=Aij ,(i=1,..,m;j=1,..,d), 

 

eij∈{0,1}(i=1,..,d;j=0,..,3) which satisfy 

 

 ei0+…+ei3=1 (i=1,..,d). 

 

Next let Ku1 be  

 

Ku1=(Ku10,Ku11,Ku12,Ku13) 

 

 

 

                                         

(22) 

 

Ku1j(j=0,1,2,3) are obtained from (13) such that 

 

 

 

 

 

(23) 

where 

 

(uij0,uij1,uij2,uij3)=Aij ,(i=1,..,m;j=1,..,d), 

 

eij∈{0,1}(i=1,..,d;j=0,..,3) which satisfy 

 

 ei0+…+ei3=1 (i=1,..,d). 

 

From (14) ,(20)and (17),(22) we can confirm that 

 

Ku0=Kv0,                                 (24) 

and 

Ku1=kv1.                                  (25)                                   

 

 The common key of user U and user V is [Ku0,Ku1] or 

[Kv0,Kv1]. 

3.4 Verification of the strength of the first KAP  

Let's examine the strength of the first KAP. The 

strength of the first KAP depends on the strength of the 

multivariate functions described in section 3.1  In other 

words, we mention the difficulty to obtain Aij
 (i=1,..,m; 

j=1,..,d) from the set of coefficients {fje10..ed3 } of 

F(X1,..,Xd) to be the public keys .  
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3.4.1 Multivariate algebraic equations from 

F(X1,..,Xd ) 

Let Aij be 

 

 Aij=(Aij0,Aij1,Aij2,Aij3) ∈H,(i=1,..,m:j=1,..,d).    (26) 

 

From (5) all  fje10..ed3  have the form such that 

 

                                        

                                         (27) 

 

 

 

with the coefficients hji,b10..bd3∈Fq  

where bij∈{0,1}(i=1,..,d;j=0,..,3) which satisfy 

 

 bi0+…+bi3=1 (i=1,..,d). 

 

From (27) we obtain n(=4
d+1

) multivariate algebraic 

equations over Fq where Aijr  (i=1,..,m;j=1,..,d;r=0,..3) 

are the variables i.e. unknown numbers. 

 

3.4.2 Cryptanalysis using Gröbner bases 

 

It is said that the Gröbner bases attacks is efficient 

for solving multivariate algebraic equations .We 

calculate the complexity G[9] to obtain the Gröbner 

bases for our multivariate algebraic equations on 

quaternion ring so that we confirm immunity of our KAP 

to the Gröbner bases attack . 

We describe in case of d=4 and q=O(10
10

) as samples 

of lower degree equations. 

s:degree of equations =d=4. 

n :the number of equations =4(4
d
)=1024. 

We select m so that the number of variables(i.e secret 

keys) is nearly equal to n , that is ,as d=4 , 

m=┎(4*4
d
)/(4d)┒=64, 

where ┎*┒ means the largest integer less than or the 

integer equal to *. 

z :the number of variables =4dm=1024 

dreg =s+1=5 
G=O((nGdreg)

w
)=O(2

102
 ) is more than 2

80  
which is the 

standard for safety where w=2.39. 

 So our KAP is immune from the Gröbner bases attacks 

and is immune from the differential attacks because of 

the equations of high degree in (27). 

It is thought that the polynomial-time algorithm to 

break our first KAP does not exist probably.  

 

3.5  The size of the keys of the first KAP 

We consider the size of the system parameter q . We 

choose q=O(2
10

) so that the size of the space of Ku1 and 

Ku2 is more than O(2
80

). 

In the case of d=4 , the size of PK1 and SK1 is 11kbits , 

11kbits each. 

 

4.  Proposition of the second KAP 

4.1 The second enciphering function  

Let m and d be positive integers .  

Let S2 be system parameters such that  

S2=[q,d,m]   .                            (28) 

As secret keys SK2 ,we choose arbitrary parameters 

Ai=(ai0,ai1,ai2,ai3)∈H (i=1,..,m), 

SK2=[Ai](i=1,..,m)       .                  (29) 

We define the multivariate function F(X) of high 

degree such that  
                                            
 

(30) 
 

where 
 
 
 
 
We determine the value of m later so that the number 

of variables(i.e secret keys) is nearly equal to the number 
of equations . 

Although we adopt the quaternion ring as the basic 

ring H, we can discuss in the same way on the matrix 

ring or the octonion ring. 

4.2  The element expression of F(X) 

Let (f0,f1,f2,f3) be the element expression of F(X ) . From 

(30), fj (j=0,..,3) is given as follows;  

 

  F(X)=(f0,f1,f2,f3),                          (31) 

 

(32) 

 

with the coefficients fje0e1e2e3 ∊Fq to be published , 

where  

ei(i=0,..,3) are non-negative integers which satisfy 

e0+..+e3 =d. 

Then the number n of fje0e1e2e3  is  

 

 n=4(4Hd)=4(3+dC3)                         (33) 

  

Let { fje0e1e2e3 } be the set that includes all fje0e1e2e3 . 

4.3 Construction of the second KAP 

Let's describe the procedure that user U and user V 

obtain the common keys using F(X) as follows. 

1) The set of system parameters S2=[q,d,m] is published 

by the system center which is trusted third party(TTP).  

                      

2) User U chooses randomly parameters 

Ai=(ai0,ai1,ai2,ai3)∈H (i=1,..,m). 

   The secret key of user U is  
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SK2=[Ai] (i=1,..,m). 

                

3) User U generates F(X)  such that 

 

                                         (34) 

 

4) From (34) user U calculates the set of coefficients 

{fje0e1e2e3 } which consists of n parameters in Fq . 

5) Let PK2 be the public key of user U such that 

 

    PK2={fje0e1e2e3}.                     (35) 

 

Beforehand user U publishes PK2 which consists of n 

parameters in Fq. 

6) User V chooses randomly parameters 

Bi=(bi0,bi1,bi2,bi3)∈H (i=1,..,m). 

7)  User V generates T(X) such that 

                                          

(36) 

 

8) Let (t0,t1,t2,t3) be the element expression of T(X). From 

(36) user V calculates the set of coefficients {tje0e1e2e3 } 

which consists of n parameters in Fq . 

 tj (j=0,..,3) is given such that  

   

T (X )=(t0,t1,t2,t3),                          (37) 

where 

 

(38) 

 

 

ei(i=0,..,3) are non-negative integers which satisfy 

e0+..+e3 =d. 

 

Then the number n’ of tje0e1e2e3  is n’=4(4Hd ) =4(3+dC3). 
 Let {tje0e1e2e3 } be the set that includes all tje0e1e2e3. 

9) User V sends {tje0e1e2e3} to user U . 

10) User V calculates common keys Kv as follows. 

Let Kv be  

 

Kv=(Kv0,Kv1,Kv2,Kv3) 

 

 

 

                                        (39) 

 

 

Then Kvj(j=0,1,2,3) are obtained such that 

 

 

 

 

(40) 

 

where 

ei(i=0,..,3) are non-negative integers which satisfy 

e0+..+e3 =d. 

11)  User U calculates common keys Ku as follows. 

Let Ku be  

Ku=(Ku0,Ku1,Ku2,Ku3) 

 

  

                                       

 (41) 

 

Kuj(j=0,1,2,3) are obtained such that 

 

 

 

 

(42) 

 

 

where 

ei(i=0,..,3) are non-negative integers which satisfy 

e0+..+e3 =d. 

 

From (39) and (41) we can confirm that 

 

Ku=Kv.                                   (43) 

 

The common key of user U and user V is [Ku] or [Kv]. 

4.4 Verification of the strength of the second KAP  

Let's examine the strength of the second KAP. The 

strength of the second KAP depends on the strength of 

the multivariate functions described in section 4.1.  In 

other words, we mention the difficulty to obtain Ai
 

(i=1,..,m) from the set of coefficients { fje0e1e2e3 } of F(X) 

to be the public keys .  

4.4.1 Multivariate algebraic equations from F(X ) 

Let Ai be 

 

 Ai=(ai0,ai1,ai2,ai3) ∈H,(i=1,..,m).             

 

From (30) all fje0e1e2e3 have the form such that 

                                        

 

                                         (44) 

 

 

 

with the coefficients hji,c0c1c2c3∈Fq  

where ci(i=0,..,3) are non-negative integers which 

satisfy 

 

 c0+…+c3=d. 

 

From (44) we obtain n multivariate algebraic equations 

over Fq where air  (i=1,..,m;r=0,..3) are the variables i.e. 

unknown numbers. 
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4.4.2 Cryptanalysis using Gröbner bases 

 

It is said that the Gröbner bases attacks is efficient 

for solving multivariate algebraic equations .We 

calculate the complexity G[9] to obtain the Gröbner 

bases for our multivariate algebraic equations on 

quaternion ring so that we confirm immunity of our 

second KAP to the Gröbner bases attack . 

We describe in case of d=6 and q=O(10
20

) as samples 

of lower degree equations. 

s:degree of equations =d=6. 

n :the number of equations =4(4Hd ) =4(3+dC3)=336. 

We select m so that the number of variables(i.e secret 

keys) is nearly equal to n , that is,  

m=┎ n/4┒=84, 

where ┎*┒ means the largest integer less than or the 

integer equal to *. 

z :the number of variables =4m=336 

dreg =s+1=7 
G=O((nGdreg)

w
)=O(2

110
 ) is more than 2

80  
which is the 

standard for safety where w=2.39. 

 So the second KAP is immune from the Gröbner bases 

attacks and is immune from the differential attacks 

because of the equations of high degree in (44). 

It is thought that the polynomial-time algorithm to 

break the second KAP does not exist probably.  

 

4.5 The size of the keys of the second KAP 

We consider the size of the system parameter q . We 

choose q=O(2
20

) so that the size of the space of Ku or Kv 

is more than O(2
80

). 

In the case of d=6 , the size of PK2 and SK2 is 7kbits , 

7kbits each.  

 

5. Conclusion 

We proposed two KAP using multivariate functions 

on non-commutative quaternion ring over Fq. It is a 

computationally difficult problem to obtain the secret 

keys from the public keys because the problem is one of 

NP complete problems. In order to ensure the safety, the 

size of q is to be more than 10 bits in the first KAP and 

to be more than 20 bits in the second KAP. 

We can construct two KAP on the other non-

commutative ring ,for example matrix ring or octonion 

ring. 

 

References 

 [1] W. Diffie and M. Hellman, "New Directions in Cryptography",  

IEEE Transactions on Information Theory, IT-22, 6 , pp.644-654 

(Nov.1976) 

[2] R. L. Rivest , A. Shamir , and L. Adleman, "A Method for 

Obtaining Digital Signatures and Public-Key Cryptosystems, ", Comm., 

ACM, Vol.21, No.2, pp.120-126, 1978.2.  

[3] T. E. ElGamal, "A public key Cryptosystem and a Signature 

Scheme Based on Discrete Logarithm ", Proceeding Crypto 84 

(Aug.1984).  

[4]N, Koblitz , Translated by Sakurai Kouiti , "A Course in Number 

Theory and Cryptography ", Springer-Verlag Tokyo, Inc., Tokyo, 1997. 

[5]Fujita , "EC in cryptography", NEC Technical Journal, Vol.50, 

No.11, pp.72-78, 1997.11.  

[6] IEEE P1363/D9 (Draft Version 9) Standard Specifications for 

Public Key Cryptography.1998.  

[7] Shigeo Tsujii , Kohtaro Tadaki , Masahito Gotaishi ,Ryo 

Fujita ,and Masao Kasahara ,"Proposal Integrated MPKC:PPS—STS 

Enhanced Perturbed Piece in Hand Method---," IEICE Tech. 

Rep.ISEC2009-27,SITE2009-19,ICSS2009-41(2009-07), July 2009. 

[8] John H. Conway, Derek A. Smith co-authored, translated by 

Syuuji Yamada, " On Quaternions and Octonions " Baifuukan 

Publication Center, Tokyo, .2006, pp.79-95.  

 [9] M. Bardet , J. C. Faugere, and B. Salvy, "On the complexity of 

Gröbner basis computation of semi-regular overdetermined algebraic 

equations," Proceeding of the International Conference on Polynomial 

System Solving(ICPSS2004),pp.71-75,November 2004. 

 [10] Masahiro Yagisawa, " Key Agreement Protocols Based on 

Multivariate Algebraic Equations on Quaternion Ring ",Cryptology 

ePrint Archive,Report 2010/377,(2010-07). 

 

 

 

 


