
How to implement the public Key Operations in
Code-based Cryptography on
Memory-constrained Devices

Falko Strenzke1

1 FlexSecure GmbH, Germany??,
strenzke@flexsecure.de

2 Cryptography and Computeralgebra, Department of Computer Science,
Technische Universität Darmstadt, Germany

Abstract. While it is generally believed that due to their large public
key sizes code based public key schemes cannot be conveniently used
when memory-constrained devices are involved, we propose an approach
for Public Key Infrastructure (PKI) scenarios which totally eliminates
the need to store public keys of communication partners. Instead, all the
necessary computation steps are performed during the transmission of
the key. We show the feasibility of the approach for a concrete example
platform and analyze a number of code-based cryptographic schemes
with respect to its applicability.

Key words: post-quantum cryptography, code-based cryptography, pub-
lic key encryption scheme, efficient implementation, embedded devices

1 Introduction

Code-based cryptography, i.e. the class of cryptographic schemes build on error
correcting codes, encompasses public key encryption schemes [1, 2] as well as
signature schemes [3, 4] and an identification scheme [5]. The main advantage of
code-based cryptographic schemes over currently used schemes that are based on
factoring or elliptic curves is their security in the presence of quantum computers
[6], but at least the encryption schemes’ operations can also be implemented
comparatively fast [7]. However, the large public key size in these schemes are
considered a tremendous disadvantage. For this reason, a number of attempts
have been made to reduce the key size by using special codes [8, 9]. But some
of these attempts have already been shown to result in insecure cryptosystems
[10]. More recent proposals, for instance [11], will have to prevail for some time
until they can be granted the same trust as the original McEliece, proposed 32
years ago, which uses classical binary Goppa codes [12] and is still regarded as
secure.

In this work, we address the problem of performing the public operations,
i.e. encryption or signature verification, of code-based public key cryptosystems
?? A part of the work of F. Strenzke was done at2

on devices with limited memory resources, like for instance smart cards. Typi-
cally, smart cards have less than 20 KB of RAM, while the available amount of
non-volatile memory (NVM), e.g. flash-memory, can be as large as 512 KB [13,
14]. If a public key of a communication partner shall be temporarily stored on
the device for the purpose of performing e.g. an encryption, it would have to
be stored in the NVM since it exceeds the size of the RAM many times over.
Specifically, the public keys will be at least 100 KB large for reasonable security
parameters, as we will see in Section 2.3. For instance, the works [15–17] all de-
scribe implementations of code-based encryption schemes on embedded devices,
where the public key is stored in the devices NVM. The drawbacks of storing
such an amount of data in the device’s NVM are first of all the cost of keeping
such a large amount of memory available for this purpose and also the much
slower writing speed compared to RAM access. In order to circumvent these
problems, we show in this work that the public operations can be executed by
only storing very small parts of the public keys at any given time during the
operation. Our approach also considers that these operations are always carried
out in a PKI context, which implies the verification of user public key certificates
against issuer certificates.

The paper is organized as follows. In Section 2 we give the preliminaries
about PKI and code-based encryption schemes needed for the remainder of the
paper. The newly proposed approach is introduced in Section 3 and it’s concrete
computational complexity is analyzed. Subsequently, in Section 4, we show the
feasibility of the proposed approach on a concrete platform based on the analysis
of the preceding section. Two possible variants to the presented approach are
given in Section 5. Next, in Section 6 we show the possibility of treating code-
based signature schemes in the same way as the encryption schemes which we
focus on in this work. Section 7 addresses the applicability of the approach to
the code-based identification scheme proposed by Stern [5].

2 Preliminaries

2.1 Public Key Cryptography

In a public key infrastructure, the trustworthiness of a public key is always veri-
fied against a trust anchor. From the trust anchor, which is usually a certification
authority (CA) certificate, to the user certificate, there is a certificate chain in-
volved. The trustworthiness of a certificate lower in the chain is guaranteed by
its authentic digital signature created by the respective issuer, verifiable via the
corresponding public key contained in the issuer certificate.

For the case of public key encryption, it means that a user A’s public key
intended for encryption is contained in the user certificate. A user B willing to
encrypt a message for A thus goes through the following steps:

1. retrieve A’s public encryption certificate Enc-Cert A (for example by access-
ing a database or asking A directly)

2. verify the authenticity of Enc-Cert A by checking the signature on the cer-
tificate against the trust anchor (CA certificate)

3. encrypt the secret message using Enc-Cert A and send it to A

Since in this work we will address problems and solutions for embedded
devices such as smart cards, we wish to point out why it is necessary to be able to
carry out not only the private operations of a public key scheme (i.e. decryption
or signature generation) but also the public operations on such devices. One
application are key exchange schemes. Key exchange schemes based on public
key cryptography are used for instance in the context of the German ePassport
[18]. There, an elliptic curve based key agreement scheme is realized [19]. In order
to replace this scheme with a quantum computer secure solution, one would have
to combine a public key encryption scheme with a public key signature scheme
that both have this property. Then, one party sends the signed and encrypted
symmetric key to the other party. In the mentioned context this means that
eventually the ePassport’s chip has to carry out the encryption operation.

2.2 Linear Error Correcting Codes

In this section we briefly explain the basics of linear error correcting codes as
needed for the understanding of the subsequent sections. A linear binary error
correcting code C is a set of code words {ci} and is characterized by

– the code size n, which defines the bit length a code word ci of the code C,
– the code dimension k with k < n, which defines the bit length of the message

words v that can be encoded,
– the error correcting capability t, which is the number of bit flips that may

be applied to a code word c and still allow recovering the corresponding
message v.

The encoding of a message v is performed by multiplying it by a generator matrix
G ∈ Fk×n

2 , which is specific for this code: c = vG.
The decoding is performed by first multiplying the eventually distorted code

word c′ by the so called parity check matrix H ∈ F(n−k)×n
2 , also being specific

for the respective code: s = Hc′T , where s ∈ Fn−k
2 is called the syndrome of

the distorted code word c′. Given that no more than t bit flip errors occurred,
i.e. the hamming distance between c and c′ is less or equal than t, a decoding
algorithm can be applied to recover the message v. The decoding algorithm is
based on the underlying code and receives s as input.

2.3 Code-based Encryption Schemes

In the following, we explain two code-based encryption schemes, where we fo-
cus on the encryption operation, since the details of decryption operation are
irrelevant to the subject of this work.

The first encryption scheme we present is the McEliece [1] scheme. The
McEliece public key consists of the so called public generator matrix Gp. Algo-
rithm 1 shows the McEliece encryption operation. The idea behind the McEliece
scheme is that the holder of the corresponding private key knows a secret error
correction code Cs that allows him to recover the error vector e and find the
message m. Specifically, the public key is given by Gp = TGsP , where T ∈ Fk×k

2

is a random invertible matrix, P is a random n× n permutation matrix and Gs

is the generator matrix of a secret code, all of which are parts of the private key.
The decoding works since we find that applying the inverse permutation to the
ciphertext gives

z′ = zP−1 = mTGs︸ ︷︷ ︸
∈Cs

+ eP−1︸ ︷︷ ︸
e′

.

Since the first term on the right hand side is a code word of Cs and the second
term is the permuted error vector having hamming weight t, the message m can
be recovered using the error correction algorithm. On the other hand, without
the knowledge of the secret key, recovering the message m is intractable for
secure parameters.

Algorithm 1 The McEliece encryption Operation
Require: the McEliece public key G ∈ Fk×n

2 and the message m ∈ Fk
2 ,

Ensure: the ciphertext z ∈ Fn
2

create a random binary vector e ∈ Fn
2 with Hamming weight wt (e) = t

z ← mGp ⊕ e

The McEliece parameters are given by the code parameters n, k and t. An
example parameter set giving about 100 bits of security with respect to the
attacks given in [20] would be be n = 2048, k = 1498 and t = 50.

In order for the scheme to be secure against chosen ciphertext attacks, a
so called CCA2-conversion has to be applied to the scheme [21]. Given such a
CCA2-conversion is used, it is also possible to choose the matrix T in such a
way that Gp is in systematic form, i.e. Gp = [Ik|R], where Ik is the k×k identity
matrix. Then, for the parameter set mentioned above, the public key can be
represented by R ∈ Fk×(n−k)

2 , which has a size of about 100 KB.
The other encryption scheme is the Niederreiter [2] scheme. Here, the public

key consists of the public parity check matrix Hp = THsP , where Hs is the
parity check matrix of the private code and Hp ∈ F(n−k)×n

2 , and T and P are
chosen equivalently to their counterparts in the McEliece scheme. Furthermore,
as in the McEliece scheme, Hp can be put in systematic form. Then the public
key will be of the same size as for the McEliece cryptosystem. The Niederreiter
encryption is depicted in Algorithm 2. The message is encoded into an error
vector of weight t and the ciphertext is the corresponding syndrome, which can
only be decoded by the holder of the private key.

Algorithm 2 The Niederreiter encryption Operation

Require: the Niederreiter public key H ∈ F(n−k)×n
2 and the message m

Ensure: the ciphertext z ∈ Fn−k
2

encode the the message m into e ∈ Fn
2 , where wt (e) = t, using an appropriate

algorithm (“constant-weight-word encoding”)
z ← eH

3 Online Public Operation

In this section, we explain the main idea of the paper, namely how to implement
the public operations of code-based schemes without storing full public keys on
the device. In a straightforward approach, the public operation, which we here
assume to be an encryption operation, would be realized by first retrieving the
public key (embedded into a public key certificate containing also a signature) of
the communication partner, storing it on the device, computing the hash value
of the certificates to-be-signed (TBS) data (which includes the code-based public
key), verifying the signature, and finally encrypting the designated message using
the certificate’s public key. With the proposed approach however, no storage of
the whole public key is required. Instead, only a comparatively small amount
of RAM memory will be used. The basic idea is to use the computation time
that is available to the devices CPU in the time interval between the receival
of two bytes via the serial interface. During this interval both the encryption
algorithm and the hash algorithm are advanced by one small step. Hence we call
this approach “online public operation”.

This approach works because both the computation of the hash value of
the public key and the matrix-vector product only depend on a small part of
the whole public key at any given point in time: while the hash function acts
on blocks of multiple bytes (for instance 64 bytes for SHA-256), the matrix
multiplication could in principle be carried out bit-wise.

In Figure 1, the complete process of the online public operation approach
is depicted. On the left hand side, the processing of the certificate containing
the code-based public key to be used in the public operation is shown. Here,
we assume that the public key is contained in an X.509 public key certificate
[22]. Such a certificate is constituted by the sequence of the TBS data, followed
by a field containing information about the signature algorithm (not shown in
the figure) and finally the signature. The signature ensures the authenticity of
TBS data, and is calculated based on their hash value, using a hash algorithm
as specified in the preceding information field. Please note that the signature
algorithm used to sign the user certificate needs not to be code-based (in which
case the trust anchor certificate would contain a large code-based key itself).
Instead, a hash based signature scheme [23] could be used. These schemes are
also quantum computer resistant and feature extremely small public keys.

In Step 1a the part of the TBS data that precedes the public key is received by
the device and processed in the normal manner, which includes the computation
of the hash value of the received data. Once the transmission of the public key,

i.e. the public matrix M , begins (Step 2a), the computation of the product vM
begins, where v is a binary vector whose meaning depends on the type of the
code-based scheme. In an encryption scheme like McEliece or Niederreiter, v
represents a message. The hash computation is also continued. After the whole
public matrix has been received, the remaining TBS data is again processed in
the normal manner (Step 3a). Finally, when the TBS data have been completely
received the hash value of the TBS data is ready. It is then used to verify the
certificate’s signature with the help of the certificate of the issuer I which is
stored on the device as the trust anchor (Step 4).

The public operation of the code-based scheme is potentially composed of
computations before the matrix-vector product is needed (Step 1b). These com-
putations can be done before the public matrix transmission begins, e.g. they
could be carried out before and/or during the receival of the TBS data preceding
the public key. Once the public key matrix has been fully received and processed
(i.e. after Step 2a), the remaining computations of the public operation are car-
ried out (Step 3b), e.g. the addition of the error vector e in the McEliece scheme.
The result is either a ciphertext (in case of an encryption scheme) or a Boolean
value (in case of a signature verification). But whether this result is output re-
spectively further processed by the device (Step 5a) depends on the result of the
signature verification (Step 4). If the verification fails, the device will output an
error answer (Step 5b).

In the following subsections, we take a closer look at the actual operations
that have to be carried out after the receival of a single byte. This analysis
will build the basis for the evaluation of the expected performance on specific
platforms.

3.1 The Matrix-Vector Multiplication

The Matrix Vector Multiplication b = aM , with a ∈ Fla
2 , b ∈ Flb

2 and M ∈ Fla×lb
2

can be realized in two different ways: the matrix can be processed column-wise or
row-wise. In this section we will only consider the former solution. A justification
for this choice as well as a consideration of the second variant will be given in
Section 5.1.

In the column-wise multiplication, each bit of b is computed as bi =
∑

j mjMij .
Assuming byte-wise operations, 8 result bits of the product mjMij can be com-
puted simultaneously by performing the bit-wise logical AND of a byte contain-
ing a part m and another byte containing the corresponding part of the i-th
column of M . The resulting byte is logically XORed with a state byte. The re-
sult is the new value of this state byte, which of course has value zero at the start
of each matrix column. After the last byte of the i-th column has been received
and processed in the way described above, bi is computed as the parity bit of the
state byte. The parity bit of a byte can be computed in 6 instructions [24]. To-
gether with the operations that have to be carried out for each byte, processing
the last byte of a matrix column can be done in roughly 8 instructions.

Fig. 1. Overview of the complete process of the online public operation.

3.2 Partitioned Computation of the Hash Value

For the hash value computation, two different approaches are conceivable. Firstly,
the compression function, which processes a single block of input data, can be
split into a number of equally complex parts, where in the ideal case the number
of these parts is equal to the number of bytes in one block. Then, after the re-
ceival of each byte one such part of the compression function is carried out. The
other approach would be to use a continuous hash computation which operates
asynchronously to the receiving unit and the matrix-vector multiplication.

In the following, we will only follow the first approach, since it turns out that
for the prominent SHA-256 hash function [25] we find that the above mentioned
ideal partitioning is possible.

The SHA-256 compression function processes 64 byte blocks of input data
one after another. It features 64 iterations of the step function, which operates
on the block of input data and the hash functions internal state. Thus it suffices
to carry out one iteration of the step function between the receival of two bytes,
where the last completely received block is processed.

A superficial count of the 32-bit instructions needed in one of these 64 iter-
ations of the step function gives 32 (provided that register rotation instructions
are available on the platform). This fits quite well with measurement results for
SHA-256 on a Pentium 4 given in [26].

The RAM demands of this solution are 160 bytes: a 64 byte receive buffer to
store the currently transmitted block, another 64 byte buffer for the currently
processed block and 32 bytes for the internal state of the SHA-256 hash function.

4 Consideration of Transmission Rate and Computation
Speed

In this section, we apply the considerations of the previous section to a specific
platform. Namely, we regard an SLE66CLX360PE [14] smart card platform from
Infineon Technologies AG. It features an ISO/IEC 14443 compliant contactless
interface which can transmit up to 106 KB/s. This allows the transmission of a
McEliece public key of size 100 KB for the parameters given in Section 2.3 in
about 1s, which can be considered at least acceptable for certain applications.

Let us now consider whether the computational power of this device is able
to support this transmission speed, i.e. whether it is able to perform all the
necessary operations for the hash value computation and the matrix-vector
multiplication during the receival. The device features a 16-bit CPU which
runs at up to 30 MHz. Due to the fact that our above considerations about
the number of instructions that have to be executed after the receival of each
byte are based on a 32-bit architecture and that we did not take into account
any overhead like the increment of loop variables, we multiply our estimate
of 40 instructions by 5, which surely takes us to the safe side. We also as-
sume that each instruction takes one clock cycle. According to the calculation
106 · 1024 · 40 · 5 cycles/s ≈ 21 · 106 cycles/s, it is sufficient if the CPU runs at

21 MHz in order to perform the necessary operations. Even if this estimation
should turn out to be still too optimistic also considering the remaining 9 MHz
reserve, it should be clear that at least a 32-bit platform running at the same
frequency will fulfill the requirements.

In the future, contactless transmission rates may be about 8 times higher
[27] than the rate considered above. It is still feasible to support such a high
transmission rate at a CPU speed of 30 MHz if adequate hardware support is
available on the device, since in this case there are still about 3.5 cycles available
between the receival of two bytes. Thus, in this future scenario the running time
of the matrix multiplication might be even further decreased by a factor of 8.

5 Variants of the proposed Approach

5.1 Column-wise vs. Row-wise Matrix-Vector Multiplication

As stated in Section 3.1, row-wise computation of the matrix-vector multiplica-
tion is an alternative to the column-wise approach. In this case the computation
of the result is according to b =

∑
j Miai, where Mi is the vector represented

by the i-th row of M . This means that a row Mi is added to the result if the
corresponding bit ai is one, otherwise nothing has to be done. In the normal
case, where the whole matrix is available instantly, this approach has a signif-
icant advantage over the column-wise approach since the vector a will contain
a large number of zero bits. But in the case of the online public operation, this
advantage disappears since the matrix-vector multiplication’s running time is
determined by the transmission time alone (under the assumption of sufficient
computational power of the device as analyzed in Section 4). The row-wise ap-
proach would only have an advantage if the saved computational effort could be
used to perform other tasks, which can be assumed to be rather unlikely or at
least of minor relevance in the context of embedded devices such as smart cards.

On the other hand, the disadvantage of the row-wise multiplication lies in
its potential side-channel vulnerability. Specifically, if an attacker is able to find
out whether the currently transmitted row is added or ignored, for instance by
analyzing the power trace [28], he can deduce the value of the secret bit ai.
Of course, countermeasures can be implemented. A certain randomization could
for instance be introduced by keeping a number of received rows in a buffer
and processing them in a randomized order. However, whether the questionable
computational advantage of this method is worth such efforts must be decided
in a concrete implementation scenario.

In any case, once the X.509 key format for a code-based scheme is defined,
the choice for one of the two methods is taken. While it then would still be
possible to transmit the matrix in the other orientation in order to carry out the
multiplication, the online hash computation only works if the correct orientation
is used.

5.2 Using non-binary Codes

In in the original papers, only binary Goppa codes are used in the McEliece
and Niederreiter scheme. Recently, the employment of codes over an alphabet
Fq have also been considered [29]. The methods proposed in this work are also
applicable in this case. It must be pointed out however, that the multiplication
of the matrix and vector elements becomes more complex for codes over larger
alphabets, eventually calling for more computational power at high transmission
rates.

6 Code-based signature Schemes

A number of code-based signature schemes have been proposed. In the following,
we will address two of these schemes very briefly with the goal of showing that
the proposed approach for the online public operation is applicable to both of
them.

In [3], the McEliece scheme is inverted in the sense that the signer proves his
ability to decode a binary vector related to the message using a certain code.
Thus, the signature verification basically consists of a matrix-vector multiplica-
tion just like for the encryption schemes described in Section 2.3.

A signature scheme involving two binary matrices as the public key is pre-
sented in [4]. In the verification operation, both matrices have to be multiplied
by a vector. Thus the online public operation can be carried out by transmitting
them one after another.

7 The Stern identification Scheme

In [5], an identification scheme based on coding theory is proposed. The goal of
this section is to find out whether the proposed online public operation can be
applied to this scheme. We first describe the scheme, where we do not give any
considerations of it’s security.

In the Stern identification scheme, there are public parameters that are given
by a parity check matrix H ∈ F(n−k)×n

2 and an integer w < n that are shared
by a group of users. The choice of the security parameters n and k is taken
analogously to that of the parameters for code-based encryption schemes. Each
user has a private key s ∈ Fn

2 with weight w and publishes his public key i = HsT .
Furthermore, a cryptographic hash function h() is involved. The identification
scheme allows A to prove to B that she knows the secret s without divulging
any information about it. It consists of r rounds, each round is defined by:

1. A (the prover) chooses randomly a word y ∈ Fn
2 and a permutation σ of

{1, 2, . . . , n}. A sends to B the commitment c1, c2, c3 such that:

c1 = h(σ|HyT); c2 = h(σ(y)); c3 = h(σ(y ⊕ s))

where σ(x) denotes the image of x under the permutation σ and “|” the
concatenation.

2. B (the verifier) sends to A a random challenge b ∈ {0, 1, 2}
3. depending on b, A reveals certain values to B:

(a) if b = 0 : A reveals y and σ
(b) if b = 1 : A reveals (y ⊕ s) and σ
(c) if b = 2 : A reveals σ(y) and σ(s)

4. B verifies a subset of the commitment depending on b:
(a) if b = 0 : B checks that c1 and c2 are correct by computing c′1 =

h(σ|HyT) and c′2 = h(σ(y))
(b) if b = 1 : B checks that c1 and c3 are correct by computing c′1 =

h(σ|HyT) = h(σ|H(y ⊕ s)T ⊕ i) and c′3 = h(σ(y ⊕ s))
(c) if b = 2 : B checks that c2 and c3 are correct by computing c′2 = h(σ(y))

and c′3 = h(σ(y)⊕ σ(s)) and verifies that σ(s) is of weight w

The cheating probability for a single round is 2/3. If a number r of rounds is
carried out, then the cheating probability is reduced to (2/3)r. For instance, 30
rounds can be used to reduce the cheating probability below 2−17. The scheme
can be implemented quite efficient on resource constrained devices as demon-
strated in [30].

It is immediately obvious that the online multiplication can be applied to the
operations the prover (A) has to carry out in each round, i.e. the multiplication
HyT . This removes the need to store the huge matrixH on the device and instead
store only its hash value. Since the t rounds are all independent of each other, it
is also possible to compute HyT for a certain number of rounds u 6 r in parallel.
Then the matrix H would have to be transmitted for any such group of parallel
computed rounds, thus u should be chosen as large as possible for an efficient
implementation. But for a large number of rounds the memory demands become
considerable: at the moment the u-fold parallel matrix multiplication finishes,
the prover has u sets {HyT , σ, y} in his memory. Especially the permutation σ
is of considerable size: it is represented in log2(n) ·n bits, which amounts to 2816
bytes for the example code parameter n from Section 2.3.

For the verifier (B), it is also possible to apply the online multiplication
to a number of rounds in parallel, where he has to carry out up to to two
multiplications in each round, depending on the respective challenge b. But the
protocol requires the verifier to store two commitments for each of the u rounds
carried out in parallel, until he receives the corresponding revelations according
to the respective value of the challenge b. Also then, if the matrix H is not
stored on his device but input after the revelations have been received, all those
revelations of the u rounds have to be stored until the receival of H.

Thus for this scheme it seems more appropriate to store the matrix H on
the device. This is not a large drawback, since this matrix is not an individual
public key but a parameter shared by a whole group of users and can thus be
kept on the device permanently. Also note that the private key in this scheme
only has a bit length given by the code parameter n, e.g. consumes 256 bytes
for the example code parameters given in Section 2.3, which yields about the
same NVM demands as for the McEliece encryption scheme where a parity check
matrix is part of the private key (at least if fast decryption shall be possible).

8 Conclusion

In this work we have shown an approach for implementing the operations in-
volving code-based public keys on memory-constrained devices like smart cards,
that covers the matrix-vector multiplication as well as the hash computation for
the verification of the user certificate. The solution is applicable to basically all
code-based encryption and signature schemes that have been proposed so far.
Thus we are confident that this work improves on the applicability of this class
of cryptographic schemes by reducing the impact of the large public key sizes
for memory-constrained devices.

Especially the Niederreiter encryption scheme becomes attractive when used
with the proposed online public operation. This is because as demonstrated in
[17], for this scheme also the private key can kept well below 10 KB for reasonable
parameters, enabling both encryption and decryption on devices with small RAM
and NVM.

References

1. McEliece, R.J.: A public key cryptosystem based on algebraic coding theory. DSN
progress report 42–44 (1978) 114–116

2. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. In:
Problems Control Inform. Theory. Volume Vol. 15, number 2. (1986) 159–166

3. Courtois, N., Finiasz, M., Sendrier, N.: How to Achieve a McEliece-Based Digital
Signature Scheme. In Boyd, C., ed.: Advances in Cryptology - ASIACRYPT 2001.
Volume 2248 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg
(2001) 157–174

4. Kabatianskii, G., Krouk, E., Smeets, B.: A digital signature scheme based on
random error-correcting codes. In Darnell, M., ed.: Crytography and Coding.
Volume 1355 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg
(1997) 161–167

5. Stern, J.: A new identification scheme based on syndrome decoding. In: CRYPTO
’93: Proceedings of the 13th annual international cryptology conference on Ad-
vances in cryptology, New York, NY, USA, Springer-Verlag New York, Inc. (1994)
13–21

6. Bernstein, D.J., Buchmann, J., Dahmen, E.: Post Quantum Cryptography.
Springer Publishing Company, Incorporated (2008)

7. Biswas, B., Sendrier, N.: McEliece Cryptosystem Implementation: Theory and
Practice. In: PQCrypto. (2008) 47–62

8. Berger, T.P., Cayrel, P.L., Gaborit, P., Otmani, A.: Reducing Key Length of
the McEliece Cryptosystem. In: AFRICACRYPT ’09: Proceedings of the 2nd
International Conference on Cryptology in Africa, Berlin, Heidelberg, Springer-
Verlag (2009) 77–97

9. Berger, T.P., Loidreau, P.: How to Mask the Structure of Codes for a Cryptographic
Use. Designs, Codes and Cryptography 35 (2005) 63–79 10.1007/s10623-003-6151-
2.

10. Otmani, A., Tillich, J.P., Dallot, L.: Cryptanalysis of Two McEliece Cryptosystems
Based on Quasi-Cyclic Codes. Mathematics in Computer Science 3 (2010) 129–140

11. Misoczki, R., Barreto, P.: Compact McEliece Keys from Goppa Codes. In Jacobson,
M., Rijmen, V., Safavi-Naini, R., eds.: Selected Areas in Cryptography. Volume
5867 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg (2009)
376–392

12. Goppa, V.D.: A new class of linear correcting codes. Problems of Information
Transmission 6 (1970) 207–212

13. Infineon Technologies AG: SLE76 Product Data Sheet http://www.infineon.com/
cms/de/product/channel.html?channel=db3a3043156fd57301161520ab8b1c4c.

14. Infineon Technologies AG: SLE 66CLX360PE(M) Family
Data Sheet http://www.infineon.com/dgdl/SPI_SLE66CLX360PE_

1106.pdf?folderId=db3a304412b407950112b408e8c90004&fileId=

db3a304412b407950112b4099d6c030a&location=Search.SPI_SLE66CLX360PE_

1106.pdf.
15. Eisenbarth, T., Güneysu, T., Heyse, S., Paar, C.: MicroEliece: McEliece for Em-

bedded Devices. In: CHES ’09: Proceedings of the 11th International Workshop
on Cryptographic Hardware and Embedded Systems, Berlin, Heidelberg, Springer-
Verlag (2009) 49–64

16. Strenzke, F.: A Smart Card Implementation of the McEliece PKC. In: Information
Security Theory and Practices. Security and Privacy of Pervasive Systems and
Smart Devices. Volume 6033 of Lecture Notes in Computer Science., Springer
Berlin / Heidelberg (2010) 47–59

17. Heyse, S.: Low-Reiter: Niederreiter Encryption Scheme for Embedded Microcon-
trollers. In Sendrier, N., ed.: Post-Quantum Cryptography. Volume 6061 of Lecture
Notes in Computer Science., Springer Berlin / Heidelberg (2010) 165–181

18. German Federal Bureau of Information Security (BSI): Technical Guideline TR-
03110: Advanced Security Mechanisms for Machine Readable Travel Documents,
Version 2.02 (2009)

19. German Federal Bureau of Information Security (BSI): Technical Guideline TR-
03111: Elliptic Curve Cryptography, Version 1.11 (2009)

20. Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the McEliece
cryptosystem. Post-Quantum Cryptography, LNCS 5299 (2008) 31–46

21. Kobara, K., Imai, H.: Semantically secure McEliece public-key cryptosystems -
conversions for McEliece PKC. Practice and Theory in Public Key Cryptography
- PKC ’01 Proceedings (2001)

22. Cooper et al.: RFC 5280 http://tools.ietf.org/html/rfc5280.
23. Coronado, L.C., Buchmann, J., Carlos, L., Garcia, C., Dahmen, E., Klintsevich, E.,

Darmstadt, T.U.: CMSS – An Improved Merkle Signature Scheme Johannes Buch-
mann (2006) www.cdc.informatik.tu-darmstadt.de/~dahmen/papers/BCDDK06.

pdf.
24. Henry S. Warren: Hacker’s Delight (2003)
25. National Institute of Standards and Technology: FIPS PUB 180-3 Secure Hash

Standard
26. Olivier Gay: http://www.ouah.org/ogay/sha2/.
27. Witschnig, H., Patauner, C., Maier, A., Leitgeb, E., Rinner, D.: High speed RFID

lab-scaled prototype at the frequency of 13.56 MHz. e & i Elektrotechnik und
Informationstechnik 124 (2007) 376–383 10.1007/s00502-007-0485-9.

28. Kocher, P.: Differential Power Analysis. Advances in Cryptology-CRYPTO’99,
19th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 15-19, 1999, Proceedings 1666 388–397

29. Peters, C.: Information-Set Decoding for Linear Codes over Fq . In: PQCrypto.
(2010) 81–94

30. Cayrel, P.L., Gaborit, P., Prouff, E.: Secure Implementation of the Stern Au-
thentication and Signature Schemes for Low-Resource Devices. In: CARDIS ’08:
Proceedings of the 8th IFIP WG 8.8/11.2 international conference on Smart Card
Research and Advanced Applications, Berlin, Heidelberg, Springer-Verlag (2008)
191–205

