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Abstract. The computational soundness of formal encryption is re-
searched extensively after the work by Abadi and Rogaway. A recent
work by Abadi and Warinschi extends this work to a scenario in which
secret sharing is used. A more recent work by Micciancio extends this
work to deal the formal encryption in presence of key cycles by using of
co-induction definition of the adversarial knowledge. In this paper, we
prove a computational soundness theorem of formal encryption which is
in presence of both key cycles and secret shares.

1 Introduction

There are two main approaches to security analysis. One is based on formal
model and another is based on computational model. In formal model[1][2][3][4],

– messages are considered as formal expressions;
– encryption operation is only an abstract function;
– security is modeled by formal formulas;
– and analysis of security is done by formal reasoning.

In computational model[5][6][7],

– messages are considered as bit-strings;
– the encryption operation of message is a concrete arithmetic;
– security is defined by computational bounded adversary successfully attack-

ing in negligible probability;
– and analysis of security is done by reduction.

Each of the methods has its advantage and disadvantage. Generally, the for-
mer is simple but cannot guarantee the computational soundness. The lat-
ter does exactly the opposite. From 1980’s, these two methods developed ac-
cording to their own directions independently. Till the beginning of this cen-
tury, in their seminal work[8], Abadi and Rogaway give a method to bridge
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the gap between these two approaches, and build the computational soundness
of formal security analysis. Intuitively, in security analysis, the computational
soundness means that if two formal expressions are equivalent in formal model,
then their computational interpretations are indistinguishable in computational
model. During the last ten years, computational soundness has gained a lot of
attention[8][9][10][11][12][13][14][15] [16][17]and works in this area are still in full
swing.

Our analysis is aimed at ensuring the computational soundness about formal
encryption in presence of secret shares and key cycles.

Secret Share. In a secret sharing scheme, a key may be separated into several
secret shares, and only those who can get the specific shares can get this key,
otherwise, nothing can be got about this key. The secret sharing scheme is pro-
posed in [18], and since then, it is used extensively in cryptography. Moreover,
it can be used in other security applications. In [19], Miklau and Suciu imple-
ment access control policies in data publishing by using the encryption scheme
and secret sharing scheme. Using of secret sharing scheme makes it more flexible
to deploy the access control policy. What we care about is whether a formal
treatment of secret sharing can keep its computational soundness.

Key cycle. Key cycle is firstly referred in [5], and then be noted since the work [8].
Non-strictly speaking, key cycle means that a key encrypts itself directly or
indirectly. At the first glance, it seems that such a problem doesn’t deserve
so much attention due to the few occurrences of key cycle in a well-defined
protocol. However, this is not always the case. For example, a backup system
may store the key on disk and then encrypts the entire disk with this key. Another
example comes from the situation where the key cycle is needed ‘by design’[20]
in a system for non-transferable anonymous credentials. Moreover, key cycle
takes a significant part in resolving the problem of computational soundness.
Generally, in formal model, key cycle is allowed according to the definition of
the expression[8] if there is no further restriction. While in computational model,
the occurrence of key cycle is eliminated according to the standard notion of
security for encryption [5]. This is the reason why the key cycle gains so much
attention when the computational soundness is referred.

Related Work. In [8], Abadi and Rogaway give the definition of key cycle and
then prove the computational soundness of security under formal setting in ab-
sence of key cycles. A natural problem is whether a formal encryption with key
cycles is computational sound. Recent years, this problem is studied in many
works[8][21][13][22][17]. In [21], Laud addresses the problem of reconciling sym-
bolic and computational analysis in presence of key cycles by strengthening the
symbolic adversary[21], that is, weakening the symbolic encryption. Specifically,
Laud uses the similar approach in [8] except giving adversary the power to break
the encryption with key cycles by adding some additional rules. In [13][22], in-
stead of using restricted or revised formal model, Adão et al. deal with the
key cycles by strengthening the computational notion. Specifically, Adão et al.
adopt another security notion, i.e., Key-Dependent Message(KDM) security [23]
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in which the messages are chosen depending on the keys of the encryption scheme
itself. Intuitively, different from the standard security notions(CPA or CCA),
KDM security implies the security of key cycles and thus is closer to its for-
mal counterpart. However, it’s not easy to construct a KDM secure encryption
scheme. Compared to the previous definitions of security, [13] shows that KDM
security is “orthogonal” to the standard security. That is, KDM security neither
implies nor is implied by chosen-ciphertext security (CCA-2). More and more
works are focusing on constructing the KDM secure scheme[23][24][25], but most
of them are given in the random-oracle model[23], or by a relaxed notion of KDM
security[24], or under the restricted adversary[25]. [26] shows that it is impossible
to prove KDM security if the reduction’s proof of security treats both the ad-
versary and the query function as black boxes. In this paper, we do not consider
the KDM security. Rather, our work is under CPA security.

In all the approaches mentioned above, when modeling the power of adver-
sary to obtain keys, an inductive method is used. Very recently, different from the
inductive method, Micciancio [17] give a general approach to deal with the key
cycles in which the power of the adversary to get keys is modeled by co-induction.
The generalization of this approach makes it possible to deal a larger class of
cryptographic expressions, e.g., the expressions with pseudo-random keys [27].
Alternatively, in this paper, we will extend this approach to cryptographic ex-
pressions that use secret sharing schemes. Abadi and Warinschi [16] have given
an approach to bridge the gap between formal and computational views in pres-
ence of secret shares, but the key cycles in it is not allowed. In this paper, we
will prove the computational soundness of formal encryption in presence of both
key cycles and secret shares. Our extension to [17] is just like the extension in
[16] to [8].

Organization The rest of the paper is organized as follows. Section 2 presents
syntax of the formal message, patterns, and the notion of equivalence between
messages. In section 3, the computational model is defined, and computational
semantics of formal message is given. Then, in section 4, the main result of this
paper, theorem of computational soundness is proved. Finally, we conclude in
Section 5 and discuss the further work.

2 Formal model

In this section we provide the basic notions for our work in formal setting.
We do this by summarizing the main definitions and results in previous pa-
pers[8][21][16][22][17] with some changes. Such changes are necessary because
we take both the key shares and key cycles into consideration.

2.1 Messages

In a formal message, anything is modeled by symbols. We use Data and Keys
to denote the symbols sets of data, and keys respectively. Often, d, d1, d2, ⋅ ⋅ ⋅
range over Data, and k, k1, k2, ⋅ ⋅ ⋅ range over Keys.
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Definition 1 (Shares). Assume a key can be divided into n secret shares, and
kj denotes the jth secret share of key k. Given a key k ∈ Keys, we define s(k)
as follows1:

s(k) = {kj ∣ j ∈ [1, n]}

Given a set K ⊆ Keys, when we write s(K), we mean that s(K) =
∪
k∈K s(k).

Furthermore, we can define the set of secret shares as Shares = s(Keys).

For example, if Keys = {k1, k2, k3} and n = 2, by dividing each key into two
secret shares, we have Shares = {k11, k21, k12, k22, k13, k23}.

Generally, the number of shares for each key, say n, is an integer constant.
When a key is divided into n shares2, we assume that, only all these shares allow
to recovery of this key, and one can get nothing about this key with its p shares
where p < n.

Based on Data,Keys and Shares, we can define the set of messages.

Definition 2 (Message). The set of messages is denoted by Msg and can be
defined in Backus Naur form as follows:

Msg ::= Data ∣ Keys ∣ Shares ∣ (Msg,Msg) ∣ {∣Msg∣}Keys

Informally, (m1,m2) represents the concatenation of m1 and m2, and {∣m∣}k
represents the encryption of m under k.

Obviously, in a message, some parts may occur in form of cleartext, and the
other parts may occur in form of ciphertext. Without the decryption key, the
parts in form of ciphertext show nothing but its structure at most. To reflect
this fact, we need to extend the set of messages Msg to the set of extended
messages MSG by introducing some specific symbols.

Definition 3 (Extended message). The set of extended messages, written as
MSG, is defined under Data ∪ {□},Keys ∪ {♢}, and Shares ∪ {♢j} with the
similar syntax of Msg:

MSG ::=Data ∪ {□} ∣ Keys ∪ {♢} ∣ Shares ∪ {♢j}
∣(MSG,MSG) ∣ {∣MSG∣}Keys∪{♢}

Intuitively, □,♢ and ♢j denote the unknown data, keys and secret shares
respectively.

From definitions of Msg and MSG, we can see that Msg is in fact included
in MSG, and thus, in most time, when we refer to message, we means a member
of MSG, and use m,m′,m′′, ⋅ ⋅ ⋅ ,m1,m2, ⋅ ⋅ ⋅ to range over MSG.

Similar to [17], we accept the following notational conventions:

– (m1,m2, ⋅ ⋅ ⋅ ,mn) ≜ (m1, (m2, ⋅ ⋅ ⋅ ,mn));
– {∣(m1,m2)∣}k ≜ {∣m1,m2∣}k;
– {∣m∣}♢ ≜ {∣m∣}.

1 By using j ∈ [1, n], we mean 1 ≤ j ≤ n.
2 It is assumed that each key is shared only once.
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Moreover, to simplify our presentation, we will use the symbols of the first
order logic in the following definition. For example, we use ∧ for and, ∨ for or,
¬ for negation, ∃ for exists, and ∀ for for all.

Definition 4 (Sub-message). Let m,m′ ∈ MSG. We say message m′ is a
sub-message of m, written as m′ ≼ m, if one of the following holds:

1. m′ = m;
2. m = (m1,m2) ∧ (m′ ≼ m1 ∨m′ ≼ m2);
3. m = {∣m′′∣}k ∧m′ ≼ m′′.

Definition 5 (Occurrence). Let x ∈ Keys∪Shares and m ∈MSG. x occurs
in m, written as x⋖m, if one of the following holds:

1. x = m;
2. m = (m1,m2) ∧ (x⋖m1 ∨ x⋖m2);
3. m = {∣m′∣}k ∧ (x = k ∨ x⋖m′).

With Definition 5, we can define a function keys : MSG → Keys. Intu-
itively, keys(m) returns the set of the keys occur in a message or whose shares
occur in this message. More formally, given m ∈MSG, we have

keys(m) = {k∣(k ∈ Keys) ∧ ((k ⋖m) ∨ ∃j ∈ [1, n].(kj ⋖m))}.

Definition 6 (Encryption relation). Let m ∈ MSG, k1, k2 ∈ keys(m). We
say k1 encrypts k2 in m, written as k1 ⊏m k2, if there exists a message m′ such
that ({∣m′∣}k1 ≼ m) ∧ (k2 ∈ keys(m′)).

Example 1. Let m = {∣k1, k12∣}k3 . We have

– {∣k1, k12∣}k3 ≼ m, (k1, k12) ≼ m, k1 ≼ m, k12 ≼ m;
– k1 ⋖m, k12 ⋖m, k3 ⋖m;
– k3 ⊏m k1, k3 ⊏m k2.

Definition 7 (Key cycle3).

1. The key graph of a message m is a directed graph G = (V,E), in which
V = {k∣k ∈ keys(m)} is the set of the vertexes, and E = {(k1k2)∣k1 ∈
V ∧ k2 ∈ V ∧ k1 ⊏m k2} is the set of the edges.

2. We say there exists a key cycle in the message m, if and only if there exists
a cycle in the key graph of m.

From the definitions above, we can see that the secret shares are considered
in messages. Moreover, the rest of our work does not eliminate the key cycles
from the messages. Both of them make our work different from previous ones.

3 There are many different definitions of key cycles in the literatures, in which [8] is
the most general one. The definition here is similar to the definition in [8] except
that secret share is considered. Such a general definition is used to emphasize that
any form of key cycle is allowed.



6 X. Lei, R. Xue

2.2 Patterns

Since a message may contain some sub-messages in form of ciphertext, a message
will show different views given different keys. When given no further informa-
tion other than the message itself, the view of the message can be uniquely
determined. Informally speaking, this view is just the pattern of the message.

Owing to the presence of the secret shares, the keys related to the message
become more complicated. So, before formally defining the pattern, we need to
give several functions.

– sbk(m) : MSG→ Keys, the set of the keys which are the sub-messages of
m, or whose shares are the sub-messages of m:

sbk(m) = {k∣(k ∈ Keys) ∧ ((k ≼ m) ∨ ∃j ∈ [1, n].(kj ≼ m))}

– rck(m) : MSG→ Keys, the set of the keys which can possibly be recovered
from m. Specifically, it returns the keys which are the sub-messages of m, or
all of whose shares are sub-messages of m:

rck(m) = {k∣(k ∈ Keys) ∧ ((k ≼ m) ∨ ∀j ∈ [1, n].(kj ≼ m))}

– psk(m) : MSG→ Keys, the set of the keys which do not occur directly as
the sub-message of m, but whose secret shares partially occur in m. It can
be simply defined by sbk(m) and rck(m):

psk(m) = sbk(m) ∖ rck(m)

– eok(m) : MSG → Keys, the set of the keys which only occur in m as the
encryption keys:

eok(m) = keys(m) ∖ sbk(m)

By the definition above, we have more intuitive properties as follows:

sbk(m) ∪ eok(m) = keys(m); (1)

sbk(m) ∩ eok(m) = ∅; (2)

rck(m) ∪ psk(m) = sbk(m); (3)

rck(m) ∩ psk(m) = ∅. (4)

Example 2. This example is given to illustrate various functions about keys4. Let
m = ({∣k1, k12∣}k1 , {∣k3, {∣{∣k4∣}k5 ∣}k4 ∣}k2 , {∣k22∣}k3 , {∣k24∣}k6 , k15, k16, {∣k14∣}k7), we have

keys(m) = {k1, k2, k3, k4, k5, k6, k7} sbk(m) = {k1, k2, k3, k4, k5, k6}
rck(m) = {k1, k2, k3, k4} psk(m) = {k5, k6}
eok(m) = {k7}

To define the patterns of the messages, we need the functions of p and an
auxiliary function struct, which are defined in Fig. 1.

4 To keep continuity, the message used in this example will also be used in the followed
examples.
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struct :
MSG→MSG

struct(d) = □;
struct(k) = ♢;
struct(kj) = ♢j ;

struct((m1,m2)) = (struct(m1), struct(m2));
struct({∣m∣}k) = {∣struct(m)∣}.

p :
MSG×Keys→MSG

p(d,K) = d;
p(k,K) = k;
p(kj ,K) = kj , (for j ∈ {1..n});

p((m1,m2),K) = (p(m1,K),p(m2,K));

p({∣m∣}k,K) =

{
{∣p(m)∣}k ( if k ∈ K);
{∣struct(m)∣}k (otherwise.).

Fig. 1. Rules defining the function p, and auxiliary function struct

The function p and rck satisfy the following fundamental properties:

p(m,keys(m)) = m (5)

p(p(m,K),K′) = p(m,K ∩K′) (6)

rck(p(m,K)) ⊆ rck(m) (7)

These three properties are similar to the properties of p and r in [17]. More-
over, about p, we have the following proposition:

Proposition 1. If K′ ∩ keys(m) = ∅, then p(m,K ∪K′) = p(m,K).

Proof. Given k ∈ keys(m), since K′ ∩ keys(m) = ∅, we have k /∈ K′. So, if
k ∈ K ∪K′, then k ∈ K. On the other hand, if k /∈ K ∪K′, then k /∈ K. From
the definition of p, what we can get from m by the help of K is just what we
can get from m by the help of K ∪K′.

Intuitively, this proposition means that, given a message m and a key set K,
additional key which is unrelated to m can not provide additional information
about m.

Definition 8 (Function ℱm). Given a message m, a function ℱm : ℘(Keys)→
℘(Keys) can be defined. Precisely, given a set K ⊆ Keys, we have

ℱm(K) = rck(p(m,K)) (8)

Intuitively, given message m and a key set K, ℱm(K) computes the set of
keys which occur as the sub-message of p(m,K), or whose secret shares fully
occur in p(m,K).

Proposition 2. The function ℱm : ℘(Keys)→ ℘(Keys) is monotone.
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Proof. Assume K1 ∈ ℘(Keys),K2 ∈ ℘(Keys), and K1 ⊆ K2, we will show that
ℱm(K1) ⊆ ℱm(K2).

By equation (8), we have ℱm(K1) = rck(p(m,K1)), and ℱm(K2) = rck(p(m,K2)).
So, to show ℱm(K1) ⊆ ℱm(K2), we only need to prove that rck(p(m,K1)) ⊆
rck(p(m,K2)):

rck(p(m,K1))

= rck(p(m,K2 ∩K1)) by assumption K1 ⊆ K2

= rck(p(p(m,K2),K1)) by (6)

⊆ rck(p(m,K2)) by (7)

The monotonicity of the function ℱm makes it possible to define the greatest
fix-point of ℱm.

Definition 9 (The greatest fix point of ℱm). The greatest fix-point of ℱm,
written FIX(ℱm), is defined as follows:

FIX(ℱm) =

ℓ∩
i=0

ℱ im(keys(m)) (9)

where ℓ = ∣keys(m)∣.

Obviously, by the definition of greatest fix-point and the monotonicity of ℱm,
we have

FIX(ℱm) = ℱℓm(keys(m)) (10)

Definition 10 (Pattern of the message). The pattern of the message m,
written as pattern(m), is define as

pattern(m) = p(m,FIX(ℱm)) (11)

Example 3. Let m be the same in Example 2, and the number of a key’s full
shares, say n, is assumed to be 2:

m = ({∣k1, k12∣}k1 , {∣k3, {∣{∣k4∣}k5 ∣}k4 ∣}k2 , {∣k22∣}k3 , {∣k24∣}k6 , k15, k16, {∣k14∣}k7)

Starting from the set K0 = keys(m), the greatest fix point of ℱm can be com-
puted recursively as follows:

K0 = {k1, k2, k3, k4, k5, k6, k7}
p(m,K0) = ({∣k1, k12∣}k1 , {∣k3, {∣{∣k4∣}k5 ∣}k4 ∣}k2 , {∣k22∣}k3 , {∣k24∣}k6 , k15, k16, {∣k14∣}k7)

K1 = ℱm(K0) = rck(p(m,K0)) = {k1, k2, k3, k4}
p(m,K1) = ({∣k1, k12∣}k1 , {∣k3, {∣{∣♢∣}k5 ∣}k4 ∣}k2 , {∣k22∣}k3 , {∣♢2∣}k6 , k15, k16, {∣♢1∣}k7)

K2 = ℱm(K1) = rck(p(m,K1)) = {k1, k2, k3}
p(m,K2) = ({∣k1, k12∣}k1 , {∣k3, {∣{∣♢∣}∣}k4 ∣}k2 , {∣k22∣}k3 , {∣♢2∣}k6 , k15, k16, {∣♢1∣}k7)
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K3 = ℱm(K2) = rck(p(m,K2)) = {k1, k2, k3}

Then, we have

FIX(ℱm) = {k1, k2, k3}
pattern(m) = p(m,FIX(ℱm))

= ({∣k1, k12∣}k1 , {∣k3, {∣{∣♢∣}∣}k4 ∣}k2 , {∣k22∣}k3 , {∣♢2∣}k6 , k15, k16, {∣♢1∣}k7)

2.3 Equivalence

As usual, the keys in a formal message are considered as bound names(like in spi
calculus[4]), so, they can be renamed without effecting the essential meaning of
the formal message. However, since the secret shares of the keys are considered
in the formal model, we must redefine the renaming.

Definition 11 (Renaming). There are three types of renaming: K-renaming(Keys
renaming), KS-renaming(Keys and shares renaming) and S-renaming(Shares
only renaming). KS-renaming and S-renaming are all defined based on K-renaming.

1. Let K ⊆ Keys. A K-renaming on K is a bijection on K, often written as
�[K] or �[K].

2. KS-renaming is defined by extending the K-renaming. Let K,K′ ⊆ Keys,
K ⊆ K′, and �[K′] be a K-renaming. A KS-renaming on K∪ s(K), written
as �̄[K ∪ s(K)] is defined as follows:

�̄(k) = �(k) (k ∈ K)

�̄(kj) = �(k)j (kj ∈ s(K))

3. S-renaming is also defined based on the K-renaming. Let K,K′ ⊆ Keys,
K ⊆ K′, and �[K′] be a K-renaming. An S-renaming on s(K), written as
�̂[s(K)] is defined as follows:

�̂(kj) = �(k)j (kj ∈ s(K))

As a conventional notation, we have

�(K) ≜ {k′∣k ∈ K ∧ �(k) = k′}.

Similar notations can be used on �̄ and �̂. When there’s no confusion according
to the context, we often write �[K], �̄[K ∪ s(K)] and �̂[s(K)] as �, �̄ and �̂
respectively for short.

Let m ∈MSG, �̄[K∪ s(K)] be a KS-renaming. We use m�̄ as applying �̄ to
message m. That is, rename all the key ki ∈ K and its secret shares kji occurring

in m with �̄(ki) and �̄(kji ) respectively.
Similarly, let m ∈MSG, �̂[s(K)] be an S-renaming on s(K). We use m�̂ as

applying �̂ to message m. That is, rename all secret shares kj ∈ s(K) with �̂(kj)
without renaming of k itself.
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Note 1. In this paper, when applying an S-renaming �̂ based on K-renaming
�[K] to message m, we always assume that,

�(K) ∩ keys(m) = ∅. (12)

Intuitively, (12) is used to assure that a secret share in m is renamed to a fresh
symbol. For example, in m�̄, �̄(kj) is a share of �̄(k) if kj is a share of k in m,
while in m�̂ where � meet (12), such relation is broken.

Now, it suffices to define the equivalence of the messages.

Definition 12 (Equivalence of the message). Given m,m′ ∈ MSG, Mes-
sage m′ is said to be equivalent to m, written as m′ ∼= m, if and only if, there
exists a KS-renaming �̄ based on K-renaming �[keys(m)], or, additionally an

S-renaming �̂ based on K-renaming �[psk(m�̄)], such that one of the following
holds:

1. pattern(m′) = pattern(m)�̄
2. pattern(m′) = (pattern(m)�̄)�̂

This definition of equivalence differs from the equivalence in [16] in that
the S-renaming is considered. So, for example, ({∣k2∣}k1 , k11) and ({∣k2∣}k1 , k13) are
equivalent according to Definition 12, but not equivalent in [16].

Example 4. In this example, we will illustrate the three types of renaming and
its applying in message equivalence.

Recall Example 3, we have

m =
(
{∣k1, k12∣}k1 , {∣k3, {∣{∣k4∣}k5 ∣}k4 ∣}k2 , {∣k22∣}k3 , {∣k24∣}k6 , k15, k16, {∣k14∣}k7

)
Let K = keys(pattern(m)), K′ = psk(pattern(m)�̄). We then define a KS-

renaming �̄ based on a K-renaming �[K], and an S-renaming �̂ based on a
K-renaming �[K′], which are showed in Fig. 2.

From Definition 12 and Fig. 2, if one of the following two condition holds,

pattern(m′) = ({∣k7, k16∣}k7 , {∣k5, {∣{∣♢∣}∣}k4 ∣}k6 , {∣k26∣}k5 , {∣♢2∣}k2 , k13, k12, {∣♢1∣}k1)

pattern(m′) = ({∣k7, k16∣}k7 , {∣k5, {∣{∣♢∣}∣}k4 ∣}k6 , {∣k26∣}k5 , {∣♢2∣}k2 , k13′ , k12′ , {∣♢1∣}k1)

we have m′ ∼= m.

3 Computational model

In computational model, the message is just a bit-string which belongs to {0, 1}∗.

Definition 13 (Indistinguishability). Let D = {D�}�∈ℕ be an ensemble, i.e.,
a collection of distributions over strings. We say two ensembles D and D′ are
indistinguishable, written as D ≈ D′, if for every probabilistic polynomial-time
adversary A, there exists a negligible function negl, such that

Pr[x← D� : A(1�, x) = 1]−Pr[x← D′� : A(1�, x) = 1] = negl(�)

where x← D� means that x is sampled from the distribution D�.
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pattern(m) ({∣k1, k12∣}k1 , {∣k3, {∣{∣♢∣}∣}k4 ∣}k2 , {∣k22∣}k3 , {∣♢2∣}k6 , k
1
5, k

1
6, {∣♢1∣}k7)

K k1 k2 k3 k4 k5 k6 k7
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

�(K) k7 k6 k5 k4 k3 k2 k1

K ∪ s(K) k1 k2 k3 k4 k5 k6 k7 k
1
1 k

2
1 ⋅ ⋅ ⋅ k15 k25 k16 k26 k17 k

2
7

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ⋅ ⋅ ⋅ ↓ ↓ ↓ ↓ ↓ ↓
�̄(K ∪ s(K)) k7 k6 k5 k4 k3 k2 k1 k

1
7 k

2
7 ⋅ ⋅ ⋅ k13 k23 k12 k22 k11 k

2
1

pattern(m)�̄ ({∣k7, k16∣}k7 , {∣k5, {∣{∣♢∣}∣}k4 ∣}k6 , {∣k26∣}k5 , {∣♢2∣}k2 , k
1
3, k

1
2, {∣♢1∣}k1)

K′ k3 k2
↓ ↓ ↓

�(K′) k3′ k2′

s(K′) k13 k23 k12 k22
↓ ↓ ↓ ↓ ↓

�̂(s(K′)) k13′ k
2
3′ k

1
2′ k

2
2′

(pattern(m)�̄)�̂ ({∣k7, k16∣}k7 , {∣k5, {∣{∣♢∣}∣}k4 ∣}k6 , {∣k26∣}k5 , {∣♢2∣}k2 , k
1
3′ , k

1
2′ , {∣♢1∣}k1)

Fig. 2. An example for KS-renaming and an S-renaming

A typical property of indistinguishability is that it is transitive [21], i.e.,

if D ≈ D′ and D′ ≈ D′′, then D ≈ D′′ (13)

Definition 14 (Private-key encryption scheme). A private-key encryption
scheme is a tuple of algorithms Π = (Gen,Enc,Dec) such that:

1. The key-generation algorithm Gen takes as input the security parameter 1�

and outputs a key k. This process can be written as k ← Gen(1�).
2. The encryption algorithm Enc takes as input a key k and a message m ∈
{0, 1}∗, and outputs a ciphertext c. This process can be written as c ←
Enck(m).

3. The decryption algorithm Dec takes as input a key k and a ciphertext c, and
outputs a message m. This process is often written as m := Deck(c).

It is required that Deck(Enck(m)) = m.

We will use a standard notion of security for encryption: indistinguishability
against chosen plaintext attacks(CPA).

Definition 15 (CPA security). For any probabilistic polynomial time adver-
saries A and polynomial poly, let Π = (Gen,Enc,Dec) is an encryption
scheme, n = poly(�), k1, ⋅ ⋅ ⋅ , kn are the keys generated by Gen, b is a random
bit chosen uniformly from {0, 1}, Ob(i,m)is an encryption oracle that outputs
Encki(m) if b = 1, or Encki(0

∣m∣) if b = 0. The encryption scheme Π is in-
distinguishable under chosen plaintext attack(or is CPA-secure) if there exists
a negligible function negl such that

Pr[AO1(1�) = 1]−Pr[AO0(1�) = 1] = negl(�)
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This definition is equivalent to the definition of IND-CPA in which only
one encryption oracle is given[17].

Definition 16 (Secret sharing scheme). An n-out-of-n secret sharing scheme
for sharing keys of a encryption scheme Π is a tuple of algorithms Λ = (Crt,Com)
such that:

1. The share creation algorithm Crt takes as input a key k and the security
parameter 1� and outputs n shares of k : k1, k2, ⋅ ⋅ ⋅ , kn. This process can be
written as {k1, k2, ⋅ ⋅ ⋅ , kn} ← Crt(k, 1�).

2. The share combination algorithm Com takes as input n shares k1, k2, ⋅ ⋅ ⋅ , kn
and outputs a key k. This process can be written as k := Com(k1, k2, ⋅ ⋅ ⋅ , kn).

It is required that Com(Crt(k, 1�)) = k.

Definition 17 (Security of secret sharing). For any probabilistic polyno-
mial time adversaries A and polynomial poly, let Π = (Gen,Enc,Dec) be an
encryption scheme, Λ = (Crt,Com) be an secret sharing scheme, n = poly(�),
sh(k) be the set of n secret shares of key k generated by Crt, and sh(k)∣S be the
restriction of sh(k) to the secret shares whose indexes are in S ⊆ {1, 2, ⋅ ⋅ ⋅ , n}.
The secret sharing scheme Λ is secure if for any S ⊂ {1, 2, ⋅ ⋅ ⋅ , n}, there exists
a negligible function negl such that

Pr [k0, k1 ← Gen(1�), sh(k0)← Crt(k0, 1
�) : A(k0, k1, sh(k0)∣S) = 1]−

Pr [k0, k1 ← Gen(1�), sh(k1)← Crt(k1, 1
�) : A(k0, k1, sh(k1)∣S) = 1]

= negl(�)

Definition 18 (Computational model). A computational model is a 4-tuple
M = (Π,Λ, !, ), in which

– Π is an encryption scheme.
– Λ is a secret sharing scheme.
– ! : Data→ {0, 1}∗ is an interpretation function to evaluate each symbol in

Data to a bit-string.
–  : {0, 1}∗×{0, 1}∗ → {0, 1}∗ is a function to connect two bit-strings to a sin-

gle bit-string. It can be viewed as the computational counterpart of message
concatenation in formal model.

Definition 19 (Computational interpretation of messages). Given a com-
putational model M = (Π,Λ, !, ) and a formal message m, we can get the
computational interpretation of m, that is, associate a collection of distributions
(i.e., ensemble) over a bit-string JmKM = {JmKM(�)}�∈ℕ to the formal message
m. Assume ℓ = ∣keys(m)∣ and the number of shares for each key is n, we can
get JmKM by the following steps:

1. Initialization. Construct an ℓ vector � to save the interpretation of keys,
and an ℓ × n array & to save the interpretation of shares. Then, evaluate
�[i](1 ≤ i ≤ ℓ) and &[i, j](1 ≤ i ≤ ℓ, 1 ≤ j ≤ n) by following procedure:

for i = 1 to ℓ do
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�[i]← Gen(1�);
{&[i, 1], &[i, 2], ⋅ ⋅ ⋅ , &[i, n]} ← Crt(�[i], 1�).

}
2. Interpretation. Interpretation of the message m can be done recursively as

follows:
– JdKM = !(d), for d ∈ Data.
– JkiKM = �[i], for ki ∈ Keys and 1 ≤ i ≤ ℓ.
– Jkji KM = &[i, j], for kji ∈ Shares and 1 ≤ j ≤ n.
– J(m1,m2)KM =  (Jm1KM, Jm2KM).
– J{∣m∣}kiKM = EncJkiKMJmKM.

– Jstruct(m)KM = 0∣JmKM∣, where ∣JmKM∣ denotes the length of JmKM.

4 Computational soundness

Intuitively, Computational soundness means that, if two messages are equiva-
lent in the formal model, their interpretation in computational model will be
indistinguishable.

Before proving our main result of computational soundness, we need some
lemmas. To clarify the proof, we use Fig.3 to list the invoking structure of these
lemmas and the propositions in proving the computational soundness theorem,
where a→ b means that a is invoked in proving b.

Proposition 1 Proposition 2
↓ ↓

Lemma 1 Lemma 2 → Lemma 3 → Lemma 4 → Lemma 5
↓ ↓ ↓

↓
Computational soundness theorem

Fig. 3. The invoking structure in proving the computational soundness theorem

Lemma 1. Let m ∈MSG, �̄ be an KS-renaming based on K-renaming �[keys(m)].
Given a computational model M, it holds that

JmKM ≈ Jm�̄KM

Proof. According to Definition of KS-renaming in Definition 11, m�̄ is got from
m by consistently renaming its keys and key shares according to �̄, but the
distribution associated with a message is decided only by their meaning, not by
the symbols used in the message, so, this lemma holds.

In fact, Lemma 1 is the same as Lemma 8 in [16]. Here, KS-renaming is the
consistent renaming5 in [16].

5 Informally speaking, consistent renaming means that, when ki occurring in m is
renamed to ki′ , the share of ki, say kji , is renamed to kji′ accordingly.
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The following lemma is similar to Lemma 1 except that S-renaming is used.
However, Lemma 1 cannot be naturally applied on S-renaming, simply because
S-renaming is actually not a consistent renaming.

Lemma 2. Let m ∈MSG, �̂ be an S-renaming based on K-renaming �[psk(m)].
Given a computational model M = (Π,Λ, !, ), if Π is a CPA secure encryp-
tion scheme and Λ is a secure secret sharing scheme, then, it holds that

JmKM ≈ Jm�̂KM

Proof. Assume ∣psk(m)∣ = � is polynomially bounded in the length of message

m, and thus psk(m) = {ka1 , ka2 , ⋅ ⋅ ⋅ , ka�}. Let m0 = m, and mi = mi−1�̂[{kai}]
where 1 ≤ i ≤ �. we have m� = m�̂[psk(m)], i.e.,m� = m�̂. By using the hybrid

argument, to show JmKM ≈ Jm�̂KM, we only need to show Jmi−1KM ≈ JmiKM,
where 1 ≤ i ≤ �.

Let’s evaluate message mi−1 and mi according to Definition 19. Intuitively,
the only difference between mi−1 and mi is that, in mi, the secret shares of kai
is replaced by the secret shares of a new key ka′i . So, we can use Definition 19 to
get computational interpretations of each symbols in mi−1, and complete eval-
uating message mi−1. To evaluate message mi, we use the same computational
interpretation to mi except the secret shares of kai . To give the computational
interpretation of shares of kai , we firstly generate a new key by Gen of Π; then
create n secret shares of this key by Crt of Λ, and save them in &[i, 1] to &[i, n]
respectively. By doing such, we get Jmi−1KM and JmiKM.

Let D1 be a probabilistic polynomial-time distinguisher, and set

"1(�) ≜Pr
[
v1 ← Jmi−1KM(�) : D1(v1, 1

�) = 1
]
−

Pr
[
v1 ← JmiKM(�) : D1(v1, 1

�) = 1
]
.

Now, assume for contradiction that D1 distinguishes Jmi−1KM from JmiKM
with non-negligible probability, i.e., "1(�) is non-negligible. Then we construct
an adversary A1 to break the security of sharing scheme Λ by the help of dis-
tinguisher D1.

Let n be the numbers of shares created by Λ, Si = {j∣kjai ⋖m} be the set
of indexes j such that the key share kjai occurs in m. Since kai ∈ psk(m), the
shares of kai only partially occur in m, that is ∣Si∣ < n. From the definition of
mi−1, we know that the shares of kai occurring in m is exactly the shares of kai
occurring in mi−1. So, the share numbers of kai occurring in mi−1 is also ∣Si∣.

Adversary 1 (A1) The adversary is given two keys k̂0, k̂1 ← Gen(1�) and a

set of shares6 {ŝ1, ŝ2, ⋅ ⋅ ⋅ , ŝp} either sampled from Crt(k̂0, 1
�)∣Si , or sampled

from Crt(k̂1, 1
�)∣Si , where p = ∣Si∣ < n.

1. A1 evaluates mi−1 to get a value v1:

6 Here, we use k̂ or ŝ instead of k or s to distinguish the bit-string keys or shares from
the formal symbols of keys or shares.
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(a) Let ∣keys(mi−1)∣ = ℓ. Construct an ℓ vector � and an (ℓ× n) array &;
(b) �[j](j ∕= i) is initialized by sampling from Gen(1�);
(c) &[j, 1], &[j, 2], ⋅ ⋅ ⋅ , &[j, n](j ∕= i) are initialized by sampling from Crt(�[j], 1�);
(d) mi−1 is evaluated to value v1 according to Definition 19 except kai and

the shares of kai . More precisely, kai is interpreted by k̂0, and the shares
of kai is interpreted by {ŝ1, ŝ2, ⋅ ⋅ ⋅ , ŝp}.

2. A1 runs D1(v1, 1
�), and outputs whatever D1(v1, 1

�) outputs.

Note that both k̂0 and k̂1 are generated by Gen. So, if {ŝ1, ŝ2, ⋅ ⋅ ⋅ , ŝp}
are sampled from Crt(k̂0, 1

�)∣Si , then v1 is just sampled from Jmi−1KM. If

{ŝ1, ŝ2, ⋅ ⋅ ⋅ , ŝp} are sampled from Crt(k̂1, 1
�)∣Si , then kai is interpreted by k̂0,

while the shares of kai are interpreted by the shares of k̂1. By the definition
of mi, in this situation, v1 is just sampled from JmiKM. Considering that A1

outputs whatever D1(v1, 1
�) outputs, we have

Pr
[
k̂0, k̂1 ← Gen(1�), sh(k̂0)← Crt(k̂0, 1

�) : A1(k̂0, k̂1, sh(k̂0)∣Si) = 1
]
−

Pr
[
k̂0, k̂1 ← Gen(1�), sh(k̂1)← Crt(k̂1, 1

�) : A1(k̂0, k̂1, sh(k̂1)∣Si) = 1
]

= Pr
[
v1 ← Jmi−1KM(�) : D1(v1, 1

�) = 1
]
−Pr

[
v1 ← JmiKM(�) : D1(v1, 1

�) = 1
]

= "1(�)

This shows that A1 can break Λ with non-negligible probability, which is in
contradiction with the security of Λ, and thus Lemma 2 holds.

Example 5. Recall message m in Example 2, we have psk(m) = {k5, k6}, Fig. 4
shows an S-renaming and the messages m0,m1, and m2 constructed according
to the approach in proof of Lemma 2. Given a computational model M, from
Lemma 2, we know that JmKM ≈ Jm�̂KM.

s(psk(m)) k15 k25 k16 k26
↓ ↓ ↓ ↓ ↓

�̂(s(psk(m))) k15′ k
2
5′ k

1
6′ k

2
6′

m0 = m
(
{∣k1, k12∣}k1 , {∣k3, {∣{∣k4∣}k5 ∣}k4 ∣}k2 , {∣k22∣}k3 , {∣k24∣}k6 , k

1
5, k

1
6, {∣k14∣}k7

)
m1 = m0�̂[s(k5)]

(
{∣k1, k12∣}k1 , {∣k3, {∣{∣k4∣}k5 ∣}k4 ∣}k2 , {∣k22∣}k3 , {∣k24∣}k6 , k

1
5′ , k

1
6, {∣k14∣}k7

)
m2 = m1�̂[s(k6)] = m�̂

(
{∣k1, k12∣}k1 , {∣k3, {∣{∣k4∣}k5 ∣}k4 ∣}k2 , {∣k22∣}k3 , {∣k24∣}k6 , k

1
5′ , k

1
6′ , {∣k14∣}k7

)
Fig. 4. An example for applying S-renaming in proof of Lemma 2.

Lemma 3. Let m ∈ MSG. Given a K-renaming �[psk(m)], and thus an S-

renaming �̂[s(psk(m))], we have

Jp(m�̂, sbk(m�̂))KM ≈ Jp(m, rck(m))KM
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Proof. If we can show

p(m�̂, sbk(m�̂)) = p(m, rck(m))�̂ (14)

then, by Lemma 2, we can directly show that Lemma 3 holds. We then show
(14) by the following two steps:

p(m�̂, sbk(m�̂)) = p(m�̂, rck(m)) (15)

p(m�̂, rck(m)) = p(m, rck(m))�̂ (16)

Proof of (15). From the definition of sbk and S-renaming, we have sbk(m�̂) =
rck(m) ∪ �(psk(m)). Considering that �(psk(m)) ∩ keys(m) = ∅ by (12), and
rck(m) ⊆ keys(m) by (3) and (1), we have �(psk(m)) ∩ rck(m) = ∅. Together
with Proposition 1, we get that

p(m�̂, sbk(m�̂)) = p(m�̂, rck(m) ∪ �(psk(m)))

= p(m�̂, rck(m))

Proof of (16). From (4), we know that psk(m)∩rck(m) = ∅. So, p(m�̂, rck(m))
is only different from p(m, rck(m)) in that the shares of keys in psk(m) is re-

named according to �̂. Therefore, by using the same �̂ on p(m, rck(m)), we can

get p(m�̂, rck(m)).

Example 6. Continue the Example 5, we have

m =
(
{∣k1, k12∣}k1 , {∣k3, {∣{∣k4∣}k5 ∣}k4 ∣}k2 , {∣k22∣}k3 , {∣k24∣}k6 , k15, k16, {∣k14∣}k7

)
rck(m) = {k1, k2, k3, k4}

p(m, rck(m)) = ({∣k1, k12∣}k1 , {∣k3, {∣{∣♢∣}k5 ∣}k4 ∣}k2 , {∣k22∣}k3 , {∣♢2∣}k6 , k15, k16, {∣♢1∣}k7)

p(m, rck(m))�̂ =
(
{∣k1, k12∣}k1 , {∣k3, {∣{∣♢∣}k5 ∣}k4 ∣}k2 , {∣k22∣}k3 , {∣♢2∣}k6 , k15′ , k16′ , {∣♢1∣}k7

)
m�̂ =

(
{∣k1, k12∣}k1 , {∣k3, {∣{∣k4∣}k5 ∣}k4 ∣}k2 , {∣k22∣}k3 , {∣k24∣}k6 , k15′ , k16′ , {∣k14∣}k7

)
sbk(m�̂) = {k1, k2, k3, k4, k5′ , k6′}

p(m�̂, sbk(m�̂)) =
(
{∣k1, k12∣}k1 , {∣k3, {∣{∣♢∣}k5 ∣}k4 ∣}k2 , {∣k22∣}k3 , {∣♢2∣}k6 , k15′ , k16′ , {∣♢1∣}k7

)
p(m�̂, rck(m)) =

(
{∣k1, k12∣}k1 , {∣k3, {∣{∣♢∣}k5 ∣}k4 ∣}k2 , {∣k22∣}k3 , {∣♢2∣}k6 , k15′ , k16′ , {∣♢1∣}k7

)
Obviously, p(m, rck(m))�̂ = p(m�̂, rck(m)). Then, from Lemma 2, we get

Jp(m�̂, sbk(m�̂))KM ≈ Jp(m, rck(m))KM

as expected.

Lemma 4. Given a formal message m, and a computational model M =
(Π,Λ, !, ), if Π is a CPA secure encryption scheme and Λ is a secure secret
sharing scheme, then, it holds that

JmKM ≈ Jp(m, rck(m))KM
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Proof. Assume �̂ be an S-renaming based on K-renaming �[psk(m)]. We have

JmKM ≈ Jm�̂KM by Lemma 2

Jp(m, rck(m))KM ≈ Jp(m�̂, sbk(m�̂))KM by Lemma 3

Therefore, to prove JmKM ≈ Jp(m, rck(m))KM, we only need to show

Jm�̂KM ≈ Jp(m�̂, sbk(m�̂))KM

Let’s evaluate message m�̂ and p(m�̂, sbk(m�̂)) according to Definition 19.

Intuitively, the difference between m�̂ and m is that, in m�̂, the secret shares
of k in psk(m) are replaced by the secret shares of a new key. So, we can evaluate

m�̂ by generating ∣psk(m)∣ more keys and their secret shares.

The difference between p(m�̂, sbk(m�̂)) and m�̂ is that, all the sub-messages

of m�̂ in form of {∣m′∣}ki , where ki ∈ eok(m�̂) = keys(m�̂) ∖ sbk(m�̂), are
replaced by {∣struct(m′)∣}ki . So, according to Definition 19, we can evaluate

p(m�̂, sbk(m�̂)) by using the same computational interpretation of m�̂ except

the sub-message in form of {∣m′∣}ki where ki ∈ eok(m�̂). The computational
interpretation of {∣m′∣}ki is simply interpreted by 0∣Jm

′KM∣.

By doing such, we get Jm�̂KM and Jp(m�̂, sbk(m�̂))KM.
Let D2 be a probabilistic polynomial-time distinguisher, and set

"2(�) ≜Pr
[
v2 ← Jm�̂KM(�) : D2(v2, 1

�) = 1
]
−

Pr
[
v2 ← Jp(m�̂, sbk(m�̂))KM(�) : D2(v2, 1

�) = 1
]
.

Assume for contradiction that there is a distinguisher D2 which can distin-
guish Jm�̂KM from Jp(m�̂, sbk(m�̂))KM with non-negligible probability. We then
construct an adversary A2 to break the encryption scheme Π.

Adversary 2 (A2) The adversary is given the security parameter 1� and an

encryption oracle Ob(⋅, ⋅) about eok(m�̂). Given a query (i,m′) where ki ∈
eok(m�̂), Ob(⋅, ⋅) outputs Encki(m

′) if b = 1, or Encki(0
∣m′∣) if b = 0.

1. A2 evaluates m�̂ to get a value v2:
(a) Let ∣sbk(m�̂)∣ = ℓ. Construct an ℓ vector � and an (ℓ× n) array &;

(b) �[j](kj ∈ sbk(m�̂)) is initialized by sampling from Gen(1�);

(c) &[j, 1], &[j, 2], ⋅ ⋅ ⋅ , &[j, n](kj ∈ sbk(m�̂)) are initialized by sampling from
Crt(�[j], 1�);

(d) m�̂ is evaluated to value v2 according to Definition 19 except keys in

eok(m�̂) = keys(m�̂) ∖ sbk(m�̂)7. More precisely, a message in form

of {∣m′∣}ki , where ki ∈ eok(m�̂), is evaluated by submitting (i,m′) to
Ob(⋅, ⋅).

2. A2 runs D2(v2, 1
�), and outputs whatever D2(v2, 1

�) outputs.

7 Since eok(m�̂) ∩ sbk(m�̂) = ∅, the shares of keys in eok(m�̂) never occur in m�̂.
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Since we deal with the messages in presence of key cycles and secret shares,
one may wonder that if it’s always feasible for the adversary A2 to construct a
query submitted to oracle. After all, for any m ∈ MSG, it seems that such a
query may contain some keys or secret shares that A2 doesn’t know. In fact, by
using m�̂ instead of m itself, considering that A2 knows all the keys in sbk(m�̂)
and their shares, it is definitely feasible for A2 to construct such query.

Moreover, if b = 1, we can see that v2 is just sampled from Jm�̂KM, and if

b = 0, v2 is just sampled from Jp(m�̂, sbk(m�̂))KM. Considering that A2 outputs
whatever D2(v2, 1

�) outputs, we have

Pr[A2
O1(1�) = 1]−Pr[A2

O0(1�) = 1]

= Pr
[
v2 ← Jm�̂KM(�) : D2(v2, 1

�) = 1
]
−

Pr
[
v2 ← Jp(m�̂, sbk(m�̂))KM(�) : D2(v2, 1

�) = 1
]

= "2(�)

This shows that A2 can break Π with non-negligible probability, which is in
contradiction with the CPA security of Π. Therefore, "2(�) is negligible, and
this completes the lemma.

Lemma 5. Given a formal message m, and a computational model M =
(Π,Λ, !, ), if Π is a CPA secure encryption scheme and Λ is a secure secret
sharing scheme, then, it holds that

JmKM ≈ Jpattern(m)KM

Proof. Let ℓ = ∣Keys∣ is polynomially bounded in the security parameter �,
from (5) and Definition 10, we have

JmKM Jpattern(m)KM
=Jp(m,keys(m))KM =Jp(m,FIX(ℱm))KM
=Jp(m,ℱ0

m(keys(m)))KM =Jp(m,ℱℓm(keys(m)))KM.

If we can show

Jp(m,ℱ im(Keys))KM ≈ Jp(m,ℱ i+1
m (Keys))KM

where 0 ≤ i ≤ ℓ−1, then, by the transitivity (13), we can show Jp(m,ℱ0
m(Keys))KM

is distinguishable from Jp(m,ℱℓm(keys(m)))KM, i.e.,

JmKM ≈ Jpattern(m)KM.

Let K = ℱ im(keys(m)), m′ = p(m,K). We have

p(m,ℱ im(keys(m))) = p(m,K) = m′ (17)

p(m,ℱ i+1
m (keys(m))) = p(m,ℱm(K)) (18)
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Moreover, because keys(m) is the set of all keys occurring in m, we can get that
ℱm(keys(m)) ⊆ keys(m). According to Proposition 2, ℱm is monotone. So, we
have ℱ i+1

m (keys(m)) ⊆ ℱ im(keys(m)), particularly, ℱm(K) ⊆ K, and thus

ℱm(K) ∩K = ℱm(K) (19)

Then, we have

p(m′, rck(m′)) = p(p(m,K),ℱm(K)) by (8)

= p(m,K ∩ ℱm(K)) by (6)

= p(m,ℱm(K)) by (19)

From lemma 4, we know that Jp(m′, rck(m′))KM ≈ Jm′KM, and thus Jm′KM ≈
Jp(m,ℱm(M))KM. Then, with (17) and (18), we get

Jp(m,ℱ im(keys(m)))KM ≈ Jp(m,ℱ i+1
m (keys(m)))KM

and thus Lemma 5 holds.

Now, it’s time for us to prove our main result, i.e., the computational sound-
ness theorem.

Theorem 1. Given two formal messages m,m′, and a computational model
M = (Π,Λ, !, ), in which Π is an CPA secure encryption scheme and Λ
is a secure secret sharing scheme, if m ∼= m′, then, JmKM ≈ Jm′KM.

Proof. Since m ∼= m′, from Definition 12, we know that there exists a KS-
renaming �̄ based on K-renaming �[keys(m)], or, additionally an S-renaming

�̂ based on K-renaming �[psk(m�̄)], such that one of the following holds:

pattern(m) = pattern(m′)�̄ (20)

pattern(m) = (pattern(m′)�̄)�̂ (21)

From (20) and Lemma 1, we can get Jpattern(m)KM ≈ Jpattern(m′)KM.
From (21), Lemma 2, and Lemma 1, we can also get Jpattern(m)KM ≈ Jpattern(m′)KM.
So, we can conclude that, if m ∼= m′, then

Jpattern(m)KM ≈ Jpattern(m′)KM. (22)

Moreover, from Lemma 5, we have

JmKM ≈ Jpattern(m)KM
Jm′KM ≈ Jpattern(m′)KM

Together with (13) and (22), we get

JmKM ≈ Jm′KM

This completes our proof.
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5 Conclusion

We proved the computational soundness of formal encryption in presence of
secret shares and key cycles. Our work is inspired by [16] and [17], and gives a
more general result. To extend the result of [16] to consider key cycles, we model
the adversary’s knowledge by co-induction which is proposed in [17]. Presence of
secret shares and key cycles makes the cryptographic setting more complicated
and needs more consideration. For example, when both keys and shares occur in a
key cycle, we must reconsider what keys can be recover from it and what cannot.
Moreover, by using CPA secure encryption scheme in computational model, we
must deal the conflict between definition of CPA and the key cycles, especially
the secret shares are involved. These problems also need more considerations in
the proof of computational soundness. All these make our work different from
the previous.

In further research, one can take the work in this paper to the setting of
the asymmetric cryptography. Still another work is to prove the computational
soundness in presence of active adversaries.
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