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Abstract

In this paper, two sufficient conditions for a Boolean function with optimal extended algebraic
immunity are given. It is shown that almost all the known functions possess maximum possible
algebraic immunity. The results show that about half of them do not possess optimal extended
algebraic immunity.
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1 Introduction

Recently, algebraic attacks have received lots of attention in the cryptographic literature. It is
known that Boolean functions should have good cryptographic properties to resist the new attacks.
Until now, there are several constructions of boolean functions with optimal algebraic immunity
(AI) (for example, see [1], [2], [4], [5], [8], [9], [10], [12]). In [14], Xian-Mo Zhang et al. extended the
concept of algebraic immunity. They argued that a function f may be replaced by another Boolean
function f c, called the algebraic complement of f , and defined extended algebraic immunity (EAI).
They proved that AI(f) − EAI(f) ≤ 1, and showed that AI(f) − EAI(f) = 1 holds for a large
number of cases. This is also demonstrated in this paper. The relations between different properties
of a Boolean function f and its algebraic complement f c were studied in [11], and they argued that
a necessary condition for an n-variable Boolean function to achieve the maximum possible EAI is
that n should be even. Because a difference of only 1 between the algebraic immunities of two
functions can make a crucial difference with respect to algebraic attacks, it is necessary to analyze
extended algebraic immunity.

In this paper, two sufficient conditions for a Boolean function of an even number variables with
optimal EAI are given. Then we study almost all the known functions possess maximum possible
algebraic immunity for their EAI. The results show that about half of them do not have optimal
EAI.

The rest of the paper is organized as follows. In Section 2, the basic concepts and notions are
presented. Two theorems about sufficient conditions for a Boolean function with optimal EAI are
given in Section 3, and using them we analyze the EAI of some known functions with maximum
AI. In Section 4, some further results and proofs about Boolean functions with optimal EAI are
given. Finally, Section 5 concludes the correspondence.
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2 Preliminary

A Boolean function f(x) is a function from Fn
2 to F2, where x = (x1, x2, · · · , xn) ∈ Fn

2 . Let Bn

denote the set of all n-variable Boolean functions. The basic representation of a Boolean function
f(x1, x2, · · · , xn) is by the output column of its truth table, i.e., a binary string of length 2n,

f = [f(0, 0, · · · , 0), f(1, 0, · · · , 0), · · · , f(1, 1, · · · , 1)].

f(x) is generally represented by its algebraic normal form (ANF):

f(x) =
⊕
u∈Fn

2

λu(
n∏

i=1

xui
i ) (1)

where λu ∈ F2, u = (u1, u2, · · · , un).
∏n

i=1 x
ui
i is called a term in ANF of f . It is well known

that λu =
∑

x�u f(x), where x � u means that u covers x, that is, if x = (x1, x2, · · · , xn), u =
(u1, u2, · · · , un), satisfies the condition that ui = 1 wherever xi = 1. The algebraic degree of f(x),
denoted by deg(f), is the maximal value of wt(u) such that λu 6= 0, where wt(u) denotes the
Hamming weight of u. Let supp(f) = {x|f(x) = 1, x ∈ Fn

2}, the Hamming weight of f , denote by
wt(f), is the cardinality of the support supp(f). A Boolean function f is said to be balanced if
wt(f) = 2n−1.

Definition 1: For f ∈ Bn, define AN(f) = {g ∈ Bn|f ∗ g = 0}. Any function g ∈ AN(f)
is called an annihilator of f . The algebraic immunity (AI) of f is the minimum degree of all the
nonzero annihilators of f or f + 1, and we denote it by AI(f).

Definition 2: Let 4(x) = (1 + x1)(1 + x2) · · · (1 + xn), where x = (x1, x2, · · · , xn) ∈ Fn
2 .

Define f c(x) = f(x) +4(x), f c(x) is called the algebraic complement of f(x), i.e., f c(x) contains
all monomials that are not in the ANF of f(x).

It is easy to see that (f c)c(x) = f(x), f c(x) + 1 = (f(x) + 1)c, ∀f(x) ∈ Bn. From the definition
of 4(x), it is trivial to prove the following:

1. f c(x) = f(x) if x 6= 0, and f c(0) = f(0) + 1.

2. 4(x) 6= 0 iff (if and only if) x = 0.

3. f(x)4 (x) = 0 if f(0) = 0, f(x)4 (x) = 4(x) if f(0) = 1.

Definition 3: The extended algebraic immunity EAI(f) is defined as follows: EAI(f) =
min{deg(g)|g ∈ AN(f)

⋃
AN(f+1)

⋃
AN(f c)

⋃
AN(f c+1)}. i.e., EAI(f) = min{AI(f), AI(f c)}.

Lemma 1[14]: Let f ∈ Bn, then (1) AI(f)−EAI(f) = 0 or 1, (2) |AI(f)−AI(f c)| = 0 or 1.

Definition 4: Let f is a Boolean functions with n variables. We called f 0− CM (1− CM)
if f(0) = 0(f(0) = 1).
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Lemma 2[3]: Let f ∈ Bn, then there is a nonzero Boolean function g ∈ Bn of degree at most
dn/2e, such that deg(f ∗ g) ≤ dn/2e.

From Lemma 2, it is known that upper bound of AI and EAI is dn/2e.

Lemma 3[11]: Let f ∈ Bn, if n is odd, then EAI(f) ≤ dn/2e − 1. Further if AI(f) = dn/2e,
Then EAI(f) = dn/2e − 1.

It is well known that a function of odd variables with maximum algebraic immunity must be
balanced, but while f is balanced, f c is unbalanced. Moreover Lemma 3 shows that a Boolean
function of an odd number variables can’t have optimal EAI.

Lemma 4[11]: Let f ∈ Bn, and n is even, if AI(f) = n/2. Then:

1. If f is 0− CM , and wt(f) =
∑n/2

i=0

(
n
k

)
, then EAI(f) = n/2− 1.

2. If f is 1− CM , and wt(f) =
∑n/2−1

i=0

(
n
k

)
, then EAI(f) = n/2− 1.

3 Two sufficient conditions for Boolean functions with optimal
extended algebraic immunity

There are two main classes of Boolean functions achieving optimal algebraic immunity (see [1], [2],
[4]).In this section, their extended algebraic immunity are studied. The construction in [4] is as
follows. Let f ∈ Bn, and n = 2k, then

f(x) =


0,wt(x) < n/2;
1,wt(x) > n/2;
g(x),wt(x)=n/2.

Where g(x), x ∈ {x|wt(x) = n/2}, is a random Boolean function.

Theorem 1: Let f(x) ∈ Bn is a function given above, if g(x) 6≡ 1, ∀x ∈ {x|wt(x) = n/2}, then
EAI(f) = k = n/2.

Proof: supp(f) = {x|wt(x) > n/2}
⋃
{x|wt(x) = n/2, g(x) = 1}, supp(f c) = {x|wt(x) >

n/2}
⋃
{x|wt(x) = n/2, g(x) = 1}

⋃
{0}, supp(f) ⊆ supp(f c), then AN(f) ⊇ AN(f c), since f has

maximum algebraic immunity, f c doesn’t have annihilator of degree < n/2. Now we consider f c+1,
suppose h(x) is an annihilator of f c + 1, and deg(h) < n/2, one needs to show that g(x) = 0. From
h(x) = 0, ∀x ∈ supp(f c + 1) and supp(f c + 1) = {x|wt(x) < n/2}\{0}

⋃
{x|g(x) = 0, wt(x) = n/2},

considering the degree of functions in AN(f c + 1), h(x) was divided into two classes: h(0) = 0 and
h(0) = 1.

In the case h(0) = 0, then h(x) = 0,∀x ∈ {x|wt(x) < n/2}. Because deg(h) < n/2, h(x) ≡ 0;
In the case h(0) = 1, the function h(x) can be represented as follows:

h(x) = a0 +
n∑

i=1

aixi +
∑
i<j

aijxixj + · · ·+ ak+2,··· ,nxk+2 · · ·xn (2)
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From the preliminary we know that a0 = h(0) = 1, ai = h(0) + h(1i), where 1i denotes the vector
that only the i-th bit is 1, others are 0. Because wt(1i) = 1, then h(1i) = 0, and ai = 1,∀1 ≤ i ≤ n.
Similarly, one can conclude that aij = 1, aijk = 0, · · · , ak+2,··· ,n = 1, in other words,

h(x) = 1 +
n∑

i=1

xi +
∑
i<j

xixj + · · ·+ xk+2 · · ·xn (3)

However, because g(x) 6≡ 1, suppose g(z) = 0,∀z ∈ {z|wt(z) = k}, then f c(z) + 1 = 1, h(z) = 0.
Since wt(z) = n/2, without lose of generality, suppose the i1, i2, · · · , ik-th bits are 1, and others are
0. h(z) = 1 +

(
k
1

)
+
(
k
2

)
+
(
k
3

)
+ · · ·+

(
k

k−1
)

= 2k − 1 = 1mod2, this is a contradiction.
To sum up, f c(x) + 1 doesn’t have any annihilator with degree < n/2, i.e., AI(f c) = n/2,

EAI(f) = n/2. This completes the proof. �

Remark: It was proved in [11] that if g(x) ≡ 1,∀x ∈ {x|wt(x) = n/2}, then EAI(f) = k − 1.
Theorem 1 shows that this is the only case such that EAI(f) = k − 1.

According to Theorem 1, when g(x) ≡ 0, f(x) has maximum EAI. However, it is symmetric,
present therefore a risk if attacks using this peculiarity can be found in the future. Moreover, the
function f r doesn’t have optimal EAI, where f r(x1, x2, · · · , xn) = f(x1 + 1, x2 + 1, · · · , xn + 1).
This is simple to be proved using Lemma 4. Then the following corollary is obtained.

Corollary 1: The extended algebraic immunity is not an invariant under affine transforma-
tions.

Using theorem 1, it is easy to see that construction 3 in [5] has optimal EAI: Let β ∈ Bn,
n = 2k, then

β(x) =


1,wt(x) < n/2;
0,wt(x) > n/2;
a(x),wt(x) = n/2.

Where a(x) is a random Boolean function with the property a(x) = a(x̄), x ∈ {x|wt(x) = k}, x̄ is
the bitwise complement of the vector x, and all the a(x) are not same, i.e., β(x) is non-symmetric.
Because a(x) 6≡ 0, according to theorem 1, β(x) has the maximum EAI. And From Theorem 8 in
[5], β(x) also has good resistance against fast algebraic attack.

Recently, based on the univariate polynomial representation of Boolean functions, some func-
tions with optimal AI were proposed (for example, see [2], [9]). Every function f : F2n → F2n can
be unique represented as a polynomials

∑i=2n−1
i=0 aix

i, where ai ∈ F2n , f is a Boolean function if
and only if f(x) = (f(x))2.

Theorem 2: Let α(x) ∈ Bn, n = 2k, α is a primitive element of the field F2n , D =
∑i=k−1

i=0

(
n
i

)
.

We have

1. If supp(α(x)) ⊇ {αi, αi+1, · · · , αi+D−1}, and supp(α(x) + 1) ⊇ {αj , αj+1, · · · , αj+D−1}, then
the function α(x) has the maximum EAI.

2. If supp(α(x)) = {0, αi, αi+1, · · · , αi+D−2}, and supp(α(x) + 1) ⊇ {αj , αj+1, · · · , αj+D−1},
then AI(α(x)) = k = n/2, EAI(α(x)) = k − 1.
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3. If supp(α(x)) ⊇ {αi, αi+1, · · · , αi+D−2, αb}. Let γ1 = (1, αb, α2b, α3b, · · · , αb(D−1)) can’t be
linear expressed by the first D − 1 rows of B, which is given later. And supp(α(x) + 1) ⊇
{αj , αj+1, · · · , αj+D−2, αc}, γ2 = (1, αc, α2c, α3c, · · · , αc(D−1)) can’t be linear expressed by
the first D − 1 rows of C, which is given later, then α(x) has maximum EAI.

Proof: First we prove item 1. The proof of α(x) has optimal AI can be found in [2] and [12].
We copy the proof for the readers’ convenience. Suppose g(x) ∈ Bn is an annihilator of α(x), and
deg(g) < k, g(x) can be represented as

g(x) =

i=2n−1∑
i=0

aix
i, ai = 0,∀wt2(i) ≥ k,

where wt2(i) equals the number of 1’s in the binary expansion of i. Without lose of general-
ity, suppose ai 6= 0 if and only if i ∈ {i1, i2, · · · , im}, where m ≤ D. Then g(x) = 0,∀x ∈
{αi, αi+1, · · · , αi+D−1}. i.e., B ∗ γ = 0, where γ = (ai1 , ai2 , · · · , aim), and the matrix B is:

B =


αii1 αii2 · · · αiim

α(i+1)i1 α(i+1)i2 · · · α(i+1)im

· · · · · · · · · · · ·
α(i+D−1)i1 α(i+D−1)i2 · · · α(i+D−1)im

 .

Let B′ = B(1, 2, · · · ,m), where B(1, 2, · · · ,m) denotes the first m rows of B. It is evident
that B′ is a Vandermonde matrix, det(B′) 6= 0, then ai = 0 for every i ∈ {i1, i2, · · · , im} and
g(x) = 0. In the same way, it can be seen that there doesn’t exist a nonzero annihilator of α(x)+1,
and to sum up, AI(α(x)) = k = n/2. α(x) has optimal EAI is trivial because supp(αc(x)) ⊇
{αi, αi+1, · · · , αi+D−1}, and supp(αc(x) + 1) ⊇ {αj , αj+1, · · · , αj+D−1}.

Now the proof of item 2 is as follows. Suppose g(x) ∈ Bn is an annihilator of α(x) with
deg(g) < k. The number of terms in ANF of g(x) ≤ D − 1, this is because g0 = g(0) = 0, so using
item 1, it can be can seen that α(x) has optimal AI. Since supp(αc(x)) = {αi, αi+1, · · · , αi+D−2},
there are D − 1 equations and D variables, there must be a nonzero solution in the system of
multivariate algebraic equations. One can simply see that there is only one nonzero solution
a = (a0, a2, · · · , aD−1, aD, aD+1, · · · , a2n−1) = (1, 1, · · · , 1, 0, 0, · · · , 0), in other words,

g(x) =

i=2n−1∑
i=0

wt2(i)<k

xi (4)

And so AI(αc(x)) < k, using Lemma 1, the result can be obtained.
Now we prove item 3. γ1 can’t be linear expressed by the first D−1 rows of B, then replaced the

last row of B by γ1 one will get a matrix B1 and det(B1) 6= 0, similar to the proof of item 1, αc(x)
and α(x) has no annihilator of degree < k. Using the matrix C (i1 = 0, i2 = 1, · · · , im = D− 1) as
follows, it is easy to see that αc(x) + 1 and α(x) + 1 has no annihilator of degree < k.

C =


αji1 αji2 · · · αjim

α(j+1)i1 α(j+1)i2 · · · α(j+1)im

· · · · · · · · · · · ·
α(j+D−2)i1 α(j+D−2)i2 · · · α(j+D−2)im

αci1 αci2 · · · αcim

 .
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This completes the proof. �

Using the item 1 of Theorem 2, the functions dln constructed in section VI in [9] have maximum
EAI, this is because

supp(dln) = {α2n−1−1, · · · , α2n−D−2}
⋃
{1, α, α2, ..., αD−1},

and
supp(dln) ⊇ {1, α, α2, ..., αD−1}.

And from Theorem 10 in [9] dln also has good resistance against fast algebraic attack.
In [10], the authors proposed a combinatorial conjecture about binary strings, and use this

conjecture constructed two classes of Boolean functions with optimal algebraic immunity. The
construction is as follows:

Construction 1[10]: let n = 2k and α is a primitive element of F2k . Define function g : F2k →
F2, and supp(g) = {α0, α1, · · · , α2k−1−1}. Let F2k × F2k → F2, be defined as f(x, y) = g(xy2

k−2).

Similar to the proof of item 1 of Theorem 2, it is easy to see that f(x, y) has maximum extended
algebraic immunity.

According to Theorem 2, it is easy to prove the following corollary, which is inspired by [12]:

Corollary 2: Let p(x) = xn + cn−1x
n−1 + · · · + c1x + 1, be a primitive polynomial over the

field F2, and the companion matrix A of it is

A =


0 0 · · · 0 1
1 0 · · · 0 c1
· · · · · · · · · · · · · · ·
0 0 · · · 1 cn−1

 .

Define a function f(x) ∈ Bn, whose support contains {Aib1, A
i+1b1, · · · , Ai+D−1b1, }, and the sup-

port of f(x) + 1 contains {Ajb1, A
j+1b1, · · · , Aj+D−1b1}, where n = 2k,D =

∑i=k−1
i=0

(
n
i

)
, 0 6= b1 ∈

Fn
2 . Then f(x) has maximum EAI.

From Corollary 2, one can conclude that the construction 1 and 2 in [12] have maximum EAI,
this is simply because the support of their functions satisfy supp(f) ⊇ {b1, A1b1, · · · , AD−1b1} and
supp(f + 1) ⊇ {A2n−1+1b1, A

2n−1+2b1, · · · , A2n−1+Db1}.

4 Further results and proofs

In this section, we study some known functions with maximum AI for their EAI. Symmetric Boolean
functions are an interesting class of Boolean functions. Denote the set of symmetric Boolean
functions by SBn. A symmetric function can be characterized by a vector

vf = (vf (0), vf (1), · · · , vf (n)) ∈ Fn+1
2 ,

where vf (i) = f(x),∀x with wt(x) = i. It is proved in [7] that for odd n ≥ 3, only the majority
function has maximum algebraic immunity. For n is even, in [1] and [8], the authors construct some
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classes of symmetric Boolean functions of even variables with maximum algebraic immunity. The
constructions are as follows:

Construction 2[1][8]: Let n = 2k ≥ 4 and f ∈ SBn. Let sk−i = ek−i + ek+i, where ej is
a vector in Fn

2 , such that its j-th position is 1 and the other positions are 0. Then the following
functions f has maximum algebraic immunity:

1. vf = (

k︷ ︸︸ ︷
11 · · · 1 a

k︷ ︸︸ ︷
00 · · · 0), a ∈ F2.

2. vf = (

k︷ ︸︸ ︷
11 · · · 1

k︷ ︸︸ ︷
00 · · · 0 1).

3. 2i ≤ k ≤ 3 · 2i − 1, i ≥ 0, vf = (

k︷ ︸︸ ︷
11 · · · 1 b

k︷ ︸︸ ︷
00 · · · 0) + sk−2i(b ∈ F2).

4. vf = (

k+1︷ ︸︸ ︷
11 · · · 1

k︷ ︸︸ ︷
00 · · · 0) + s0,

(
2k
k

)
≡ 2mod4.

5. l ≥ 1, k = 2l · s+ i, s ≥ 0, 1 ≤ i ≤ 2l − 1.vf = (

k︷ ︸︸ ︷
11 · · · 1

k+1︷ ︸︸ ︷
00 · · · 0) + e2k−i.

6. 4 · 2s ≤ k < 5 · 2s, vf = (

k︷ ︸︸ ︷
11 · · · 1 a

k︷ ︸︸ ︷
00 · · · 0) + sk−3·2s + sk−2s .a ∈ F2.

Their EAI are analyzed as follows:

1. • a = 0, then f is 1 − CM , and wt(f) =
∑k−1

i=0

(
n
i

)
, from Lemma 4 and Lemma 1,

EAI(f) = k − 1;

• a = 1, Using Theorem 1, EAI(f) = k, however, it is easy to see that EAI(f r) = k − 1,
which is not the maximum. In an algebraic attack, adversaries are going to compute
both EAI(f) and EAI(f r), they can apply the annihilators whose degree is lowest.

2. According to the proof of Theorem 1, to make sure f has maximum EAI, the following
condition should be satisfied:

∑k−1
i=0

(
n
i

)
≡ 1mod2. This is equivalent to k = 2l, l ≥ 0. This

shows that EAI(f) = k − 1 holds for a large number of cases.

3. • b = 0, k 6= 2i, then f is 1−CM , and wt(f) =
∑k−1

i=0

(
n
i

)
, from Lemma 4, EAI(f) = k−1;

• b = 0, k = 2i, since vfc = (

k︷ ︸︸ ︷
11 · · · 1

k︷ ︸︸ ︷
00 · · · 0 1), soAI(f c) = k from item 2, and EAI(f) = k.

From Lemma 4, EAI(f r) = k − 1;

• b = 1, k = 2i, consider the weight of f and f(0) = 0, EAI(f) = k − 1;

• b = 1, k 6= 2i, we leave it as an open problem, but from some simple examples, we
conjecture that EAI(f) = k − 1 holds for a large number of cases.

4. Consider the weight of f and f(0) = 0, EAI(f) = k − 1.
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5. According to Theorem 1, f has maximum EAI iff
∑k−1

j=0

(
n−i
j

)
≡ 1mod2. For example, if

i = 1, then
∑k−1

j=0

(
n−i
j

)
= 2n−2 = 0mod2, EAI(f) = k− 1; if i = 2, f has maximum extended

algebraic immunity iff n = 2l + 2, ∀l ≥ 0. This means that EAI(f) = k − 1 holds for a large
number of cases.

6. • a = 0, then f is 1− CM , and wt(f) =
∑k−1

i=0

(
n
i

)
, from Lemma 4, EAI(f) = k − 1;

• a = 1, form a general conclusion seemed to be difficult. But from some simple examples,
we conjecture that EAI(f) = k − 1 holds for a large number of cases.

From the analyze above, it can be concluded that many of symmetric Boolean functions don’t
have optimal EAI.

In [6], the authors proposed a class of balanced Boolean functions with maximum algebraic
immunity. Let n = 2k, Y1 = (y10, y

1
1, y

1
2, · · · , y1n−1),Y2 = (y20, y

2
1, y

2
2, · · · , y2n−1), Y1 < Y2 means that∑n−1

i=0 y
1
i 2i <

∑n−1
i=0 y

2
i 2i, [Y1, Y2) = {y ∈ Fn

2 |Y1 ≤ Y < Y2}, we index Y0 to Yd the element in Fn
2 of

weight ≤ k − 1, where d =
∑k−1

i=0

(
n
i

)
− 1.

Construction 3[6]: Let n = 2k and f ∈ Bn. The support of f is chosen in the following way:

• For i = 0 to d− 1, choose Xi ∈ [Yi, Yi+1), and wt(Xi) ≤ n/2;

• For i = d, choose Yi � Xi, and wt(Xi) ≤ n/2;

• For i = d+ 1 to 2n−1 − 1, choose Xi /∈
⋃i−1

j=0{Xj}, and wt(Xi) ≤ n/2.

Theorem 3: The functions f(x) in construction 3 have optimal EAI.

Proof: Since supp(f + 1) ⊆ supp(f c + 1), AN(f + 1) ⊇ AN(f c + 1), because f + 1 has the
maximum AI, f c +1 doesn’t have annihilator of degree < n/2. One only needs to consider f c. f(x)
is divided into two classes:

• supp(f) ⊇ {x|wt(x) < k};

• supp(f) 6⊇ {x|wt(x) < k}.

In the first class, because f(x) is balanced, there must be x with weight k such that f(x) = 1.
According to Theorem 1, f has maximum EAI.

In the second class, from the construction of f , if there exists a x with weight < k such that
f(x) = 0, then the weight of x must be k− 1, and there must exists a corresponding vector y with
property wt(y) = k, x � y, f(y) = 1. Suppose (i1, i2, · · · , ik−1)-th bits of x are 1 and others are 0,
(i1, i2, · · · , ik)-th bits of y are 1 and others are 0. Let Ω = {x|wt(x) = k} and ]Ω = 1

2

(
n
k

)
, where

] denotes the cardinality of a set, then supp(f c) = {y}
⋃
{a|wt(a) < k\{x

⋃
0}}

⋃
Ω. Let g(x) is

an annihilator of f c, then g(x) = 0 for all x ∈ supp(f c). If g(0) = 0, from the proof of theorem
1, g(x) = xi1xi2 · · ·xik−1

, but g(y) = 1, this is a contradiction, since y ∈ supp(f c). If g(0) = 1,
from the proof of theorem 1, g(x) = 1 +

∑n
i=1 xi +

∑
i<j xixj + ... + xk+2 · · ·xn + xi1xi2 · · ·xik−1

,
but f(y) = 1 and g(y) = 0. Denote Φ = {z|x � z, wt(z) = k}\{y}, ]Φ = k. It is easy to see
g(z) = 0, ∀z ∈ Φ. Since 1

2

(
n
k

)
> k, there are must exists a vector α such that f c(α) = 1, and x 6� α,

for this α, g(α) = 1. Then a contradiction is obtained. When there are two or more vectors such that
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f(x) = 1, x ∈ {x|wt(x) = k− 1}, it can prove it in the same way. So f c doesn’t have annihilator of
degree < k. �

At the end of this paper, the extended algebraic immunity of functions constructed in [13] is
studied:

Construction 4[13]: Let n = 2k and f ∈ Bn, E = {x|wt(x) > k}
⋃
E′, E′ = {x|wt(x) =

k}, |E′| = 1
2

(
n
k

)
,choose b such that wt(b) = k − 1, c ∈ E, b � c, wt(c) + k = 1mod2.then

f(x) =

{
1,x ∈ {b}

⋃
E\{c};

0, else.

It is evident that f c doesn’t have annihilator of degree < k. Similar to the proof of Theorem
1, when wt(c) = k + i, i = 1mod2, f c + 1 doesn’t have annihilator of degree < k iff

∑i
j=1

(
k+i
j

)
=

1mod2(1 ≤ i ≤ 2dk/2e− 1, i = 1mod2). It is known that when k is even,
∑i

j=1

(
k+i
j

)
= 1mod2(∀i ∈

{i|1 ≤ i ≤ 2dk/2e − 1, i = 1mod2}), the functions have optimal EAI. When n is odd, if i = k,
the condition is satisfied, f has maximum EAI. If i 6= k, by computer investigation we discover
that when k ≤ 25, there are many cases such that EAI(f) = k − 1, i.e., they don’t have optimal
extended algebraic immunity. Furthermore, we found that when k = 5, 9, 17, the functions don’t
have optimal EAI for all i ∈ {i|1 ≤ i ≤ 2dk/2e− 1, i = 1mod2} except i = k. So we conjecture that
i = k, i.e., wt(c) = n is the only function with optimal EAI in construction 4 when k = 2l + 1,l ≥ 0.

5 Conclusion

Because a difference of only 1 between the algebraic immunities of two functions can make a
crucial difference with respect to algebraic attacks. Moreover, in an algebraic attack, one of course
can compute AI(f), AI(f c), AI(f r), AI(f rc), and obviously, they can apply the annihilators whose
degree is lowest. So it is essential to analyze the extended algebraic immunity of known functions
with optimal algebraic immunity.

Two sufficient conditions for a Boolean function with optimal EAI are given in this paper, then
use them to study extended algebraic immunity of some known Boolean functions with optimal
algebraic immunity. Using basic theory of linear algebraic, we study some other functions for their
EAI. The results show that about half of them don’t have optimal EAI. These results are helpful in
analysis and construction of cryptographically significant Boolean functions. One should consider
not only AI(f), but also EAI(f) and EAI(f r) when constructing cryptographically significant
Boolean functions.
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